file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LowStar.Lib.AssocList.fst | LowStar.Lib.AssocList.remove_all_ | val remove_all_ (#t_k: eqtype) (#t_v: Type0) (hd: LL1.t (t_k & t_v)) (l: G.erased (list (t_k & t_v))) (k: t_k):
ST (LL1.t (t_k & t_v) & G.erased (list (t_k & t_v)))
(requires fun h0 ->
LL1.well_formed h0 hd l /\
LL1.invariant h0 hd l)
(ensures fun h0 (hd', l') h1 ->
LL1.well_formed h1 hd' l' /\
LL1.invariant h1 hd' l' /\
B.(loc_includes (LL1.footprint h0 hd l) (LL1.footprint h1 hd' l')) /\
B.modifies (LL1.footprint h0 hd l) h0 h1 /\
v_ l' == M.upd (v_ l) k None) | val remove_all_ (#t_k: eqtype) (#t_v: Type0) (hd: LL1.t (t_k & t_v)) (l: G.erased (list (t_k & t_v))) (k: t_k):
ST (LL1.t (t_k & t_v) & G.erased (list (t_k & t_v)))
(requires fun h0 ->
LL1.well_formed h0 hd l /\
LL1.invariant h0 hd l)
(ensures fun h0 (hd', l') h1 ->
LL1.well_formed h1 hd' l' /\
LL1.invariant h1 hd' l' /\
B.(loc_includes (LL1.footprint h0 hd l) (LL1.footprint h1 hd' l')) /\
B.modifies (LL1.footprint h0 hd l) h0 h1 /\
v_ l' == M.upd (v_ l) k None) | let rec remove_all_ #t_k #t_v hd l k =
let h0 = ST.get () in
if B.is_null hd then begin
M.lemma_equal_intro (v_ l) (M.upd (v_ l) k None);
hd, l
end else begin
let cell = !*hd in
let { LL1.data; LL1.next } = cell in
let k', v = data in
if k = k' then begin
B.free hd;
let h1 = ST.get () in
LL1.frame next (List.Tot.tail l) (B.loc_addr_of_buffer hd) h0 h1;
let hd', l' = remove_all_ next (List.Tot.tail l) k in
M.lemma_equal_intro (v_ l') (M.upd (v_ l) k None);
hd', l'
end else begin
let hd', l' = remove_all_ next (List.Tot.tail l) k in
let h1 = ST.get () in
hd *= { LL1.data; LL1.next = hd' };
let h2 = ST.get () in
LL1.frame hd' l' (B.loc_addr_of_buffer hd) h1 h2;
M.lemma_equal_intro (v_ ((k', v) :: l')) (M.upd (v_ l) k None);
assert B.(loc_disjoint (loc_buffer hd) (LL1.footprint h2 hd' l'));
assert (B.live h2 hd /\ B.length hd == 1);
assert (LL1.well_formed h2 hd' l');
assert (LL1.invariant h2 hd (data :: l'));
hd, G.hide ((k', v) :: l')
end
end | {
"file_name": "krmllib/LowStar.Lib.AssocList.fst",
"git_rev": "da1e941b2fcb196aa5d1e34941aa00b4c67ac321",
"git_url": "https://github.com/FStarLang/karamel.git",
"project_name": "karamel"
} | {
"end_col": 5,
"end_line": 181,
"start_col": 0,
"start_line": 152
} | module LowStar.Lib.AssocList
/// A Low*, stateful associative list that exposes a map-like interface.
module B = LowStar.Buffer
module HS = FStar.HyperStack
module G = FStar.Ghost
module L = FStar.List.Tot
module U32 = FStar.UInt32
module ST = FStar.HyperStack.ST
module M = FStar.Map
module LL2 = LowStar.Lib.LinkedList2
module LL1 = LowStar.Lib.LinkedList
open FStar.HyperStack.ST
open LowStar.BufferOps
#set-options "--fuel 0 --ifuel 0"
/// Types, invariants, footprint
/// ----------------------------
/// We prefer the packed representation that is in general easier to use and will
/// look at the underlying predicate-based representation from LL1 only when
/// strictly needed.
let t k v =
LL2.t (k & v)
/// Functions suffixed with an underscore operate on either LL1 or raw lists
/// while those without operate on LL2.
val v_: #t_k:eqtype -> #t_v:Type0 -> l:list (t_k & t_v) -> Tot (map t_k t_v)
let v_ #_ #t_v l =
List.Tot.fold_right (fun (k, v) m -> M.upd m k (Some v)) l (M.const (None #t_v))
/// Reflecting a stateful, imperative map as a functional one in a given heap.
let v #_ #_ h ll =
let l = LL2.v h ll in
v_ l
let invariant #_ #_ h ll =
LL2.invariant h ll
// No longer needed in the fsti.
val footprint: #t_k:eqtype -> #t_v:Type0 -> h:HS.mem -> ll:t t_k t_v -> Ghost B.loc
(requires invariant h ll)
(ensures fun _ -> True)
let footprint #_ #_ h ll =
LL2.footprint h ll
let region_of #_ #_ ll =
LL2.region_of ll
let frame #_ #_ ll _ h0 _ =
LL2.footprint_in_r h0 ll
val footprint_in_r: #t_k:eqtype -> #t_v:Type0 -> h0:HS.mem -> ll:t t_k t_v -> Lemma
(requires
invariant h0 ll)
(ensures
B.(loc_includes (region_of ll) (footprint h0 ll)))
[ SMTPat (footprint h0 ll) ]
let footprint_in_r #_ #_ h0 ll =
LL2.footprint_in_r h0 ll
#push-options "--fuel 1"
let create_in #_ #_ r =
LL2.create_in r
#pop-options
/// Find
/// ----
/// Proper recursion can only be done over the LL1.t type (unpacked representation).
val find_ (#t_k: eqtype) (#t_v: Type0) (hd: LL1.t (t_k & t_v)) (l: G.erased (list (t_k & t_v))) (k: t_k):
Stack (option t_v)
(requires fun h0 ->
LL1.well_formed h0 hd l /\
LL1.invariant h0 hd l)
(ensures fun h0 x h1 ->
let m: map t_k t_v = v_ l in
h0 == h1 /\
x == M.sel m k)
#push-options "--fuel 1 --ifuel 1"
let rec find_ #_ #_ hd l k =
if B.is_null hd then
None
else
let cell = !* hd in
if fst cell.LL1.data = k then
Some (snd cell.LL1.data)
else
find_ cell.LL1.next (List.Tot.tl l) k
#pop-options
let find #_ #_ ll k =
find_ !*ll.LL2.ptr !*ll.LL2.v k
/// Adding elements
/// ---------------
#push-options "--fuel 1"
let add #_ #_ ll k x =
LL2.push ll (k, x)
#pop-options
/// Removing elements
/// -----------------
/// This one is tricky to state so temporarily disabled. I'm trying to offer a
/// shadowing API that allows revealing the previous binding (if any) when the
/// most recent one is remoed. However, as it stands, the precondition is not
/// strong enough to conclude that just popping the first occurrence of key
/// ``k`` in the list yields ``m``.
///
/// I'm unsure on how to do that cleanly and abstractly without revealing to the
/// client the underlying associative-list nature of the map abstraction, so
/// disabling for now.
///
(*val remove_one (#t_k: eqtype)
(#t_v: Type0)
(ll: t t_k t_v)
(k: t_k)
(x: G.erased t_v)
(m: G.erased (map t_k t_v)):
ST unit
(requires fun h0 ->
invariant h0 ll /\
// TODO: file bug to figure why auto-reveal doesn't work (also in post-condition)
v h0 ll == M.upd m k (Some (G.reveal x)))
(ensures fun h0 _ h1 ->
B.modifies (footprint h0 ll) h0 h1 /\
v h1 ll == G.reveal m)*)
val remove_all_ (#t_k: eqtype) (#t_v: Type0) (hd: LL1.t (t_k & t_v)) (l: G.erased (list (t_k & t_v))) (k: t_k):
ST (LL1.t (t_k & t_v) & G.erased (list (t_k & t_v)))
(requires fun h0 ->
LL1.well_formed h0 hd l /\
LL1.invariant h0 hd l)
(ensures fun h0 (hd', l') h1 ->
LL1.well_formed h1 hd' l' /\
LL1.invariant h1 hd' l' /\
B.(loc_includes (LL1.footprint h0 hd l) (LL1.footprint h1 hd' l')) /\
B.modifies (LL1.footprint h0 hd l) h0 h1 /\
v_ l' == M.upd (v_ l) k None) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Lib.LinkedList2.fst.checked",
"LowStar.Lib.LinkedList.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Map.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "LowStar.Lib.AssocList.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Lib.LinkedList",
"short_module": "LL1"
},
{
"abbrev": true,
"full_module": "LowStar.Lib.LinkedList2",
"short_module": "LL2"
},
{
"abbrev": true,
"full_module": "FStar.Map",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.Lib.LinkedList",
"short_module": "LL1"
},
{
"abbrev": true,
"full_module": "LowStar.Lib.LinkedList2",
"short_module": "LL2"
},
{
"abbrev": true,
"full_module": "FStar.Map",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "LowStar.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | hd: LowStar.Lib.LinkedList.t (t_k * t_v) -> l: FStar.Ghost.erased (Prims.list (t_k * t_v)) -> k: t_k
-> FStar.HyperStack.ST.ST
(LowStar.Lib.LinkedList.t (t_k * t_v) * FStar.Ghost.erased (Prims.list (t_k * t_v))) | FStar.HyperStack.ST.ST | [] | [] | [
"Prims.eqtype",
"LowStar.Lib.LinkedList.t",
"FStar.Pervasives.Native.tuple2",
"FStar.Ghost.erased",
"Prims.list",
"FStar.Pervasives.Native.Mktuple2",
"Prims.unit",
"FStar.Map.lemma_equal_intro",
"FStar.Pervasives.Native.option",
"LowStar.Lib.AssocList.v_",
"FStar.Ghost.reveal",
"FStar.Map.upd",
"FStar.Pervasives.Native.None",
"Prims.bool",
"LowStar.Buffer.pointer_or_null",
"LowStar.Lib.LinkedList.cell",
"Prims.op_Equality",
"LowStar.Lib.AssocList.remove_all_",
"FStar.Ghost.hide",
"FStar.List.Tot.Base.tail",
"LowStar.Lib.LinkedList.frame",
"LowStar.Monotonic.Buffer.loc_addr_of_buffer",
"LowStar.Buffer.trivial_preorder",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowStar.Monotonic.Buffer.free",
"Prims.Cons",
"Prims._assert",
"LowStar.Lib.LinkedList.invariant",
"LowStar.Lib.LinkedList.well_formed",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"Prims.eq2",
"Prims.int",
"LowStar.Monotonic.Buffer.length",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Lib.LinkedList.footprint",
"LowStar.BufferOps.op_Star_Equals",
"LowStar.Lib.LinkedList.Mkcell",
"LowStar.BufferOps.op_Bang_Star",
"LowStar.Monotonic.Buffer.is_null"
] | [
"recursion"
] | false | true | false | false | false | let rec remove_all_ #t_k #t_v hd l k =
| let h0 = ST.get () in
if B.is_null hd
then
(M.lemma_equal_intro (v_ l) (M.upd (v_ l) k None);
hd, l)
else
let cell = !*hd in
let { LL1.data = data ; LL1.next = next } = cell in
let k', v = data in
if k = k'
then
(B.free hd;
let h1 = ST.get () in
LL1.frame next (List.Tot.tail l) (B.loc_addr_of_buffer hd) h0 h1;
let hd', l' = remove_all_ next (List.Tot.tail l) k in
M.lemma_equal_intro (v_ l') (M.upd (v_ l) k None);
hd', l')
else
let hd', l' = remove_all_ next (List.Tot.tail l) k in
let h1 = ST.get () in
hd *= { LL1.data = data; LL1.next = hd' };
let h2 = ST.get () in
LL1.frame hd' l' (B.loc_addr_of_buffer hd) h1 h2;
M.lemma_equal_intro (v_ ((k', v) :: l')) (M.upd (v_ l) k None);
assert B.(loc_disjoint (loc_buffer hd) (LL1.footprint h2 hd' l'));
assert (B.live h2 hd /\ B.length hd == 1);
assert (LL1.well_formed h2 hd' l');
assert (LL1.invariant h2 hd (data :: l'));
hd, G.hide ((k', v) :: l') | false |
Vale.Curve25519.FastMul_helpers.fst | Vale.Curve25519.FastMul_helpers.lemma_intel_prod_sum_bound | val lemma_intel_prod_sum_bound (w x y z: nat64) : Lemma (w * x + y + z < pow2_128) | val lemma_intel_prod_sum_bound (w x y z: nat64) : Lemma (w * x + y + z < pow2_128) | let lemma_intel_prod_sum_bound (w x y z:nat64)
: Lemma (w * x + y + z < pow2_128)
= lemma_mul_bound64 w x | {
"file_name": "vale/code/crypto/ecc/curve25519/Vale.Curve25519.FastMul_helpers.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 25,
"end_line": 31,
"start_col": 0,
"start_line": 29
} | module Vale.Curve25519.FastMul_helpers
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.CanonCommSemiring
open Vale.Curve25519.Fast_defs
open Vale.Curve25519.Fast_lemmas_internal
open FStar.Math.Lemmas
#reset-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection'"
#push-options "--z3rlimit 10"
let lemma_mul_pow2_bound (b:nat{b > 1}) (x y:natN (pow2 b))
: Lemma (x * y < pow2 (2*b) - 1 /\
x * y <= pow2 (2*b) - 2*pow2(b) + 1)
= lemma_mul_bounds_le x (pow2 b - 1) y (pow2 b -1);
pow2_plus b b;
assert ( (pow2 b - 1) * (pow2 b -1) = pow2 (2*b) - 2*pow2(b) + 1)
#pop-options
let lemma_mul_bound64 (x y:nat64)
: Lemma (x * y < pow2_128 - 1 /\ x * y <= pow2_128 - 2*pow2_64 + 1)
= assert_norm (pow2 64 == pow2_64);
assert_norm (pow2 128 == pow2_128);
lemma_mul_pow2_bound 64 x y | {
"checked_file": "/",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Curve25519.Fast_lemmas_internal.fsti.checked",
"Vale.Curve25519.Fast_defs.fst.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Curve25519.FastMul_helpers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_lemmas_internal",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
w: Vale.Def.Types_s.nat64 ->
x: Vale.Def.Types_s.nat64 ->
y: Vale.Def.Types_s.nat64 ->
z: Vale.Def.Types_s.nat64
-> FStar.Pervasives.Lemma (ensures w * x + y + z < Vale.Def.Words_s.pow2_128) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat64",
"Vale.Curve25519.FastMul_helpers.lemma_mul_bound64",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Vale.Def.Words_s.pow2_128",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_intel_prod_sum_bound (w x y z: nat64) : Lemma (w * x + y + z < pow2_128) =
| lemma_mul_bound64 w x | false |
Vale.Curve25519.FastMul_helpers.fst | Vale.Curve25519.FastMul_helpers.lemma_mul_bound64 | val lemma_mul_bound64 (x y: nat64)
: Lemma (x * y < pow2_128 - 1 /\ x * y <= pow2_128 - 2 * pow2_64 + 1) | val lemma_mul_bound64 (x y: nat64)
: Lemma (x * y < pow2_128 - 1 /\ x * y <= pow2_128 - 2 * pow2_64 + 1) | let lemma_mul_bound64 (x y:nat64)
: Lemma (x * y < pow2_128 - 1 /\ x * y <= pow2_128 - 2*pow2_64 + 1)
= assert_norm (pow2 64 == pow2_64);
assert_norm (pow2 128 == pow2_128);
lemma_mul_pow2_bound 64 x y | {
"file_name": "vale/code/crypto/ecc/curve25519/Vale.Curve25519.FastMul_helpers.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 26,
"start_col": 0,
"start_line": 22
} | module Vale.Curve25519.FastMul_helpers
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.CanonCommSemiring
open Vale.Curve25519.Fast_defs
open Vale.Curve25519.Fast_lemmas_internal
open FStar.Math.Lemmas
#reset-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection'"
#push-options "--z3rlimit 10"
let lemma_mul_pow2_bound (b:nat{b > 1}) (x y:natN (pow2 b))
: Lemma (x * y < pow2 (2*b) - 1 /\
x * y <= pow2 (2*b) - 2*pow2(b) + 1)
= lemma_mul_bounds_le x (pow2 b - 1) y (pow2 b -1);
pow2_plus b b;
assert ( (pow2 b - 1) * (pow2 b -1) = pow2 (2*b) - 2*pow2(b) + 1)
#pop-options | {
"checked_file": "/",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Curve25519.Fast_lemmas_internal.fsti.checked",
"Vale.Curve25519.Fast_defs.fst.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Curve25519.FastMul_helpers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_lemmas_internal",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Vale.Def.Types_s.nat64 -> y: Vale.Def.Types_s.nat64
-> FStar.Pervasives.Lemma
(ensures
x * y < Vale.Def.Words_s.pow2_128 - 1 /\
x * y <= Vale.Def.Words_s.pow2_128 - 2 * Vale.Def.Words_s.pow2_64 + 1) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat64",
"Vale.Curve25519.FastMul_helpers.lemma_mul_pow2_bound",
"Prims.unit",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.pow2",
"Vale.Def.Words_s.pow2_128",
"Vale.Def.Words_s.pow2_64",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_mul_bound64 (x y: nat64)
: Lemma (x * y < pow2_128 - 1 /\ x * y <= pow2_128 - 2 * pow2_64 + 1) =
| assert_norm (pow2 64 == pow2_64);
assert_norm (pow2 128 == pow2_128);
lemma_mul_pow2_bound 64 x y | false |
Vale.Curve25519.FastMul_helpers.fst | Vale.Curve25519.FastMul_helpers.lemma_mul_pow2_bound | val lemma_mul_pow2_bound (b: nat{b > 1}) (x y: natN (pow2 b))
: Lemma (x * y < pow2 (2 * b) - 1 /\ x * y <= pow2 (2 * b) - 2 * pow2 (b) + 1) | val lemma_mul_pow2_bound (b: nat{b > 1}) (x y: natN (pow2 b))
: Lemma (x * y < pow2 (2 * b) - 1 /\ x * y <= pow2 (2 * b) - 2 * pow2 (b) + 1) | let lemma_mul_pow2_bound (b:nat{b > 1}) (x y:natN (pow2 b))
: Lemma (x * y < pow2 (2*b) - 1 /\
x * y <= pow2 (2*b) - 2*pow2(b) + 1)
= lemma_mul_bounds_le x (pow2 b - 1) y (pow2 b -1);
pow2_plus b b;
assert ( (pow2 b - 1) * (pow2 b -1) = pow2 (2*b) - 2*pow2(b) + 1) | {
"file_name": "vale/code/crypto/ecc/curve25519/Vale.Curve25519.FastMul_helpers.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 69,
"end_line": 19,
"start_col": 0,
"start_line": 14
} | module Vale.Curve25519.FastMul_helpers
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.CanonCommSemiring
open Vale.Curve25519.Fast_defs
open Vale.Curve25519.Fast_lemmas_internal
open FStar.Math.Lemmas
#reset-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection'" | {
"checked_file": "/",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Curve25519.Fast_lemmas_internal.fsti.checked",
"Vale.Curve25519.Fast_defs.fst.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Curve25519.FastMul_helpers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_lemmas_internal",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: Prims.nat{b > 1} ->
x: Vale.Def.Words_s.natN (Prims.pow2 b) ->
y: Vale.Def.Words_s.natN (Prims.pow2 b)
-> FStar.Pervasives.Lemma
(ensures x * y < Prims.pow2 (2 * b) - 1 /\ x * y <= Prims.pow2 (2 * b) - 2 * Prims.pow2 b + 1) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_GreaterThan",
"Vale.Def.Words_s.natN",
"Prims.pow2",
"Prims._assert",
"Prims.op_Equality",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Prims.op_Addition",
"Prims.unit",
"FStar.Math.Lemmas.pow2_plus",
"Vale.Curve25519.Fast_lemmas_internal.lemma_mul_bounds_le",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.op_LessThan",
"Prims.op_LessThanOrEqual",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_mul_pow2_bound (b: nat{b > 1}) (x y: natN (pow2 b))
: Lemma (x * y < pow2 (2 * b) - 1 /\ x * y <= pow2 (2 * b) - 2 * pow2 (b) + 1) =
| lemma_mul_bounds_le x (pow2 b - 1) y (pow2 b - 1);
pow2_plus b b;
assert ((pow2 b - 1) * (pow2 b - 1) = pow2 (2 * b) - 2 * pow2 (b) + 1) | false |
Vale.Curve25519.FastMul_helpers.fst | Vale.Curve25519.FastMul_helpers.lemma_prod_bounds | val lemma_prod_bounds (dst_hi dst_lo x y: nat64)
: Lemma (requires pow2_64 * dst_hi + dst_lo == x * y)
(ensures dst_hi < pow2_64 - 1 /\ (dst_hi < pow2_64 - 2 \/ dst_lo <= 1)) | val lemma_prod_bounds (dst_hi dst_lo x y: nat64)
: Lemma (requires pow2_64 * dst_hi + dst_lo == x * y)
(ensures dst_hi < pow2_64 - 1 /\ (dst_hi < pow2_64 - 2 \/ dst_lo <= 1)) | let lemma_prod_bounds (dst_hi dst_lo x y:nat64)
: Lemma
(requires
pow2_64 * dst_hi + dst_lo == x * y)
(ensures
dst_hi < pow2_64 - 1 /\
(dst_hi < pow2_64 - 2 \/
dst_lo <= 1))
= let result = x * y in
lemma_div_mod result pow2_64;
//assert (result = pow2_64 * (result / pow2_64) + result % pow2_64);
//assert (result % pow2_64 == dst_lo);
//assert (result / pow2_64 == dst_hi);
lemma_mul_bound64 x y | {
"file_name": "vale/code/crypto/ecc/curve25519/Vale.Curve25519.FastMul_helpers.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 25,
"end_line": 46,
"start_col": 0,
"start_line": 33
} | module Vale.Curve25519.FastMul_helpers
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.CanonCommSemiring
open Vale.Curve25519.Fast_defs
open Vale.Curve25519.Fast_lemmas_internal
open FStar.Math.Lemmas
#reset-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection'"
#push-options "--z3rlimit 10"
let lemma_mul_pow2_bound (b:nat{b > 1}) (x y:natN (pow2 b))
: Lemma (x * y < pow2 (2*b) - 1 /\
x * y <= pow2 (2*b) - 2*pow2(b) + 1)
= lemma_mul_bounds_le x (pow2 b - 1) y (pow2 b -1);
pow2_plus b b;
assert ( (pow2 b - 1) * (pow2 b -1) = pow2 (2*b) - 2*pow2(b) + 1)
#pop-options
let lemma_mul_bound64 (x y:nat64)
: Lemma (x * y < pow2_128 - 1 /\ x * y <= pow2_128 - 2*pow2_64 + 1)
= assert_norm (pow2 64 == pow2_64);
assert_norm (pow2 128 == pow2_128);
lemma_mul_pow2_bound 64 x y
(* Intel manual mentions this fact *)
let lemma_intel_prod_sum_bound (w x y z:nat64)
: Lemma (w * x + y + z < pow2_128)
= lemma_mul_bound64 w x | {
"checked_file": "/",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Curve25519.Fast_lemmas_internal.fsti.checked",
"Vale.Curve25519.Fast_defs.fst.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Curve25519.FastMul_helpers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_lemmas_internal",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
dst_hi: Vale.Def.Types_s.nat64 ->
dst_lo: Vale.Def.Types_s.nat64 ->
x: Vale.Def.Types_s.nat64 ->
y: Vale.Def.Types_s.nat64
-> FStar.Pervasives.Lemma (requires Vale.Def.Words_s.pow2_64 * dst_hi + dst_lo == x * y)
(ensures
dst_hi < Vale.Def.Words_s.pow2_64 - 1 /\
(dst_hi < Vale.Def.Words_s.pow2_64 - 2 \/ dst_lo <= 1)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat64",
"Vale.Curve25519.FastMul_helpers.lemma_mul_bound64",
"Prims.unit",
"FStar.Math.Lemmas.lemma_div_mod",
"Vale.Def.Words_s.pow2_64",
"Prims.int",
"FStar.Mul.op_Star",
"Prims.eq2",
"Prims.op_Addition",
"Prims.squash",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Subtraction",
"Prims.l_or",
"Prims.op_LessThanOrEqual",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_prod_bounds (dst_hi dst_lo x y: nat64)
: Lemma (requires pow2_64 * dst_hi + dst_lo == x * y)
(ensures dst_hi < pow2_64 - 1 /\ (dst_hi < pow2_64 - 2 \/ dst_lo <= 1)) =
| let result = x * y in
lemma_div_mod result pow2_64;
lemma_mul_bound64 x y | false |
Vale.Curve25519.FastMul_helpers.fst | Vale.Curve25519.FastMul_helpers.lemma_offset_sum | val lemma_offset_sum (a_agg: nat) (a0 a1 a2 a3 a4: nat64) (b_agg: nat) (b0 b1 b2 b3 b4: nat64)
: Lemma (requires a_agg = pow2_five a0 a1 a2 a3 a4 /\ b_agg = pow2_five b0 b1 b2 b3 b4)
(ensures a_agg + pow2_64 * b_agg = pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4) | val lemma_offset_sum (a_agg: nat) (a0 a1 a2 a3 a4: nat64) (b_agg: nat) (b0 b1 b2 b3 b4: nat64)
: Lemma (requires a_agg = pow2_five a0 a1 a2 a3 a4 /\ b_agg = pow2_five b0 b1 b2 b3 b4)
(ensures a_agg + pow2_64 * b_agg = pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4) | let lemma_offset_sum (a_agg:nat) (a0 a1 a2 a3 a4:nat64)
(b_agg:nat) (b0 b1 b2 b3 b4:nat64)
: Lemma
(requires
a_agg = pow2_five a0 a1 a2 a3 a4 /\
b_agg = pow2_five b0 b1 b2 b3 b4)
(ensures
a_agg + pow2_64 * b_agg =
pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4)
= let lhs = a_agg + pow2_64 * b_agg in
let rhs = pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4 in
assert_by_tactic (lhs == rhs) int_canon | {
"file_name": "vale/code/crypto/ecc/curve25519/Vale.Curve25519.FastMul_helpers.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 43,
"end_line": 65,
"start_col": 0,
"start_line": 54
} | module Vale.Curve25519.FastMul_helpers
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.CanonCommSemiring
open Vale.Curve25519.Fast_defs
open Vale.Curve25519.Fast_lemmas_internal
open FStar.Math.Lemmas
#reset-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection'"
#push-options "--z3rlimit 10"
let lemma_mul_pow2_bound (b:nat{b > 1}) (x y:natN (pow2 b))
: Lemma (x * y < pow2 (2*b) - 1 /\
x * y <= pow2 (2*b) - 2*pow2(b) + 1)
= lemma_mul_bounds_le x (pow2 b - 1) y (pow2 b -1);
pow2_plus b b;
assert ( (pow2 b - 1) * (pow2 b -1) = pow2 (2*b) - 2*pow2(b) + 1)
#pop-options
let lemma_mul_bound64 (x y:nat64)
: Lemma (x * y < pow2_128 - 1 /\ x * y <= pow2_128 - 2*pow2_64 + 1)
= assert_norm (pow2 64 == pow2_64);
assert_norm (pow2 128 == pow2_128);
lemma_mul_pow2_bound 64 x y
(* Intel manual mentions this fact *)
let lemma_intel_prod_sum_bound (w x y z:nat64)
: Lemma (w * x + y + z < pow2_128)
= lemma_mul_bound64 w x
let lemma_prod_bounds (dst_hi dst_lo x y:nat64)
: Lemma
(requires
pow2_64 * dst_hi + dst_lo == x * y)
(ensures
dst_hi < pow2_64 - 1 /\
(dst_hi < pow2_64 - 2 \/
dst_lo <= 1))
= let result = x * y in
lemma_div_mod result pow2_64;
//assert (result = pow2_64 * (result / pow2_64) + result % pow2_64);
//assert (result % pow2_64 == dst_lo);
//assert (result / pow2_64 == dst_hi);
lemma_mul_bound64 x y
let lemma_double_bound (x:nat64)
: Lemma (add_wrap x x < pow2_64 - 1)
= ()
type bit = b:nat { b <= 1 } | {
"checked_file": "/",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Curve25519.Fast_lemmas_internal.fsti.checked",
"Vale.Curve25519.Fast_defs.fst.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Curve25519.FastMul_helpers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_lemmas_internal",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a_agg: Prims.nat ->
a0: Vale.Def.Types_s.nat64 ->
a1: Vale.Def.Types_s.nat64 ->
a2: Vale.Def.Types_s.nat64 ->
a3: Vale.Def.Types_s.nat64 ->
a4: Vale.Def.Types_s.nat64 ->
b_agg: Prims.nat ->
b0: Vale.Def.Types_s.nat64 ->
b1: Vale.Def.Types_s.nat64 ->
b2: Vale.Def.Types_s.nat64 ->
b3: Vale.Def.Types_s.nat64 ->
b4: Vale.Def.Types_s.nat64
-> FStar.Pervasives.Lemma
(requires
a_agg = Vale.Curve25519.Fast_defs.pow2_five a0 a1 a2 a3 a4 /\
b_agg = Vale.Curve25519.Fast_defs.pow2_five b0 b1 b2 b3 b4)
(ensures
a_agg + Vale.Def.Words_s.pow2_64 * b_agg =
Vale.Curve25519.Fast_defs.pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Vale.Def.Types_s.nat64",
"FStar.Tactics.Effect.assert_by_tactic",
"Prims.eq2",
"Prims.int",
"Vale.Curve25519.FastMul_helpers.int_canon",
"Prims.unit",
"Vale.Curve25519.Fast_defs.pow2_six",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Vale.Def.Words_s.pow2_64",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Vale.Curve25519.Fast_defs.pow2_five",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_offset_sum (a_agg: nat) (a0 a1 a2 a3 a4: nat64) (b_agg: nat) (b0 b1 b2 b3 b4: nat64)
: Lemma (requires a_agg = pow2_five a0 a1 a2 a3 a4 /\ b_agg = pow2_five b0 b1 b2 b3 b4)
(ensures a_agg + pow2_64 * b_agg = pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4) =
| let lhs = a_agg + pow2_64 * b_agg in
let rhs = pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4 in
assert_by_tactic (lhs == rhs) int_canon | false |
Lib.ByteSequence.fst | Lib.ByteSequence.mask_select | val mask_select: #t:inttype{~(S128? t)} -> mask:int_t t SEC -> a:int_t t SEC -> b:int_t t SEC -> int_t t SEC | val mask_select: #t:inttype{~(S128? t)} -> mask:int_t t SEC -> a:int_t t SEC -> b:int_t t SEC -> int_t t SEC | let mask_select #t mask a b =
b ^. (mask &. (a ^. b)) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 25,
"end_line": 79,
"start_col": 0,
"start_line": 78
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
mask: Lib.IntTypes.int_t t Lib.IntTypes.SEC ->
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC ->
b: Lib.IntTypes.int_t t Lib.IntTypes.SEC
-> Lib.IntTypes.int_t t Lib.IntTypes.SEC | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_not",
"Prims.b2t",
"Lib.IntTypes.uu___is_S128",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Hat_Dot",
"Lib.IntTypes.op_Amp_Dot"
] | [] | false | false | false | false | false | let mask_select #t mask a b =
| b ^. (mask &. (a ^. b)) | false |
Steel.Reference.fsti | Steel.Reference.vptr_not_null | val vptr_not_null (#opened: _) (#a: Type) (r: ref a)
: SteelGhost unit
opened
(vptr r)
(fun _ -> vptr r)
(fun _ -> True)
(fun h0 _ h1 -> sel r h0 == sel r h1 /\ is_null r == false) | val vptr_not_null (#opened: _) (#a: Type) (r: ref a)
: SteelGhost unit
opened
(vptr r)
(fun _ -> vptr r)
(fun _ -> True)
(fun h0 _ h1 -> sel r h0 == sel r h1 /\ is_null r == false) | let vptr_not_null (#opened: _)
(#a: Type)
(r: ref a)
: SteelGhost unit opened
(vptr r)
(fun _ -> vptr r)
(fun _ -> True)
(fun h0 _ h1 ->
sel r h0 == sel r h1 /\
is_null r == false
)
= vptrp_not_null r full_perm | {
"file_name": "lib/steel/Steel.Reference.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 28,
"end_line": 361,
"start_col": 0,
"start_line": 350
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Reference
open FStar.Ghost
open Steel.FractionalPermission
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
module U32 = FStar.UInt32
module Mem = Steel.Memory
/// The main user-facing Steel library.
/// This library provides functions to operate on references to values in universe 0, such as uints.
/// This library provides two versions, which can interoperate with each other.
/// The first one uses the standard separation logic pts_to predicate, and has a non-informative selector
/// The second one has a selector which returns the contents of the reference in memory, enabling
/// to better separate reasoning about memory safety and functional correctness when handling references.
/// An abstract datatype for references
val ref ([@@@unused] a:Type0) : Type0
/// The null pointer
[@@ noextract_to "krml"]
val null (#a:Type0) : ref a
/// Checking whether a pointer is null can be done in a decidable way
[@@ noextract_to "krml"]
val is_null (#a:Type0) (r:ref a) : (b:bool{b <==> r == null})
(** First version of references: Non-informative selector and standard pts_to predicate.
All functions names here are postfixed with _pt (for points_to)**)
/// The standard points to separation logic assertion, expressing that
/// reference [r] is valid in memory, stores value [v], and that we have
/// permission [p] on it.
val pts_to_sl (#a:Type0) (r:ref a) (p:perm) (v:a) : slprop u#1
/// Lifting the standard points to predicate to vprop, with a non-informative selector.
/// The permission [p] and the value [v] are annotated with the smt_fallback attribute,
/// enabling SMT rewriting on them during frame inference
[@@ __steel_reduce__]
let pts_to (#a:Type0) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@ smt_fallback] v:a)
= to_vprop (pts_to_sl r p v)
/// If two pts_to predicates on the same reference [r] are valid in the memory [m],
/// then the two values [v0] and [v1] are identical
val pts_to_ref_injective
(#a: Type u#0)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
/// A valid pts_to predicate implies that the pointer is not the null pointer
val pts_to_not_null (#a:Type u#0)
(x:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl x p v) m)
(ensures x =!= null)
/// Exposing the is_witness_invariant from Steel.Memory for references with fractional permissions
val pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p))
/// A stateful version of the pts_to_ref_injective lemma above
val pts_to_injective_eq
(#a: Type)
(#opened:inames)
(#p0 #p1:perm)
(#v0 #v1: erased a)
(r: ref a)
: SteelGhost unit opened
(pts_to r p0 v0 `star` pts_to r p1 v1)
(fun _ -> pts_to r p0 v0 `star` pts_to r p1 v0)
(requires fun _ -> True)
(ensures fun _ _ _ -> v0 == v1)
/// A permission is always no greater than one
val pts_to_perm (#a: _) (#u: _) (#p: _) (#v: _) (r: ref a)
: SteelGhost unit u
(pts_to r p v)
(fun _ -> pts_to r p v)
(fun _ -> True)
(fun _ _ _ -> p `lesser_equal_perm` full_perm)
/// Allocates a reference with value [x]. We have full permission on the newly
/// allocated reference.
val alloc_pt (#a:Type) (x:a)
: Steel (ref a) emp (fun r -> pts_to r full_perm x)
(requires fun _ -> True)
(ensures fun _ r _ -> not (is_null r))
/// Reads the value in reference [r], as long as it initially is valid
val read_pt (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
: Steel a (pts_to r p v) (fun x -> pts_to r p x)
(requires fun _ -> True)
(ensures fun _ x _ -> x == Ghost.reveal v)
/// A variant of read, useful when an existentially quantified predicate
/// depends on the value stored in the reference
val read_refine_pt (#a:Type0) (#p:perm) (q:a -> vprop) (r:ref a)
: SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v))
(fun v -> pts_to r p v `star` q v)
/// Writes value [x] in the reference [r], as long as we have full ownership of [r]
val write_pt (#a:Type0) (#v:erased a) (r:ref a) (x:a)
: SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
/// Frees reference [r], as long as we have full ownership of [r]
val free_pt (#a:Type0) (#v:erased a) (r:ref a)
: SteelT unit (pts_to r full_perm v) (fun _ -> emp)
/// Splits the permission on reference [r] into two.
/// This function is computationally irrelevant (it has effect SteelGhost)
val share_gen_pt (#a:Type0)
(#uses:_)
(#p:perm)
(#v: a)
(r:ref a)
(p1 p2: perm)
: SteelGhost unit uses
(pts_to r p v)
(fun _ -> pts_to r p1 v `star` pts_to r p2 v)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
val share_pt (#a:Type0) (#uses:_) (#p:perm) (#v:erased a) (r:ref a)
: SteelGhostT unit uses
(pts_to r p v)
(fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
/// Combines permissions on reference [r].
/// This function is computationally irrelevant (it has effect SteelGhost)
val gather_pt (#a:Type0) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a)
: SteelGhostT (_:unit{v0 == v1}) uses
(pts_to r p0 v0 `star` pts_to r p1 v1)
(fun _ -> pts_to r (sum_perm p0 p1) v0)
/// Atomic operations, read, write, and cas
///
/// These are not polymorphic and are allowed only for small types (e.g. word-sized)
/// For now, exporting only for U32
val atomic_read_pt_u32 (#opened:_) (#p:perm) (#v:erased U32.t) (r:ref U32.t)
: SteelAtomic U32.t opened
(pts_to r p v)
(fun x -> pts_to r p x)
(requires fun _ -> True)
(ensures fun _ x _ -> x == Ghost.reveal v)
val atomic_write_pt_u32 (#opened:_) (#v:erased U32.t) (r:ref U32.t) (x:U32.t)
: SteelAtomicT unit opened
(pts_to r full_perm v)
(fun _ -> pts_to r full_perm x)
val cas_pt_u32 (#uses:inames)
(r:ref U32.t)
(v:Ghost.erased U32.t)
(v_old:U32.t)
(v_new:U32.t)
: SteelAtomicT
(b:bool{b <==> (Ghost.reveal v == v_old)})
uses
(pts_to r full_perm v)
(fun b -> if b then pts_to r full_perm v_new else pts_to r full_perm v)
val cas_pt_bool (#uses:inames)
(r:ref bool)
(v:Ghost.erased bool)
(v_old:bool)
(v_new:bool)
: SteelAtomicT
(b:bool{b <==> (Ghost.reveal v == v_old)})
uses
(pts_to r full_perm v)
(fun b -> if b then pts_to r full_perm v_new else pts_to r full_perm v)
(** Second version of references: The memory contents are available inside the selector, instead of as an index of the predicate **)
/// An abstract separation logic predicate stating that reference [r] is valid in memory.
val ptrp (#a:Type0) (r:ref a) ([@@@smt_fallback] p: perm) : slprop u#1
[@@ __steel_reduce__; __reduce__]
unfold
let ptr (#a:Type0) (r:ref a) : slprop u#1 = ptrp r full_perm
/// A selector for references, returning the value of type [a] stored in memory
val ptrp_sel (#a:Type0) (r:ref a) (p: perm) : selector a (ptrp r p)
[@@ __steel_reduce__; __reduce__]
unfold
let ptr_sel (#a:Type0) (r:ref a) : selector a (ptr r) = ptrp_sel r full_perm
/// Some lemmas to interoperate between the two versions of references
val ptrp_sel_interp (#a:Type0) (r:ref a) (p: perm) (m:mem) : Lemma
(requires interp (ptrp r p) m)
(ensures interp (pts_to_sl r p (ptrp_sel r p m)) m)
let ptr_sel_interp (#a:Type0) (r:ref a) (m:mem) : Lemma
(requires interp (ptr r) m)
(ensures interp (pts_to_sl r full_perm (ptr_sel r m)) m)
= ptrp_sel_interp r full_perm m
val intro_ptrp_interp (#a:Type0) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma
(requires interp (pts_to_sl r p v) m)
(ensures interp (ptrp r p) m)
let intro_ptr_interp (#a:Type0) (r:ref a) (v:erased a) (m:mem) : Lemma
(requires interp (pts_to_sl r full_perm v) m)
(ensures interp (ptr r) m)
= intro_ptrp_interp r full_perm v m
/// Combining the separation logic predicate and selector into a vprop
[@@ __steel_reduce__]
let vptr' #a r p : vprop' =
{hp = ptrp r p;
t = a;
sel = ptrp_sel r p}
[@@ __steel_reduce__]
unfold
let vptrp (#a: Type) (r: ref a) ([@@@smt_fallback] p: perm) = VUnit (vptr' r p)
[@@ __steel_reduce__; __reduce__]
unfold
let vptr r = vptrp r full_perm
/// A wrapper to access a reference selector more easily.
/// Ensuring that the corresponding ptr vprop is in the context is done by
/// calling a variant of the framing tactic, as defined in Steel.Effect.Common
[@@ __steel_reduce__]
let sel (#a:Type) (#p:vprop) (r:ref a)
(h:rmem p{FStar.Tactics.with_tactic selector_tactic (can_be_split p (vptr r) /\ True)})
= h (vptr r)
/// Moving from indexed pts_to assertions to selector-based vprops and back
val intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a)
: SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p)
(requires fun _ -> True)
(ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v)
val elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm)
: SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v)
(requires fun _ -> True)
(ensures fun h0 v _ -> reveal v == h0 (vptrp r p))
/// Allocates a reference with value [x].
val malloc (#a:Type0) (x:a) : Steel (ref a)
emp (fun r -> vptr r)
(requires fun _ -> True)
(ensures fun _ r h1 -> sel r h1 == x /\ not (is_null r))
/// Frees a reference [r]
val free (#a:Type0) (r:ref a) : Steel unit
(vptr r) (fun _ -> emp)
(requires fun _ -> True)
(ensures fun _ _ _ -> True)
/// Reads the current value of reference [r]
val readp (#a:Type0) (r:ref a) (p: perm) : Steel a
(vptrp r p) (fun _ -> vptrp r p)
(requires fun _ -> True)
(ensures fun h0 x h1 -> h0 (vptrp r p) == h1 (vptrp r p) /\ x == h1 (vptrp r p))
let read (#a:Type0) (r:ref a) : Steel a
(vptr r) (fun _ -> vptr r)
(requires fun _ -> True)
(ensures fun h0 x h1 -> sel r h0 == sel r h1 /\ x == sel r h1)
= readp r full_perm
/// Writes value [x] in reference [r]
val write (#a:Type0) (r:ref a) (x:a) : Steel unit
(vptr r) (fun _ -> vptr r)
(requires fun _ -> True)
(ensures fun _ _ h1 -> x == sel r h1)
val share (#a:Type0) (#uses:_) (#p: perm) (r:ref a)
: SteelGhost unit uses
(vptrp r p)
(fun _ -> vptrp r (half_perm p) `star` vptrp r (half_perm p))
(fun _ -> True)
(fun h _ h' ->
h' (vptrp r (half_perm p)) == h (vptrp r p)
)
val gather_gen (#a:Type0) (#uses:_) (r:ref a) (p0:perm) (p1:perm)
: SteelGhost perm uses
(vptrp r p0 `star` vptrp r p1)
(fun res -> vptrp r res)
(fun _ -> True)
(fun h res h' ->
res == sum_perm p0 p1 /\
h' (vptrp r res) == h (vptrp r p0) /\
h' (vptrp r res) == h (vptrp r p1)
)
val gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a)
: SteelGhost unit uses
(vptrp r (half_perm p) `star` vptrp r (half_perm p))
(fun _ -> vptrp r p)
(fun _ -> True)
(fun h _ h' ->
h' (vptrp r p) == h (vptrp r (half_perm p))
)
/// A stateful lemma variant of the pts_to_not_null lemma above.
/// This stateful function is computationally irrelevant and does not modify memory
val vptrp_not_null (#opened: _)
(#a: Type)
(r: ref a)
(p: perm)
: SteelGhost unit opened
(vptrp r p)
(fun _ -> vptrp r p)
(fun _ -> True)
(fun h0 _ h1 ->
h0 (vptrp r p) == h1 (vptrp r p) /\
is_null r == false
) | {
"checked_file": "/",
"dependencies": [
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Reference.fsti"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.Reference.ref a -> Steel.Effect.Atomic.SteelGhost Prims.unit | Steel.Effect.Atomic.SteelGhost | [] | [] | [
"Steel.Memory.inames",
"Steel.Reference.ref",
"Steel.Reference.vptrp_not_null",
"Steel.FractionalPermission.full_perm",
"Prims.unit",
"Steel.Reference.vptr",
"Steel.Effect.Common.vprop",
"Steel.Effect.Common.rmem",
"Prims.l_True",
"Prims.l_and",
"Prims.eq2",
"Steel.Effect.Common.normal",
"Steel.Effect.Common.t_of",
"Steel.Reference.sel",
"Prims.bool",
"Steel.Reference.is_null"
] | [] | false | true | false | false | false | let vptr_not_null (#opened: _) (#a: Type) (r: ref a)
: SteelGhost unit
opened
(vptr r)
(fun _ -> vptr r)
(fun _ -> True)
(fun h0 _ h1 -> sel r h0 == sel r h1 /\ is_null r == false) =
| vptrp_not_null r full_perm | false |
Vale.Curve25519.FastMul_helpers.fst | Vale.Curve25519.FastMul_helpers.lemma_sum_a2b | val lemma_sum_a2b
(a0 a1 a2:nat64)
(a0a1b:nat) (a0a1b_0 a0a1b_1 a0a1b_2 a0a1b_3 a0a1b_4 a0a1b_5:nat64)
(a2b:nat) (a2b_0 a2b_1 a2b_2 a2b_3 a2b_4:nat64)
(b:nat) (b0 b1 b2 b3:nat64)
(s1 s2 s3 s4 s5:nat64) : Lemma
(requires a0a1b = pow2_six a0a1b_0 a0a1b_1 a0a1b_2 a0a1b_3 a0a1b_4 a0a1b_5 /\
a2b = pow2_five a2b_0 a2b_1 a2b_2 a2b_3 a2b_4 /\
b = pow2_four b0 b1 b2 b3 /\
a0a1b = mul_nats (pow2_two a0 a1) b /\
a2b = mul_nats a2 b /\
(let s1', c1 = add_carry a0a1b_2 a2b_0 0 in
let s2', c2 = add_carry a0a1b_3 a2b_1 c1 in
let s3', c3 = add_carry a0a1b_4 a2b_2 c2 in
let s4', c4 = add_carry a0a1b_5 a2b_3 c3 in
let s5', c5 = add_carry 0 a2b_4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
c5 == 0))
(ensures (pow2_three a0 a1 a2) * b ==
pow2_seven a0a1b_0 a0a1b_1 s1 s2 s3 s4 s5) | val lemma_sum_a2b
(a0 a1 a2:nat64)
(a0a1b:nat) (a0a1b_0 a0a1b_1 a0a1b_2 a0a1b_3 a0a1b_4 a0a1b_5:nat64)
(a2b:nat) (a2b_0 a2b_1 a2b_2 a2b_3 a2b_4:nat64)
(b:nat) (b0 b1 b2 b3:nat64)
(s1 s2 s3 s4 s5:nat64) : Lemma
(requires a0a1b = pow2_six a0a1b_0 a0a1b_1 a0a1b_2 a0a1b_3 a0a1b_4 a0a1b_5 /\
a2b = pow2_five a2b_0 a2b_1 a2b_2 a2b_3 a2b_4 /\
b = pow2_four b0 b1 b2 b3 /\
a0a1b = mul_nats (pow2_two a0 a1) b /\
a2b = mul_nats a2 b /\
(let s1', c1 = add_carry a0a1b_2 a2b_0 0 in
let s2', c2 = add_carry a0a1b_3 a2b_1 c1 in
let s3', c3 = add_carry a0a1b_4 a2b_2 c2 in
let s4', c4 = add_carry a0a1b_5 a2b_3 c3 in
let s5', c5 = add_carry 0 a2b_4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
c5 == 0))
(ensures (pow2_three a0 a1 a2) * b ==
pow2_seven a0a1b_0 a0a1b_1 s1 s2 s3 s4 s5) | let lemma_sum_a2b
(a0 a1 a2:nat64)
(a0a1b:nat) (a0a1b_0 a0a1b_1 a0a1b_2 a0a1b_3 a0a1b_4 a0a1b_5:nat64)
(a2b:nat) (a2b_0 a2b_1 a2b_2 a2b_3 a2b_4:nat64)
(b:nat) (b0 b1 b2 b3:nat64)
(s1 s2 s3 s4 s5:nat64) : Lemma
(requires a0a1b = pow2_six a0a1b_0 a0a1b_1 a0a1b_2 a0a1b_3 a0a1b_4 a0a1b_5 /\
a2b = pow2_five a2b_0 a2b_1 a2b_2 a2b_3 a2b_4 /\
b = pow2_four b0 b1 b2 b3 /\
a0a1b = mul_nats (pow2_two a0 a1) b /\
a2b = mul_nats a2 b /\
(let s1', c1 = add_carry a0a1b_2 a2b_0 0 in
let s2', c2 = add_carry a0a1b_3 a2b_1 c1 in
let s3', c3 = add_carry a0a1b_4 a2b_2 c2 in
let s4', c4 = add_carry a0a1b_5 a2b_3 c3 in
let s5', c5 = add_carry 0 a2b_4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
c5 == 0))
(ensures (pow2_three a0 a1 a2) * b ==
pow2_seven a0a1b_0 a0a1b_1 s1 s2 s3 s4 s5)
=
assert_by_tactic (
(pow2_three a0 a1 a2) * b ==
mul_nats (pow2_two a0 a1) b + pow2_128 * (mul_nats a2 b)) int_canon;
assert (
mul_nats (pow2_two a0 a1) b + pow2_128 * (mul_nats a2 b) ==
a0a1b + pow2_128 * a2b);
assert_by_tactic (
a0a1b + pow2_128 * a2b ==
pow2_seven a0a1b_0 a0a1b_1 (a0a1b_2 + a2b_0) (a0a1b_3 + a2b_1) (a0a1b_4 + a2b_2) (a0a1b_5 + a2b_3) a2b_4) int_canon;
lemma_partial_sum_a2b
a0a1b_0 a0a1b_1 a0a1b_2 a0a1b_3 a0a1b_4 a0a1b_5
a2b_0 a2b_1 a2b_2 a2b_3 a2b_4
s1 s2 s3 s4 s5;
() | {
"file_name": "vale/code/crypto/ecc/curve25519/Vale.Curve25519.FastMul_helpers.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 215,
"start_col": 0,
"start_line": 176
} | module Vale.Curve25519.FastMul_helpers
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.CanonCommSemiring
open Vale.Curve25519.Fast_defs
open Vale.Curve25519.Fast_lemmas_internal
open FStar.Math.Lemmas
#reset-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection'"
#push-options "--z3rlimit 10"
let lemma_mul_pow2_bound (b:nat{b > 1}) (x y:natN (pow2 b))
: Lemma (x * y < pow2 (2*b) - 1 /\
x * y <= pow2 (2*b) - 2*pow2(b) + 1)
= lemma_mul_bounds_le x (pow2 b - 1) y (pow2 b -1);
pow2_plus b b;
assert ( (pow2 b - 1) * (pow2 b -1) = pow2 (2*b) - 2*pow2(b) + 1)
#pop-options
let lemma_mul_bound64 (x y:nat64)
: Lemma (x * y < pow2_128 - 1 /\ x * y <= pow2_128 - 2*pow2_64 + 1)
= assert_norm (pow2 64 == pow2_64);
assert_norm (pow2 128 == pow2_128);
lemma_mul_pow2_bound 64 x y
(* Intel manual mentions this fact *)
let lemma_intel_prod_sum_bound (w x y z:nat64)
: Lemma (w * x + y + z < pow2_128)
= lemma_mul_bound64 w x
let lemma_prod_bounds (dst_hi dst_lo x y:nat64)
: Lemma
(requires
pow2_64 * dst_hi + dst_lo == x * y)
(ensures
dst_hi < pow2_64 - 1 /\
(dst_hi < pow2_64 - 2 \/
dst_lo <= 1))
= let result = x * y in
lemma_div_mod result pow2_64;
//assert (result = pow2_64 * (result / pow2_64) + result % pow2_64);
//assert (result % pow2_64 == dst_lo);
//assert (result / pow2_64 == dst_hi);
lemma_mul_bound64 x y
let lemma_double_bound (x:nat64)
: Lemma (add_wrap x x < pow2_64 - 1)
= ()
type bit = b:nat { b <= 1 }
let lemma_offset_sum (a_agg:nat) (a0 a1 a2 a3 a4:nat64)
(b_agg:nat) (b0 b1 b2 b3 b4:nat64)
: Lemma
(requires
a_agg = pow2_five a0 a1 a2 a3 a4 /\
b_agg = pow2_five b0 b1 b2 b3 b4)
(ensures
a_agg + pow2_64 * b_agg =
pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4)
= let lhs = a_agg + pow2_64 * b_agg in
let rhs = pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4 in
assert_by_tactic (lhs == rhs) int_canon
#push-options "--z3rlimit 60"
let lemma_partial_sum
(a0 a1 a2 a3 a4
b0 b1 b2 b3 b4
s1 s2 s3 s4 s5 c:nat64)
: Lemma
(requires
(let s1', c1 = add_carry a1 b0 0 in
let s2', c2 = add_carry a2 b1 c1 in
let s3', c3 = add_carry a3 b2 c2 in
let s4', c4 = add_carry a4 b3 c3 in
let s5', c5 = add_carry 0 b4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
c == c5))
(ensures
pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4 =
pow2_seven a0 s1 s2 s3 s4 s5 c)
= ()
let lemma_partial_sum_a2b
(a0 a1 a2 a3 a4 a5
b0 b1 b2 b3 b4
s1 s2 s3 s4 s5:nat64)
: Lemma
(requires
(let s1', c1 = add_carry a2 b0 0 in
let s2', c2 = add_carry a3 b1 c1 in
let s3', c3 = add_carry a4 b2 c2 in
let s4', c4 = add_carry a5 b3 c3 in
let s5', c5 = add_carry 0 b4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
0 == c5))
(ensures
pow2_seven a0 a1 (a2 + b0) (a3 + b1) (a4 + b2) (a5 + b3) b4 =
pow2_seven a0 a1 s1 s2 s3 s4 s5)
= ()
let lemma_partial_sum_a3b (
a0 a1 a2 a3 a4 a5 a6
b0 b1 b2 b3 b4
s1 s2 s3 s4 s5:nat64) : Lemma
(requires(let s1', c1 = add_carry a3 b0 0 in
let s2', c2 = add_carry a4 b1 c1 in
let s3', c3 = add_carry a5 b2 c2 in
let s4', c4 = add_carry a6 b3 c3 in
let s5', c5 = add_carry 0 b4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
0 == c5))
(ensures pow2_eight a0 a1 a2 (a3 + b0) (a4 + b1) (a5 + b2) (a6 + b3) b4 =
pow2_eight a0 a1 a2 s1 s2 s3 s4 s5)
=
()
#pop-options
let lemma_sum_a1b
(a0 a1:nat64)
(a0b:nat) (a0b_0 a0b_1 a0b_2 a0b_3 a0b_4:nat64)
(a1b:nat) (a1b_0 a1b_1 a1b_2 a1b_3 a1b_4:nat64)
(b:nat) (b0 b1 b2 b3:nat64)
(s1 s2 s3 s4 s5
c:nat64) : Lemma
(requires a0b = pow2_five a0b_0 a0b_1 a0b_2 a0b_3 a0b_4 /\
a1b = pow2_five a1b_0 a1b_1 a1b_2 a1b_3 a1b_4 /\
b = pow2_four b0 b1 b2 b3 /\
a0b = mul_nats a0 b /\
a1b = mul_nats a1 b /\
(let s1', c1 = add_carry a0b_1 a1b_0 0 in
let s2', c2 = add_carry a0b_2 a1b_1 c1 in
let s3', c3 = add_carry a0b_3 a1b_2 c2 in
let s4', c4 = add_carry a0b_4 a1b_3 c3 in
let s5', c5 = add_carry 0 a1b_4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
c5 == c))
(ensures (pow2_two a0 a1) * b ==
pow2_seven a0b_0 s1 s2 s3 s4 s5 c)
=
assert_by_tactic (
(pow2_two a0 a1) * b ==
pow2_two (mul_nats a0 b) (mul_nats a1 b)) int_canon;
assert (
pow2_two (mul_nats a0 b) (mul_nats a1 b) ==
pow2_two a0b a1b);
lemma_offset_sum a0b a0b_0 a0b_1 a0b_2 a0b_3 a0b_4
a1b a1b_0 a1b_1 a1b_2 a1b_3 a1b_4;
assert (
pow2_two a0b a1b ==
pow2_six a0b_0 (a0b_1 + a1b_0) (a0b_2 + a1b_1) (a0b_3 + a1b_2) (a0b_4 + a1b_3) a1b_4);
lemma_partial_sum a0b_0 a0b_1 a0b_2 a0b_3 a0b_4
a1b_0 a1b_1 a1b_2 a1b_3 a1b_4
s1 s2 s3 s4 s5 c;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Curve25519.Fast_lemmas_internal.fsti.checked",
"Vale.Curve25519.Fast_defs.fst.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Curve25519.FastMul_helpers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_lemmas_internal",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a0: Vale.Def.Types_s.nat64 ->
a1: Vale.Def.Types_s.nat64 ->
a2: Vale.Def.Types_s.nat64 ->
a0a1b: Prims.nat ->
a0a1b_0: Vale.Def.Types_s.nat64 ->
a0a1b_1: Vale.Def.Types_s.nat64 ->
a0a1b_2: Vale.Def.Types_s.nat64 ->
a0a1b_3: Vale.Def.Types_s.nat64 ->
a0a1b_4: Vale.Def.Types_s.nat64 ->
a0a1b_5: Vale.Def.Types_s.nat64 ->
a2b: Prims.nat ->
a2b_0: Vale.Def.Types_s.nat64 ->
a2b_1: Vale.Def.Types_s.nat64 ->
a2b_2: Vale.Def.Types_s.nat64 ->
a2b_3: Vale.Def.Types_s.nat64 ->
a2b_4: Vale.Def.Types_s.nat64 ->
b: Prims.nat ->
b0: Vale.Def.Types_s.nat64 ->
b1: Vale.Def.Types_s.nat64 ->
b2: Vale.Def.Types_s.nat64 ->
b3: Vale.Def.Types_s.nat64 ->
s1: Vale.Def.Types_s.nat64 ->
s2: Vale.Def.Types_s.nat64 ->
s3: Vale.Def.Types_s.nat64 ->
s4: Vale.Def.Types_s.nat64 ->
s5: Vale.Def.Types_s.nat64
-> FStar.Pervasives.Lemma
(requires
a0a1b = Vale.Curve25519.Fast_defs.pow2_six a0a1b_0 a0a1b_1 a0a1b_2 a0a1b_3 a0a1b_4 a0a1b_5 /\
a2b = Vale.Curve25519.Fast_defs.pow2_five a2b_0 a2b_1 a2b_2 a2b_3 a2b_4 /\
b = Vale.Curve25519.Fast_defs.pow2_four b0 b1 b2 b3 /\
a0a1b = Vale.Curve25519.Fast_defs.mul_nats (Vale.Curve25519.Fast_defs.pow2_two a0 a1) b /\
a2b = Vale.Curve25519.Fast_defs.mul_nats a2 b /\
(let _ = Vale.Curve25519.Fast_defs.add_carry a0a1b_2 a2b_0 0 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s1' c1 = _ in
let _ = Vale.Curve25519.Fast_defs.add_carry a0a1b_3 a2b_1 c1 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s2' c2 = _ in
let _ = Vale.Curve25519.Fast_defs.add_carry a0a1b_4 a2b_2 c2 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s3' c3 = _ in
let _ = Vale.Curve25519.Fast_defs.add_carry a0a1b_5 a2b_3 c3 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s4' c4 = _ in
let _ = Vale.Curve25519.Fast_defs.add_carry 0 a2b_4 c4 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s5' c5 = _ in
s1 == s1' /\ s2 == s2' /\ s3 == s3' /\ s4 == s4' /\ s5 == s5' /\ c5 == 0)
<:
Prims.logical)
<:
Prims.logical)
<:
Prims.logical)
<:
Prims.logical)
<:
Prims.logical))
(ensures
Vale.Curve25519.Fast_defs.pow2_three a0 a1 a2 * b ==
Vale.Curve25519.Fast_defs.pow2_seven a0a1b_0 a0a1b_1 s1 s2 s3 s4 s5) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat64",
"Prims.nat",
"Prims.unit",
"Vale.Curve25519.FastMul_helpers.lemma_partial_sum_a2b",
"FStar.Tactics.Effect.assert_by_tactic",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Vale.Def.Words_s.pow2_128",
"Vale.Curve25519.Fast_defs.pow2_seven",
"Vale.Curve25519.FastMul_helpers.int_canon",
"Prims._assert",
"Vale.Curve25519.Fast_defs.mul_nats",
"Vale.Curve25519.Fast_defs.pow2_two",
"Vale.Curve25519.Fast_defs.pow2_three",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Vale.Curve25519.Fast_defs.pow2_six",
"Vale.Curve25519.Fast_defs.pow2_five",
"Vale.Curve25519.Fast_defs.pow2_four",
"Prims.op_BarBar",
"Prims.logical",
"FStar.Pervasives.Native.tuple2",
"Vale.Def.Words_s.nat64",
"Vale.Curve25519.Fast_defs.add_carry",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_sum_a2b
(a0 a1 a2: nat64)
(a0a1b: nat)
(a0a1b_0 a0a1b_1 a0a1b_2 a0a1b_3 a0a1b_4 a0a1b_5: nat64)
(a2b: nat)
(a2b_0 a2b_1 a2b_2 a2b_3 a2b_4: nat64)
(b: nat)
(b0 b1 b2 b3 s1 s2 s3 s4 s5: nat64)
: Lemma
(requires
a0a1b = pow2_six a0a1b_0 a0a1b_1 a0a1b_2 a0a1b_3 a0a1b_4 a0a1b_5 /\
a2b = pow2_five a2b_0 a2b_1 a2b_2 a2b_3 a2b_4 /\ b = pow2_four b0 b1 b2 b3 /\
a0a1b = mul_nats (pow2_two a0 a1) b /\ a2b = mul_nats a2 b /\
(let s1', c1 = add_carry a0a1b_2 a2b_0 0 in
let s2', c2 = add_carry a0a1b_3 a2b_1 c1 in
let s3', c3 = add_carry a0a1b_4 a2b_2 c2 in
let s4', c4 = add_carry a0a1b_5 a2b_3 c3 in
let s5', c5 = add_carry 0 a2b_4 c4 in
s1 == s1' /\ s2 == s2' /\ s3 == s3' /\ s4 == s4' /\ s5 == s5' /\ c5 == 0))
(ensures (pow2_three a0 a1 a2) * b == pow2_seven a0a1b_0 a0a1b_1 s1 s2 s3 s4 s5) =
| assert_by_tactic ((pow2_three a0 a1 a2) * b ==
mul_nats (pow2_two a0 a1) b + pow2_128 * (mul_nats a2 b))
int_canon;
assert (mul_nats (pow2_two a0 a1) b + pow2_128 * (mul_nats a2 b) == a0a1b + pow2_128 * a2b);
assert_by_tactic (a0a1b + pow2_128 * a2b ==
pow2_seven a0a1b_0
a0a1b_1
(a0a1b_2 + a2b_0)
(a0a1b_3 + a2b_1)
(a0a1b_4 + a2b_2)
(a0a1b_5 + a2b_3)
a2b_4)
int_canon;
lemma_partial_sum_a2b a0a1b_0 a0a1b_1 a0a1b_2 a0a1b_3 a0a1b_4 a0a1b_5 a2b_0 a2b_1 a2b_2 a2b_3 a2b_4
s1 s2 s3 s4 s5;
() | false |
Vale.Curve25519.FastMul_helpers.fst | Vale.Curve25519.FastMul_helpers.lemma_sum_a1b | val lemma_sum_a1b
(a0 a1:nat64)
(a0b:nat) (a0b_0 a0b_1 a0b_2 a0b_3 a0b_4:nat64)
(a1b:nat) (a1b_0 a1b_1 a1b_2 a1b_3 a1b_4:nat64)
(b:nat) (b0 b1 b2 b3:nat64)
(s1 s2 s3 s4 s5
c:nat64) : Lemma
(requires a0b = pow2_five a0b_0 a0b_1 a0b_2 a0b_3 a0b_4 /\
a1b = pow2_five a1b_0 a1b_1 a1b_2 a1b_3 a1b_4 /\
b = pow2_four b0 b1 b2 b3 /\
a0b = mul_nats a0 b /\
a1b = mul_nats a1 b /\
(let s1', c1 = add_carry a0b_1 a1b_0 0 in
let s2', c2 = add_carry a0b_2 a1b_1 c1 in
let s3', c3 = add_carry a0b_3 a1b_2 c2 in
let s4', c4 = add_carry a0b_4 a1b_3 c3 in
let s5', c5 = add_carry 0 a1b_4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
c5 == c))
(ensures (pow2_two a0 a1) * b ==
pow2_seven a0b_0 s1 s2 s3 s4 s5 c) | val lemma_sum_a1b
(a0 a1:nat64)
(a0b:nat) (a0b_0 a0b_1 a0b_2 a0b_3 a0b_4:nat64)
(a1b:nat) (a1b_0 a1b_1 a1b_2 a1b_3 a1b_4:nat64)
(b:nat) (b0 b1 b2 b3:nat64)
(s1 s2 s3 s4 s5
c:nat64) : Lemma
(requires a0b = pow2_five a0b_0 a0b_1 a0b_2 a0b_3 a0b_4 /\
a1b = pow2_five a1b_0 a1b_1 a1b_2 a1b_3 a1b_4 /\
b = pow2_four b0 b1 b2 b3 /\
a0b = mul_nats a0 b /\
a1b = mul_nats a1 b /\
(let s1', c1 = add_carry a0b_1 a1b_0 0 in
let s2', c2 = add_carry a0b_2 a1b_1 c1 in
let s3', c3 = add_carry a0b_3 a1b_2 c2 in
let s4', c4 = add_carry a0b_4 a1b_3 c3 in
let s5', c5 = add_carry 0 a1b_4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
c5 == c))
(ensures (pow2_two a0 a1) * b ==
pow2_seven a0b_0 s1 s2 s3 s4 s5 c) | let lemma_sum_a1b
(a0 a1:nat64)
(a0b:nat) (a0b_0 a0b_1 a0b_2 a0b_3 a0b_4:nat64)
(a1b:nat) (a1b_0 a1b_1 a1b_2 a1b_3 a1b_4:nat64)
(b:nat) (b0 b1 b2 b3:nat64)
(s1 s2 s3 s4 s5
c:nat64) : Lemma
(requires a0b = pow2_five a0b_0 a0b_1 a0b_2 a0b_3 a0b_4 /\
a1b = pow2_five a1b_0 a1b_1 a1b_2 a1b_3 a1b_4 /\
b = pow2_four b0 b1 b2 b3 /\
a0b = mul_nats a0 b /\
a1b = mul_nats a1 b /\
(let s1', c1 = add_carry a0b_1 a1b_0 0 in
let s2', c2 = add_carry a0b_2 a1b_1 c1 in
let s3', c3 = add_carry a0b_3 a1b_2 c2 in
let s4', c4 = add_carry a0b_4 a1b_3 c3 in
let s5', c5 = add_carry 0 a1b_4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
c5 == c))
(ensures (pow2_two a0 a1) * b ==
pow2_seven a0b_0 s1 s2 s3 s4 s5 c)
=
assert_by_tactic (
(pow2_two a0 a1) * b ==
pow2_two (mul_nats a0 b) (mul_nats a1 b)) int_canon;
assert (
pow2_two (mul_nats a0 b) (mul_nats a1 b) ==
pow2_two a0b a1b);
lemma_offset_sum a0b a0b_0 a0b_1 a0b_2 a0b_3 a0b_4
a1b a1b_0 a1b_1 a1b_2 a1b_3 a1b_4;
assert (
pow2_two a0b a1b ==
pow2_six a0b_0 (a0b_1 + a1b_0) (a0b_2 + a1b_1) (a0b_3 + a1b_2) (a0b_4 + a1b_3) a1b_4);
lemma_partial_sum a0b_0 a0b_1 a0b_2 a0b_3 a0b_4
a1b_0 a1b_1 a1b_2 a1b_3 a1b_4
s1 s2 s3 s4 s5 c;
() | {
"file_name": "vale/code/crypto/ecc/curve25519/Vale.Curve25519.FastMul_helpers.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 173,
"start_col": 0,
"start_line": 133
} | module Vale.Curve25519.FastMul_helpers
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.CanonCommSemiring
open Vale.Curve25519.Fast_defs
open Vale.Curve25519.Fast_lemmas_internal
open FStar.Math.Lemmas
#reset-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection'"
#push-options "--z3rlimit 10"
let lemma_mul_pow2_bound (b:nat{b > 1}) (x y:natN (pow2 b))
: Lemma (x * y < pow2 (2*b) - 1 /\
x * y <= pow2 (2*b) - 2*pow2(b) + 1)
= lemma_mul_bounds_le x (pow2 b - 1) y (pow2 b -1);
pow2_plus b b;
assert ( (pow2 b - 1) * (pow2 b -1) = pow2 (2*b) - 2*pow2(b) + 1)
#pop-options
let lemma_mul_bound64 (x y:nat64)
: Lemma (x * y < pow2_128 - 1 /\ x * y <= pow2_128 - 2*pow2_64 + 1)
= assert_norm (pow2 64 == pow2_64);
assert_norm (pow2 128 == pow2_128);
lemma_mul_pow2_bound 64 x y
(* Intel manual mentions this fact *)
let lemma_intel_prod_sum_bound (w x y z:nat64)
: Lemma (w * x + y + z < pow2_128)
= lemma_mul_bound64 w x
let lemma_prod_bounds (dst_hi dst_lo x y:nat64)
: Lemma
(requires
pow2_64 * dst_hi + dst_lo == x * y)
(ensures
dst_hi < pow2_64 - 1 /\
(dst_hi < pow2_64 - 2 \/
dst_lo <= 1))
= let result = x * y in
lemma_div_mod result pow2_64;
//assert (result = pow2_64 * (result / pow2_64) + result % pow2_64);
//assert (result % pow2_64 == dst_lo);
//assert (result / pow2_64 == dst_hi);
lemma_mul_bound64 x y
let lemma_double_bound (x:nat64)
: Lemma (add_wrap x x < pow2_64 - 1)
= ()
type bit = b:nat { b <= 1 }
let lemma_offset_sum (a_agg:nat) (a0 a1 a2 a3 a4:nat64)
(b_agg:nat) (b0 b1 b2 b3 b4:nat64)
: Lemma
(requires
a_agg = pow2_five a0 a1 a2 a3 a4 /\
b_agg = pow2_five b0 b1 b2 b3 b4)
(ensures
a_agg + pow2_64 * b_agg =
pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4)
= let lhs = a_agg + pow2_64 * b_agg in
let rhs = pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4 in
assert_by_tactic (lhs == rhs) int_canon
#push-options "--z3rlimit 60"
let lemma_partial_sum
(a0 a1 a2 a3 a4
b0 b1 b2 b3 b4
s1 s2 s3 s4 s5 c:nat64)
: Lemma
(requires
(let s1', c1 = add_carry a1 b0 0 in
let s2', c2 = add_carry a2 b1 c1 in
let s3', c3 = add_carry a3 b2 c2 in
let s4', c4 = add_carry a4 b3 c3 in
let s5', c5 = add_carry 0 b4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
c == c5))
(ensures
pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4 =
pow2_seven a0 s1 s2 s3 s4 s5 c)
= ()
let lemma_partial_sum_a2b
(a0 a1 a2 a3 a4 a5
b0 b1 b2 b3 b4
s1 s2 s3 s4 s5:nat64)
: Lemma
(requires
(let s1', c1 = add_carry a2 b0 0 in
let s2', c2 = add_carry a3 b1 c1 in
let s3', c3 = add_carry a4 b2 c2 in
let s4', c4 = add_carry a5 b3 c3 in
let s5', c5 = add_carry 0 b4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
0 == c5))
(ensures
pow2_seven a0 a1 (a2 + b0) (a3 + b1) (a4 + b2) (a5 + b3) b4 =
pow2_seven a0 a1 s1 s2 s3 s4 s5)
= ()
let lemma_partial_sum_a3b (
a0 a1 a2 a3 a4 a5 a6
b0 b1 b2 b3 b4
s1 s2 s3 s4 s5:nat64) : Lemma
(requires(let s1', c1 = add_carry a3 b0 0 in
let s2', c2 = add_carry a4 b1 c1 in
let s3', c3 = add_carry a5 b2 c2 in
let s4', c4 = add_carry a6 b3 c3 in
let s5', c5 = add_carry 0 b4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
0 == c5))
(ensures pow2_eight a0 a1 a2 (a3 + b0) (a4 + b1) (a5 + b2) (a6 + b3) b4 =
pow2_eight a0 a1 a2 s1 s2 s3 s4 s5)
=
()
#pop-options | {
"checked_file": "/",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Curve25519.Fast_lemmas_internal.fsti.checked",
"Vale.Curve25519.Fast_defs.fst.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Curve25519.FastMul_helpers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_lemmas_internal",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a0: Vale.Def.Types_s.nat64 ->
a1: Vale.Def.Types_s.nat64 ->
a0b: Prims.nat ->
a0b_0: Vale.Def.Types_s.nat64 ->
a0b_1: Vale.Def.Types_s.nat64 ->
a0b_2: Vale.Def.Types_s.nat64 ->
a0b_3: Vale.Def.Types_s.nat64 ->
a0b_4: Vale.Def.Types_s.nat64 ->
a1b: Prims.nat ->
a1b_0: Vale.Def.Types_s.nat64 ->
a1b_1: Vale.Def.Types_s.nat64 ->
a1b_2: Vale.Def.Types_s.nat64 ->
a1b_3: Vale.Def.Types_s.nat64 ->
a1b_4: Vale.Def.Types_s.nat64 ->
b: Prims.nat ->
b0: Vale.Def.Types_s.nat64 ->
b1: Vale.Def.Types_s.nat64 ->
b2: Vale.Def.Types_s.nat64 ->
b3: Vale.Def.Types_s.nat64 ->
s1: Vale.Def.Types_s.nat64 ->
s2: Vale.Def.Types_s.nat64 ->
s3: Vale.Def.Types_s.nat64 ->
s4: Vale.Def.Types_s.nat64 ->
s5: Vale.Def.Types_s.nat64 ->
c: Vale.Def.Types_s.nat64
-> FStar.Pervasives.Lemma
(requires
a0b = Vale.Curve25519.Fast_defs.pow2_five a0b_0 a0b_1 a0b_2 a0b_3 a0b_4 /\
a1b = Vale.Curve25519.Fast_defs.pow2_five a1b_0 a1b_1 a1b_2 a1b_3 a1b_4 /\
b = Vale.Curve25519.Fast_defs.pow2_four b0 b1 b2 b3 /\
a0b = Vale.Curve25519.Fast_defs.mul_nats a0 b /\
a1b = Vale.Curve25519.Fast_defs.mul_nats a1 b /\
(let _ = Vale.Curve25519.Fast_defs.add_carry a0b_1 a1b_0 0 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s1' c1 = _ in
let _ = Vale.Curve25519.Fast_defs.add_carry a0b_2 a1b_1 c1 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s2' c2 = _ in
let _ = Vale.Curve25519.Fast_defs.add_carry a0b_3 a1b_2 c2 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s3' c3 = _ in
let _ = Vale.Curve25519.Fast_defs.add_carry a0b_4 a1b_3 c3 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s4' c4 = _ in
let _ = Vale.Curve25519.Fast_defs.add_carry 0 a1b_4 c4 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s5' c5 = _ in
s1 == s1' /\ s2 == s2' /\ s3 == s3' /\ s4 == s4' /\ s5 == s5' /\ c5 == c)
<:
Prims.logical)
<:
Prims.logical)
<:
Prims.logical)
<:
Prims.logical)
<:
Prims.logical))
(ensures
Vale.Curve25519.Fast_defs.pow2_two a0 a1 * b ==
Vale.Curve25519.Fast_defs.pow2_seven a0b_0 s1 s2 s3 s4 s5 c) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat64",
"Prims.nat",
"Prims.unit",
"Vale.Curve25519.FastMul_helpers.lemma_partial_sum",
"Prims._assert",
"Prims.eq2",
"Vale.Curve25519.Fast_defs.pow2_two",
"Vale.Curve25519.Fast_defs.pow2_six",
"Prims.op_Addition",
"Vale.Curve25519.FastMul_helpers.lemma_offset_sum",
"Vale.Curve25519.Fast_defs.mul_nats",
"FStar.Tactics.Effect.assert_by_tactic",
"Prims.int",
"FStar.Mul.op_Star",
"Vale.Curve25519.FastMul_helpers.int_canon",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Vale.Curve25519.Fast_defs.pow2_five",
"Vale.Curve25519.Fast_defs.pow2_four",
"Prims.op_BarBar",
"Prims.l_or",
"Prims.op_LessThan",
"Vale.Def.Words_s.pow2_64",
"Prims.logical",
"FStar.Pervasives.Native.tuple2",
"Vale.Def.Words_s.nat64",
"Vale.Curve25519.Fast_defs.add_carry",
"Prims.squash",
"Vale.Curve25519.Fast_defs.pow2_seven",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_sum_a1b
(a0 a1: nat64)
(a0b: nat)
(a0b_0 a0b_1 a0b_2 a0b_3 a0b_4: nat64)
(a1b: nat)
(a1b_0 a1b_1 a1b_2 a1b_3 a1b_4: nat64)
(b: nat)
(b0 b1 b2 b3 s1 s2 s3 s4 s5 c: nat64)
: Lemma
(requires
a0b = pow2_five a0b_0 a0b_1 a0b_2 a0b_3 a0b_4 /\
a1b = pow2_five a1b_0 a1b_1 a1b_2 a1b_3 a1b_4 /\ b = pow2_four b0 b1 b2 b3 /\
a0b = mul_nats a0 b /\ a1b = mul_nats a1 b /\
(let s1', c1 = add_carry a0b_1 a1b_0 0 in
let s2', c2 = add_carry a0b_2 a1b_1 c1 in
let s3', c3 = add_carry a0b_3 a1b_2 c2 in
let s4', c4 = add_carry a0b_4 a1b_3 c3 in
let s5', c5 = add_carry 0 a1b_4 c4 in
s1 == s1' /\ s2 == s2' /\ s3 == s3' /\ s4 == s4' /\ s5 == s5' /\ c5 == c))
(ensures (pow2_two a0 a1) * b == pow2_seven a0b_0 s1 s2 s3 s4 s5 c) =
| assert_by_tactic ((pow2_two a0 a1) * b == pow2_two (mul_nats a0 b) (mul_nats a1 b)) int_canon;
assert (pow2_two (mul_nats a0 b) (mul_nats a1 b) == pow2_two a0b a1b);
lemma_offset_sum a0b a0b_0 a0b_1 a0b_2 a0b_3 a0b_4 a1b a1b_0 a1b_1 a1b_2 a1b_3 a1b_4;
assert (pow2_two a0b a1b ==
pow2_six a0b_0 (a0b_1 + a1b_0) (a0b_2 + a1b_1) (a0b_3 + a1b_2) (a0b_4 + a1b_3) a1b_4);
lemma_partial_sum a0b_0 a0b_1 a0b_2 a0b_3 a0b_4 a1b_0 a1b_1 a1b_2 a1b_3 a1b_4 s1 s2 s3 s4 s5 c;
() | false |
Lib.ByteSequence.fst | Lib.ByteSequence.mask_select_lemma | val mask_select_lemma: #t:inttype{~(S128? t)} -> mask:int_t t SEC -> a:int_t t SEC -> b:int_t t SEC -> Lemma
(requires v mask = 0 \/ v mask = v (ones t SEC))
(ensures mask_select mask a b == (if v mask = 0 then b else a)) | val mask_select_lemma: #t:inttype{~(S128? t)} -> mask:int_t t SEC -> a:int_t t SEC -> b:int_t t SEC -> Lemma
(requires v mask = 0 \/ v mask = v (ones t SEC))
(ensures mask_select mask a b == (if v mask = 0 then b else a)) | let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 94,
"start_col": 0,
"start_line": 81
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
mask: Lib.IntTypes.int_t t Lib.IntTypes.SEC ->
a: Lib.IntTypes.int_t t Lib.IntTypes.SEC ->
b: Lib.IntTypes.int_t t Lib.IntTypes.SEC
-> FStar.Pervasives.Lemma
(requires
Lib.IntTypes.v mask = 0 \/
Lib.IntTypes.v mask = Lib.IntTypes.v (Lib.IntTypes.ones t Lib.IntTypes.SEC))
(ensures
Lib.ByteSequence.mask_select mask a b ==
(match Lib.IntTypes.v mask = 0 with
| true -> b
| _ -> a)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_not",
"Prims.b2t",
"Lib.IntTypes.uu___is_S128",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Prims.op_Equality",
"Prims.int",
"Lib.IntTypes.v",
"Prims.unit",
"Prims._assert",
"Lib.IntTypes.range_t",
"Lib.IntTypes.logxor_lemma",
"Prims.eq2",
"Prims.bool",
"Lib.IntTypes.op_Hat_Dot",
"Lib.IntTypes.logand_lemma",
"Lib.IntTypes.op_Amp_Dot"
] | [] | false | false | true | false | false | let mask_select_lemma #t mask a b =
| let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^. b);
if v mask = 0
then
(assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
())
else
(assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
()) | false |
Steel.Reference.fsti | Steel.Reference.read | val read (#a: Type0) (r: ref a)
: Steel a
(vptr r)
(fun _ -> vptr r)
(requires fun _ -> True)
(ensures fun h0 x h1 -> sel r h0 == sel r h1 /\ x == sel r h1) | val read (#a: Type0) (r: ref a)
: Steel a
(vptr r)
(fun _ -> vptr r)
(requires fun _ -> True)
(ensures fun h0 x h1 -> sel r h0 == sel r h1 /\ x == sel r h1) | let read (#a:Type0) (r:ref a) : Steel a
(vptr r) (fun _ -> vptr r)
(requires fun _ -> True)
(ensures fun h0 x h1 -> sel r h0 == sel r h1 /\ x == sel r h1)
= readp r full_perm | {
"file_name": "lib/steel/Steel.Reference.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 19,
"end_line": 298,
"start_col": 0,
"start_line": 294
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Reference
open FStar.Ghost
open Steel.FractionalPermission
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
module U32 = FStar.UInt32
module Mem = Steel.Memory
/// The main user-facing Steel library.
/// This library provides functions to operate on references to values in universe 0, such as uints.
/// This library provides two versions, which can interoperate with each other.
/// The first one uses the standard separation logic pts_to predicate, and has a non-informative selector
/// The second one has a selector which returns the contents of the reference in memory, enabling
/// to better separate reasoning about memory safety and functional correctness when handling references.
/// An abstract datatype for references
val ref ([@@@unused] a:Type0) : Type0
/// The null pointer
[@@ noextract_to "krml"]
val null (#a:Type0) : ref a
/// Checking whether a pointer is null can be done in a decidable way
[@@ noextract_to "krml"]
val is_null (#a:Type0) (r:ref a) : (b:bool{b <==> r == null})
(** First version of references: Non-informative selector and standard pts_to predicate.
All functions names here are postfixed with _pt (for points_to)**)
/// The standard points to separation logic assertion, expressing that
/// reference [r] is valid in memory, stores value [v], and that we have
/// permission [p] on it.
val pts_to_sl (#a:Type0) (r:ref a) (p:perm) (v:a) : slprop u#1
/// Lifting the standard points to predicate to vprop, with a non-informative selector.
/// The permission [p] and the value [v] are annotated with the smt_fallback attribute,
/// enabling SMT rewriting on them during frame inference
[@@ __steel_reduce__]
let pts_to (#a:Type0) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@ smt_fallback] v:a)
= to_vprop (pts_to_sl r p v)
/// If two pts_to predicates on the same reference [r] are valid in the memory [m],
/// then the two values [v0] and [v1] are identical
val pts_to_ref_injective
(#a: Type u#0)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
/// A valid pts_to predicate implies that the pointer is not the null pointer
val pts_to_not_null (#a:Type u#0)
(x:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl x p v) m)
(ensures x =!= null)
/// Exposing the is_witness_invariant from Steel.Memory for references with fractional permissions
val pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p))
/// A stateful version of the pts_to_ref_injective lemma above
val pts_to_injective_eq
(#a: Type)
(#opened:inames)
(#p0 #p1:perm)
(#v0 #v1: erased a)
(r: ref a)
: SteelGhost unit opened
(pts_to r p0 v0 `star` pts_to r p1 v1)
(fun _ -> pts_to r p0 v0 `star` pts_to r p1 v0)
(requires fun _ -> True)
(ensures fun _ _ _ -> v0 == v1)
/// A permission is always no greater than one
val pts_to_perm (#a: _) (#u: _) (#p: _) (#v: _) (r: ref a)
: SteelGhost unit u
(pts_to r p v)
(fun _ -> pts_to r p v)
(fun _ -> True)
(fun _ _ _ -> p `lesser_equal_perm` full_perm)
/// Allocates a reference with value [x]. We have full permission on the newly
/// allocated reference.
val alloc_pt (#a:Type) (x:a)
: Steel (ref a) emp (fun r -> pts_to r full_perm x)
(requires fun _ -> True)
(ensures fun _ r _ -> not (is_null r))
/// Reads the value in reference [r], as long as it initially is valid
val read_pt (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
: Steel a (pts_to r p v) (fun x -> pts_to r p x)
(requires fun _ -> True)
(ensures fun _ x _ -> x == Ghost.reveal v)
/// A variant of read, useful when an existentially quantified predicate
/// depends on the value stored in the reference
val read_refine_pt (#a:Type0) (#p:perm) (q:a -> vprop) (r:ref a)
: SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v))
(fun v -> pts_to r p v `star` q v)
/// Writes value [x] in the reference [r], as long as we have full ownership of [r]
val write_pt (#a:Type0) (#v:erased a) (r:ref a) (x:a)
: SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
/// Frees reference [r], as long as we have full ownership of [r]
val free_pt (#a:Type0) (#v:erased a) (r:ref a)
: SteelT unit (pts_to r full_perm v) (fun _ -> emp)
/// Splits the permission on reference [r] into two.
/// This function is computationally irrelevant (it has effect SteelGhost)
val share_gen_pt (#a:Type0)
(#uses:_)
(#p:perm)
(#v: a)
(r:ref a)
(p1 p2: perm)
: SteelGhost unit uses
(pts_to r p v)
(fun _ -> pts_to r p1 v `star` pts_to r p2 v)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
val share_pt (#a:Type0) (#uses:_) (#p:perm) (#v:erased a) (r:ref a)
: SteelGhostT unit uses
(pts_to r p v)
(fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
/// Combines permissions on reference [r].
/// This function is computationally irrelevant (it has effect SteelGhost)
val gather_pt (#a:Type0) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a)
: SteelGhostT (_:unit{v0 == v1}) uses
(pts_to r p0 v0 `star` pts_to r p1 v1)
(fun _ -> pts_to r (sum_perm p0 p1) v0)
/// Atomic operations, read, write, and cas
///
/// These are not polymorphic and are allowed only for small types (e.g. word-sized)
/// For now, exporting only for U32
val atomic_read_pt_u32 (#opened:_) (#p:perm) (#v:erased U32.t) (r:ref U32.t)
: SteelAtomic U32.t opened
(pts_to r p v)
(fun x -> pts_to r p x)
(requires fun _ -> True)
(ensures fun _ x _ -> x == Ghost.reveal v)
val atomic_write_pt_u32 (#opened:_) (#v:erased U32.t) (r:ref U32.t) (x:U32.t)
: SteelAtomicT unit opened
(pts_to r full_perm v)
(fun _ -> pts_to r full_perm x)
val cas_pt_u32 (#uses:inames)
(r:ref U32.t)
(v:Ghost.erased U32.t)
(v_old:U32.t)
(v_new:U32.t)
: SteelAtomicT
(b:bool{b <==> (Ghost.reveal v == v_old)})
uses
(pts_to r full_perm v)
(fun b -> if b then pts_to r full_perm v_new else pts_to r full_perm v)
val cas_pt_bool (#uses:inames)
(r:ref bool)
(v:Ghost.erased bool)
(v_old:bool)
(v_new:bool)
: SteelAtomicT
(b:bool{b <==> (Ghost.reveal v == v_old)})
uses
(pts_to r full_perm v)
(fun b -> if b then pts_to r full_perm v_new else pts_to r full_perm v)
(** Second version of references: The memory contents are available inside the selector, instead of as an index of the predicate **)
/// An abstract separation logic predicate stating that reference [r] is valid in memory.
val ptrp (#a:Type0) (r:ref a) ([@@@smt_fallback] p: perm) : slprop u#1
[@@ __steel_reduce__; __reduce__]
unfold
let ptr (#a:Type0) (r:ref a) : slprop u#1 = ptrp r full_perm
/// A selector for references, returning the value of type [a] stored in memory
val ptrp_sel (#a:Type0) (r:ref a) (p: perm) : selector a (ptrp r p)
[@@ __steel_reduce__; __reduce__]
unfold
let ptr_sel (#a:Type0) (r:ref a) : selector a (ptr r) = ptrp_sel r full_perm
/// Some lemmas to interoperate between the two versions of references
val ptrp_sel_interp (#a:Type0) (r:ref a) (p: perm) (m:mem) : Lemma
(requires interp (ptrp r p) m)
(ensures interp (pts_to_sl r p (ptrp_sel r p m)) m)
let ptr_sel_interp (#a:Type0) (r:ref a) (m:mem) : Lemma
(requires interp (ptr r) m)
(ensures interp (pts_to_sl r full_perm (ptr_sel r m)) m)
= ptrp_sel_interp r full_perm m
val intro_ptrp_interp (#a:Type0) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma
(requires interp (pts_to_sl r p v) m)
(ensures interp (ptrp r p) m)
let intro_ptr_interp (#a:Type0) (r:ref a) (v:erased a) (m:mem) : Lemma
(requires interp (pts_to_sl r full_perm v) m)
(ensures interp (ptr r) m)
= intro_ptrp_interp r full_perm v m
/// Combining the separation logic predicate and selector into a vprop
[@@ __steel_reduce__]
let vptr' #a r p : vprop' =
{hp = ptrp r p;
t = a;
sel = ptrp_sel r p}
[@@ __steel_reduce__]
unfold
let vptrp (#a: Type) (r: ref a) ([@@@smt_fallback] p: perm) = VUnit (vptr' r p)
[@@ __steel_reduce__; __reduce__]
unfold
let vptr r = vptrp r full_perm
/// A wrapper to access a reference selector more easily.
/// Ensuring that the corresponding ptr vprop is in the context is done by
/// calling a variant of the framing tactic, as defined in Steel.Effect.Common
[@@ __steel_reduce__]
let sel (#a:Type) (#p:vprop) (r:ref a)
(h:rmem p{FStar.Tactics.with_tactic selector_tactic (can_be_split p (vptr r) /\ True)})
= h (vptr r)
/// Moving from indexed pts_to assertions to selector-based vprops and back
val intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a)
: SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p)
(requires fun _ -> True)
(ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v)
val elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm)
: SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v)
(requires fun _ -> True)
(ensures fun h0 v _ -> reveal v == h0 (vptrp r p))
/// Allocates a reference with value [x].
val malloc (#a:Type0) (x:a) : Steel (ref a)
emp (fun r -> vptr r)
(requires fun _ -> True)
(ensures fun _ r h1 -> sel r h1 == x /\ not (is_null r))
/// Frees a reference [r]
val free (#a:Type0) (r:ref a) : Steel unit
(vptr r) (fun _ -> emp)
(requires fun _ -> True)
(ensures fun _ _ _ -> True)
/// Reads the current value of reference [r]
val readp (#a:Type0) (r:ref a) (p: perm) : Steel a
(vptrp r p) (fun _ -> vptrp r p)
(requires fun _ -> True)
(ensures fun h0 x h1 -> h0 (vptrp r p) == h1 (vptrp r p) /\ x == h1 (vptrp r p)) | {
"checked_file": "/",
"dependencies": [
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Reference.fsti"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.Reference.ref a -> Steel.Effect.Steel a | Steel.Effect.Steel | [] | [] | [
"Steel.Reference.ref",
"Steel.Reference.readp",
"Steel.FractionalPermission.full_perm",
"Steel.Reference.vptr",
"Steel.Effect.Common.vprop",
"Steel.Effect.Common.rmem",
"Prims.l_True",
"Prims.l_and",
"Prims.eq2",
"Steel.Effect.Common.normal",
"Steel.Effect.Common.t_of",
"Steel.Reference.sel"
] | [] | false | true | false | false | false | let read (#a: Type0) (r: ref a)
: Steel a
(vptr r)
(fun _ -> vptr r)
(requires fun _ -> True)
(ensures fun h0 x h1 -> sel r h0 == sel r h1 /\ x == sel r h1) =
| readp r full_perm | false |
Lib.ByteSequence.fst | Lib.ByteSequence.seq_mask_select | val seq_mask_select: #t:inttype{~(S128? t)} -> #len:size_nat
-> a:lseq (int_t t SEC) len
-> b:lseq (int_t t SEC) len
-> mask:int_t t SEC
-> Pure (lseq (int_t t SEC) len)
(requires v mask = 0 \/ v mask = v (ones t SEC))
(ensures fun res -> res == (if v mask = 0 then b else a)) | val seq_mask_select: #t:inttype{~(S128? t)} -> #len:size_nat
-> a:lseq (int_t t SEC) len
-> b:lseq (int_t t SEC) len
-> mask:int_t t SEC
-> Pure (lseq (int_t t SEC) len)
(requires v mask = 0 \/ v mask = v (ones t SEC))
(ensures fun res -> res == (if v mask = 0 then b else a)) | let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 104,
"start_col": 0,
"start_line": 96
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Lib.Sequence.lseq (Lib.IntTypes.int_t t Lib.IntTypes.SEC) len ->
b: Lib.Sequence.lseq (Lib.IntTypes.int_t t Lib.IntTypes.SEC) len ->
mask: Lib.IntTypes.int_t t Lib.IntTypes.SEC
-> Prims.Pure (Lib.Sequence.lseq (Lib.IntTypes.int_t t Lib.IntTypes.SEC) len) | Prims.Pure | [] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_not",
"Prims.b2t",
"Lib.IntTypes.uu___is_S128",
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Prims.unit",
"Prims.op_Equality",
"Prims.int",
"Lib.IntTypes.v",
"Lib.Sequence.eq_intro",
"Prims.bool",
"FStar.Classical.forall_intro",
"Prims.nat",
"Prims.op_LessThan",
"Prims.eq2",
"Lib.IntTypes.range_t",
"Lib.Sequence.op_String_Access",
"Prims.l_True",
"Prims.squash",
"Lib.IntTypes.range",
"Lib.Sequence.index",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Lib.ByteSequence.mask_select_lemma",
"Prims.l_Forall",
"Prims.l_imp",
"Lib.ByteSequence.mask_select",
"Lib.Sequence.map2"
] | [] | false | false | false | false | false | let seq_mask_select #t #len a b mask =
| let res = map2 (mask_select mask) a b in
let lemma_aux (i: nat{i < len})
: Lemma (v res.[ i ] == (if v mask = 0 then v b.[ i ] else v a.[ i ])) =
mask_select_lemma mask a.[ i ] b.[ i ]
in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res | false |
Lib.ByteSequence.fst | Lib.ByteSequence.lemma_not_equal_slice | val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k))) | val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k))) | let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i)) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 92,
"end_line": 20,
"start_col": 0,
"start_line": 19
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b1: FStar.Seq.Base.seq a ->
b2: FStar.Seq.Base.seq a ->
i: Prims.nat ->
j: Prims.nat ->
k:
Prims.nat
{ i <= j /\ i <= k /\ j <= k /\ k <= FStar.Seq.Base.length b1 /\
k <= FStar.Seq.Base.length b2 }
-> FStar.Pervasives.Lemma
(requires ~(FStar.Seq.Base.equal (FStar.Seq.Base.slice b1 i j) (FStar.Seq.Base.slice b2 i j)))
(ensures ~(FStar.Seq.Base.equal (FStar.Seq.Base.slice b1 i k) (FStar.Seq.Base.slice b2 i k))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Seq.Base.length",
"Prims._assert",
"Prims.l_Forall",
"Prims.op_LessThan",
"Prims.op_Subtraction",
"Prims.eq2",
"FStar.Seq.Base.index",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.unit"
] | [] | false | false | true | false | false | let lemma_not_equal_slice #a b1 b2 i j k =
| assert (forall (n: nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i)) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.lemma_not_equal_last | val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j))) | val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j))) | let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 42,
"end_line": 29,
"start_col": 0,
"start_line": 27
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b1: FStar.Seq.Base.seq a ->
b2: FStar.Seq.Base.seq a ->
i: Prims.nat ->
j: Prims.nat{i < j /\ j <= FStar.Seq.Base.length b1 /\ j <= FStar.Seq.Base.length b2}
-> FStar.Pervasives.Lemma
(requires ~(FStar.Seq.Base.index b1 (j - 1) == FStar.Seq.Base.index b2 (j - 1)))
(ensures ~(FStar.Seq.Base.equal (FStar.Seq.Base.slice b1 i j) (FStar.Seq.Base.slice b2 i j))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Seq.Base.seq",
"Prims.nat",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_LessThanOrEqual",
"FStar.Seq.Base.length",
"FStar.Seq.Base.lemma_index_slice",
"Prims.op_Subtraction",
"Prims.unit"
] | [] | true | false | true | false | false | let lemma_not_equal_last #a b1 b2 i j =
| Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.nat_from_intseq_be | val nat_from_intseq_be: #t:inttype{unsigned t} -> #l:secrecy_level -> b:seq (uint_t t l)
-> n:nat{n < pow2 (length b * bits t)} | val nat_from_intseq_be: #t:inttype{unsigned t} -> #l:secrecy_level -> b:seq (uint_t t l)
-> n:nat{n < pow2 (length b * bits t)} | let nat_from_intseq_be = nat_from_intseq_be_ | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 44,
"end_line": 122,
"start_col": 0,
"start_line": 122
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Sequence.seq (Lib.IntTypes.uint_t t l)
-> n: Prims.nat{n < Prims.pow2 (Lib.Sequence.length b * Lib.IntTypes.bits t)} | Prims.Tot | [
"total"
] | [] | [
"Lib.ByteSequence.nat_from_intseq_be_"
] | [] | false | false | false | false | false | let nat_from_intseq_be =
| nat_from_intseq_be_ | false |
Lib.ByteSequence.fst | Lib.ByteSequence.nat_from_intseq_le | val nat_from_intseq_le: #t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l) -> n:nat{n < pow2 (length b * bits t)} | val nat_from_intseq_le: #t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l) -> n:nat{n < pow2 (length b * bits t)} | let nat_from_intseq_le = nat_from_intseq_le_ | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 44,
"end_line": 141,
"start_col": 0,
"start_line": 141
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Sequence.seq (Lib.IntTypes.uint_t t l)
-> n: Prims.nat{n < Prims.pow2 (Lib.Sequence.length b * Lib.IntTypes.bits t)} | Prims.Tot | [
"total"
] | [] | [
"Lib.ByteSequence.nat_from_intseq_le_"
] | [] | false | false | false | false | false | let nat_from_intseq_le =
| nat_from_intseq_le_ | false |
Vale.Curve25519.FastMul_helpers.fst | Vale.Curve25519.FastMul_helpers.lemma_sum_a3b | val lemma_sum_a3b
(a0 a1 a2 a3:nat64)
(a0a1a2b:nat) (a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 a0a1a2b_3 a0a1a2b_4 a0a1a2b_5 a0a1a2b_6:nat64)
(a3b:nat) (a3b_0 a3b_1 a3b_2 a3b_3 a3b_4:nat64)
(b:nat) (b0 b1 b2 b3:nat64)
(s1 s2 s3 s4 s5:nat64) : Lemma
(requires a0a1a2b = pow2_seven a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 a0a1a2b_3 a0a1a2b_4 a0a1a2b_5 a0a1a2b_6 /\
a3b = pow2_five a3b_0 a3b_1 a3b_2 a3b_3 a3b_4 /\
b = pow2_four b0 b1 b2 b3 /\
a0a1a2b = mul_nats (pow2_three a0 a1 a2) b /\
a3b = mul_nats a3 b /\
(let s1', c1 = add_carry a0a1a2b_3 a3b_0 0 in
let s2', c2 = add_carry a0a1a2b_4 a3b_1 c1 in
let s3', c3 = add_carry a0a1a2b_5 a3b_2 c2 in
let s4', c4 = add_carry a0a1a2b_6 a3b_3 c3 in
let s5', c5 = add_carry 0 a3b_4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
c5 == 0))
(ensures (pow2_four a0 a1 a2 a3) * b ==
pow2_eight a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 s1 s2 s3 s4 s5) | val lemma_sum_a3b
(a0 a1 a2 a3:nat64)
(a0a1a2b:nat) (a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 a0a1a2b_3 a0a1a2b_4 a0a1a2b_5 a0a1a2b_6:nat64)
(a3b:nat) (a3b_0 a3b_1 a3b_2 a3b_3 a3b_4:nat64)
(b:nat) (b0 b1 b2 b3:nat64)
(s1 s2 s3 s4 s5:nat64) : Lemma
(requires a0a1a2b = pow2_seven a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 a0a1a2b_3 a0a1a2b_4 a0a1a2b_5 a0a1a2b_6 /\
a3b = pow2_five a3b_0 a3b_1 a3b_2 a3b_3 a3b_4 /\
b = pow2_four b0 b1 b2 b3 /\
a0a1a2b = mul_nats (pow2_three a0 a1 a2) b /\
a3b = mul_nats a3 b /\
(let s1', c1 = add_carry a0a1a2b_3 a3b_0 0 in
let s2', c2 = add_carry a0a1a2b_4 a3b_1 c1 in
let s3', c3 = add_carry a0a1a2b_5 a3b_2 c2 in
let s4', c4 = add_carry a0a1a2b_6 a3b_3 c3 in
let s5', c5 = add_carry 0 a3b_4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
c5 == 0))
(ensures (pow2_four a0 a1 a2 a3) * b ==
pow2_eight a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 s1 s2 s3 s4 s5) | let lemma_sum_a3b
(a0 a1 a2 a3:nat64)
(a0a1a2b:nat) (a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 a0a1a2b_3 a0a1a2b_4 a0a1a2b_5 a0a1a2b_6:nat64)
(a3b:nat) (a3b_0 a3b_1 a3b_2 a3b_3 a3b_4:nat64)
(b:nat) (b0 b1 b2 b3:nat64)
(s1 s2 s3 s4 s5:nat64) : Lemma
(requires a0a1a2b = pow2_seven a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 a0a1a2b_3 a0a1a2b_4 a0a1a2b_5 a0a1a2b_6 /\
a3b = pow2_five a3b_0 a3b_1 a3b_2 a3b_3 a3b_4 /\
b = pow2_four b0 b1 b2 b3 /\
a0a1a2b = mul_nats (pow2_three a0 a1 a2) b /\
a3b = mul_nats a3 b /\
(let s1', c1 = add_carry a0a1a2b_3 a3b_0 0 in
let s2', c2 = add_carry a0a1a2b_4 a3b_1 c1 in
let s3', c3 = add_carry a0a1a2b_5 a3b_2 c2 in
let s4', c4 = add_carry a0a1a2b_6 a3b_3 c3 in
let s5', c5 = add_carry 0 a3b_4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
c5 == 0))
(ensures (pow2_four a0 a1 a2 a3) * b ==
pow2_eight a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 s1 s2 s3 s4 s5)
=
assert_by_tactic (
(pow2_four a0 a1 a2 a3) * b ==
mul_nats (pow2_three a0 a1 a2) b + pow2_192 * (mul_nats a3 b)) int_canon;
assert (
mul_nats (pow2_three a0 a1 a2) b + pow2_192 * (mul_nats a3 b) ==
a0a1a2b + pow2_192 * a3b);
assert_by_tactic (
a0a1a2b + pow2_192 * a3b ==
pow2_eight a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 (a0a1a2b_3 + a3b_0) (a0a1a2b_4 + a3b_1) (a0a1a2b_5 + a3b_2) (a0a1a2b_6 + a3b_3) a3b_4) int_canon;
lemma_partial_sum_a3b
a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 a0a1a2b_3 a0a1a2b_4 a0a1a2b_5 a0a1a2b_6
a3b_0 a3b_1 a3b_2 a3b_3 a3b_4
s1 s2 s3 s4 s5;
() | {
"file_name": "vale/code/crypto/ecc/curve25519/Vale.Curve25519.FastMul_helpers.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 257,
"start_col": 0,
"start_line": 218
} | module Vale.Curve25519.FastMul_helpers
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.Mul
open FStar.Tactics
open FStar.Tactics.CanonCommSemiring
open Vale.Curve25519.Fast_defs
open Vale.Curve25519.Fast_lemmas_internal
open FStar.Math.Lemmas
#reset-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection'"
#push-options "--z3rlimit 10"
let lemma_mul_pow2_bound (b:nat{b > 1}) (x y:natN (pow2 b))
: Lemma (x * y < pow2 (2*b) - 1 /\
x * y <= pow2 (2*b) - 2*pow2(b) + 1)
= lemma_mul_bounds_le x (pow2 b - 1) y (pow2 b -1);
pow2_plus b b;
assert ( (pow2 b - 1) * (pow2 b -1) = pow2 (2*b) - 2*pow2(b) + 1)
#pop-options
let lemma_mul_bound64 (x y:nat64)
: Lemma (x * y < pow2_128 - 1 /\ x * y <= pow2_128 - 2*pow2_64 + 1)
= assert_norm (pow2 64 == pow2_64);
assert_norm (pow2 128 == pow2_128);
lemma_mul_pow2_bound 64 x y
(* Intel manual mentions this fact *)
let lemma_intel_prod_sum_bound (w x y z:nat64)
: Lemma (w * x + y + z < pow2_128)
= lemma_mul_bound64 w x
let lemma_prod_bounds (dst_hi dst_lo x y:nat64)
: Lemma
(requires
pow2_64 * dst_hi + dst_lo == x * y)
(ensures
dst_hi < pow2_64 - 1 /\
(dst_hi < pow2_64 - 2 \/
dst_lo <= 1))
= let result = x * y in
lemma_div_mod result pow2_64;
//assert (result = pow2_64 * (result / pow2_64) + result % pow2_64);
//assert (result % pow2_64 == dst_lo);
//assert (result / pow2_64 == dst_hi);
lemma_mul_bound64 x y
let lemma_double_bound (x:nat64)
: Lemma (add_wrap x x < pow2_64 - 1)
= ()
type bit = b:nat { b <= 1 }
let lemma_offset_sum (a_agg:nat) (a0 a1 a2 a3 a4:nat64)
(b_agg:nat) (b0 b1 b2 b3 b4:nat64)
: Lemma
(requires
a_agg = pow2_five a0 a1 a2 a3 a4 /\
b_agg = pow2_five b0 b1 b2 b3 b4)
(ensures
a_agg + pow2_64 * b_agg =
pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4)
= let lhs = a_agg + pow2_64 * b_agg in
let rhs = pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4 in
assert_by_tactic (lhs == rhs) int_canon
#push-options "--z3rlimit 60"
let lemma_partial_sum
(a0 a1 a2 a3 a4
b0 b1 b2 b3 b4
s1 s2 s3 s4 s5 c:nat64)
: Lemma
(requires
(let s1', c1 = add_carry a1 b0 0 in
let s2', c2 = add_carry a2 b1 c1 in
let s3', c3 = add_carry a3 b2 c2 in
let s4', c4 = add_carry a4 b3 c3 in
let s5', c5 = add_carry 0 b4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
c == c5))
(ensures
pow2_six a0 (a1 + b0) (a2 + b1) (a3 + b2) (a4 + b3) b4 =
pow2_seven a0 s1 s2 s3 s4 s5 c)
= ()
let lemma_partial_sum_a2b
(a0 a1 a2 a3 a4 a5
b0 b1 b2 b3 b4
s1 s2 s3 s4 s5:nat64)
: Lemma
(requires
(let s1', c1 = add_carry a2 b0 0 in
let s2', c2 = add_carry a3 b1 c1 in
let s3', c3 = add_carry a4 b2 c2 in
let s4', c4 = add_carry a5 b3 c3 in
let s5', c5 = add_carry 0 b4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
0 == c5))
(ensures
pow2_seven a0 a1 (a2 + b0) (a3 + b1) (a4 + b2) (a5 + b3) b4 =
pow2_seven a0 a1 s1 s2 s3 s4 s5)
= ()
let lemma_partial_sum_a3b (
a0 a1 a2 a3 a4 a5 a6
b0 b1 b2 b3 b4
s1 s2 s3 s4 s5:nat64) : Lemma
(requires(let s1', c1 = add_carry a3 b0 0 in
let s2', c2 = add_carry a4 b1 c1 in
let s3', c3 = add_carry a5 b2 c2 in
let s4', c4 = add_carry a6 b3 c3 in
let s5', c5 = add_carry 0 b4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
0 == c5))
(ensures pow2_eight a0 a1 a2 (a3 + b0) (a4 + b1) (a5 + b2) (a6 + b3) b4 =
pow2_eight a0 a1 a2 s1 s2 s3 s4 s5)
=
()
#pop-options
let lemma_sum_a1b
(a0 a1:nat64)
(a0b:nat) (a0b_0 a0b_1 a0b_2 a0b_3 a0b_4:nat64)
(a1b:nat) (a1b_0 a1b_1 a1b_2 a1b_3 a1b_4:nat64)
(b:nat) (b0 b1 b2 b3:nat64)
(s1 s2 s3 s4 s5
c:nat64) : Lemma
(requires a0b = pow2_five a0b_0 a0b_1 a0b_2 a0b_3 a0b_4 /\
a1b = pow2_five a1b_0 a1b_1 a1b_2 a1b_3 a1b_4 /\
b = pow2_four b0 b1 b2 b3 /\
a0b = mul_nats a0 b /\
a1b = mul_nats a1 b /\
(let s1', c1 = add_carry a0b_1 a1b_0 0 in
let s2', c2 = add_carry a0b_2 a1b_1 c1 in
let s3', c3 = add_carry a0b_3 a1b_2 c2 in
let s4', c4 = add_carry a0b_4 a1b_3 c3 in
let s5', c5 = add_carry 0 a1b_4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
c5 == c))
(ensures (pow2_two a0 a1) * b ==
pow2_seven a0b_0 s1 s2 s3 s4 s5 c)
=
assert_by_tactic (
(pow2_two a0 a1) * b ==
pow2_two (mul_nats a0 b) (mul_nats a1 b)) int_canon;
assert (
pow2_two (mul_nats a0 b) (mul_nats a1 b) ==
pow2_two a0b a1b);
lemma_offset_sum a0b a0b_0 a0b_1 a0b_2 a0b_3 a0b_4
a1b a1b_0 a1b_1 a1b_2 a1b_3 a1b_4;
assert (
pow2_two a0b a1b ==
pow2_six a0b_0 (a0b_1 + a1b_0) (a0b_2 + a1b_1) (a0b_3 + a1b_2) (a0b_4 + a1b_3) a1b_4);
lemma_partial_sum a0b_0 a0b_1 a0b_2 a0b_3 a0b_4
a1b_0 a1b_1 a1b_2 a1b_3 a1b_4
s1 s2 s3 s4 s5 c;
()
#push-options "--z3rlimit 60"
let lemma_sum_a2b
(a0 a1 a2:nat64)
(a0a1b:nat) (a0a1b_0 a0a1b_1 a0a1b_2 a0a1b_3 a0a1b_4 a0a1b_5:nat64)
(a2b:nat) (a2b_0 a2b_1 a2b_2 a2b_3 a2b_4:nat64)
(b:nat) (b0 b1 b2 b3:nat64)
(s1 s2 s3 s4 s5:nat64) : Lemma
(requires a0a1b = pow2_six a0a1b_0 a0a1b_1 a0a1b_2 a0a1b_3 a0a1b_4 a0a1b_5 /\
a2b = pow2_five a2b_0 a2b_1 a2b_2 a2b_3 a2b_4 /\
b = pow2_four b0 b1 b2 b3 /\
a0a1b = mul_nats (pow2_two a0 a1) b /\
a2b = mul_nats a2 b /\
(let s1', c1 = add_carry a0a1b_2 a2b_0 0 in
let s2', c2 = add_carry a0a1b_3 a2b_1 c1 in
let s3', c3 = add_carry a0a1b_4 a2b_2 c2 in
let s4', c4 = add_carry a0a1b_5 a2b_3 c3 in
let s5', c5 = add_carry 0 a2b_4 c4 in
s1 == s1' /\
s2 == s2' /\
s3 == s3' /\
s4 == s4' /\
s5 == s5' /\
c5 == 0))
(ensures (pow2_three a0 a1 a2) * b ==
pow2_seven a0a1b_0 a0a1b_1 s1 s2 s3 s4 s5)
=
assert_by_tactic (
(pow2_three a0 a1 a2) * b ==
mul_nats (pow2_two a0 a1) b + pow2_128 * (mul_nats a2 b)) int_canon;
assert (
mul_nats (pow2_two a0 a1) b + pow2_128 * (mul_nats a2 b) ==
a0a1b + pow2_128 * a2b);
assert_by_tactic (
a0a1b + pow2_128 * a2b ==
pow2_seven a0a1b_0 a0a1b_1 (a0a1b_2 + a2b_0) (a0a1b_3 + a2b_1) (a0a1b_4 + a2b_2) (a0a1b_5 + a2b_3) a2b_4) int_canon;
lemma_partial_sum_a2b
a0a1b_0 a0a1b_1 a0a1b_2 a0a1b_3 a0a1b_4 a0a1b_5
a2b_0 a2b_1 a2b_2 a2b_3 a2b_4
s1 s2 s3 s4 s5;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Curve25519.Fast_lemmas_internal.fsti.checked",
"Vale.Curve25519.Fast_defs.fst.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.CanonCommSemiring.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Vale.Curve25519.FastMul_helpers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Math.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_lemmas_internal",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519.Fast_defs",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.CanonCommSemiring",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 60,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a0: Vale.Def.Types_s.nat64 ->
a1: Vale.Def.Types_s.nat64 ->
a2: Vale.Def.Types_s.nat64 ->
a3: Vale.Def.Types_s.nat64 ->
a0a1a2b: Prims.nat ->
a0a1a2b_0: Vale.Def.Types_s.nat64 ->
a0a1a2b_1: Vale.Def.Types_s.nat64 ->
a0a1a2b_2: Vale.Def.Types_s.nat64 ->
a0a1a2b_3: Vale.Def.Types_s.nat64 ->
a0a1a2b_4: Vale.Def.Types_s.nat64 ->
a0a1a2b_5: Vale.Def.Types_s.nat64 ->
a0a1a2b_6: Vale.Def.Types_s.nat64 ->
a3b: Prims.nat ->
a3b_0: Vale.Def.Types_s.nat64 ->
a3b_1: Vale.Def.Types_s.nat64 ->
a3b_2: Vale.Def.Types_s.nat64 ->
a3b_3: Vale.Def.Types_s.nat64 ->
a3b_4: Vale.Def.Types_s.nat64 ->
b: Prims.nat ->
b0: Vale.Def.Types_s.nat64 ->
b1: Vale.Def.Types_s.nat64 ->
b2: Vale.Def.Types_s.nat64 ->
b3: Vale.Def.Types_s.nat64 ->
s1: Vale.Def.Types_s.nat64 ->
s2: Vale.Def.Types_s.nat64 ->
s3: Vale.Def.Types_s.nat64 ->
s4: Vale.Def.Types_s.nat64 ->
s5: Vale.Def.Types_s.nat64
-> FStar.Pervasives.Lemma
(requires
a0a1a2b =
Vale.Curve25519.Fast_defs.pow2_seven a0a1a2b_0
a0a1a2b_1
a0a1a2b_2
a0a1a2b_3
a0a1a2b_4
a0a1a2b_5
a0a1a2b_6 /\ a3b = Vale.Curve25519.Fast_defs.pow2_five a3b_0 a3b_1 a3b_2 a3b_3 a3b_4 /\
b = Vale.Curve25519.Fast_defs.pow2_four b0 b1 b2 b3 /\
a0a1a2b =
Vale.Curve25519.Fast_defs.mul_nats (Vale.Curve25519.Fast_defs.pow2_three a0 a1 a2) b /\
a3b = Vale.Curve25519.Fast_defs.mul_nats a3 b /\
(let _ = Vale.Curve25519.Fast_defs.add_carry a0a1a2b_3 a3b_0 0 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s1' c1 = _ in
let _ = Vale.Curve25519.Fast_defs.add_carry a0a1a2b_4 a3b_1 c1 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s2' c2 = _ in
let _ = Vale.Curve25519.Fast_defs.add_carry a0a1a2b_5 a3b_2 c2 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s3' c3 = _ in
let _ = Vale.Curve25519.Fast_defs.add_carry a0a1a2b_6 a3b_3 c3 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s4' c4 = _ in
let _ = Vale.Curve25519.Fast_defs.add_carry 0 a3b_4 c4 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ s5' c5 = _ in
s1 == s1' /\ s2 == s2' /\ s3 == s3' /\ s4 == s4' /\ s5 == s5' /\ c5 == 0)
<:
Prims.logical)
<:
Prims.logical)
<:
Prims.logical)
<:
Prims.logical)
<:
Prims.logical))
(ensures
Vale.Curve25519.Fast_defs.pow2_four a0 a1 a2 a3 * b ==
Vale.Curve25519.Fast_defs.pow2_eight a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 s1 s2 s3 s4 s5) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Def.Types_s.nat64",
"Prims.nat",
"Prims.unit",
"Vale.Curve25519.FastMul_helpers.lemma_partial_sum_a3b",
"FStar.Tactics.Effect.assert_by_tactic",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Vale.Curve25519.Fast_defs.pow2_192",
"Vale.Curve25519.Fast_defs.pow2_eight",
"Vale.Curve25519.FastMul_helpers.int_canon",
"Prims._assert",
"Vale.Curve25519.Fast_defs.mul_nats",
"Vale.Curve25519.Fast_defs.pow2_three",
"Vale.Curve25519.Fast_defs.pow2_four",
"Prims.l_and",
"Prims.b2t",
"Prims.op_Equality",
"Vale.Curve25519.Fast_defs.pow2_seven",
"Vale.Curve25519.Fast_defs.pow2_five",
"Prims.op_BarBar",
"Prims.logical",
"FStar.Pervasives.Native.tuple2",
"Vale.Def.Words_s.nat64",
"Vale.Curve25519.Fast_defs.add_carry",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_sum_a3b
(a0 a1 a2 a3: nat64)
(a0a1a2b: nat)
(a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 a0a1a2b_3 a0a1a2b_4 a0a1a2b_5 a0a1a2b_6: nat64)
(a3b: nat)
(a3b_0 a3b_1 a3b_2 a3b_3 a3b_4: nat64)
(b: nat)
(b0 b1 b2 b3 s1 s2 s3 s4 s5: nat64)
: Lemma
(requires
a0a1a2b = pow2_seven a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 a0a1a2b_3 a0a1a2b_4 a0a1a2b_5 a0a1a2b_6 /\
a3b = pow2_five a3b_0 a3b_1 a3b_2 a3b_3 a3b_4 /\ b = pow2_four b0 b1 b2 b3 /\
a0a1a2b = mul_nats (pow2_three a0 a1 a2) b /\ a3b = mul_nats a3 b /\
(let s1', c1 = add_carry a0a1a2b_3 a3b_0 0 in
let s2', c2 = add_carry a0a1a2b_4 a3b_1 c1 in
let s3', c3 = add_carry a0a1a2b_5 a3b_2 c2 in
let s4', c4 = add_carry a0a1a2b_6 a3b_3 c3 in
let s5', c5 = add_carry 0 a3b_4 c4 in
s1 == s1' /\ s2 == s2' /\ s3 == s3' /\ s4 == s4' /\ s5 == s5' /\ c5 == 0))
(ensures
(pow2_four a0 a1 a2 a3) * b == pow2_eight a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 s1 s2 s3 s4 s5) =
| assert_by_tactic ((pow2_four a0 a1 a2 a3) * b ==
mul_nats (pow2_three a0 a1 a2) b + pow2_192 * (mul_nats a3 b))
int_canon;
assert (mul_nats (pow2_three a0 a1 a2) b + pow2_192 * (mul_nats a3 b) == a0a1a2b + pow2_192 * a3b);
assert_by_tactic (a0a1a2b + pow2_192 * a3b ==
pow2_eight a0a1a2b_0
a0a1a2b_1
a0a1a2b_2
(a0a1a2b_3 + a3b_0)
(a0a1a2b_4 + a3b_1)
(a0a1a2b_5 + a3b_2)
(a0a1a2b_6 + a3b_3)
a3b_4)
int_canon;
lemma_partial_sum_a3b a0a1a2b_0 a0a1a2b_1 a0a1a2b_2 a0a1a2b_3 a0a1a2b_4 a0a1a2b_5 a0a1a2b_6 a3b_0
a3b_1 a3b_2 a3b_3 a3b_4 s1 s2 s3 s4 s5;
() | false |
Lib.ByteSequence.fst | Lib.ByteSequence.nat_to_intseq_be | val nat_to_intseq_be: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> n:nat{n < pow2 (bits t * len)} ->
b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_be b} | val nat_to_intseq_be: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> n:nat{n < pow2 (bits t * len)} ->
b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_be b} | let nat_to_intseq_be = nat_to_intseq_be_ | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 163,
"start_col": 0,
"start_line": 163
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Prims.nat -> n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)}
-> b:
Lib.Sequence.seq (Lib.IntTypes.uint_t t l)
{Lib.Sequence.length b == len /\ n == Lib.ByteSequence.nat_from_intseq_be b} | Prims.Tot | [
"total"
] | [] | [
"Lib.ByteSequence.nat_to_intseq_be_"
] | [] | false | false | false | false | false | let nat_to_intseq_be =
| nat_to_intseq_be_ | false |
Steel.Reference.fsti | Steel.Reference.ghost_read | val ghost_read (#a: Type0) (#opened: inames) (r: ghost_ref a)
: SteelGhost (Ghost.erased a)
opened
(ghost_vptr r)
(fun _ -> ghost_vptr r)
(requires fun _ -> True)
(ensures
fun h0 x h1 -> h0 (ghost_vptr r) == h1 (ghost_vptr r) /\ Ghost.reveal x == h1 (ghost_vptr r)
) | val ghost_read (#a: Type0) (#opened: inames) (r: ghost_ref a)
: SteelGhost (Ghost.erased a)
opened
(ghost_vptr r)
(fun _ -> ghost_vptr r)
(requires fun _ -> True)
(ensures
fun h0 x h1 -> h0 (ghost_vptr r) == h1 (ghost_vptr r) /\ Ghost.reveal x == h1 (ghost_vptr r)
) | let ghost_read (#a:Type0) (#opened:inames) (r:ghost_ref a)
: SteelGhost (Ghost.erased a) opened
(ghost_vptr r) (fun _ -> ghost_vptr r)
(requires fun _ -> True)
(ensures fun h0 x h1 -> h0 (ghost_vptr r) == h1 (ghost_vptr r) /\ Ghost.reveal x == h1 (ghost_vptr r))
= ghost_readp r full_perm | {
"file_name": "lib/steel/Steel.Reference.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 25,
"end_line": 522,
"start_col": 0,
"start_line": 517
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Reference
open FStar.Ghost
open Steel.FractionalPermission
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
module U32 = FStar.UInt32
module Mem = Steel.Memory
/// The main user-facing Steel library.
/// This library provides functions to operate on references to values in universe 0, such as uints.
/// This library provides two versions, which can interoperate with each other.
/// The first one uses the standard separation logic pts_to predicate, and has a non-informative selector
/// The second one has a selector which returns the contents of the reference in memory, enabling
/// to better separate reasoning about memory safety and functional correctness when handling references.
/// An abstract datatype for references
val ref ([@@@unused] a:Type0) : Type0
/// The null pointer
[@@ noextract_to "krml"]
val null (#a:Type0) : ref a
/// Checking whether a pointer is null can be done in a decidable way
[@@ noextract_to "krml"]
val is_null (#a:Type0) (r:ref a) : (b:bool{b <==> r == null})
(** First version of references: Non-informative selector and standard pts_to predicate.
All functions names here are postfixed with _pt (for points_to)**)
/// The standard points to separation logic assertion, expressing that
/// reference [r] is valid in memory, stores value [v], and that we have
/// permission [p] on it.
val pts_to_sl (#a:Type0) (r:ref a) (p:perm) (v:a) : slprop u#1
/// Lifting the standard points to predicate to vprop, with a non-informative selector.
/// The permission [p] and the value [v] are annotated with the smt_fallback attribute,
/// enabling SMT rewriting on them during frame inference
[@@ __steel_reduce__]
let pts_to (#a:Type0) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@ smt_fallback] v:a)
= to_vprop (pts_to_sl r p v)
/// If two pts_to predicates on the same reference [r] are valid in the memory [m],
/// then the two values [v0] and [v1] are identical
val pts_to_ref_injective
(#a: Type u#0)
(r: ref a)
(p0 p1:perm)
(v0 v1:a)
(m:mem)
: Lemma
(requires
interp (pts_to_sl r p0 v0 `Mem.star` pts_to_sl r p1 v1) m)
(ensures v0 == v1)
/// A valid pts_to predicate implies that the pointer is not the null pointer
val pts_to_not_null (#a:Type u#0)
(x:ref a)
(p:perm)
(v:a)
(m:mem)
: Lemma (requires interp (pts_to_sl x p v) m)
(ensures x =!= null)
/// Exposing the is_witness_invariant from Steel.Memory for references with fractional permissions
val pts_to_witinv (#a:Type) (r:ref a) (p:perm) : Lemma (is_witness_invariant (pts_to_sl r p))
/// A stateful version of the pts_to_ref_injective lemma above
val pts_to_injective_eq
(#a: Type)
(#opened:inames)
(#p0 #p1:perm)
(#v0 #v1: erased a)
(r: ref a)
: SteelGhost unit opened
(pts_to r p0 v0 `star` pts_to r p1 v1)
(fun _ -> pts_to r p0 v0 `star` pts_to r p1 v0)
(requires fun _ -> True)
(ensures fun _ _ _ -> v0 == v1)
/// A permission is always no greater than one
val pts_to_perm (#a: _) (#u: _) (#p: _) (#v: _) (r: ref a)
: SteelGhost unit u
(pts_to r p v)
(fun _ -> pts_to r p v)
(fun _ -> True)
(fun _ _ _ -> p `lesser_equal_perm` full_perm)
/// Allocates a reference with value [x]. We have full permission on the newly
/// allocated reference.
val alloc_pt (#a:Type) (x:a)
: Steel (ref a) emp (fun r -> pts_to r full_perm x)
(requires fun _ -> True)
(ensures fun _ r _ -> not (is_null r))
/// Reads the value in reference [r], as long as it initially is valid
val read_pt (#a:Type) (#p:perm) (#v:erased a) (r:ref a)
: Steel a (pts_to r p v) (fun x -> pts_to r p x)
(requires fun _ -> True)
(ensures fun _ x _ -> x == Ghost.reveal v)
/// A variant of read, useful when an existentially quantified predicate
/// depends on the value stored in the reference
val read_refine_pt (#a:Type0) (#p:perm) (q:a -> vprop) (r:ref a)
: SteelT a (h_exists (fun (v:a) -> pts_to r p v `star` q v))
(fun v -> pts_to r p v `star` q v)
/// Writes value [x] in the reference [r], as long as we have full ownership of [r]
val write_pt (#a:Type0) (#v:erased a) (r:ref a) (x:a)
: SteelT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x)
/// Frees reference [r], as long as we have full ownership of [r]
val free_pt (#a:Type0) (#v:erased a) (r:ref a)
: SteelT unit (pts_to r full_perm v) (fun _ -> emp)
/// Splits the permission on reference [r] into two.
/// This function is computationally irrelevant (it has effect SteelGhost)
val share_gen_pt (#a:Type0)
(#uses:_)
(#p:perm)
(#v: a)
(r:ref a)
(p1 p2: perm)
: SteelGhost unit uses
(pts_to r p v)
(fun _ -> pts_to r p1 v `star` pts_to r p2 v)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
val share_pt (#a:Type0) (#uses:_) (#p:perm) (#v:erased a) (r:ref a)
: SteelGhostT unit uses
(pts_to r p v)
(fun _ -> pts_to r (half_perm p) v `star` pts_to r (half_perm p) v)
/// Combines permissions on reference [r].
/// This function is computationally irrelevant (it has effect SteelGhost)
val gather_pt (#a:Type0) (#uses:_) (#p0:perm) (#p1:perm) (#v0 #v1:erased a) (r:ref a)
: SteelGhostT (_:unit{v0 == v1}) uses
(pts_to r p0 v0 `star` pts_to r p1 v1)
(fun _ -> pts_to r (sum_perm p0 p1) v0)
/// Atomic operations, read, write, and cas
///
/// These are not polymorphic and are allowed only for small types (e.g. word-sized)
/// For now, exporting only for U32
val atomic_read_pt_u32 (#opened:_) (#p:perm) (#v:erased U32.t) (r:ref U32.t)
: SteelAtomic U32.t opened
(pts_to r p v)
(fun x -> pts_to r p x)
(requires fun _ -> True)
(ensures fun _ x _ -> x == Ghost.reveal v)
val atomic_write_pt_u32 (#opened:_) (#v:erased U32.t) (r:ref U32.t) (x:U32.t)
: SteelAtomicT unit opened
(pts_to r full_perm v)
(fun _ -> pts_to r full_perm x)
val cas_pt_u32 (#uses:inames)
(r:ref U32.t)
(v:Ghost.erased U32.t)
(v_old:U32.t)
(v_new:U32.t)
: SteelAtomicT
(b:bool{b <==> (Ghost.reveal v == v_old)})
uses
(pts_to r full_perm v)
(fun b -> if b then pts_to r full_perm v_new else pts_to r full_perm v)
val cas_pt_bool (#uses:inames)
(r:ref bool)
(v:Ghost.erased bool)
(v_old:bool)
(v_new:bool)
: SteelAtomicT
(b:bool{b <==> (Ghost.reveal v == v_old)})
uses
(pts_to r full_perm v)
(fun b -> if b then pts_to r full_perm v_new else pts_to r full_perm v)
(** Second version of references: The memory contents are available inside the selector, instead of as an index of the predicate **)
/// An abstract separation logic predicate stating that reference [r] is valid in memory.
val ptrp (#a:Type0) (r:ref a) ([@@@smt_fallback] p: perm) : slprop u#1
[@@ __steel_reduce__; __reduce__]
unfold
let ptr (#a:Type0) (r:ref a) : slprop u#1 = ptrp r full_perm
/// A selector for references, returning the value of type [a] stored in memory
val ptrp_sel (#a:Type0) (r:ref a) (p: perm) : selector a (ptrp r p)
[@@ __steel_reduce__; __reduce__]
unfold
let ptr_sel (#a:Type0) (r:ref a) : selector a (ptr r) = ptrp_sel r full_perm
/// Some lemmas to interoperate between the two versions of references
val ptrp_sel_interp (#a:Type0) (r:ref a) (p: perm) (m:mem) : Lemma
(requires interp (ptrp r p) m)
(ensures interp (pts_to_sl r p (ptrp_sel r p m)) m)
let ptr_sel_interp (#a:Type0) (r:ref a) (m:mem) : Lemma
(requires interp (ptr r) m)
(ensures interp (pts_to_sl r full_perm (ptr_sel r m)) m)
= ptrp_sel_interp r full_perm m
val intro_ptrp_interp (#a:Type0) (r:ref a) (p: perm) (v:erased a) (m:mem) : Lemma
(requires interp (pts_to_sl r p v) m)
(ensures interp (ptrp r p) m)
let intro_ptr_interp (#a:Type0) (r:ref a) (v:erased a) (m:mem) : Lemma
(requires interp (pts_to_sl r full_perm v) m)
(ensures interp (ptr r) m)
= intro_ptrp_interp r full_perm v m
/// Combining the separation logic predicate and selector into a vprop
[@@ __steel_reduce__]
let vptr' #a r p : vprop' =
{hp = ptrp r p;
t = a;
sel = ptrp_sel r p}
[@@ __steel_reduce__]
unfold
let vptrp (#a: Type) (r: ref a) ([@@@smt_fallback] p: perm) = VUnit (vptr' r p)
[@@ __steel_reduce__; __reduce__]
unfold
let vptr r = vptrp r full_perm
/// A wrapper to access a reference selector more easily.
/// Ensuring that the corresponding ptr vprop is in the context is done by
/// calling a variant of the framing tactic, as defined in Steel.Effect.Common
[@@ __steel_reduce__]
let sel (#a:Type) (#p:vprop) (r:ref a)
(h:rmem p{FStar.Tactics.with_tactic selector_tactic (can_be_split p (vptr r) /\ True)})
= h (vptr r)
/// Moving from indexed pts_to assertions to selector-based vprops and back
val intro_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm) (v:erased a)
: SteelGhost unit opened (pts_to r p v) (fun _ -> vptrp r p)
(requires fun _ -> True)
(ensures fun _ _ h1 -> h1 (vptrp r p) == reveal v)
val elim_vptr (#a:Type) (#opened:inames) (r:ref a) (p: perm)
: SteelGhost (erased a) opened (vptrp r p) (fun v -> pts_to r p v)
(requires fun _ -> True)
(ensures fun h0 v _ -> reveal v == h0 (vptrp r p))
/// Allocates a reference with value [x].
val malloc (#a:Type0) (x:a) : Steel (ref a)
emp (fun r -> vptr r)
(requires fun _ -> True)
(ensures fun _ r h1 -> sel r h1 == x /\ not (is_null r))
/// Frees a reference [r]
val free (#a:Type0) (r:ref a) : Steel unit
(vptr r) (fun _ -> emp)
(requires fun _ -> True)
(ensures fun _ _ _ -> True)
/// Reads the current value of reference [r]
val readp (#a:Type0) (r:ref a) (p: perm) : Steel a
(vptrp r p) (fun _ -> vptrp r p)
(requires fun _ -> True)
(ensures fun h0 x h1 -> h0 (vptrp r p) == h1 (vptrp r p) /\ x == h1 (vptrp r p))
let read (#a:Type0) (r:ref a) : Steel a
(vptr r) (fun _ -> vptr r)
(requires fun _ -> True)
(ensures fun h0 x h1 -> sel r h0 == sel r h1 /\ x == sel r h1)
= readp r full_perm
/// Writes value [x] in reference [r]
val write (#a:Type0) (r:ref a) (x:a) : Steel unit
(vptr r) (fun _ -> vptr r)
(requires fun _ -> True)
(ensures fun _ _ h1 -> x == sel r h1)
val share (#a:Type0) (#uses:_) (#p: perm) (r:ref a)
: SteelGhost unit uses
(vptrp r p)
(fun _ -> vptrp r (half_perm p) `star` vptrp r (half_perm p))
(fun _ -> True)
(fun h _ h' ->
h' (vptrp r (half_perm p)) == h (vptrp r p)
)
val gather_gen (#a:Type0) (#uses:_) (r:ref a) (p0:perm) (p1:perm)
: SteelGhost perm uses
(vptrp r p0 `star` vptrp r p1)
(fun res -> vptrp r res)
(fun _ -> True)
(fun h res h' ->
res == sum_perm p0 p1 /\
h' (vptrp r res) == h (vptrp r p0) /\
h' (vptrp r res) == h (vptrp r p1)
)
val gather (#a: Type0) (#uses: _) (#p: perm) (r: ref a)
: SteelGhost unit uses
(vptrp r (half_perm p) `star` vptrp r (half_perm p))
(fun _ -> vptrp r p)
(fun _ -> True)
(fun h _ h' ->
h' (vptrp r p) == h (vptrp r (half_perm p))
)
/// A stateful lemma variant of the pts_to_not_null lemma above.
/// This stateful function is computationally irrelevant and does not modify memory
val vptrp_not_null (#opened: _)
(#a: Type)
(r: ref a)
(p: perm)
: SteelGhost unit opened
(vptrp r p)
(fun _ -> vptrp r p)
(fun _ -> True)
(fun h0 _ h1 ->
h0 (vptrp r p) == h1 (vptrp r p) /\
is_null r == false
)
let vptr_not_null (#opened: _)
(#a: Type)
(r: ref a)
: SteelGhost unit opened
(vptr r)
(fun _ -> vptr r)
(fun _ -> True)
(fun h0 _ h1 ->
sel r h0 == sel r h1 /\
is_null r == false
)
= vptrp_not_null r full_perm
(*** Ghost references ***)
/// We also define a ghost variant of references, useful to do proofs relying on a ghost state
/// Ghost references are marked as erasable, ensuring that they are computationally irrelevant,
/// and only used in computationally irrelevant contexts.
/// The functions below are variants of the reference functions defined above,
/// but operating on ghost references, and with the computationally irrelevant SteelGhost effect
[@@ erasable]
val ghost_ref (a:Type u#0) : Type u#0
val dummy_ghost_ref (a: Type) : Tot (ghost_ref a)
(* Textbook separation logic version of ghost references *)
val ghost_pts_to_sl (#a:_) (r:ghost_ref a) (p:perm) (v:a) : slprop u#1
[@@ __steel_reduce__]
let ghost_pts_to (#a:Type0)
(r:ghost_ref a)
([@@@smt_fallback] p:perm)
([@@@ smt_fallback] v:a)
: vprop
= to_vprop (ghost_pts_to_sl r p v)
val ghost_pts_to_witinv (#a:Type) (r:ghost_ref a) (p:perm)
: Lemma (is_witness_invariant (ghost_pts_to_sl r p))
val ghost_alloc_pt (#a:Type) (#u:_) (x:erased a)
: SteelGhostT (ghost_ref a) u
emp
(fun r -> ghost_pts_to r full_perm x)
val ghost_free_pt (#a:Type0) (#u:_) (#v:erased a) (r:ghost_ref a)
: SteelGhostT unit u (ghost_pts_to r full_perm v) (fun _ -> emp)
val ghost_share_gen_pt (#a:Type) (#u:_)
(#p:perm)
(#x:erased a)
(r:ghost_ref a)
(p1 p2: perm)
: SteelGhost unit u
(ghost_pts_to r p x)
(fun _ -> ghost_pts_to r p1 x `star`
ghost_pts_to r p2 x)
(fun _ -> p == p1 `sum_perm` p2)
(fun _ _ _ -> True)
val ghost_share_pt (#a:Type) (#u:_)
(#p:perm)
(#x:erased a)
(r:ghost_ref a)
: SteelGhostT unit u
(ghost_pts_to r p x)
(fun _ -> ghost_pts_to r (half_perm p) x `star`
ghost_pts_to r (half_perm p) x)
val ghost_gather_pt (#a:Type) (#u:_)
(#p0 #p1:perm)
(#x0 #x1:erased a)
(r:ghost_ref a)
: SteelGhost unit u
(ghost_pts_to r p0 x0 `star`
ghost_pts_to r p1 x1)
(fun _ -> ghost_pts_to r (sum_perm p0 p1) x0)
(requires fun _ -> true)
(ensures fun _ _ _ -> x0 == x1)
val ghost_pts_to_injective_eq (#a:_) (#u:_) (#p #q:_) (r:ghost_ref a) (v0 v1:Ghost.erased a)
: SteelGhost unit u
(ghost_pts_to r p v0 `star` ghost_pts_to r q v1)
(fun _ -> ghost_pts_to r p v0 `star` ghost_pts_to r q v0)
(requires fun _ -> True)
(ensures fun _ _ _ -> v0 == v1)
/// A permission is always no greater than one
val ghost_pts_to_perm (#a: _) (#u: _) (#p: _) (#v: _) (r: ghost_ref a)
: SteelGhost unit u
(ghost_pts_to r p v)
(fun _ -> ghost_pts_to r p v)
(fun _ -> True)
(fun _ _ _ -> p `lesser_equal_perm` full_perm)
val ghost_read_pt (#a:Type) (#u:_) (#p:perm) (#v:erased a) (r:ghost_ref a)
: SteelGhost (erased a) u (ghost_pts_to r p v) (fun x -> ghost_pts_to r p x)
(requires fun _ -> True)
(ensures fun _ x _ -> x == v)
val ghost_write_pt (#a:Type) (#u:_) (#v:erased a) (r:ghost_ref a) (x:erased a)
: SteelGhostT unit u
(ghost_pts_to r full_perm v)
(fun _ -> ghost_pts_to r full_perm x)
(* Selector version of ghost references *)
val ghost_ptrp (#a: Type0) (r: ghost_ref a) ([@@@smt_fallback] p: perm) : slprop u#1
[@@ __steel_reduce__; __reduce__]
unfold
let ghost_ptr (#a: Type0) (r: ghost_ref a) : slprop u#1
= ghost_ptrp r full_perm
val ghost_ptrp_sel (#a:Type0) (r:ghost_ref a) (p: perm) : selector a (ghost_ptrp r p)
[@@ __steel_reduce__; __reduce__]
let ghost_ptr_sel (#a:Type0) (r:ghost_ref a) : selector a (ghost_ptr r)
= ghost_ptrp_sel r full_perm
val ghost_ptrp_sel_interp (#a:Type0) (r:ghost_ref a) (p: perm) (m:mem) : Lemma
(requires interp (ghost_ptrp r p) m)
(ensures interp (ghost_pts_to_sl r p (ghost_ptrp_sel r p m)) m)
let ghost_ptr_sel_interp (#a:Type0) (r:ghost_ref a) (m:mem) : Lemma
(requires interp (ghost_ptr r) m)
(ensures interp (ghost_pts_to_sl r full_perm (ghost_ptr_sel r m)) m)
= ghost_ptrp_sel_interp r full_perm m
[@@ __steel_reduce__]
let ghost_vptr' #a r p : vprop' =
{hp = ghost_ptrp r p;
t = a;
sel = ghost_ptrp_sel r p}
[@@ __steel_reduce__]
unfold
let ghost_vptrp (#a: Type) (r: ghost_ref a) ([@@@smt_fallback] p: perm) = VUnit (ghost_vptr' r p)
[@@ __steel_reduce__; __reduce__]
unfold
let ghost_vptr r = ghost_vptrp r full_perm
[@@ __steel_reduce__]
let ghost_sel (#a:Type) (#p:vprop) (r:ghost_ref a)
(h:rmem p{FStar.Tactics.with_tactic selector_tactic (can_be_split p (ghost_vptr r) /\ True)})
= h (ghost_vptr r)
val ghost_alloc (#a:Type0) (#opened:inames) (x:Ghost.erased a)
: SteelGhost (ghost_ref a) opened
emp (fun r -> ghost_vptr r)
(requires fun _ -> True)
(ensures fun _ r h1 -> ghost_sel r h1 == Ghost.reveal x)
val ghost_free (#a:Type0) (#opened:inames) (r:ghost_ref a) : SteelGhost unit opened
(ghost_vptr r) (fun _ -> emp)
(requires fun _ -> True)
(ensures fun _ _ _ -> True)
val ghost_readp (#a:Type0) (#opened:inames) (r:ghost_ref a)
(p: perm)
: SteelGhost (Ghost.erased a) opened
(ghost_vptrp r p) (fun _ -> ghost_vptrp r p)
(requires fun _ -> True)
(ensures fun h0 x h1 -> h0 (ghost_vptrp r p) == h1 (ghost_vptrp r p) /\ Ghost.reveal x == h1 (ghost_vptrp r p)) | {
"checked_file": "/",
"dependencies": [
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Steel.Reference.fsti"
} | [
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Steel.Reference.ghost_ref a -> Steel.Effect.Atomic.SteelGhost (FStar.Ghost.erased a) | Steel.Effect.Atomic.SteelGhost | [] | [] | [
"Steel.Memory.inames",
"Steel.Reference.ghost_ref",
"Steel.Reference.ghost_readp",
"Steel.FractionalPermission.full_perm",
"FStar.Ghost.erased",
"Steel.Reference.ghost_vptr",
"Steel.Effect.Common.vprop",
"Steel.Effect.Common.rmem",
"Prims.l_True",
"Prims.l_and",
"Prims.eq2",
"Steel.Effect.Common.normal",
"Steel.Effect.Common.t_of",
"FStar.Ghost.reveal"
] | [] | false | true | false | false | false | let ghost_read (#a: Type0) (#opened: inames) (r: ghost_ref a)
: SteelGhost (Ghost.erased a)
opened
(ghost_vptr r)
(fun _ -> ghost_vptr r)
(requires fun _ -> True)
(ensures
fun h0 x h1 -> h0 (ghost_vptr r) == h1 (ghost_vptr r) /\ Ghost.reveal x == h1 (ghost_vptr r)
) =
| ghost_readp r full_perm | false |
Lib.ByteSequence.fst | Lib.ByteSequence.nat_to_intseq_le | val nat_to_intseq_le: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> n:nat{n < pow2 (bits t * len)} ->
b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b} | val nat_to_intseq_le: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> n:nat{n < pow2 (bits t * len)} ->
b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b} | let nat_to_intseq_le = nat_to_intseq_le_ | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 183,
"start_col": 0,
"start_line": 183
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Prims.nat -> n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)}
-> b:
Lib.Sequence.seq (Lib.IntTypes.uint_t t l)
{Lib.Sequence.length b == len /\ n == Lib.ByteSequence.nat_from_intseq_le b} | Prims.Tot | [
"total"
] | [] | [
"Lib.ByteSequence.nat_to_intseq_le_"
] | [] | false | false | false | false | false | let nat_to_intseq_le =
| nat_to_intseq_le_ | false |
Lib.ByteSequence.fst | Lib.ByteSequence.lbytes_eq | val lbytes_eq: #len:size_nat -> b1:lbytes len -> b2:lbytes len -> b:bool{b <==> b1 == b2} | val lbytes_eq: #len:size_nat -> b1:lbytes len -> b2:lbytes len -> b:bool{b <==> b1 == b2} | let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 37,
"end_line": 74,
"start_col": 0,
"start_line": 72
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b1: Lib.ByteSequence.lbytes len -> b2: Lib.ByteSequence.lbytes len -> b: Prims.bool{b <==> b1 == b2} | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_nat",
"Lib.ByteSequence.lbytes",
"Prims.op_Equality",
"FStar.UInt8.t",
"Lib.RawIntTypes.u8_to_UInt8",
"FStar.UInt8.__uint_to_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.l_and",
"Prims.l_imp",
"Prims.eq2",
"Lib.Sequence.lseq",
"Prims.l_or",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.l_Forall",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.sub",
"Prims.int",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"Lib.IntTypes.ones",
"Prims.l_not",
"Lib.IntTypes.zeros",
"Lib.ByteSequence.seq_eq_mask",
"Prims.bool",
"Prims.l_iff"
] | [] | false | false | false | false | false | let lbytes_eq #len b1 b2 =
| let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy | false |
Lib.ByteSequence.fst | Lib.ByteSequence.nat_from_intseq_le_ | val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b)) | val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b)) | let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 139,
"start_col": 0,
"start_line": 129
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Sequence.seq (Lib.IntTypes.uint_t t l)
-> Prims.Tot (n: Prims.nat{n < Prims.pow2 (Lib.Sequence.length b * Lib.IntTypes.bits t)}) | Prims.Tot | [
"total",
""
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.Sequence.seq",
"Lib.IntTypes.uint_t",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.unit",
"FStar.Math.Lemmas.pow2_plus",
"Lib.IntTypes.bits",
"Prims.op_Subtraction",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"FStar.Seq.Base.index",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.Sequence.length",
"Lib.IntTypes.int_t",
"Lib.ByteSequence.nat_from_intseq_le_",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Prims.pos"
] | [
"recursion"
] | false | false | false | false | false | let rec nat_from_intseq_le_ #t #l b =
| let len = length b in
if len = 0
then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
let n = l + shift * n' in
n | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uint_to_bytes_le | val uint_to_bytes_le: #t:inttype{unsigned t} -> #l:secrecy_level -> uint_t t l -> lbytes_l l (numbytes t) | val uint_to_bytes_le: #t:inttype{unsigned t} -> #l:secrecy_level -> uint_t t l -> lbytes_l l (numbytes t) | let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 36,
"end_line": 282,
"start_col": 0,
"start_line": 281
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Lib.IntTypes.uint_t t l -> Lib.ByteSequence.lbytes_l l (Lib.IntTypes.numbytes t) | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.uint_t",
"Lib.ByteSequence.nat_to_bytes_le",
"Lib.IntTypes.numbytes",
"Lib.IntTypes.v",
"Lib.ByteSequence.lbytes_l"
] | [] | false | false | false | false | false | let uint_to_bytes_le #t #l n =
| nat_to_bytes_le (numbytes t) (v n) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_to_bytes_le_inner | val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t)) | val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t)) | let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i] | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 307,
"start_col": 0,
"start_line": 305
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Sequence.lseq (Lib.IntTypes.int_t t l) len -> i: Prims.nat{i < len} -> _: Prims.unit
-> Prims.unit *
Lib.Sequence.lseq (Lib.IntTypes.uint_t Lib.IntTypes.U8 l) (Lib.IntTypes.numbytes t) | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Prims.nat",
"Prims.unit",
"FStar.Pervasives.Native.Mktuple2",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uint_to_bytes_le",
"Lib.Sequence.op_String_Access",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let uints_to_bytes_le_inner #t #l #len b i () =
| let open Lib.Sequence in (), uint_to_bytes_le #t #l b.[ i ] | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_to_bytes_be_inner | val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t)) | val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t)) | let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i] | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 331,
"start_col": 0,
"start_line": 329
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Sequence.lseq (Lib.IntTypes.int_t t l) len -> i: Prims.nat{i < len} -> _: Prims.unit
-> Prims.unit *
Lib.Sequence.lseq (Lib.IntTypes.uint_t Lib.IntTypes.U8 l) (Lib.IntTypes.numbytes t) | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Prims.nat",
"Prims.unit",
"FStar.Pervasives.Native.Mktuple2",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uint_to_bytes_be",
"Lib.Sequence.op_String_Access",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let uints_to_bytes_be_inner #t #l #len b i () =
| let open Lib.Sequence in (), uint_to_bytes_be #t #l b.[ i ] | false |
Lib.ByteSequence.fst | Lib.ByteSequence.nat_to_intseq_be_ | val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len) | val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len) | let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 161,
"start_col": 0,
"start_line": 150
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Prims.nat -> n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)}
-> Prims.Tot
(b:
Lib.Sequence.seq (Lib.IntTypes.int_t t l)
{Lib.Sequence.length b == len /\ n == Lib.ByteSequence.nat_from_intseq_be b}) | Prims.Tot | [
"total",
""
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.empty",
"Lib.IntTypes.int_t",
"Prims.bool",
"Prims.unit",
"FStar.Seq.Properties.append_slices",
"Lib.Sequence.create",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.append",
"Lib.Sequence.seq",
"Prims.l_and",
"Prims.eq2",
"Lib.Sequence.length",
"Prims.l_or",
"Prims.op_Multiply",
"Lib.ByteSequence.nat_from_intseq_be",
"Lib.ByteSequence.nat_to_intseq_be_",
"FStar.Math.Lemmas.lemma_div_lt_nat",
"Prims._assert",
"Prims.pos",
"Lib.IntTypes.modulus",
"Prims.op_Division",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"Prims.op_Modulus",
"Lib.IntTypes.uint",
"Prims.op_Subtraction",
"Lib.IntTypes.uint_t"
] | [
"recursion"
] | false | false | false | false | false | let rec nat_to_intseq_be_ #t #l len n =
| if len = 0
then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uint_from_bytes_le | val uint_from_bytes_le: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> b:lbytes_l l (numbytes t) -> uint_t t l | val uint_from_bytes_le: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> b:lbytes_l l (numbytes t) -> uint_t t l | let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 14,
"end_line": 295,
"start_col": 0,
"start_line": 293
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes_l l (Lib.IntTypes.numbytes t) -> Lib.IntTypes.uint_t t l | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.ByteSequence.lbytes_l",
"Lib.IntTypes.numbytes",
"Lib.IntTypes.uint",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.Sequence.length",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.nat_from_intseq_le",
"Lib.IntTypes.uint_t"
] | [] | false | false | false | false | false | let uint_from_bytes_le #t #l b =
| let n = nat_from_intseq_le #U8 b in
uint #t #l n | false |
Lib.ByteSequence.fst | Lib.ByteSequence.nat_from_intseq_be_ | val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b)) | val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b)) | let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n' | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 120,
"start_col": 0,
"start_line": 111
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Sequence.seq (Lib.IntTypes.uint_t t l)
-> Prims.Tot (n: Prims.nat{n < Prims.pow2 (Lib.Sequence.length b * Lib.IntTypes.bits t)}) | Prims.Tot | [
"total",
""
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.Sequence.seq",
"Lib.IntTypes.uint_t",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.unit",
"FStar.Math.Lemmas.pow2_plus",
"Lib.IntTypes.bits",
"Prims.op_Subtraction",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.Sequence.length",
"Lib.IntTypes.int_t",
"Lib.ByteSequence.nat_from_intseq_be_",
"Prims.pos",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"FStar.Seq.Base.index"
] | [
"recursion"
] | false | false | false | false | false | let rec nat_from_intseq_be_ #t #l b =
| let len = length b in
if len = 0
then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n' | false |
Lib.ByteSequence.fst | Lib.ByteSequence.index_uint_to_bytes_be | val index_uint_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> u:uint_t t l
-> Lemma
(forall (i:nat{i < numbytes t}). index (uint_to_bytes_be #t #l u) (numbytes t - i - 1) ==
uint #U8 #l (v u / pow2 (8 * i) % pow2 8)) | val index_uint_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> u:uint_t t l
-> Lemma
(forall (i:nat{i < numbytes t}). index (uint_to_bytes_be #t #l u) (numbytes t - i - 1) ==
uint #U8 #l (v u / pow2 (8 * i) % pow2 8)) | let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u)) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 75,
"end_line": 291,
"start_col": 0,
"start_line": 290
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | u390: Lib.IntTypes.uint_t t l
-> FStar.Pervasives.Lemma
(ensures
forall (i: Prims.nat{i < Lib.IntTypes.numbytes t}).
Lib.Sequence.index (Lib.ByteSequence.uint_to_bytes_be u390)
(Lib.IntTypes.numbytes t - i - 1) ==
Lib.IntTypes.uint (Lib.IntTypes.v u390 / Prims.pow2 (8 * i) % Prims.pow2 8)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.uint_t",
"FStar.Classical.forall_intro",
"Prims.nat",
"Prims.op_LessThan",
"Lib.IntTypes.numbytes",
"Prims.eq2",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"FStar.Seq.Base.index",
"Lib.ByteSequence.nat_to_intseq_be",
"Lib.IntTypes.v",
"Prims.op_Subtraction",
"Lib.IntTypes.uint",
"Prims.op_Modulus",
"Prims.op_Division",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Lib.ByteSequence.index_nat_to_intseq_be",
"Prims.unit"
] | [] | false | false | true | false | false | let index_uint_to_bytes_be #t #l u =
| Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u)) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uint_to_bytes_be | val uint_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> u:uint_t t l -> lbytes_l l (numbytes t) | val uint_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> u:uint_t t l -> lbytes_l l (numbytes t) | let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 36,
"end_line": 288,
"start_col": 0,
"start_line": 287
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | u378: Lib.IntTypes.uint_t t l -> Lib.ByteSequence.lbytes_l l (Lib.IntTypes.numbytes t) | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.uint_t",
"Lib.ByteSequence.nat_to_bytes_be",
"Lib.IntTypes.numbytes",
"Lib.IntTypes.v",
"Lib.ByteSequence.lbytes_l"
] | [] | false | false | false | false | false | let uint_to_bytes_be #t #l n =
| nat_to_bytes_be (numbytes t) (v n) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uint_from_bytes_be | val uint_from_bytes_be: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> lbytes_l l (numbytes t) -> uint_t t l | val uint_from_bytes_be: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> lbytes_l l (numbytes t) -> uint_t t l | let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 14,
"end_line": 299,
"start_col": 0,
"start_line": 297
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes_l l (Lib.IntTypes.numbytes t) -> Lib.IntTypes.uint_t t l | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.ByteSequence.lbytes_l",
"Lib.IntTypes.numbytes",
"Lib.IntTypes.uint",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.Sequence.length",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.nat_from_intseq_be",
"Lib.IntTypes.uint_t"
] | [] | false | false | false | false | false | let uint_from_bytes_be #t #l b =
| let n = nat_from_intseq_be #U8 b in
uint #t #l n | false |
Lib.ByteSequence.fst | Lib.ByteSequence.nat_to_intseq_le_ | val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len) | val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len) | let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 181,
"start_col": 0,
"start_line": 170
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Prims.nat -> n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)}
-> Prims.Tot
(b:
Lib.Sequence.seq (Lib.IntTypes.uint_t t l)
{Lib.Sequence.length b == len /\ n == Lib.ByteSequence.nat_from_intseq_le b}) | Prims.Tot | [
"total",
""
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.empty",
"Lib.IntTypes.uint_t",
"Prims.bool",
"Prims.unit",
"FStar.Seq.Properties.append_slices",
"Lib.Sequence.create",
"FStar.Seq.Base.seq",
"Lib.IntTypes.int_t",
"FStar.Seq.Base.append",
"Lib.Sequence.seq",
"Prims.l_and",
"Prims.eq2",
"Lib.Sequence.length",
"Prims.l_or",
"Prims.op_Multiply",
"Lib.ByteSequence.nat_from_intseq_le",
"Lib.ByteSequence.nat_to_intseq_le_",
"FStar.Math.Lemmas.lemma_div_lt_nat",
"Prims._assert",
"Prims.pos",
"Lib.IntTypes.modulus",
"Prims.op_Division",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"Prims.op_Modulus",
"Lib.IntTypes.uint",
"Prims.op_Subtraction"
] | [
"recursion"
] | false | false | false | false | false | let rec nat_to_intseq_le_ #t #l len n =
| if len = 0
then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_to_bytes_be | val uints_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (uint_t t l) len -> lbytes_l l (len * numbytes t) | val uints_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (uint_t t l) len -> lbytes_l l (len * numbytes t) | let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 337,
"start_col": 0,
"start_line": 333
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ul: Lib.Sequence.lseq (Lib.IntTypes.uint_t t l) len
-> Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Lib.Sequence.seq",
"Lib.IntTypes.U8",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"Lib.ByteSequence.lbytes_l",
"FStar.Pervasives.Native.tuple2",
"Lib.IntTypes.int_t",
"Prims.op_Multiply",
"Lib.Sequence.generate_blocks",
"Lib.ByteSequence.uints_to_bytes_be_inner",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.eqtype",
"Prims.unit"
] | [] | false | false | false | false | false | let uints_to_bytes_be #t #l #len ul =
| let a_spec (i: nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec (uints_to_bytes_be_inner #t #l #len ul) () in
o | false |
Lib.ByteSequence.fst | Lib.ByteSequence.seq_eq_mask | val seq_eq_mask: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> res:int_t t SEC{
(sub b1 0 len == sub b2 0 len ==> v res == v (ones t SEC)) /\
(sub b1 0 len =!= sub b2 0 len ==> v res == v (zeros t SEC))} | val seq_eq_mask: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> res:int_t t SEC{
(sub b1 0 len == sub b2 0 len ==> v res == v (ones t SEC)) /\
(sub b1 0 len =!= sub b2 0 len ==> v res == v (zeros t SEC))} | let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 16,
"end_line": 70,
"start_col": 0,
"start_line": 64
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b1: Lib.Sequence.lseq (Lib.IntTypes.int_t t Lib.IntTypes.SEC) len1 ->
b2: Lib.Sequence.lseq (Lib.IntTypes.int_t t Lib.IntTypes.SEC) len2 ->
len: Lib.IntTypes.size_nat{len <= len1 /\ len <= len2}
-> res:
Lib.IntTypes.int_t t Lib.IntTypes.SEC
{ (Lib.Sequence.sub b1 0 len == Lib.Sequence.sub b2 0 len ==>
Lib.IntTypes.v res == Lib.IntTypes.v (Lib.IntTypes.ones t Lib.IntTypes.SEC)) /\
(~(Lib.Sequence.sub b1 0 len == Lib.Sequence.sub b2 0 len) ==>
Lib.IntTypes.v res == Lib.IntTypes.v (Lib.IntTypes.zeros t Lib.IntTypes.SEC)) } | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_not",
"Prims.b2t",
"Lib.IntTypes.uu___is_S128",
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Lib.LoopCombinators.repeati_inductive",
"Prims.nat",
"Prims.l_imp",
"Prims.eq2",
"Prims.l_or",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.l_Forall",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.sub",
"Lib.IntTypes.range_t",
"Lib.IntTypes.v",
"Lib.IntTypes.ones",
"Lib.IntTypes.zeros",
"Lib.ByteSequence.seq_eq_mask_inner"
] | [] | false | false | false | false | false | let seq_eq_mask #t #len1 #len2 b1 b2 len =
| repeati_inductive len
(fun (i: nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_to_bytes_le | val uints_to_bytes_le: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (uint_t t l) len -> lbytes_l l (len * numbytes t) | val uints_to_bytes_le: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (uint_t t l) len -> lbytes_l l (len * numbytes t) | let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 313,
"start_col": 0,
"start_line": 309
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ul: Lib.Sequence.lseq (Lib.IntTypes.uint_t t l) len
-> Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Lib.Sequence.seq",
"Lib.IntTypes.U8",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"Lib.ByteSequence.lbytes_l",
"FStar.Pervasives.Native.tuple2",
"Lib.IntTypes.int_t",
"Prims.op_Multiply",
"Lib.Sequence.generate_blocks",
"Lib.ByteSequence.uints_to_bytes_le_inner",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.eqtype",
"Prims.unit"
] | [] | false | false | false | false | false | let uints_to_bytes_le #t #l #len ul =
| let a_spec (i: nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec (uints_to_bytes_le_inner #t #l #len ul) () in
o | false |
Lib.ByteSequence.fst | Lib.ByteSequence.index_uint_to_bytes_le | val index_uint_to_bytes_le: #t:inttype{unsigned t} -> #l:secrecy_level -> u:uint_t t l
-> Lemma
(forall (i:nat{i < numbytes t}). index (uint_to_bytes_le #t #l u) i ==
uint #U8 #l (v u / pow2 (8 * i) % pow2 8)) | val index_uint_to_bytes_le: #t:inttype{unsigned t} -> #l:secrecy_level -> u:uint_t t l
-> Lemma
(forall (i:nat{i < numbytes t}). index (uint_to_bytes_le #t #l u) i ==
uint #U8 #l (v u / pow2 (8 * i) % pow2 8)) | let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u)) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 75,
"end_line": 285,
"start_col": 0,
"start_line": 284
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | u369: Lib.IntTypes.uint_t t l
-> FStar.Pervasives.Lemma
(ensures
forall (i: Prims.nat{i < Lib.IntTypes.numbytes t}).
Lib.Sequence.index (Lib.ByteSequence.uint_to_bytes_le u369) i ==
Lib.IntTypes.uint (Lib.IntTypes.v u369 / Prims.pow2 (8 * i) % Prims.pow2 8)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.uint_t",
"FStar.Classical.forall_intro",
"Prims.nat",
"Prims.op_LessThan",
"Lib.IntTypes.numbytes",
"Prims.eq2",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"FStar.Seq.Base.index",
"Lib.ByteSequence.nat_to_intseq_le",
"Lib.IntTypes.v",
"Lib.IntTypes.uint",
"Prims.op_Modulus",
"Prims.op_Division",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Lib.ByteSequence.index_nat_to_intseq_le",
"Prims.unit"
] | [] | false | false | true | false | false | let index_uint_to_bytes_le #t #l u =
| Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u)) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_from_bytes_le | val uints_from_bytes_le: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> lbytes_l l (len * numbytes t) -> lseq (uint_t t l) len | val uints_from_bytes_le: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> lbytes_l l (len * numbytes t) -> lseq (uint_t t l) len | let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 71,
"end_line": 344,
"start_col": 0,
"start_line": 342
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t)
-> Lib.Sequence.lseq (Lib.IntTypes.uint_t t l) len | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Lib.Sequence.createi",
"Lib.IntTypes.int_t",
"Prims.nat",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.Sequence.sub",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.Sequence.lseq"
] | [] | false | false | false | false | false | let uints_from_bytes_le #t #l #len b =
| Lib.Sequence.createi #(int_t t l)
len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.nat_from_intseq_le_slice_lemma | val nat_from_intseq_le_slice_lemma: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (uint_t t l) len -> i:nat{i <= len} ->
Lemma (nat_from_intseq_le b == nat_from_intseq_le (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le (slice b i len)) | val nat_from_intseq_le_slice_lemma: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (uint_t t l) len -> i:nat{i <= len} ->
Lemma (nat_from_intseq_le b == nat_from_intseq_le (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le (slice b i len)) | let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 37,
"end_line": 391,
"start_col": 0,
"start_line": 390
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Sequence.lseq (Lib.IntTypes.uint_t t l) len -> i: Prims.nat{i <= len}
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_le b ==
Lib.ByteSequence.nat_from_intseq_le (Lib.Sequence.slice b 0 i) +
Prims.pow2 (i * Lib.IntTypes.bits t) *
Lib.ByteSequence.nat_from_intseq_le (Lib.Sequence.slice b i len)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Lib.ByteSequence.nat_from_intseq_le_slice_lemma_",
"Prims.unit"
] | [] | true | false | true | false | false | let nat_from_intseq_le_slice_lemma #t #l #len b i =
| nat_from_intseq_le_slice_lemma_ b i | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_from_bytes_be | val uints_from_bytes_be: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> lbytes_l l (len * numbytes t) -> lseq (uint_t t l) len | val uints_from_bytes_be: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> lbytes_l l (len * numbytes t) -> lseq (uint_t t l) len | let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 71,
"end_line": 350,
"start_col": 0,
"start_line": 348
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t)
-> Lib.Sequence.lseq (Lib.IntTypes.uint_t t l) len | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Lib.Sequence.createi",
"Lib.IntTypes.int_t",
"Prims.nat",
"Lib.ByteSequence.uint_from_bytes_be",
"Lib.Sequence.sub",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.Sequence.lseq"
] | [] | false | false | false | false | false | let uints_from_bytes_be #t #l #len b =
| Lib.Sequence.createi #(int_t t l)
len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.nat_from_intseq_slice_lemma_aux | val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b) | val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b) | let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 45,
"end_line": 367,
"start_col": 0,
"start_line": 364
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Prims.pos -> a: Prims.nat -> b: Prims.nat -> c: Prims.nat -> i: Prims.pos{i <= len}
-> FStar.Pervasives.Lemma
(ensures
Prims.pow2 ((i - 1) * c) * (a + Prims.pow2 c * b) ==
Prims.pow2 ((i - 1) * c) * a + Prims.pow2 (i * c) * b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Prims.unit",
"FStar.Math.Lemmas.paren_mul_right",
"Prims.pow2",
"FStar.Math.Lemmas.distributivity_add_right"
] | [] | true | false | true | false | false | let nat_from_intseq_slice_lemma_aux len a b c i =
| FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uint_at_index_le | val uint_at_index_le: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> idx:nat{idx < len}
-> u:uint_t t l{u == (uints_from_bytes_le #t #l #len b).[idx]} | val uint_at_index_le: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> idx:nat{idx < len}
-> u:uint_t t l{u == (uints_from_bytes_le #t #l #len b).[idx]} | let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 58,
"end_line": 355,
"start_col": 0,
"start_line": 354
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) -> idx: Prims.nat{idx < len}
-> u590: Lib.IntTypes.uint_t t l {u590 == (Lib.ByteSequence.uints_from_bytes_le b).[ idx ]} | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.Sequence.sub",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Prims.eq2",
"Lib.Sequence.op_String_Access",
"Lib.ByteSequence.uints_from_bytes_le"
] | [] | false | false | false | false | false | let uint_at_index_le #t #l #len b i =
| uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.nat_from_intseq_be_slice_lemma | val nat_from_intseq_be_slice_lemma: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (uint_t t l) len -> i:nat{i <= len} ->
Lemma (nat_from_intseq_be b == nat_from_intseq_be (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be (slice b 0 i)) | val nat_from_intseq_be_slice_lemma: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (uint_t t l) len -> i:nat{i <= len} ->
Lemma (nat_from_intseq_be b == nat_from_intseq_be (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be (slice b 0 i)) | let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 48,
"end_line": 417,
"start_col": 0,
"start_line": 416
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Sequence.lseq (Lib.IntTypes.uint_t t l) len -> i: Prims.nat{i <= len}
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_be b ==
Lib.ByteSequence.nat_from_intseq_be (Lib.Sequence.slice b i len) +
Prims.pow2 ((len - i) * Lib.IntTypes.bits t) *
Lib.ByteSequence.nat_from_intseq_be (Lib.Sequence.slice b 0 i)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Lib.ByteSequence.nat_from_intseq_be_slice_lemma_",
"Prims.unit"
] | [] | true | false | true | false | false | let nat_from_intseq_be_slice_lemma #t #l #len b i =
| nat_from_intseq_be_slice_lemma_ #t #l #len b i | false |
Lib.ByteSequence.fst | Lib.ByteSequence.index_uints_to_bytes_le | val index_uints_to_bytes_le: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> ul:lseq (uint_t t l) len -> i:nat{i < len * numbytes t}
-> Lemma (index (uints_to_bytes_le #t #l #len ul) i == (uint_to_bytes_le ul.[i / numbytes t]).[i % numbytes t]) | val index_uints_to_bytes_le: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> ul:lseq (uint_t t l) len -> i:nat{i < len * numbytes t}
-> Lemma (index (uints_to_bytes_le #t #l #len ul) i == (uint_to_bytes_le ul.[i / numbytes t]).[i % numbytes t]) | let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 86,
"end_line": 323,
"start_col": 0,
"start_line": 322
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
ul: Lib.Sequence.lseq (Lib.IntTypes.uint_t t l) len ->
i: Prims.nat{i < len * Lib.IntTypes.numbytes t}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.index (Lib.ByteSequence.uints_to_bytes_le ul) i ==
(Lib.ByteSequence.uint_to_bytes_le ul.[ i / Lib.IntTypes.numbytes t ]).[ i %
Lib.IntTypes.numbytes t ]) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Prims.nat",
"Lib.Sequence.index_generate_blocks",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uints_to_bytes_le_inner",
"Prims.unit"
] | [] | true | false | true | false | false | let index_uints_to_bytes_le #t #l #len ul i =
| index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i | false |
Lib.ByteSequence.fst | Lib.ByteSequence.index_uints_to_bytes_be | val index_uints_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> ul:lseq (uint_t t l) len -> i:nat{i < len * numbytes t}
-> Lemma (index (uints_to_bytes_be #t #l #len ul) i == (uint_to_bytes_be ul.[i / numbytes t]).[i % numbytes t]) | val index_uints_to_bytes_be: #t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> ul:lseq (uint_t t l) len -> i:nat{i < len * numbytes t}
-> Lemma (index (uints_to_bytes_be #t #l #len ul) i == (uint_to_bytes_be ul.[i / numbytes t]).[i % numbytes t]) | let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 86,
"end_line": 340,
"start_col": 0,
"start_line": 339
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
ul: Lib.Sequence.lseq (Lib.IntTypes.uint_t t l) len ->
i: Prims.nat{i < len * Lib.IntTypes.numbytes t}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.index (Lib.ByteSequence.uints_to_bytes_be ul) i ==
(Lib.ByteSequence.uint_to_bytes_be ul.[ i / Lib.IntTypes.numbytes t ]).[ i %
Lib.IntTypes.numbytes t ]) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Prims.nat",
"Lib.Sequence.index_generate_blocks",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uints_to_bytes_be_inner",
"Prims.unit"
] | [] | true | false | true | false | false | let index_uints_to_bytes_be #t #l #len ul i =
| index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uint_at_index_be | val uint_at_index_be: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> idx:nat{idx < len}
-> u:uint_t t l{u == (uints_from_bytes_be #t #l #len b).[idx]} | val uint_at_index_be: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> idx:nat{idx < len}
-> u:uint_t t l{u == (uints_from_bytes_be #t #l #len b).[idx]} | let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 58,
"end_line": 358,
"start_col": 0,
"start_line": 357
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) -> idx: Prims.nat{idx < len}
-> u605: Lib.IntTypes.uint_t t l {u605 == (Lib.ByteSequence.uints_from_bytes_be b).[ idx ]} | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Lib.ByteSequence.uint_from_bytes_be",
"Lib.Sequence.sub",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Prims.eq2",
"Lib.Sequence.op_String_Access",
"Lib.ByteSequence.uints_from_bytes_be"
] | [] | false | false | false | false | false | let uint_at_index_be #t #l #len b i =
| uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_from_bytes_le_nat_lemma | val uints_from_bytes_le_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le (uints_from_bytes_le #t #l #len b) == nat_from_bytes_le b) | val uints_from_bytes_le_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le (uints_from_bytes_le #t #l #len b) == nat_from_bytes_le b) | let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 45,
"end_line": 480,
"start_col": 0,
"start_line": 479
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t)
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_le (Lib.ByteSequence.uints_from_bytes_le b) ==
Lib.ByteSequence.nat_from_bytes_le b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Lib.ByteSequence.uints_from_bytes_le_nat_lemma_",
"Prims.unit"
] | [] | true | false | true | false | false | let uints_from_bytes_le_nat_lemma #t #l #len b =
| uints_from_bytes_le_nat_lemma_ #t #l #len b | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_from_bytes_le_slice_lemma_lp | val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 82,
"end_line": 427,
"start_col": 0,
"start_line": 424
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k == | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) ->
i: Prims.nat ->
j: Prims.nat{i <= j /\ j <= len} ->
k: Prims.nat{k < j - i}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.index (Lib.Sequence.slice (Lib.ByteSequence.uints_from_bytes_le b) i j) k ==
Lib.ByteSequence.uint_from_bytes_le (Lib.Sequence.sub b
((i + k) * Lib.IntTypes.numbytes t)
(Lib.IntTypes.numbytes t))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims._assert",
"Prims.eq2",
"Lib.IntTypes.uint_t",
"Lib.Sequence.op_String_Access",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.Sequence.sub",
"Lib.IntTypes.U8",
"Prims.op_Addition",
"Prims.unit",
"Lib.ByteSequence.index_uints_from_bytes_le",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Lib.ByteSequence.uints_from_bytes_le",
"Prims.l_Forall",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.slice"
] | [] | true | false | true | false | false | let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
| let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[ k ] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.index_nat_to_intseq_be | val index_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_nat
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - i - 1) ==
uint #t #l (n / pow2 (bits t * i) % pow2 (bits t))) | val index_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_nat
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - i - 1) ==
uint #t #l (n / pow2 (bits t * i) % pow2 (bits t))) | let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 7,
"end_line": 278,
"start_col": 0,
"start_line": 255
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
len: Lib.IntTypes.size_nat ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)} ->
i: Prims.nat{i < len}
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_intseq_be len n) (len - i - 1) ==
Lib.IntTypes.uint (n / Prims.pow2 (Lib.IntTypes.bits t * i) % Prims.pow2 (Lib.IntTypes.bits t)
)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Lib.ByteSequence.head_nat_to_intseq_be",
"Prims.unit",
"Lib.ByteSequence.nat_to_intseq_be_pos",
"FStar.Calc.calc_finish",
"Lib.IntTypes.uint_t",
"Prims.eq2",
"FStar.Seq.Base.index",
"Lib.ByteSequence.nat_to_intseq_be",
"Prims.op_Subtraction",
"Lib.IntTypes.uint",
"Prims.op_Modulus",
"Prims.op_Division",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.ByteSequence.index_nat_to_intseq_be",
"Prims.squash",
"FStar.Math.Lemmas.division_multiplication_lemma",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.distributivity_add_right",
"FStar.Math.Lemmas.lemma_div_lt_nat"
] | [
"recursion"
] | false | false | true | false | false | let rec index_nat_to_intseq_be #t #l len n i =
| if i = 0
then if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc ( == ) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
( == ) { index_nat_to_intseq_be #t #l len' n' i' }
uint (n' / pow2 (bits t * i') % pow2 (bits t));
( == ) { () }
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
( == ) { Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i')) }
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
( == ) { Math.Lemmas.pow2_plus (bits t) (bits t * i') }
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
( == ) { Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1) }
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_from_bytes_le_slice_lemma_rp | val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 82,
"end_line": 439,
"start_col": 0,
"start_line": 434
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k == | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) ->
i: Prims.nat ->
j: Prims.nat{i <= j /\ j <= len} ->
k: Prims.nat{k < j - i}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.index (Lib.ByteSequence.uints_from_bytes_le (Lib.Sequence.slice b
(i * Lib.IntTypes.numbytes t)
(j * Lib.IntTypes.numbytes t)))
k ==
Lib.ByteSequence.uint_from_bytes_le (Lib.Sequence.sub b
((i + k) * Lib.IntTypes.numbytes t)
(Lib.IntTypes.numbytes t))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims._assert",
"Prims.eq2",
"Lib.IntTypes.uint_t",
"Lib.Sequence.op_String_Access",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.Sequence.sub",
"Lib.IntTypes.U8",
"Prims.op_Addition",
"Prims.unit",
"Lib.ByteSequence.index_uints_from_bytes_le",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.ByteSequence.uints_from_bytes_le",
"Prims.op_Multiply",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.l_Forall",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.slice"
] | [] | true | false | true | false | false | let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
| let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j - i) b1 in
index_uints_from_bytes_le #t #l #(j - i) b1 k;
assert (r.[ k ] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[ k ] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.lemma_nat_from_to_intseq_be_preserves_value | val lemma_nat_from_to_intseq_be_preserves_value: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> b:seq (uint_t t l){length b == len} ->
Lemma (nat_to_intseq_be len (nat_from_intseq_be b) == b) | val lemma_nat_from_to_intseq_be_preserves_value: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> b:seq (uint_t t l){length b == len} ->
Lemma (nat_to_intseq_be len (nat_from_intseq_be b) == b) | let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 72,
"end_line": 750,
"start_col": 0,
"start_line": 749
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Prims.nat -> b: Lib.Sequence.seq (Lib.IntTypes.uint_t t l) {Lib.Sequence.length b == len}
-> FStar.Pervasives.Lemma
(ensures Lib.ByteSequence.nat_to_intseq_be len (Lib.ByteSequence.nat_from_intseq_be b) == b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Lib.Sequence.seq",
"Lib.IntTypes.uint_t",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.ByteSequence.nat_from_intseq_be_inj",
"Lib.ByteSequence.nat_to_intseq_be",
"Lib.ByteSequence.nat_from_intseq_be",
"Prims.unit"
] | [] | true | false | true | false | false | let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
| nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b | false |
Lib.ByteSequence.fst | Lib.ByteSequence.seq_eq_mask_inner | val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))} | val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))} | let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 62,
"start_col": 0,
"start_line": 42
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\ | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b1: Lib.Sequence.lseq (Lib.IntTypes.int_t t Lib.IntTypes.SEC) len1 ->
b2: Lib.Sequence.lseq (Lib.IntTypes.int_t t Lib.IntTypes.SEC) len2 ->
len: Lib.IntTypes.size_nat{len <= len1 /\ len <= len2} ->
i: Lib.IntTypes.size_nat{i < len} ->
res:
Lib.IntTypes.int_t t Lib.IntTypes.SEC
{ (Lib.Sequence.sub b1 0 i == Lib.Sequence.sub b2 0 i ==>
Lib.IntTypes.v res == Lib.IntTypes.v (Lib.IntTypes.ones t Lib.IntTypes.SEC)) /\
(~(Lib.Sequence.sub b1 0 i == Lib.Sequence.sub b2 0 i) ==>
Lib.IntTypes.v res == Lib.IntTypes.v (Lib.IntTypes.zeros t Lib.IntTypes.SEC)) }
-> res':
Lib.IntTypes.int_t t Lib.IntTypes.SEC
{ (Lib.Sequence.sub b1 0 (i + 1) == Lib.Sequence.sub b2 0 (i + 1) ==>
Lib.IntTypes.v res' == Lib.IntTypes.v (Lib.IntTypes.ones t Lib.IntTypes.SEC)) /\
(~(Lib.Sequence.sub b1 0 (i + 1) == Lib.Sequence.sub b2 0 (i + 1)) ==>
Lib.IntTypes.v res' == Lib.IntTypes.v (Lib.IntTypes.zeros t Lib.IntTypes.SEC)) } | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_not",
"Prims.b2t",
"Lib.IntTypes.uu___is_S128",
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.l_imp",
"Prims.eq2",
"Prims.l_or",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.l_Forall",
"Prims.nat",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.sub",
"Lib.IntTypes.range_t",
"Lib.IntTypes.v",
"Lib.IntTypes.ones",
"Lib.IntTypes.zeros",
"Prims.unit",
"Prims.op_Equality",
"Prims.int",
"Lib.IntTypes.ones_v",
"Prims._assert",
"Lib.Sequence.equal",
"FStar.Seq.Properties.lemma_split",
"Prims.bool",
"Lib.ByteSequence.lemma_not_equal_slice",
"Lib.ByteSequence.lemma_not_equal_last",
"Lib.IntTypes.logand_spec",
"Lib.IntTypes.eq_mask",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.range",
"Lib.IntTypes.logand_ones",
"Lib.IntTypes.logand_zeros"
] | [] | false | false | false | false | false | let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
| logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[ i ] b2.[ i ] &. z0 in
logand_spec (eq_mask b1.[ i ] b2.[ i ]) z0;
if v res = ones_v t
then
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
else
if v z0 = 0 then lemma_not_equal_slice b1 b2 0 i (i + 1) else lemma_not_equal_last b1 b2 0 (i + 1);
res | false |
Lib.ByteSequence.fst | Lib.ByteSequence.lemma_uint_to_from_bytes_le_preserves_value | val lemma_uint_to_from_bytes_le_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
i : uint_t t l ->
Lemma(uint_from_bytes_le #t #l (uint_to_bytes_le #t #l i) == i) | val lemma_uint_to_from_bytes_le_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
i : uint_t t l ->
Lemma(uint_from_bytes_le #t #l (uint_to_bytes_le #t #l i) == i) | let lemma_uint_to_from_bytes_le_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_le #t #l (uint_to_bytes_le #t #l i);
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) ==
uint_v (uint_from_bytes_le #t #l (uint_to_bytes_le #t #l i)));
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 66,
"end_line": 767,
"start_col": 0,
"start_line": 762
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b
let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b
let lemma_nat_from_to_bytes_be_preserves_value #l b len =
lemma_nat_from_to_intseq_be_preserves_value len b
let lemma_reveal_uint_to_bytes_le #t #l b = ()
let lemma_reveal_uint_to_bytes_be #t #l b = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Lib.IntTypes.uint_t t l
-> FStar.Pervasives.Lemma
(ensures Lib.ByteSequence.uint_from_bytes_le (Lib.ByteSequence.uint_to_bytes_le i) == i) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.uint_t",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Lib.IntTypes.range",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.Sequence.length",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uint_to_bytes_le",
"Lib.ByteSequence.nat_from_bytes_le",
"Lib.IntTypes.uint_v",
"Prims.unit",
"Lib.ByteSequence.lemma_uint_to_bytes_le_preserves_value",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.ByteSequence.lemma_reveal_uint_to_bytes_le"
] | [] | true | false | true | false | false | let lemma_uint_to_from_bytes_le_preserves_value #t #l i =
| lemma_reveal_uint_to_bytes_le #t #l (uint_to_bytes_le #t #l i);
assert (nat_from_bytes_le (uint_to_bytes_le #t #l i) ==
uint_v (uint_from_bytes_le #t #l (uint_to_bytes_le #t #l i)));
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert (nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i) | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.to_felem | val to_felem (f:G.field) (p:poly) : G.felem f | val to_felem (f:G.field) (p:poly) : G.felem f | let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n)) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 69,
"end_line": 22,
"start_col": 0,
"start_line": 18
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Spec.GaloisField.field -> p: Vale.Math.Poly2_s.poly -> Spec.GaloisField.felem f | Prims.Tot | [
"total"
] | [] | [
"Spec.GaloisField.field",
"Vale.Math.Poly2_s.poly",
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.op_disEquality",
"Lib.IntTypes.U1",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Lib.IntTypes.Compatibility.nat_to_uint",
"Spec.GaloisField.__proj__GF__item__t",
"FStar.UInt.from_vec",
"Vale.Math.Poly2_s.to_seq",
"Vale.Math.Poly2_s.reverse",
"Prims.op_Subtraction",
"Prims.int",
"Lib.IntTypes.bits",
"Spec.GaloisField.felem"
] | [] | false | false | false | false | false | let to_felem f p =
| let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n)) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.index_uints_to_bytes_le_aux | val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t)) | val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t)) | let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 44,
"end_line": 567,
"start_col": 0,
"start_line": 563
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i == | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
len: Prims.nat{len * Lib.IntTypes.numbytes t < Prims.pow2 32} ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)} ->
i: Prims.nat{i < len * Lib.IntTypes.numbytes t}
-> FStar.Pervasives.Lemma
(ensures
(let s = Lib.ByteSequence.nat_to_intseq_le len n in
FStar.Seq.Base.index (Lib.ByteSequence.uints_to_bytes_le s) i ==
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_bytes_le (Lib.IntTypes.numbytes t)
(Lib.IntTypes.v s.[ i / Lib.IntTypes.numbytes t ]))
(i % Lib.IntTypes.numbytes t))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.IntTypes.bits",
"Lib.Sequence.index_generate_blocks",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uints_to_bytes_le_inner",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.ByteSequence.nat_to_intseq_le",
"Prims.unit"
] | [] | true | false | true | false | false | let index_uints_to_bytes_le_aux #t #l len n i =
| let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len s) i | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_from_bytes_be_slice_lemma_lp | val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 82,
"end_line": 491,
"start_col": 0,
"start_line": 488
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) ->
i: Prims.nat ->
j: Prims.nat{i <= j /\ j <= len} ->
k: Prims.nat{k < j - i}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.index (Lib.Sequence.slice (Lib.ByteSequence.uints_from_bytes_le b) i j) k ==
Lib.ByteSequence.uint_from_bytes_le (Lib.Sequence.sub b
((i + k) * Lib.IntTypes.numbytes t)
(Lib.IntTypes.numbytes t))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims._assert",
"Prims.eq2",
"Lib.IntTypes.uint_t",
"Lib.Sequence.op_String_Access",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.Sequence.sub",
"Lib.IntTypes.U8",
"Prims.op_Addition",
"Prims.unit",
"Lib.ByteSequence.index_uints_from_bytes_be",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Lib.ByteSequence.uints_from_bytes_le",
"Prims.l_Forall",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.slice"
] | [] | true | false | true | false | false | let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
| let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[ k ] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.lemma_uint_to_from_bytes_be_preserves_value | val lemma_uint_to_from_bytes_be_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
i : uint_t t l ->
Lemma(uint_from_bytes_be #t #l (uint_to_bytes_be #t #l i) == i) | val lemma_uint_to_from_bytes_be_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
i : uint_t t l ->
Lemma(uint_from_bytes_be #t #l (uint_to_bytes_be #t #l i) == i) | let lemma_uint_to_from_bytes_be_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_be #t #l (uint_to_bytes_be #t #l i);
lemma_uint_to_bytes_be_preserves_value #t #l i | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 48,
"end_line": 771,
"start_col": 0,
"start_line": 769
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b
let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b
let lemma_nat_from_to_bytes_be_preserves_value #l b len =
lemma_nat_from_to_intseq_be_preserves_value len b
let lemma_reveal_uint_to_bytes_le #t #l b = ()
let lemma_reveal_uint_to_bytes_be #t #l b = ()
let lemma_uint_to_from_bytes_le_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_le #t #l (uint_to_bytes_le #t #l i);
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) ==
uint_v (uint_from_bytes_le #t #l (uint_to_bytes_le #t #l i)));
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Lib.IntTypes.uint_t t l
-> FStar.Pervasives.Lemma
(ensures Lib.ByteSequence.uint_from_bytes_be (Lib.ByteSequence.uint_to_bytes_be i) == i) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.uint_t",
"Lib.ByteSequence.lemma_uint_to_bytes_be_preserves_value",
"Prims.unit",
"Lib.ByteSequence.lemma_reveal_uint_to_bytes_be",
"Lib.ByteSequence.uint_to_bytes_be"
] | [] | true | false | true | false | false | let lemma_uint_to_from_bytes_be_preserves_value #t #l i =
| lemma_reveal_uint_to_bytes_be #t #l (uint_to_bytes_be #t #l i);
lemma_uint_to_bytes_be_preserves_value #t #l i | false |
Lib.ByteSequence.fst | Lib.ByteSequence.lemma_nat_from_to_intseq_le_preserves_value | val lemma_nat_from_to_intseq_le_preserves_value: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> b:seq (uint_t t l){length b == len} ->
Lemma (nat_to_intseq_le len (nat_from_intseq_le b) == b) | val lemma_nat_from_to_intseq_le_preserves_value: #t:inttype{unsigned t} -> #l:secrecy_level -> len:nat -> b:seq (uint_t t l){length b == len} ->
Lemma (nat_to_intseq_le len (nat_from_intseq_le b) == b) | let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 72,
"end_line": 747,
"start_col": 0,
"start_line": 746
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Prims.nat -> b: Lib.Sequence.seq (Lib.IntTypes.uint_t t l) {Lib.Sequence.length b == len}
-> FStar.Pervasives.Lemma
(ensures Lib.ByteSequence.nat_to_intseq_le len (Lib.ByteSequence.nat_from_intseq_le b) == b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Lib.Sequence.seq",
"Lib.IntTypes.uint_t",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.ByteSequence.nat_from_intseq_le_inj",
"Lib.ByteSequence.nat_to_intseq_le",
"Lib.ByteSequence.nat_from_intseq_le",
"Prims.unit"
] | [] | true | false | true | false | false | let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
| nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.to_poly | val to_poly (#f:G.field) (e:G.felem f) : poly | val to_poly (#f:G.field) (e:G.felem f) : poly | let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 48,
"end_line": 16,
"start_col": 0,
"start_line": 13
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0" | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Spec.GaloisField.felem f -> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Spec.GaloisField.field",
"Spec.GaloisField.felem",
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.op_disEquality",
"Lib.IntTypes.U1",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Vale.Math.Poly2_s.reverse",
"Vale.Math.Poly2_s.of_seq",
"FStar.UInt.to_vec",
"Lib.IntTypes.v",
"Spec.GaloisField.__proj__GF__item__t",
"Prims.op_Subtraction",
"Prims.int",
"Lib.IntTypes.bits",
"Vale.Math.Poly2_s.poly"
] | [] | false | false | false | false | false | let to_poly #f e =
| let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_from_bytes_be_nat_lemma | val uints_from_bytes_be_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be (uints_from_bytes_be #t #l #len b) == nat_from_bytes_be b) | val uints_from_bytes_be_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be (uints_from_bytes_be #t #l #len b) == nat_from_bytes_be b) | let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 45,
"end_line": 550,
"start_col": 0,
"start_line": 549
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t)
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_be (Lib.ByteSequence.uints_from_bytes_be b) ==
Lib.ByteSequence.nat_from_bytes_be b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Lib.ByteSequence.uints_from_bytes_be_nat_lemma_",
"Prims.unit"
] | [] | true | false | true | false | false | let uints_from_bytes_be_nat_lemma #t #l #len b =
| uints_from_bytes_be_nat_lemma_ #t #l #len b | false |
Lib.ByteSequence.fst | Lib.ByteSequence.index_uints_to_bytes_be_aux | val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t)) | val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t)) | let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 44,
"end_line": 583,
"start_col": 0,
"start_line": 579
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
len: Prims.nat{len * Lib.IntTypes.numbytes t < Prims.pow2 32} ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)} ->
i: Prims.nat{i < len * Lib.IntTypes.numbytes t}
-> FStar.Pervasives.Lemma
(ensures
(let s = Lib.ByteSequence.nat_to_intseq_be len n in
FStar.Seq.Base.index (Lib.ByteSequence.uints_to_bytes_be s) i ==
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_bytes_be (Lib.IntTypes.numbytes t)
(Lib.IntTypes.v s.[ i / Lib.IntTypes.numbytes t ]))
(i % Lib.IntTypes.numbytes t))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.IntTypes.bits",
"Lib.Sequence.index_generate_blocks",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uints_to_bytes_be_inner",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.ByteSequence.nat_to_intseq_be",
"Prims.unit"
] | [] | true | false | true | false | false | let index_uints_to_bytes_be_aux #t #l len n i =
| let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len s) i | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_from_bytes_le_nat_lemma_ | val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b) | val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b) | let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 477,
"start_col": 0,
"start_line": 468
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t)
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_le_ (Lib.ByteSequence.uints_from_bytes_le b) ==
Lib.ByteSequence.nat_from_intseq_le_ b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Lib.ByteSequence.uints_from_bytes_le_nat_lemma_aux",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.nat",
"Prims.l_or",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.bits",
"Lib.ByteSequence.uints_from_bytes_le",
"Prims.op_Subtraction",
"Lib.ByteSequence.nat_from_intseq_le_",
"Lib.ByteSequence.uints_from_bytes_le_nat_lemma_",
"Prims.op_Addition",
"Lib.Sequence.slice",
"Lib.ByteSequence.nat_from_intseq_le_slice_lemma_",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Prims.op_Multiply",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.l_Forall",
"FStar.Seq.Base.index",
"Lib.Sequence.index"
] | [
"recursion"
] | false | false | true | false | false | let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
| if len = 0
then ()
else
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b | false |
Lib.ByteSequence.fst | Lib.ByteSequence.lemma_nat_from_to_bytes_le_preserves_value | val lemma_nat_from_to_bytes_le_preserves_value: #l:secrecy_level -> b:bytes_l l -> len:size_nat{len == Lib.Sequence.length b} ->
Lemma (nat_to_bytes_le #l len (nat_from_bytes_le b) == b) | val lemma_nat_from_to_bytes_le_preserves_value: #l:secrecy_level -> b:bytes_l l -> len:size_nat{len == Lib.Sequence.length b} ->
Lemma (nat_to_bytes_le #l len (nat_from_bytes_le b) == b) | let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 51,
"end_line": 753,
"start_col": 0,
"start_line": 752
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.bytes_l l -> len: Lib.IntTypes.size_nat{len == Lib.Sequence.length b}
-> FStar.Pervasives.Lemma
(ensures Lib.ByteSequence.nat_to_bytes_le len (Lib.ByteSequence.nat_from_bytes_le b) == b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.secrecy_level",
"Lib.ByteSequence.bytes_l",
"Lib.IntTypes.size_nat",
"Prims.eq2",
"Prims.nat",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.lemma_nat_from_to_intseq_le_preserves_value",
"Prims.unit"
] | [] | true | false | true | false | false | let lemma_nat_from_to_bytes_le_preserves_value #l b len =
| lemma_nat_from_to_intseq_le_preserves_value len b | false |
Spec.SHA3.Incremental.fst | Spec.SHA3.Incremental.sha3_is_incremental1 | val sha3_is_incremental1
(a: keccak_alg)
(input: bytes) (out_length: output_length a): Lemma (hash_incremental a input out_length `S.equal` (
let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last rateInBytes input in
let s = update_multi a s () bs in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes (S.length l) l s in
finish a s out_length)) | val sha3_is_incremental1
(a: keccak_alg)
(input: bytes) (out_length: output_length a): Lemma (hash_incremental a input out_length `S.equal` (
let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last rateInBytes input in
let s = update_multi a s () bs in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes (S.length l) l s in
finish a s out_length)) | let sha3_is_incremental1 a input out_length =
calc (==) {
hash_incremental a input out_length;
(==) { }
(let s = init a in
let bs, l = split_blocks a input in
let s = update_multi a s () bs in
let s = update_last a s () l in
finish a s out_length);
(==) { }
(let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a/8 in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
let s = update_multi a s () bs in
let s = update_last a s () l in
finish a s out_length);
(==) { } (
let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
if S.length l = rateInBytes then
let s = update_multi a s () bs in
let s = Spec.SHA3.absorb_inner rateInBytes l s in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes 0 S.empty s in
finish a s out_length
else
let s = update_multi a s () bs in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes (S.length l) l s in
finish a s out_length
);
(==) { (
let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
if S.length l = rateInBytes then
let s = update_multi a s () bs in
update_is_update_multi a l s
else ()
) } (
let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
if S.length l = rateInBytes then
let s = update_multi a s () bs in
let s = update_multi a s () l in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes 0 S.empty s in
finish a s out_length
else
let s = update_multi a s () bs in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes (S.length l) l s in
finish a s out_length
);
(==) { (
let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
if S.length l = rateInBytes then
Lib.Sequence.Lemmas.repeat_blocks_multi_split (block_length a) (S.length bs) (bs `S.append` l) (Spec.SHA3.absorb_inner rateInBytes) s
else () ) } (
let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
if S.length l = rateInBytes then
let s = update_multi a s () (bs `S.append` l) in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes 0 S.empty s in
finish a s out_length
else
let s = update_multi a s () bs in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes (S.length l) l s in
finish a s out_length
);
};
calc (S.equal) {
(
let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
if S.length l = rateInBytes then
let s = update_multi a s () (bs `S.append` l) in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes 0 S.empty s in
finish a s out_length
else
let s = update_multi a s () bs in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes (S.length l) l s in
finish a s out_length
);
(S.equal) {
let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
let s = update_multi a s () bs in
if S.length l = rateInBytes then begin
let bs', l' = UpdateMulti.split_at_last rateInBytes input in
// TODO: strengthen this... NL arith!
assert (bs' `S.equal` (bs `S.append` l));
assert (l' `S.equal` S.empty)
end else
()
} (
let s = Lib.Sequence.create 25 (u64 0) in
// Also the block size
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last rateInBytes input in
let s = update_multi a s () bs in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes (S.length l) l s in
finish a s out_length
);
} | {
"file_name": "specs/lemmas/Spec.SHA3.Incremental.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 171,
"start_col": 0,
"start_line": 56
} | module Spec.SHA3.Incremental
module S = FStar.Seq
open Spec.Agile.Hash
open Spec.Hash.Definitions
open Spec.Hash.Incremental.Definitions
open Spec.Hash.Lemmas
friend Spec.Agile.Hash
open FStar.Mul
module Loops = Lib.LoopCombinators
module UpdateMulti = Lib.UpdateMulti
open Lib.IntTypes
#set-options "--fuel 0 --ifuel 0 --z3rlimit 200"
let update_is_update_multi (a:keccak_alg) (inp:bytes{S.length inp == block_length a}) (s:words_state a)
: Lemma (Spec.SHA3.absorb_inner (rate a/8) inp s == update_multi a s () inp)
= let rateInBytes = rate a/8 in
let f = Spec.SHA3.absorb_inner rateInBytes in
let bs = block_length a in
let f' = Lib.Sequence.repeat_blocks_f bs inp f 1 in
assert (bs == rateInBytes);
calc (==) {
update_multi a s () inp;
(==) { }
Lib.Sequence.repeat_blocks_multi #_ #(words_state a) rateInBytes inp f s;
(==) { Lib.Sequence.lemma_repeat_blocks_multi #_ #(words_state a) bs inp f s }
(let len = S.length inp in
let nb = len / bs in
Loops.repeati #(words_state a) nb (Lib.Sequence.repeat_blocks_f bs inp f nb) s);
(==) {
Loops.unfold_repeati 1 f' s 0;
Loops.eq_repeati0 1 f' s }
f' 0 s;
(==) { assert (Seq.slice inp (0 * bs) (0 * bs + bs) `S.equal` inp) }
f inp s;
}
let suffix (a: keccak_alg) = if is_shake a then byte 0x1f else byte 0x06
val sha3_is_incremental1
(a: keccak_alg)
(input: bytes) (out_length: output_length a): Lemma (hash_incremental a input out_length `S.equal` (
let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last rateInBytes input in
let s = update_multi a s () bs in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes (S.length l) l s in
finish a s out_length)) | {
"checked_file": "/",
"dependencies": [
"Spec.SHA3.fst.checked",
"Spec.Hash.Lemmas.fsti.checked",
"Spec.Hash.Incremental.Definitions.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"Spec.Agile.Hash.fst.checked",
"Spec.Agile.Hash.fst.checked",
"prims.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.Lemmas.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Spec.SHA3.Incremental.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.UpdateMulti",
"short_module": "UpdateMulti"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Incremental.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.Hash",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Spec.Hash.Incremental.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.Hash",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Spec.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.SHA3",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.keccak_alg ->
input: Spec.Hash.Definitions.bytes ->
out_length: Spec.Hash.Definitions.output_length a
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.equal (Spec.Hash.Incremental.Definitions.hash_incremental a input out_length)
(let s = Lib.Sequence.create 25 (Lib.IntTypes.u64 0) in
let rateInBytes = Spec.Hash.Definitions.rate a / 8 in
let delimitedSuffix = Spec.SHA3.Incremental.suffix a in
let _ = Lib.UpdateMulti.split_at_last rateInBytes input in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ bs l = _ in
let s = Spec.Agile.Hash.update_multi a s () bs in
let s =
Spec.SHA3.absorb_last delimitedSuffix rateInBytes (FStar.Seq.Base.length l) l s
in
Spec.Agile.Hash.finish a s out_length)
<:
FStar.Seq.Base.seq (Lib.IntTypes.uint_t Lib.IntTypes.U8 Lib.IntTypes.SEC))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.Hash.Definitions.keccak_alg",
"Spec.Hash.Definitions.bytes",
"Spec.Hash.Definitions.output_length",
"FStar.Calc.calc_finish",
"FStar.Seq.Base.seq",
"Lib.IntTypes.uint8",
"FStar.Seq.Base.equal",
"Lib.UpdateMulti.uint8",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"Spec.Agile.Hash.finish",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Spec.SHA3.absorb_last",
"FStar.Seq.Base.empty",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Spec.Hash.Definitions.words_state",
"Spec.Agile.Hash.update_multi",
"FStar.Seq.Base.append",
"Prims.bool",
"FStar.Pervasives.Native.tuple2",
"Lib.UpdateMulti.split_at_last_lazy",
"Lib.IntTypes.PUB",
"Prims.l_or",
"Prims.eq2",
"Lib.IntTypes.range",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Spec.SHA3.Incremental.suffix",
"Prims.op_Division",
"Spec.Hash.Definitions.rate",
"Spec.Hash.Definitions.word",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.create",
"Lib.IntTypes.mk_int",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_imp",
"Lib.Sequence.index",
"Lib.Sequence.create",
"Lib.IntTypes.u64",
"Lib.UpdateMulti.split_at_last",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims._assert",
"Prims.squash",
"Lib.ByteSequence.bytes",
"Spec.Hash.Definitions.hash_length'",
"Spec.Hash.Incremental.Definitions.hash_incremental",
"Spec.SHA3.absorb_inner",
"Spec.Hash.Incremental.Definitions.update_last",
"Lib.Sequence.seq",
"Spec.Hash.Incremental.Definitions.split_blocks",
"Spec.Hash.Definitions.init_t",
"Spec.Agile.Hash.init",
"Spec.SHA3.Incremental.update_is_update_multi",
"Lib.Sequence.Lemmas.repeat_blocks_multi_split",
"Spec.SHA3.state",
"Spec.Hash.Definitions.block_length",
"Lib.IntTypes.uint64"
] | [] | false | false | true | false | false | let sha3_is_incremental1 a input out_length =
| calc ( == ) {
hash_incremental a input out_length;
( == ) { () }
(let s = init a in
let bs, l = split_blocks a input in
let s = update_multi a s () bs in
let s = update_last a s () l in
finish a s out_length);
( == ) { () }
(let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
let s = update_multi a s () bs in
let s = update_last a s () l in
finish a s out_length);
( == ) { () }
(let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
if S.length l = rateInBytes
then
let s = update_multi a s () bs in
let s = Spec.SHA3.absorb_inner rateInBytes l s in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes 0 S.empty s in
finish a s out_length
else
let s = update_multi a s () bs in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes (S.length l) l s in
finish a s out_length);
( == ) { (let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
if S.length l = rateInBytes
then
let s = update_multi a s () bs in
update_is_update_multi a l s) }
(let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
if S.length l = rateInBytes
then
let s = update_multi a s () bs in
let s = update_multi a s () l in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes 0 S.empty s in
finish a s out_length
else
let s = update_multi a s () bs in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes (S.length l) l s in
finish a s out_length);
( == ) { (let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
if S.length l = rateInBytes
then
Lib.Sequence.Lemmas.repeat_blocks_multi_split (block_length a)
(S.length bs)
(bs `S.append` l)
(Spec.SHA3.absorb_inner rateInBytes)
s) }
(let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
if S.length l = rateInBytes
then
let s = update_multi a s () (bs `S.append` l) in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes 0 S.empty s in
finish a s out_length
else
let s = update_multi a s () bs in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes (S.length l) l s in
finish a s out_length);
};
calc (S.equal) {
(let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
if S.length l = rateInBytes
then
let s = update_multi a s () (bs `S.append` l) in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes 0 S.empty s in
finish a s out_length
else
let s = update_multi a s () bs in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes (S.length l) l s in
finish a s out_length);
(S.equal) { let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let bs, l = UpdateMulti.split_at_last_lazy rateInBytes input in
let s = update_multi a s () bs in
if S.length l = rateInBytes
then
let bs', l' = UpdateMulti.split_at_last rateInBytes input in
assert (bs' `S.equal` (bs `S.append` l));
assert (l' `S.equal` S.empty) }
(let s = Lib.Sequence.create 25 (u64 0) in
let rateInBytes = rate a / 8 in
let delimitedSuffix = suffix a in
let bs, l = UpdateMulti.split_at_last rateInBytes input in
let s = update_multi a s () bs in
let s = Spec.SHA3.absorb_last delimitedSuffix rateInBytes (S.length l) l s in
finish a s out_length);
} | false |
Lib.ByteSequence.fst | Lib.ByteSequence.lemma_nat_from_to_bytes_be_preserves_value | val lemma_nat_from_to_bytes_be_preserves_value: #l:secrecy_level -> b:bytes_l l -> len:size_nat{len == Lib.Sequence.length b} ->
Lemma (nat_to_bytes_be #l len (nat_from_bytes_be b) == b) | val lemma_nat_from_to_bytes_be_preserves_value: #l:secrecy_level -> b:bytes_l l -> len:size_nat{len == Lib.Sequence.length b} ->
Lemma (nat_to_bytes_be #l len (nat_from_bytes_be b) == b) | let lemma_nat_from_to_bytes_be_preserves_value #l b len =
lemma_nat_from_to_intseq_be_preserves_value len b | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 51,
"end_line": 756,
"start_col": 0,
"start_line": 755
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b
let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.bytes_l l -> len: Lib.IntTypes.size_nat{len == Lib.Sequence.length b}
-> FStar.Pervasives.Lemma
(ensures Lib.ByteSequence.nat_to_bytes_be len (Lib.ByteSequence.nat_from_bytes_be b) == b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.secrecy_level",
"Lib.ByteSequence.bytes_l",
"Lib.IntTypes.size_nat",
"Prims.eq2",
"Prims.nat",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.lemma_nat_from_to_intseq_be_preserves_value",
"Prims.unit"
] | [] | true | false | true | false | false | let lemma_nat_from_to_bytes_be_preserves_value #l b len =
| lemma_nat_from_to_intseq_be_preserves_value len b | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_from_bytes_le_slice_lemma | val uints_from_bytes_le_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_le #t #l #len b) i j == uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) | val uints_from_bytes_le_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_le #t #l #len b) i j == uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) | let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 136,
"end_line": 444,
"start_col": 0,
"start_line": 441
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) ->
i: Prims.nat ->
j: Prims.nat{i <= j /\ j <= len}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.slice (Lib.ByteSequence.uints_from_bytes_le b) i j ==
Lib.ByteSequence.uints_from_bytes_le (Lib.Sequence.slice b
(i * Lib.IntTypes.numbytes t)
(j * Lib.IntTypes.numbytes t))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.eq_intro",
"Lib.IntTypes.uint_t",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"Lib.ByteSequence.uints_from_bytes_le",
"Lib.IntTypes.U8",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.eq2",
"Lib.Sequence.index",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.Sequence.sub",
"Prims.op_Addition",
"Lib.ByteSequence.uints_from_bytes_le_slice_lemma_rp",
"Lib.ByteSequence.uints_from_bytes_le_slice_lemma_lp"
] | [] | false | false | true | false | false | let uints_from_bytes_le_slice_lemma #t #l #len b i j =
| FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j)
(uints_from_bytes_le #t #l #(j - i) (slice b (i * numbytes t) (j * numbytes t))) | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.lemma_to_poly_degree | val lemma_to_poly_degree (#f:G.field) (e:G.felem f) : Lemma
(requires True)
(ensures degree (to_poly e) < I.bits f.G.t)
[SMTPat (to_poly e)] | val lemma_to_poly_degree (#f:G.field) (e:G.felem f) : Lemma
(requires True)
(ensures degree (to_poly e) < I.bits f.G.t)
[SMTPat (to_poly e)] | let lemma_to_poly_degree #f e =
reveal_defs () | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 16,
"end_line": 25,
"start_col": 0,
"start_line": 24
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n)) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Spec.GaloisField.felem f
-> FStar.Pervasives.Lemma
(ensures
Vale.Math.Poly2_s.degree (Vale.Math.Poly2.Galois.to_poly e) < Lib.IntTypes.bits (GF?.t f))
[SMTPat (Vale.Math.Poly2.Galois.to_poly e)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.GaloisField.field",
"Spec.GaloisField.felem",
"Vale.Math.Poly2_s.reveal_defs",
"Prims.unit"
] | [] | true | false | true | false | false | let lemma_to_poly_degree #f e =
| reveal_defs () | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.lemma_irred_degree | val lemma_irred_degree (f:G.field) : Lemma
(requires True)
(ensures degree (irred_poly f) == I.bits f.G.t)
[SMTPat (irred_poly f)] | val lemma_irred_degree (f:G.field) : Lemma
(requires True)
(ensures degree (irred_poly f) == I.bits f.G.t)
[SMTPat (irred_poly f)] | let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
() | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 34,
"start_col": 0,
"start_line": 27
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs () | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Spec.GaloisField.field
-> FStar.Pervasives.Lemma
(ensures
Vale.Math.Poly2_s.degree (Vale.Math.Poly2.Galois.irred_poly f) ==
Lib.IntTypes.bits (GF?.t f)) [SMTPat (Vale.Math.Poly2.Galois.irred_poly f)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.GaloisField.field",
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.op_disEquality",
"Lib.IntTypes.U1",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Prims.unit",
"Vale.Math.Poly2.Lemmas.lemma_degree_is",
"Vale.Math.Poly2.Galois.irred_poly",
"Vale.Math.Poly2.Lemmas.lemma_add_define_all",
"Vale.Math.Poly2.Lemmas.lemma_monomial_define",
"Vale.Math.Poly2.Lemmas.lemma_index_all",
"Prims.int",
"Lib.IntTypes.bits"
] | [] | false | false | true | false | false | let lemma_irred_degree f =
| let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
() | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.lemma_poly_felem | val lemma_poly_felem (f:G.field) (p:poly) : Lemma
(requires degree p < I.bits (G.GF?.t f))
(ensures to_poly (to_felem f p) == p)
[SMTPat (to_poly (to_felem f p))] | val lemma_poly_felem (f:G.field) (p:poly) : Lemma
(requires degree p < I.bits (G.GF?.t f))
(ensures to_poly (to_felem f p) == p)
[SMTPat (to_poly (to_felem f p))] | let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
() | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 51,
"start_col": 0,
"start_line": 36
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Spec.GaloisField.field -> p: Vale.Math.Poly2_s.poly
-> FStar.Pervasives.Lemma (requires Vale.Math.Poly2_s.degree p < Lib.IntTypes.bits (GF?.t f))
(ensures Vale.Math.Poly2.Galois.to_poly (Vale.Math.Poly2.Galois.to_felem f p) == p)
[SMTPat (Vale.Math.Poly2.Galois.to_poly (Vale.Math.Poly2.Galois.to_felem f p))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.GaloisField.field",
"Vale.Math.Poly2_s.poly",
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.op_disEquality",
"Lib.IntTypes.U1",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Prims.unit",
"Vale.Math.Poly2.lemma_equal",
"Vale.Math.Poly2.Lemmas.lemma_reverse_define_all",
"Vale.Math.Poly2.Lemmas.lemma_index_all",
"Vale.Math.Poly2_s.reverse",
"Prims.op_Subtraction",
"Vale.Math.Poly2_s.of_seq",
"FStar.BitVector.bv_t",
"FStar.UInt.to_vec",
"Prims.int",
"Lib.IntTypes.range",
"Lib.IntTypes.v",
"Lib.IntTypes.int_t",
"Prims.eq2",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.maxint",
"Lib.IntTypes.Compatibility.nat_to_uint",
"FStar.UInt.uint_t",
"FStar.UInt.from_vec",
"FStar.Seq.Base.seq",
"Prims.bool",
"Vale.Math.Poly2_s.to_seq",
"Lib.IntTypes.bits"
] | [] | false | false | true | false | false | let lemma_poly_felem f p =
| let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
() | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_from_bytes_be_nat_lemma_ | val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b) | val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b) | let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 547,
"start_col": 0,
"start_line": 541
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t)
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_be_ (Lib.ByteSequence.uints_from_bytes_be b) ==
Lib.ByteSequence.nat_from_intseq_be_ b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Lib.ByteSequence.uints_from_bytes_be_nat_lemma_",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Prims.unit",
"Lib.ByteSequence.nat_from_intseq_be_slice_lemma_",
"Lib.ByteSequence.uints_from_bytes_be_nat_lemma_aux"
] | [
"recursion"
] | false | false | true | false | false | let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
| if len = 0
then ()
else
(uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.nat_from_intseq_le_slice_lemma_ | val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len)) | val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len)) | let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 386,
"start_col": 0,
"start_line": 374
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Sequence.lseq (Lib.IntTypes.int_t t l) len -> i: Prims.nat{i <= len}
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_le_ b ==
Lib.ByteSequence.nat_from_intseq_le_ (Lib.Sequence.slice b 0 i) +
Prims.pow2 (i * Lib.IntTypes.bits t) *
Lib.ByteSequence.nat_from_intseq_le_ (Lib.Sequence.slice b i len)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Lib.ByteSequence.nat_from_intseq_slice_lemma_aux",
"Lib.IntTypes.v",
"Lib.Sequence.op_String_Access",
"Prims.op_Subtraction",
"Lib.ByteSequence.nat_from_intseq_le_",
"Lib.Sequence.slice",
"Lib.IntTypes.bits",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.pow2",
"Lib.ByteSequence.nat_from_intseq_le_slice_lemma_",
"Prims.l_and",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.l_Forall",
"Prims.op_LessThan",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index"
] | [
"recursion"
] | false | false | true | false | false | let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
| if len = 0
then ()
else
if i = 0
then ()
else
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 ==
nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[ i - 1 ]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b ==
nat_from_intseq_le_ (slice b 0 (i - 1)) +
pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len
(v b.[ i - 1 ])
(nat_from_intseq_le_ (slice b i len))
(bits t)
i | false |
Lib.ByteSequence.fst | Lib.ByteSequence.index_nat_to_intseq_le | val index_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_nat
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) i ==
uint #t #l (n / pow2 (bits t * i) % pow2 (bits t))) | val index_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_nat
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) i ==
uint #t #l (n / pow2 (bits t * i) % pow2 (bits t))) | let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 7,
"end_line": 252,
"start_col": 0,
"start_line": 232
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
len: Lib.IntTypes.size_nat ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)} ->
i: Prims.nat{i < len}
-> FStar.Pervasives.Lemma
(ensures
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_intseq_le len n) i ==
Lib.IntTypes.uint (n / Prims.pow2 (Lib.IntTypes.bits t * i) % Prims.pow2 (Lib.IntTypes.bits t)
)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Lib.ByteSequence.head_nat_to_intseq_le",
"Prims.unit",
"Lib.ByteSequence.nat_to_intseq_le_pos",
"FStar.Calc.calc_finish",
"Lib.IntTypes.uint_t",
"Prims.eq2",
"FStar.Seq.Base.index",
"Lib.ByteSequence.nat_to_intseq_le",
"Prims.op_Subtraction",
"Prims.op_Division",
"Lib.IntTypes.modulus",
"Lib.IntTypes.uint",
"Prims.op_Modulus",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"Prims.op_Addition",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Lib.ByteSequence.index_nat_to_intseq_le",
"Prims.squash",
"FStar.Math.Lemmas.division_multiplication_lemma",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.distributivity_add_right",
"Prims.op_Minus",
"FStar.Math.Lemmas.lemma_div_lt_nat"
] | [
"recursion"
] | false | false | true | false | false | let rec index_nat_to_intseq_le #t #l len n i =
| if i = 0
then if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
(FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc ( == ) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
( == ) { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
( == ) { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
( == ) { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
( == ) { Math.Lemmas.distributivity_add_right (bits t) i (- 1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
( == ) { () }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.modulo_pow2_prop | val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r) | val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r) | let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
} | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 599,
"start_col": 0,
"start_line": 588
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Prims.pos -> a: Prims.nat -> b: Prims.nat -> c: Prims.nat{c < b}
-> FStar.Pervasives.Lemma
(ensures
a % Prims.pow2 (r * b) / Prims.pow2 (r * c) % Prims.pow2 r ==
a / Prims.pow2 (r * c) % Prims.pow2 r) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Modulus",
"Prims.op_Division",
"Prims.pow2",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Subtraction",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.pow2_modulo_division_lemma_1",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mul_sub_distr",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.modulo_modulo_lemma"
] | [] | false | false | true | false | false | let modulo_pow2_prop r a b c =
| calc ( == ) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
( == ) { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
( == ) { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
( == ) { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
( == ) { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r)) }
(a / pow2 (r * c)) % pow2 r;
} | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_from_bytes_be_slice_lemma_rp | val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t))) | val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t))) | let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t))) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 82,
"end_line": 509,
"start_col": 0,
"start_line": 504
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) ->
i: Prims.nat ->
j: Prims.nat{i <= j /\ j <= len} ->
k: Prims.nat{k < j - i}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.index (Lib.ByteSequence.uints_from_bytes_be (Lib.Sequence.slice b
(i * Lib.IntTypes.numbytes t)
(j * Lib.IntTypes.numbytes t)))
k ==
Lib.ByteSequence.uint_from_bytes_be (Lib.Sequence.sub b
((i + k) * Lib.IntTypes.numbytes t)
(Lib.IntTypes.numbytes t))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims._assert",
"Prims.eq2",
"Lib.IntTypes.uint_t",
"Lib.Sequence.op_String_Access",
"Lib.ByteSequence.uint_from_bytes_be",
"Lib.Sequence.sub",
"Lib.IntTypes.U8",
"Prims.op_Addition",
"Prims.unit",
"Lib.ByteSequence.index_uints_from_bytes_be",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.ByteSequence.uints_from_bytes_be",
"Prims.op_Multiply",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.l_Forall",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.slice"
] | [] | true | false | true | false | false | let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
| let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j - i) b1 in
index_uints_from_bytes_be #t #l #(j - i) b1 k;
assert (r.[ k ] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[ k ] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t))) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_from_bytes_be_slice_lemma | val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) | val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) | let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 136,
"end_line": 518,
"start_col": 0,
"start_line": 515
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t) ->
i: Prims.nat ->
j: Prims.nat{i <= j /\ j <= len}
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.slice (Lib.ByteSequence.uints_from_bytes_be b) i j ==
Lib.ByteSequence.uints_from_bytes_be (Lib.Sequence.slice b
(i * Lib.IntTypes.numbytes t)
(j * Lib.IntTypes.numbytes t))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Lib.Sequence.eq_intro",
"Lib.IntTypes.uint_t",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"Lib.ByteSequence.uints_from_bytes_be",
"Lib.IntTypes.U8",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.eq2",
"Lib.Sequence.index",
"Lib.ByteSequence.uint_from_bytes_be",
"Lib.Sequence.sub",
"Prims.op_Addition",
"Lib.ByteSequence.uints_from_bytes_be_slice_lemma_rp",
"Lib.ByteSequence.uints_from_bytes_le",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.ByteSequence.uints_from_bytes_be_slice_lemma_lp"
] | [] | false | false | true | false | false | let uints_from_bytes_be_slice_lemma #t #l #len b i j =
| FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j)
(uints_from_bytes_be #t #l #(j - i) (slice b (i * numbytes t) (j * numbytes t))) | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.lemma_felem_poly | val lemma_felem_poly (#f:G.field) (e:G.felem f) : Lemma
(requires True)
(ensures to_felem f (to_poly e) == e)
[SMTPat (to_felem f (to_poly e))] | val lemma_felem_poly (#f:G.field) (e:G.felem f) : Lemma
(requires True)
(ensures to_felem f (to_poly e) == e)
[SMTPat (to_felem f (to_poly e))] | let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
() | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 69,
"start_col": 0,
"start_line": 53
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
() | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: Spec.GaloisField.felem f
-> FStar.Pervasives.Lemma
(ensures Vale.Math.Poly2.Galois.to_felem f (Vale.Math.Poly2.Galois.to_poly e) == e)
[SMTPat (Vale.Math.Poly2.Galois.to_felem f (Vale.Math.Poly2.Galois.to_poly e))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.GaloisField.field",
"Spec.GaloisField.felem",
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.op_disEquality",
"Lib.IntTypes.U1",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Prims.unit",
"Lib.IntTypes.Compatibility.uintv_extensionality",
"Spec.GaloisField.__proj__GF__item__t",
"Prims._assert",
"FStar.Seq.Base.equal",
"Prims.bool",
"Vale.Math.Poly2.lemma_equal",
"Vale.Math.Poly2.Lemmas.lemma_reverse_define_all",
"Vale.Math.Poly2.Lemmas.lemma_index_all",
"Lib.IntTypes.int_t",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Lib.IntTypes.range",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.maxint",
"Lib.IntTypes.v",
"Lib.IntTypes.Compatibility.nat_to_uint",
"FStar.UInt.uint_t",
"FStar.UInt.from_vec",
"FStar.Seq.Base.seq",
"Vale.Math.Poly2_s.to_seq",
"Vale.Math.Poly2_s.poly",
"Vale.Math.Poly2_s.reverse",
"Prims.op_Subtraction",
"Vale.Math.Poly2_s.of_seq",
"FStar.BitVector.bv_t",
"FStar.UInt.to_vec",
"Lib.IntTypes.bits"
] | [] | false | false | true | false | false | let lemma_felem_poly #f e =
| let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
() | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.sum_of_bools | val sum_of_bools : j: Prims.int -> k: Prims.int -> f: (_: Prims.int -> Prims.bool) -> Prims.Tot Prims.bool | let sum_of_bools = D.sum_of_bools | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 166,
"start_col": 7,
"start_line": 166
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
()
let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
()
let lemma_zero f =
let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
//let lemma_zero' (f:G.field) : Lemma
// (G.zero == to_felem f zero)
// =
// lemma_zero f;
// lemma_felem_poly #f G.zero
let lemma_one f =
let G.GF t irred = f in
let n = I.bits t in
let a = one in
let b = to_poly #f G.one in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_one_define ();
(if 0 <= i && i < n then U.one_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
let lemma_add f e1 e2 =
let G.GF t irred = f in
GI.define_logxor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_add_define_all ();
lemma_equal (to_poly (G.fadd e1 e2)) (to_poly e1 +. to_poly e2)
let lemma_and f e1 e2 =
let G.GF t irred = f in
GI.define_logand t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_and_define_all ();
lemma_equal (to_poly (I.logand e1 e2)) (to_poly e1 &. to_poly e2)
let lemma_or f e1 e2 =
let G.GF t irred = f in
GI.define_logor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_or_define_all ();
lemma_equal (to_poly (I.logor e1 e2)) (to_poly e1 |. to_poly e2)
let lemma_shift_left f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
PL.lemma_mod_monomial (shift (to_poly e) (I.uint_v n)) nf;
assert (I.uint_v (I.shift_left e n) == U.shift_left #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_left e n)) (shift (to_poly e) (I.uint_v n) %. monomial (I.bits f.G.t))
let lemma_shift_right f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
assert (I.uint_v (I.shift_right e n) == U.shift_right #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_right e n)) (shift (to_poly e) (-(I.uint_v n)))
#reset-options
(*
Various definitions of multiply, ranging from Poly2 definition to GaloisField definition:
- Vale.Math.Poly2.Defs_s.mul
- mul_def: same as Defs_s.mul, but using abstract definition of poly
- pmul: equivalent to mul_def, but defined recursively based on adds and shifts by n
- mmul: same as pmul, but also do a "mod m" in the add
- smul: same as mmul, but incrementally shift by 1 rather than shifting by n and implement "mod m" using add
- gmul: same as fmul, but defined using recursion instead of repeati
- fmul: same as Spec.GaloisField.fmul, but use named function instead of lambda
- Spec.GaloisField.fmul
*)
let poly_length (p:poly) : nat =
(if degree p < 0 then PL.lemma_degree_negative p);
1 + degree p | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | j: Prims.int -> k: Prims.int -> f: (_: Prims.int -> Prims.bool) -> Prims.Tot Prims.bool | Prims.Tot | [
"total",
""
] | [] | [
"Vale.Math.Poly2.Defs_s.sum_of_bools"
] | [] | false | false | false | true | false | let sum_of_bools =
| D.sum_of_bools | false |
|
Lib.ByteSequence.fst | Lib.ByteSequence.index_nat_to_intseq_to_bytes_le | val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i) | val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i) | let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 23,
"end_line": 647,
"start_col": 0,
"start_line": 637
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) == | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
len: Prims.nat{len * Lib.IntTypes.numbytes t < Prims.pow2 32} ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)} ->
i: Prims.nat{i < len * Lib.IntTypes.numbytes t}
-> FStar.Pervasives.Lemma
(ensures
(let s = Lib.ByteSequence.nat_to_intseq_le len n in
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_bytes_le (Lib.IntTypes.numbytes t)
(Lib.IntTypes.v s.[ i / Lib.IntTypes.numbytes t ]))
(i % Lib.IntTypes.numbytes t) ==
FStar.Seq.Base.index (Lib.ByteSequence.nat_to_bytes_le (len * Lib.IntTypes.numbytes t) n) i)
) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.IntTypes.bits",
"Lib.ByteSequence.some_arithmetic",
"Prims.unit",
"Lib.ByteSequence.index_nat_to_intseq_le",
"Prims.op_Division",
"Prims._assert",
"Prims.eq2",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"FStar.Seq.Base.index",
"Lib.IntTypes.uint_t",
"Lib.ByteSequence.nat_to_bytes_le",
"Lib.IntTypes.v",
"Lib.Sequence.op_String_Access",
"Prims.op_Modulus",
"Lib.IntTypes.uint",
"Prims.int",
"Lib.Sequence.lseq",
"Lib.ByteSequence.nat_to_intseq_le"
] | [] | true | false | true | false | false | let index_nat_to_intseq_to_bytes_le #t #l len n i =
| let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i == uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[ i / m ]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[ i / m ])) (i % m) ==
uint (v s.[ i / m ] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.mul_element | val mul_element (a b: poly) (k: int) : bool | val mul_element (a b: poly) (k: int) : bool | let mul_element (a b:poly) (k:int) : bool =
sum_of_bools 0 (k + 1) (mul_element_fun a b k) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 48,
"end_line": 170,
"start_col": 0,
"start_line": 169
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
()
let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
()
let lemma_zero f =
let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
//let lemma_zero' (f:G.field) : Lemma
// (G.zero == to_felem f zero)
// =
// lemma_zero f;
// lemma_felem_poly #f G.zero
let lemma_one f =
let G.GF t irred = f in
let n = I.bits t in
let a = one in
let b = to_poly #f G.one in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_one_define ();
(if 0 <= i && i < n then U.one_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
let lemma_add f e1 e2 =
let G.GF t irred = f in
GI.define_logxor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_add_define_all ();
lemma_equal (to_poly (G.fadd e1 e2)) (to_poly e1 +. to_poly e2)
let lemma_and f e1 e2 =
let G.GF t irred = f in
GI.define_logand t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_and_define_all ();
lemma_equal (to_poly (I.logand e1 e2)) (to_poly e1 &. to_poly e2)
let lemma_or f e1 e2 =
let G.GF t irred = f in
GI.define_logor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_or_define_all ();
lemma_equal (to_poly (I.logor e1 e2)) (to_poly e1 |. to_poly e2)
let lemma_shift_left f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
PL.lemma_mod_monomial (shift (to_poly e) (I.uint_v n)) nf;
assert (I.uint_v (I.shift_left e n) == U.shift_left #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_left e n)) (shift (to_poly e) (I.uint_v n) %. monomial (I.bits f.G.t))
let lemma_shift_right f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
assert (I.uint_v (I.shift_right e n) == U.shift_right #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_right e n)) (shift (to_poly e) (-(I.uint_v n)))
#reset-options
(*
Various definitions of multiply, ranging from Poly2 definition to GaloisField definition:
- Vale.Math.Poly2.Defs_s.mul
- mul_def: same as Defs_s.mul, but using abstract definition of poly
- pmul: equivalent to mul_def, but defined recursively based on adds and shifts by n
- mmul: same as pmul, but also do a "mod m" in the add
- smul: same as mmul, but incrementally shift by 1 rather than shifting by n and implement "mod m" using add
- gmul: same as fmul, but defined using recursion instead of repeati
- fmul: same as Spec.GaloisField.fmul, but use named function instead of lambda
- Spec.GaloisField.fmul
*)
let poly_length (p:poly) : nat =
(if degree p < 0 then PL.lemma_degree_negative p);
1 + degree p
unfold let sum_of_bools = D.sum_of_bools
let mul_element_fun (a b:poly) (k i:int) : bool = a.[i] && b.[k - i] | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2_s.poly -> b: Vale.Math.Poly2_s.poly -> k: Prims.int -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Prims.int",
"Vale.Math.Poly2.Galois.sum_of_bools",
"Prims.op_Addition",
"Vale.Math.Poly2.Galois.mul_element_fun",
"Prims.bool"
] | [] | false | false | false | true | false | let mul_element (a b: poly) (k: int) : bool =
| sum_of_bools 0 (k + 1) (mul_element_fun a b k) | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.mul_element_fun | val mul_element_fun (a b: poly) (k i: int) : bool | val mul_element_fun (a b: poly) (k i: int) : bool | let mul_element_fun (a b:poly) (k i:int) : bool = a.[i] && b.[k - i] | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 68,
"end_line": 167,
"start_col": 0,
"start_line": 167
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
()
let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
()
let lemma_zero f =
let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
//let lemma_zero' (f:G.field) : Lemma
// (G.zero == to_felem f zero)
// =
// lemma_zero f;
// lemma_felem_poly #f G.zero
let lemma_one f =
let G.GF t irred = f in
let n = I.bits t in
let a = one in
let b = to_poly #f G.one in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_one_define ();
(if 0 <= i && i < n then U.one_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
let lemma_add f e1 e2 =
let G.GF t irred = f in
GI.define_logxor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_add_define_all ();
lemma_equal (to_poly (G.fadd e1 e2)) (to_poly e1 +. to_poly e2)
let lemma_and f e1 e2 =
let G.GF t irred = f in
GI.define_logand t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_and_define_all ();
lemma_equal (to_poly (I.logand e1 e2)) (to_poly e1 &. to_poly e2)
let lemma_or f e1 e2 =
let G.GF t irred = f in
GI.define_logor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_or_define_all ();
lemma_equal (to_poly (I.logor e1 e2)) (to_poly e1 |. to_poly e2)
let lemma_shift_left f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
PL.lemma_mod_monomial (shift (to_poly e) (I.uint_v n)) nf;
assert (I.uint_v (I.shift_left e n) == U.shift_left #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_left e n)) (shift (to_poly e) (I.uint_v n) %. monomial (I.bits f.G.t))
let lemma_shift_right f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
assert (I.uint_v (I.shift_right e n) == U.shift_right #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_right e n)) (shift (to_poly e) (-(I.uint_v n)))
#reset-options
(*
Various definitions of multiply, ranging from Poly2 definition to GaloisField definition:
- Vale.Math.Poly2.Defs_s.mul
- mul_def: same as Defs_s.mul, but using abstract definition of poly
- pmul: equivalent to mul_def, but defined recursively based on adds and shifts by n
- mmul: same as pmul, but also do a "mod m" in the add
- smul: same as mmul, but incrementally shift by 1 rather than shifting by n and implement "mod m" using add
- gmul: same as fmul, but defined using recursion instead of repeati
- fmul: same as Spec.GaloisField.fmul, but use named function instead of lambda
- Spec.GaloisField.fmul
*)
let poly_length (p:poly) : nat =
(if degree p < 0 then PL.lemma_degree_negative p);
1 + degree p | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2_s.poly -> b: Vale.Math.Poly2_s.poly -> k: Prims.int -> i: Prims.int -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Prims.int",
"Prims.op_AmpAmp",
"Vale.Math.Poly2_s.op_String_Access",
"Prims.op_Subtraction",
"Prims.bool"
] | [] | false | false | false | true | false | let mul_element_fun (a b: poly) (k i: int) : bool =
| a.[ i ] && b.[ k - i ] | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_to_bytes_le_nat_lemma | val uints_to_bytes_le_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> Lemma
(uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n) ==
nat_to_bytes_le (len * numbytes t) n) | val uints_to_bytes_le_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> Lemma
(uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n) ==
nat_to_bytes_le (len * numbytes t) n) | let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 49,
"end_line": 670,
"start_col": 0,
"start_line": 667
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
len: Prims.nat{len * Lib.IntTypes.numbytes t < Prims.pow2 32} ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)}
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.uints_to_bytes_le (Lib.ByteSequence.nat_to_intseq_le len n) ==
Lib.ByteSequence.nat_to_bytes_le (len * Lib.IntTypes.numbytes t) n) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.IntTypes.bits",
"Lib.Sequence.eq_intro",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uints_to_bytes_le",
"Lib.ByteSequence.nat_to_intseq_le",
"Lib.ByteSequence.nat_to_bytes_le",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.eq2",
"FStar.Seq.Base.index",
"Lib.ByteSequence.uints_to_bytes_le_nat_lemma_"
] | [] | false | false | true | false | false | let uints_to_bytes_le_nat_lemma #t #l len n =
| Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n) | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.pmul | val pmul (a b: poly) : poly | val pmul (a b: poly) : poly | let pmul (a b:poly) : poly =
pmul_rec a b (poly_length b) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 30,
"end_line": 192,
"start_col": 0,
"start_line": 191
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
()
let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
()
let lemma_zero f =
let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
//let lemma_zero' (f:G.field) : Lemma
// (G.zero == to_felem f zero)
// =
// lemma_zero f;
// lemma_felem_poly #f G.zero
let lemma_one f =
let G.GF t irred = f in
let n = I.bits t in
let a = one in
let b = to_poly #f G.one in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_one_define ();
(if 0 <= i && i < n then U.one_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
let lemma_add f e1 e2 =
let G.GF t irred = f in
GI.define_logxor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_add_define_all ();
lemma_equal (to_poly (G.fadd e1 e2)) (to_poly e1 +. to_poly e2)
let lemma_and f e1 e2 =
let G.GF t irred = f in
GI.define_logand t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_and_define_all ();
lemma_equal (to_poly (I.logand e1 e2)) (to_poly e1 &. to_poly e2)
let lemma_or f e1 e2 =
let G.GF t irred = f in
GI.define_logor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_or_define_all ();
lemma_equal (to_poly (I.logor e1 e2)) (to_poly e1 |. to_poly e2)
let lemma_shift_left f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
PL.lemma_mod_monomial (shift (to_poly e) (I.uint_v n)) nf;
assert (I.uint_v (I.shift_left e n) == U.shift_left #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_left e n)) (shift (to_poly e) (I.uint_v n) %. monomial (I.bits f.G.t))
let lemma_shift_right f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
assert (I.uint_v (I.shift_right e n) == U.shift_right #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_right e n)) (shift (to_poly e) (-(I.uint_v n)))
#reset-options
(*
Various definitions of multiply, ranging from Poly2 definition to GaloisField definition:
- Vale.Math.Poly2.Defs_s.mul
- mul_def: same as Defs_s.mul, but using abstract definition of poly
- pmul: equivalent to mul_def, but defined recursively based on adds and shifts by n
- mmul: same as pmul, but also do a "mod m" in the add
- smul: same as mmul, but incrementally shift by 1 rather than shifting by n and implement "mod m" using add
- gmul: same as fmul, but defined using recursion instead of repeati
- fmul: same as Spec.GaloisField.fmul, but use named function instead of lambda
- Spec.GaloisField.fmul
*)
let poly_length (p:poly) : nat =
(if degree p < 0 then PL.lemma_degree_negative p);
1 + degree p
unfold let sum_of_bools = D.sum_of_bools
let mul_element_fun (a b:poly) (k i:int) : bool = a.[i] && b.[k - i]
let mul_element (a b:poly) (k:int) : bool =
sum_of_bools 0 (k + 1) (mul_element_fun a b k)
[@"opaque_to_smt"]
let mul_def (a b:poly) : Pure poly
(requires True)
(ensures fun p ->
let len = poly_length a + poly_length b in
poly_length p <= len /\
(forall (i:nat).{:pattern p.[i]} i < len ==> p.[i] == mul_element a b i)
)
=
let len = poly_length a + poly_length b in
of_fun len (fun (i:nat) -> mul_element a b i)
let rec pmul_rec (a b:poly) (n:nat) : Tot poly (decreases n) =
if n = 0 then zero
else
let n' = n - 1 in
let p = pmul_rec a b n' in
if b.[n'] then p +. shift a n' else p | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2_s.poly -> b: Vale.Math.Poly2_s.poly -> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Vale.Math.Poly2.Galois.pmul_rec",
"Vale.Math.Poly2.Galois.poly_length"
] | [] | false | false | false | true | false | let pmul (a b: poly) : poly =
| pmul_rec a b (poly_length b) | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.mod_bit1 | val mod_bit1 (a m: poly) : poly | val mod_bit1 (a m: poly) : poly | let mod_bit1 (a m:poly) : poly =
if a.[degree m] then a +. m else a | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 36,
"end_line": 202,
"start_col": 0,
"start_line": 201
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
()
let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
()
let lemma_zero f =
let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
//let lemma_zero' (f:G.field) : Lemma
// (G.zero == to_felem f zero)
// =
// lemma_zero f;
// lemma_felem_poly #f G.zero
let lemma_one f =
let G.GF t irred = f in
let n = I.bits t in
let a = one in
let b = to_poly #f G.one in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_one_define ();
(if 0 <= i && i < n then U.one_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
let lemma_add f e1 e2 =
let G.GF t irred = f in
GI.define_logxor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_add_define_all ();
lemma_equal (to_poly (G.fadd e1 e2)) (to_poly e1 +. to_poly e2)
let lemma_and f e1 e2 =
let G.GF t irred = f in
GI.define_logand t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_and_define_all ();
lemma_equal (to_poly (I.logand e1 e2)) (to_poly e1 &. to_poly e2)
let lemma_or f e1 e2 =
let G.GF t irred = f in
GI.define_logor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_or_define_all ();
lemma_equal (to_poly (I.logor e1 e2)) (to_poly e1 |. to_poly e2)
let lemma_shift_left f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
PL.lemma_mod_monomial (shift (to_poly e) (I.uint_v n)) nf;
assert (I.uint_v (I.shift_left e n) == U.shift_left #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_left e n)) (shift (to_poly e) (I.uint_v n) %. monomial (I.bits f.G.t))
let lemma_shift_right f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
assert (I.uint_v (I.shift_right e n) == U.shift_right #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_right e n)) (shift (to_poly e) (-(I.uint_v n)))
#reset-options
(*
Various definitions of multiply, ranging from Poly2 definition to GaloisField definition:
- Vale.Math.Poly2.Defs_s.mul
- mul_def: same as Defs_s.mul, but using abstract definition of poly
- pmul: equivalent to mul_def, but defined recursively based on adds and shifts by n
- mmul: same as pmul, but also do a "mod m" in the add
- smul: same as mmul, but incrementally shift by 1 rather than shifting by n and implement "mod m" using add
- gmul: same as fmul, but defined using recursion instead of repeati
- fmul: same as Spec.GaloisField.fmul, but use named function instead of lambda
- Spec.GaloisField.fmul
*)
let poly_length (p:poly) : nat =
(if degree p < 0 then PL.lemma_degree_negative p);
1 + degree p
unfold let sum_of_bools = D.sum_of_bools
let mul_element_fun (a b:poly) (k i:int) : bool = a.[i] && b.[k - i]
let mul_element (a b:poly) (k:int) : bool =
sum_of_bools 0 (k + 1) (mul_element_fun a b k)
[@"opaque_to_smt"]
let mul_def (a b:poly) : Pure poly
(requires True)
(ensures fun p ->
let len = poly_length a + poly_length b in
poly_length p <= len /\
(forall (i:nat).{:pattern p.[i]} i < len ==> p.[i] == mul_element a b i)
)
=
let len = poly_length a + poly_length b in
of_fun len (fun (i:nat) -> mul_element a b i)
let rec pmul_rec (a b:poly) (n:nat) : Tot poly (decreases n) =
if n = 0 then zero
else
let n' = n - 1 in
let p = pmul_rec a b n' in
if b.[n'] then p +. shift a n' else p
let pmul (a b:poly) : poly =
pmul_rec a b (poly_length b)
let rec mmul (a b m:poly) (n:nat) : Tot poly (decreases n) =
if n = 0 then zero
else
let n' = n - 1 in
let p = mmul a b m n' in
if b.[n'] then p +. (shift a n' %. m) else p | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2_s.poly -> m: Vale.Math.Poly2_s.poly -> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Vale.Math.Poly2_s.op_String_Access",
"Vale.Math.Poly2_s.degree",
"Vale.Math.Poly2.op_Plus_Dot",
"Prims.bool"
] | [] | false | false | false | true | false | let mod_bit1 (a m: poly) : poly =
| if a.[ degree m ] then a +. m else a | false |
Lib.ByteSequence.fst | Lib.ByteSequence.nat_from_intseq_le_inj | val nat_from_intseq_le_inj:
#t:inttype{unsigned t} -> #l:secrecy_level -> b1:seq (uint_t t l) -> b2:seq (uint_t t l) ->
Lemma
(requires length b1 == length b2 /\ nat_from_intseq_le b1 == nat_from_intseq_le b2)
(ensures Seq.equal b1 b2)
(decreases (length b1)) | val nat_from_intseq_le_inj:
#t:inttype{unsigned t} -> #l:secrecy_level -> b1:seq (uint_t t l) -> b2:seq (uint_t t l) ->
Lemma
(requires length b1 == length b2 /\ nat_from_intseq_le b1 == nat_from_intseq_le b2)
(ensures Seq.equal b1 b2)
(decreases (length b1)) | let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 728,
"start_col": 0,
"start_line": 722
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b1: Lib.Sequence.seq (Lib.IntTypes.uint_t t l) -> b2: Lib.Sequence.seq (Lib.IntTypes.uint_t t l)
-> FStar.Pervasives.Lemma
(requires
Lib.Sequence.length b1 == Lib.Sequence.length b2 /\
Lib.ByteSequence.nat_from_intseq_le b1 == Lib.ByteSequence.nat_from_intseq_le b2)
(ensures FStar.Seq.Base.equal b1 b2)
(decreases Lib.Sequence.length b1) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.Sequence.seq",
"Lib.IntTypes.uint_t",
"Prims.op_Equality",
"Prims.int",
"Lib.Sequence.length",
"Prims.bool",
"FStar.Seq.Properties.lemma_split",
"Prims.unit",
"Lib.ByteSequence.nat_from_intseq_le_inj",
"FStar.Seq.Base.slice"
] | [
"recursion"
] | false | false | true | false | false | let rec nat_from_intseq_le_inj #t #l b1 b2 =
| if length b1 = 0
then ()
else
(nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1) | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.fmul_t | val fmul_t : f: Spec.GaloisField.field -> Type0 | let fmul_t (f:G.field) = G.felem f & G.felem f & G.felem f | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 58,
"end_line": 221,
"start_col": 0,
"start_line": 221
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
()
let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
()
let lemma_zero f =
let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
//let lemma_zero' (f:G.field) : Lemma
// (G.zero == to_felem f zero)
// =
// lemma_zero f;
// lemma_felem_poly #f G.zero
let lemma_one f =
let G.GF t irred = f in
let n = I.bits t in
let a = one in
let b = to_poly #f G.one in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_one_define ();
(if 0 <= i && i < n then U.one_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
let lemma_add f e1 e2 =
let G.GF t irred = f in
GI.define_logxor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_add_define_all ();
lemma_equal (to_poly (G.fadd e1 e2)) (to_poly e1 +. to_poly e2)
let lemma_and f e1 e2 =
let G.GF t irred = f in
GI.define_logand t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_and_define_all ();
lemma_equal (to_poly (I.logand e1 e2)) (to_poly e1 &. to_poly e2)
let lemma_or f e1 e2 =
let G.GF t irred = f in
GI.define_logor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_or_define_all ();
lemma_equal (to_poly (I.logor e1 e2)) (to_poly e1 |. to_poly e2)
let lemma_shift_left f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
PL.lemma_mod_monomial (shift (to_poly e) (I.uint_v n)) nf;
assert (I.uint_v (I.shift_left e n) == U.shift_left #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_left e n)) (shift (to_poly e) (I.uint_v n) %. monomial (I.bits f.G.t))
let lemma_shift_right f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
assert (I.uint_v (I.shift_right e n) == U.shift_right #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_right e n)) (shift (to_poly e) (-(I.uint_v n)))
#reset-options
(*
Various definitions of multiply, ranging from Poly2 definition to GaloisField definition:
- Vale.Math.Poly2.Defs_s.mul
- mul_def: same as Defs_s.mul, but using abstract definition of poly
- pmul: equivalent to mul_def, but defined recursively based on adds and shifts by n
- mmul: same as pmul, but also do a "mod m" in the add
- smul: same as mmul, but incrementally shift by 1 rather than shifting by n and implement "mod m" using add
- gmul: same as fmul, but defined using recursion instead of repeati
- fmul: same as Spec.GaloisField.fmul, but use named function instead of lambda
- Spec.GaloisField.fmul
*)
let poly_length (p:poly) : nat =
(if degree p < 0 then PL.lemma_degree_negative p);
1 + degree p
unfold let sum_of_bools = D.sum_of_bools
let mul_element_fun (a b:poly) (k i:int) : bool = a.[i] && b.[k - i]
let mul_element (a b:poly) (k:int) : bool =
sum_of_bools 0 (k + 1) (mul_element_fun a b k)
[@"opaque_to_smt"]
let mul_def (a b:poly) : Pure poly
(requires True)
(ensures fun p ->
let len = poly_length a + poly_length b in
poly_length p <= len /\
(forall (i:nat).{:pattern p.[i]} i < len ==> p.[i] == mul_element a b i)
)
=
let len = poly_length a + poly_length b in
of_fun len (fun (i:nat) -> mul_element a b i)
let rec pmul_rec (a b:poly) (n:nat) : Tot poly (decreases n) =
if n = 0 then zero
else
let n' = n - 1 in
let p = pmul_rec a b n' in
if b.[n'] then p +. shift a n' else p
let pmul (a b:poly) : poly =
pmul_rec a b (poly_length b)
let rec mmul (a b m:poly) (n:nat) : Tot poly (decreases n) =
if n = 0 then zero
else
let n' = n - 1 in
let p = mmul a b m n' in
if b.[n'] then p +. (shift a n' %. m) else p
let mod_bit1 (a m:poly) : poly =
if a.[degree m] then a +. m else a
let rec smul_rec (a b m:poly) (n:nat) : Tot (poly & poly & poly) (decreases n) =
if n = 0 then (zero, a, b)
else
let (p, a, b) = smul_rec a b m (n - 1) in
let p = p +. (if b.[0] then a else zero) in
let a = mod_bit1 (shift a 1) m in // mod_bit1 is equivalent to mod in this case
let b = shift b (-1) in
(p, a, b)
let smul (a b m:poly) (n:nat) : poly =
let (p, _, _) = smul_rec a b m n in
p
let mod_shift1 (a irred:poly) (k:nat) : poly =
let s = shift a 1 %. monomial k in
s +. (if a.[k - 1] then irred else zero) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Spec.GaloisField.field -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Spec.GaloisField.field",
"FStar.Pervasives.Native.tuple3",
"Spec.GaloisField.felem"
] | [] | false | false | false | true | true | let fmul_t (f: G.field) =
| G.felem f & G.felem f & G.felem f | false |
|
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.mod_shift1 | val mod_shift1 (a irred: poly) (k: nat) : poly | val mod_shift1 (a irred: poly) (k: nat) : poly | let mod_shift1 (a irred:poly) (k:nat) : poly =
let s = shift a 1 %. monomial k in
s +. (if a.[k - 1] then irred else zero) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 42,
"end_line": 219,
"start_col": 0,
"start_line": 217
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
()
let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
()
let lemma_zero f =
let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
//let lemma_zero' (f:G.field) : Lemma
// (G.zero == to_felem f zero)
// =
// lemma_zero f;
// lemma_felem_poly #f G.zero
let lemma_one f =
let G.GF t irred = f in
let n = I.bits t in
let a = one in
let b = to_poly #f G.one in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_one_define ();
(if 0 <= i && i < n then U.one_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
let lemma_add f e1 e2 =
let G.GF t irred = f in
GI.define_logxor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_add_define_all ();
lemma_equal (to_poly (G.fadd e1 e2)) (to_poly e1 +. to_poly e2)
let lemma_and f e1 e2 =
let G.GF t irred = f in
GI.define_logand t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_and_define_all ();
lemma_equal (to_poly (I.logand e1 e2)) (to_poly e1 &. to_poly e2)
let lemma_or f e1 e2 =
let G.GF t irred = f in
GI.define_logor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_or_define_all ();
lemma_equal (to_poly (I.logor e1 e2)) (to_poly e1 |. to_poly e2)
let lemma_shift_left f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
PL.lemma_mod_monomial (shift (to_poly e) (I.uint_v n)) nf;
assert (I.uint_v (I.shift_left e n) == U.shift_left #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_left e n)) (shift (to_poly e) (I.uint_v n) %. monomial (I.bits f.G.t))
let lemma_shift_right f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
assert (I.uint_v (I.shift_right e n) == U.shift_right #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_right e n)) (shift (to_poly e) (-(I.uint_v n)))
#reset-options
(*
Various definitions of multiply, ranging from Poly2 definition to GaloisField definition:
- Vale.Math.Poly2.Defs_s.mul
- mul_def: same as Defs_s.mul, but using abstract definition of poly
- pmul: equivalent to mul_def, but defined recursively based on adds and shifts by n
- mmul: same as pmul, but also do a "mod m" in the add
- smul: same as mmul, but incrementally shift by 1 rather than shifting by n and implement "mod m" using add
- gmul: same as fmul, but defined using recursion instead of repeati
- fmul: same as Spec.GaloisField.fmul, but use named function instead of lambda
- Spec.GaloisField.fmul
*)
let poly_length (p:poly) : nat =
(if degree p < 0 then PL.lemma_degree_negative p);
1 + degree p
unfold let sum_of_bools = D.sum_of_bools
let mul_element_fun (a b:poly) (k i:int) : bool = a.[i] && b.[k - i]
let mul_element (a b:poly) (k:int) : bool =
sum_of_bools 0 (k + 1) (mul_element_fun a b k)
[@"opaque_to_smt"]
let mul_def (a b:poly) : Pure poly
(requires True)
(ensures fun p ->
let len = poly_length a + poly_length b in
poly_length p <= len /\
(forall (i:nat).{:pattern p.[i]} i < len ==> p.[i] == mul_element a b i)
)
=
let len = poly_length a + poly_length b in
of_fun len (fun (i:nat) -> mul_element a b i)
let rec pmul_rec (a b:poly) (n:nat) : Tot poly (decreases n) =
if n = 0 then zero
else
let n' = n - 1 in
let p = pmul_rec a b n' in
if b.[n'] then p +. shift a n' else p
let pmul (a b:poly) : poly =
pmul_rec a b (poly_length b)
let rec mmul (a b m:poly) (n:nat) : Tot poly (decreases n) =
if n = 0 then zero
else
let n' = n - 1 in
let p = mmul a b m n' in
if b.[n'] then p +. (shift a n' %. m) else p
let mod_bit1 (a m:poly) : poly =
if a.[degree m] then a +. m else a
let rec smul_rec (a b m:poly) (n:nat) : Tot (poly & poly & poly) (decreases n) =
if n = 0 then (zero, a, b)
else
let (p, a, b) = smul_rec a b m (n - 1) in
let p = p +. (if b.[0] then a else zero) in
let a = mod_bit1 (shift a 1) m in // mod_bit1 is equivalent to mod in this case
let b = shift b (-1) in
(p, a, b)
let smul (a b m:poly) (n:nat) : poly =
let (p, _, _) = smul_rec a b m n in
p | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2_s.poly -> irred: Vale.Math.Poly2_s.poly -> k: Prims.nat -> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Prims.nat",
"Vale.Math.Poly2.op_Plus_Dot",
"Vale.Math.Poly2_s.op_String_Access",
"Prims.op_Subtraction",
"Prims.bool",
"Vale.Math.Poly2_s.zero",
"Vale.Math.Poly2.op_Percent_Dot",
"Vale.Math.Poly2_s.shift",
"Vale.Math.Poly2_s.monomial"
] | [] | false | false | false | true | false | let mod_shift1 (a irred: poly) (k: nat) : poly =
| let s = shift a 1 %. monomial k in
s +. (if a.[ k - 1 ] then irred else zero) | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.smul | val smul (a b m: poly) (n: nat) : poly | val smul (a b m: poly) (n: nat) : poly | let smul (a b m:poly) (n:nat) : poly =
let (p, _, _) = smul_rec a b m n in
p | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 215,
"start_col": 0,
"start_line": 213
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
()
let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
()
let lemma_zero f =
let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
//let lemma_zero' (f:G.field) : Lemma
// (G.zero == to_felem f zero)
// =
// lemma_zero f;
// lemma_felem_poly #f G.zero
let lemma_one f =
let G.GF t irred = f in
let n = I.bits t in
let a = one in
let b = to_poly #f G.one in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_one_define ();
(if 0 <= i && i < n then U.one_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
let lemma_add f e1 e2 =
let G.GF t irred = f in
GI.define_logxor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_add_define_all ();
lemma_equal (to_poly (G.fadd e1 e2)) (to_poly e1 +. to_poly e2)
let lemma_and f e1 e2 =
let G.GF t irred = f in
GI.define_logand t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_and_define_all ();
lemma_equal (to_poly (I.logand e1 e2)) (to_poly e1 &. to_poly e2)
let lemma_or f e1 e2 =
let G.GF t irred = f in
GI.define_logor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_or_define_all ();
lemma_equal (to_poly (I.logor e1 e2)) (to_poly e1 |. to_poly e2)
let lemma_shift_left f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
PL.lemma_mod_monomial (shift (to_poly e) (I.uint_v n)) nf;
assert (I.uint_v (I.shift_left e n) == U.shift_left #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_left e n)) (shift (to_poly e) (I.uint_v n) %. monomial (I.bits f.G.t))
let lemma_shift_right f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
assert (I.uint_v (I.shift_right e n) == U.shift_right #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_right e n)) (shift (to_poly e) (-(I.uint_v n)))
#reset-options
(*
Various definitions of multiply, ranging from Poly2 definition to GaloisField definition:
- Vale.Math.Poly2.Defs_s.mul
- mul_def: same as Defs_s.mul, but using abstract definition of poly
- pmul: equivalent to mul_def, but defined recursively based on adds and shifts by n
- mmul: same as pmul, but also do a "mod m" in the add
- smul: same as mmul, but incrementally shift by 1 rather than shifting by n and implement "mod m" using add
- gmul: same as fmul, but defined using recursion instead of repeati
- fmul: same as Spec.GaloisField.fmul, but use named function instead of lambda
- Spec.GaloisField.fmul
*)
let poly_length (p:poly) : nat =
(if degree p < 0 then PL.lemma_degree_negative p);
1 + degree p
unfold let sum_of_bools = D.sum_of_bools
let mul_element_fun (a b:poly) (k i:int) : bool = a.[i] && b.[k - i]
let mul_element (a b:poly) (k:int) : bool =
sum_of_bools 0 (k + 1) (mul_element_fun a b k)
[@"opaque_to_smt"]
let mul_def (a b:poly) : Pure poly
(requires True)
(ensures fun p ->
let len = poly_length a + poly_length b in
poly_length p <= len /\
(forall (i:nat).{:pattern p.[i]} i < len ==> p.[i] == mul_element a b i)
)
=
let len = poly_length a + poly_length b in
of_fun len (fun (i:nat) -> mul_element a b i)
let rec pmul_rec (a b:poly) (n:nat) : Tot poly (decreases n) =
if n = 0 then zero
else
let n' = n - 1 in
let p = pmul_rec a b n' in
if b.[n'] then p +. shift a n' else p
let pmul (a b:poly) : poly =
pmul_rec a b (poly_length b)
let rec mmul (a b m:poly) (n:nat) : Tot poly (decreases n) =
if n = 0 then zero
else
let n' = n - 1 in
let p = mmul a b m n' in
if b.[n'] then p +. (shift a n' %. m) else p
let mod_bit1 (a m:poly) : poly =
if a.[degree m] then a +. m else a
let rec smul_rec (a b m:poly) (n:nat) : Tot (poly & poly & poly) (decreases n) =
if n = 0 then (zero, a, b)
else
let (p, a, b) = smul_rec a b m (n - 1) in
let p = p +. (if b.[0] then a else zero) in
let a = mod_bit1 (shift a 1) m in // mod_bit1 is equivalent to mod in this case
let b = shift b (-1) in
(p, a, b) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2_s.poly -> b: Vale.Math.Poly2_s.poly -> m: Vale.Math.Poly2_s.poly -> n: Prims.nat
-> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Prims.nat",
"FStar.Pervasives.Native.tuple3",
"Vale.Math.Poly2.Galois.smul_rec"
] | [] | false | false | false | true | false | let smul (a b m: poly) (n: nat) : poly =
| let p, _, _ = smul_rec a b m n in
p | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_to_bytes_be_nat_lemma | val uints_to_bytes_be_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> Lemma
(uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n) ==
nat_to_bytes_be (len * numbytes t) n) | val uints_to_bytes_be_nat_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> Lemma
(uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n) ==
nat_to_bytes_be (len * numbytes t) n) | let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 49,
"end_line": 718,
"start_col": 0,
"start_line": 715
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
len: Prims.nat{len * Lib.IntTypes.numbytes t < Prims.pow2 32} ->
n: Prims.nat{n < Prims.pow2 (Lib.IntTypes.bits t * len)}
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.uints_to_bytes_be (Lib.ByteSequence.nat_to_intseq_be len n) ==
Lib.ByteSequence.nat_to_bytes_be (len * Lib.IntTypes.numbytes t) n) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Prims.nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.IntTypes.bits",
"Lib.Sequence.eq_intro",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.ByteSequence.uints_to_bytes_be",
"Lib.ByteSequence.nat_to_intseq_be",
"Lib.ByteSequence.nat_to_bytes_be",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.eq2",
"FStar.Seq.Base.index",
"Lib.ByteSequence.uints_to_bytes_be_nat_lemma_"
] | [] | false | false | true | false | false | let uints_to_bytes_be_nat_lemma #t #l len n =
| Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n) | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.lemma_zero | val lemma_zero (f:G.field) : Lemma
(requires True)
(ensures to_poly #f G.zero == zero)
[SMTPat (to_poly #f G.zero)] | val lemma_zero (f:G.field) : Lemma
(requires True)
(ensures to_poly #f G.zero == zero)
[SMTPat (to_poly #f G.zero)] | let lemma_zero f =
let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 35,
"end_line": 83,
"start_col": 0,
"start_line": 71
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
()
let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
() | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Spec.GaloisField.field
-> FStar.Pervasives.Lemma
(ensures Vale.Math.Poly2.Galois.to_poly Spec.GaloisField.zero == Vale.Math.Poly2_s.zero)
[SMTPat (Vale.Math.Poly2.Galois.to_poly Spec.GaloisField.zero)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.GaloisField.field",
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.op_disEquality",
"Lib.IntTypes.U1",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Vale.Math.Poly2.Lemmas.lemma_pointwise_equal",
"Prims.int",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.bool",
"Vale.Math.Poly2_s.poly_index",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims.op_AmpAmp",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.UInt.zero_to_vec_lemma",
"Prims.op_Subtraction",
"Vale.Math.Poly2.Lemmas.lemma_zero_define",
"Vale.Math.Poly2.Lemmas.lemma_reverse_define_all",
"Vale.Math.Poly2.Lemmas.lemma_index_all",
"Vale.Math.Poly2_s.op_String_Access",
"Vale.Math.Poly2_s.poly",
"Vale.Math.Poly2.Galois.to_poly",
"Spec.GaloisField.zero",
"Vale.Math.Poly2_s.zero",
"Lib.IntTypes.bits"
] | [] | false | false | true | false | false | let lemma_zero f =
| let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i: int) : Lemma (a.[ i ] == b.[ i ]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i | false |
Lib.ByteSequence.fst | Lib.ByteSequence.lemma_uint_from_to_bytes_be_preserves_value | val lemma_uint_from_to_bytes_be_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
s : lbytes_l l (numbytes t) ->
Lemma(uint_to_bytes_be #t #l (uint_from_bytes_be #t #l s) `equal` s) | val lemma_uint_from_to_bytes_be_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
s : lbytes_l l (numbytes t) ->
Lemma(uint_to_bytes_be #t #l (uint_from_bytes_be #t #l s) `equal` s) | let lemma_uint_from_to_bytes_be_preserves_value #t #l s =
let i = uint_from_bytes_be #t #l s in
let s' = uint_to_bytes_be #t #l i in
lemma_nat_from_to_bytes_be_preserves_value #l s' (length s');
assert(nat_to_bytes_be #l (length s') (nat_from_bytes_be s') == s');
lemma_uint_to_bytes_be_preserves_value #t #l i;
assert(nat_from_bytes_be (uint_to_bytes_be #t #l i) == uint_v i);
assert(s' == nat_to_bytes_be #l (length s') (uint_v i));
assert(s' == nat_to_bytes_be #l (length s') (uint_v (uint_from_bytes_be #t #l s)));
lemma_reveal_uint_to_bytes_be #t #l s;
assert(s' == nat_to_bytes_be #l (length s') (nat_from_bytes_be s));
lemma_nat_from_to_bytes_be_preserves_value #l s (length s) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 60,
"end_line": 797,
"start_col": 0,
"start_line": 786
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b
let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b
let lemma_nat_from_to_bytes_be_preserves_value #l b len =
lemma_nat_from_to_intseq_be_preserves_value len b
let lemma_reveal_uint_to_bytes_le #t #l b = ()
let lemma_reveal_uint_to_bytes_be #t #l b = ()
let lemma_uint_to_from_bytes_le_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_le #t #l (uint_to_bytes_le #t #l i);
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) ==
uint_v (uint_from_bytes_le #t #l (uint_to_bytes_le #t #l i)));
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i)
let lemma_uint_to_from_bytes_be_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_be #t #l (uint_to_bytes_be #t #l i);
lemma_uint_to_bytes_be_preserves_value #t #l i
let lemma_uint_from_to_bytes_le_preserves_value #t #l s =
let i = uint_from_bytes_le #t #l s in
let s' = uint_to_bytes_le #t #l i in
lemma_nat_from_to_bytes_le_preserves_value #l s' (length s');
assert(nat_to_bytes_le #l (length s') (nat_from_bytes_le s') == s');
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i);
assert(s' == nat_to_bytes_le #l (length s') (uint_v i));
assert(s' == nat_to_bytes_le #l (length s') (uint_v (uint_from_bytes_le #t #l s)));
lemma_reveal_uint_to_bytes_le #t #l s;
assert(s' == nat_to_bytes_le #l (length s') (nat_from_bytes_le s));
lemma_nat_from_to_bytes_le_preserves_value #l s (length s) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Lib.ByteSequence.lbytes_l l (Lib.IntTypes.numbytes t)
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.equal (Lib.ByteSequence.uint_to_bytes_be (Lib.ByteSequence.uint_from_bytes_be s))
s) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.ByteSequence.lbytes_l",
"Lib.IntTypes.numbytes",
"Lib.ByteSequence.lemma_nat_from_to_bytes_be_preserves_value",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Lib.Sequence.seq",
"Prims.l_or",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Lib.ByteSequence.nat_from_bytes_be",
"Lib.ByteSequence.nat_from_intseq_be",
"FStar.Seq.Base.length",
"Lib.ByteSequence.nat_to_bytes_be",
"Lib.ByteSequence.lemma_reveal_uint_to_bytes_be",
"Lib.IntTypes.uint_v",
"Lib.ByteSequence.uint_from_bytes_be",
"Prims.int",
"Prims.op_GreaterThanOrEqual",
"Lib.ByteSequence.uint_to_bytes_be",
"Lib.IntTypes.range",
"Lib.ByteSequence.lemma_uint_to_bytes_be_preserves_value",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t"
] | [] | true | false | true | false | false | let lemma_uint_from_to_bytes_be_preserves_value #t #l s =
| let i = uint_from_bytes_be #t #l s in
let s' = uint_to_bytes_be #t #l i in
lemma_nat_from_to_bytes_be_preserves_value #l s' (length s');
assert (nat_to_bytes_be #l (length s') (nat_from_bytes_be s') == s');
lemma_uint_to_bytes_be_preserves_value #t #l i;
assert (nat_from_bytes_be (uint_to_bytes_be #t #l i) == uint_v i);
assert (s' == nat_to_bytes_be #l (length s') (uint_v i));
assert (s' == nat_to_bytes_be #l (length s') (uint_v (uint_from_bytes_be #t #l s)));
lemma_reveal_uint_to_bytes_be #t #l s;
assert (s' == nat_to_bytes_be #l (length s') (nat_from_bytes_be s));
lemma_nat_from_to_bytes_be_preserves_value #l s (length s) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.lemma_uints_to_from_bytes_le_preserves_value | val lemma_uints_to_from_bytes_le_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
#len:size_nat{len * numbytes t < pow2 32} ->
s : lseq (uint_t t l) len ->
Lemma(uints_from_bytes_le #t #l (uints_to_bytes_le #t #l s) == s) | val lemma_uints_to_from_bytes_le_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
#len:size_nat{len * numbytes t < pow2 32} ->
s : lseq (uint_t t l) len ->
Lemma(uints_from_bytes_le #t #l (uints_to_bytes_le #t #l s) == s) | let lemma_uints_to_from_bytes_le_preserves_value #t #l #len s =
let lemma_uints_to_from_bytes_le_preserves_value_i (i : size_nat {i < len}) :
Lemma(index (uints_from_bytes_le #t #l (uints_to_bytes_le #t #l s)) i == index s i) =
let b8 = uints_to_bytes_le #t #l s in
index_uints_from_bytes_le #t #l #len b8 i;
assert (index (uints_from_bytes_le b8) i ==
uint_from_bytes_le (sub b8 (i * numbytes t) (numbytes t)));
lemma_uints_to_bytes_le_sub s i;
assert (sub b8 (i * numbytes t) (numbytes t) == uint_to_bytes_le (index s i));
lemma_uint_to_from_bytes_le_preserves_value (index s i) in
Classical.forall_intro lemma_uints_to_from_bytes_le_preserves_value_i;
eq_intro (uints_from_bytes_le #t #l (uints_to_bytes_le #t #l s)) s | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 68,
"end_line": 860,
"start_col": 0,
"start_line": 848
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b
let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b
let lemma_nat_from_to_bytes_be_preserves_value #l b len =
lemma_nat_from_to_intseq_be_preserves_value len b
let lemma_reveal_uint_to_bytes_le #t #l b = ()
let lemma_reveal_uint_to_bytes_be #t #l b = ()
let lemma_uint_to_from_bytes_le_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_le #t #l (uint_to_bytes_le #t #l i);
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) ==
uint_v (uint_from_bytes_le #t #l (uint_to_bytes_le #t #l i)));
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i)
let lemma_uint_to_from_bytes_be_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_be #t #l (uint_to_bytes_be #t #l i);
lemma_uint_to_bytes_be_preserves_value #t #l i
let lemma_uint_from_to_bytes_le_preserves_value #t #l s =
let i = uint_from_bytes_le #t #l s in
let s' = uint_to_bytes_le #t #l i in
lemma_nat_from_to_bytes_le_preserves_value #l s' (length s');
assert(nat_to_bytes_le #l (length s') (nat_from_bytes_le s') == s');
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i);
assert(s' == nat_to_bytes_le #l (length s') (uint_v i));
assert(s' == nat_to_bytes_le #l (length s') (uint_v (uint_from_bytes_le #t #l s)));
lemma_reveal_uint_to_bytes_le #t #l s;
assert(s' == nat_to_bytes_le #l (length s') (nat_from_bytes_le s));
lemma_nat_from_to_bytes_le_preserves_value #l s (length s)
let lemma_uint_from_to_bytes_be_preserves_value #t #l s =
let i = uint_from_bytes_be #t #l s in
let s' = uint_to_bytes_be #t #l i in
lemma_nat_from_to_bytes_be_preserves_value #l s' (length s');
assert(nat_to_bytes_be #l (length s') (nat_from_bytes_be s') == s');
lemma_uint_to_bytes_be_preserves_value #t #l i;
assert(nat_from_bytes_be (uint_to_bytes_be #t #l i) == uint_v i);
assert(s' == nat_to_bytes_be #l (length s') (uint_v i));
assert(s' == nat_to_bytes_be #l (length s') (uint_v (uint_from_bytes_be #t #l s)));
lemma_reveal_uint_to_bytes_be #t #l s;
assert(s' == nat_to_bytes_be #l (length s') (nat_from_bytes_be s));
lemma_nat_from_to_bytes_be_preserves_value #l s (length s)
let rec nat_from_intseq_be_public_to_secret #t len b =
if len = 1 then begin
nat_from_intseq_be_lemma0 b;
nat_from_intseq_be_lemma0 (map secret b) end
else begin
let b_secret = map secret b in
let b1 = slice b 1 len in
let b1_secret = slice b_secret 1 len in
nat_from_intseq_be_public_to_secret #t (len - 1) b1;
//assert (nat_from_intseq_be b1 == nat_from_intseq_be (map secret b1));
nat_from_intseq_be_slice_lemma b 1;
nat_from_intseq_be_lemma0 (slice b 0 1);
//assert (nat_from_intseq_be b == nat_from_intseq_be b1 + pow2 ((len - 1) * bits t) * v b.[0]);
nat_from_intseq_be_slice_lemma b_secret 1;
nat_from_intseq_be_lemma0 (slice b_secret 0 1);
//assert (nat_from_intseq_be b_secret == nat_from_intseq_be b1_secret + pow2 ((len - 1) * bits t) * v b_secret.[0]);
//assert (v b.[0] == v b_secret.[0]);
eq_intro (slice (map secret b) 1 len) (map secret (slice b 1 len));
() end
let rec nat_from_intseq_le_public_to_secret #t len b =
if len = 1 then begin
nat_from_intseq_le_lemma0 b;
nat_from_intseq_le_lemma0 (map secret b) end
else begin
let b_secret = map secret b in
let b1 = slice b 1 len in
let b1_secret = slice b_secret 1 len in
nat_from_intseq_le_public_to_secret #t (len - 1) b1;
//assert (nat_from_intseq_le b1 == nat_from_intseq_le (map secret b1));
nat_from_intseq_le_slice_lemma b 1;
nat_from_intseq_le_lemma0 (slice b 0 1);
//assert (nat_from_intseq_le b == nat_from_intseq_le (slice b 0 1) + pow2 (bits t) * nat_from_intseq_le (slice b 1 len));
nat_from_intseq_le_slice_lemma b_secret 1;
nat_from_intseq_le_lemma0 (slice b_secret 0 1);
eq_intro (slice (map secret b) 1 len) (map secret (slice b 1 len));
() end
let lemma_uints_to_bytes_le_sub #t #l #len s i =
let lemma_uints_to_bytes_le_i_j (j : size_nat {j < numbytes t}):
Lemma(index (uints_to_bytes_le #t #l s) (i * numbytes t + j) == index (uint_to_bytes_le (index s i)) j) =
index_uints_to_bytes_le #t #l #len s (i*numbytes t + j);
assert (index (uints_to_bytes_le #t #l s) (i*numbytes t + j) ==
index (uint_to_bytes_le (index s i)) j) in
Classical.forall_intro lemma_uints_to_bytes_le_i_j;
eq_intro (sub (uints_to_bytes_le #t #l s) (i * numbytes t) (numbytes t)) (uint_to_bytes_le (index s i)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Lib.Sequence.lseq (Lib.IntTypes.uint_t t l) len
-> FStar.Pervasives.Lemma
(ensures Lib.ByteSequence.uints_from_bytes_le (Lib.ByteSequence.uints_to_bytes_le s) == s) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_nat",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Lib.Sequence.eq_intro",
"Lib.ByteSequence.uints_from_bytes_le",
"Lib.ByteSequence.uints_to_bytes_le",
"Prims.unit",
"FStar.Classical.forall_intro",
"Prims.eq2",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index",
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.l_True",
"Prims.squash",
"Lib.IntTypes.int_t",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Lib.ByteSequence.lemma_uint_to_from_bytes_le_preserves_value",
"Prims._assert",
"Lib.IntTypes.U8",
"Lib.Sequence.sub",
"Lib.ByteSequence.uint_to_bytes_le",
"Lib.ByteSequence.lemma_uints_to_bytes_le_sub",
"Lib.ByteSequence.uint_from_bytes_le",
"Lib.ByteSequence.index_uints_from_bytes_le",
"Prims.op_Multiply"
] | [] | false | false | true | false | false | let lemma_uints_to_from_bytes_le_preserves_value #t #l #len s =
| let lemma_uints_to_from_bytes_le_preserves_value_i (i: size_nat{i < len})
: Lemma (index (uints_from_bytes_le #t #l (uints_to_bytes_le #t #l s)) i == index s i) =
let b8 = uints_to_bytes_le #t #l s in
index_uints_from_bytes_le #t #l #len b8 i;
assert (index (uints_from_bytes_le b8) i ==
uint_from_bytes_le (sub b8 (i * numbytes t) (numbytes t)));
lemma_uints_to_bytes_le_sub s i;
assert (sub b8 (i * numbytes t) (numbytes t) == uint_to_bytes_le (index s i));
lemma_uint_to_from_bytes_le_preserves_value (index s i)
in
Classical.forall_intro lemma_uints_to_from_bytes_le_preserves_value_i;
eq_intro (uints_from_bytes_le #t #l (uints_to_bytes_le #t #l s)) s | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.lemma_and | val lemma_and (f:G.field) (e1 e2:G.felem f) : Lemma
(requires True)
(ensures to_poly (I.logand e1 e2) == (to_poly e1 &. to_poly e2))
[SMTPat (to_poly (I.logand e1 e2))] | val lemma_and (f:G.field) (e1 e2:G.felem f) : Lemma
(requires True)
(ensures to_poly (I.logand e1 e2) == (to_poly e1 &. to_poly e2))
[SMTPat (to_poly (I.logand e1 e2))] | let lemma_and f e1 e2 =
let G.GF t irred = f in
GI.define_logand t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_and_define_all ();
lemma_equal (to_poly (I.logand e1 e2)) (to_poly e1 &. to_poly e2) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 67,
"end_line": 119,
"start_col": 0,
"start_line": 113
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
()
let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
()
let lemma_zero f =
let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
//let lemma_zero' (f:G.field) : Lemma
// (G.zero == to_felem f zero)
// =
// lemma_zero f;
// lemma_felem_poly #f G.zero
let lemma_one f =
let G.GF t irred = f in
let n = I.bits t in
let a = one in
let b = to_poly #f G.one in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_one_define ();
(if 0 <= i && i < n then U.one_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
let lemma_add f e1 e2 =
let G.GF t irred = f in
GI.define_logxor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_add_define_all ();
lemma_equal (to_poly (G.fadd e1 e2)) (to_poly e1 +. to_poly e2) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Spec.GaloisField.field -> e1: Spec.GaloisField.felem f -> e2: Spec.GaloisField.felem f
-> FStar.Pervasives.Lemma
(ensures
Vale.Math.Poly2.Galois.to_poly (Lib.IntTypes.logand e1 e2) ==
(Vale.Math.Poly2.Galois.to_poly e1 &. Vale.Math.Poly2.Galois.to_poly e2))
[SMTPat (Vale.Math.Poly2.Galois.to_poly (Lib.IntTypes.logand e1 e2))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.GaloisField.field",
"Spec.GaloisField.felem",
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.op_disEquality",
"Lib.IntTypes.U1",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Vale.Math.Poly2.lemma_equal",
"Vale.Math.Poly2.Galois.to_poly",
"Lib.IntTypes.logand",
"Spec.GaloisField.__proj__GF__item__t",
"Vale.Math.Poly2.Galois.op_Amp_Dot",
"Prims.unit",
"Vale.Math.Poly2.Lemmas.lemma_and_define_all",
"Vale.Math.Poly2.Lemmas.lemma_reverse_define_all",
"Vale.Math.Poly2.Lemmas.lemma_index_all",
"Vale.Math.Poly2.Galois.IntTypes.define_logand"
] | [] | false | false | true | false | false | let lemma_and f e1 e2 =
| let G.GF t irred = f in
GI.define_logand t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_and_define_all ();
lemma_equal (to_poly (I.logand e1 e2)) (to_poly e1 &. to_poly e2) | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.poly_length | val poly_length (p: poly) : nat | val poly_length (p: poly) : nat | let poly_length (p:poly) : nat =
(if degree p < 0 then PL.lemma_degree_negative p);
1 + degree p | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 14,
"end_line": 164,
"start_col": 0,
"start_line": 162
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
()
let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
()
let lemma_zero f =
let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
//let lemma_zero' (f:G.field) : Lemma
// (G.zero == to_felem f zero)
// =
// lemma_zero f;
// lemma_felem_poly #f G.zero
let lemma_one f =
let G.GF t irred = f in
let n = I.bits t in
let a = one in
let b = to_poly #f G.one in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_one_define ();
(if 0 <= i && i < n then U.one_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
let lemma_add f e1 e2 =
let G.GF t irred = f in
GI.define_logxor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_add_define_all ();
lemma_equal (to_poly (G.fadd e1 e2)) (to_poly e1 +. to_poly e2)
let lemma_and f e1 e2 =
let G.GF t irred = f in
GI.define_logand t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_and_define_all ();
lemma_equal (to_poly (I.logand e1 e2)) (to_poly e1 &. to_poly e2)
let lemma_or f e1 e2 =
let G.GF t irred = f in
GI.define_logor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_or_define_all ();
lemma_equal (to_poly (I.logor e1 e2)) (to_poly e1 |. to_poly e2)
let lemma_shift_left f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
PL.lemma_mod_monomial (shift (to_poly e) (I.uint_v n)) nf;
assert (I.uint_v (I.shift_left e n) == U.shift_left #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_left e n)) (shift (to_poly e) (I.uint_v n) %. monomial (I.bits f.G.t))
let lemma_shift_right f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
assert (I.uint_v (I.shift_right e n) == U.shift_right #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_right e n)) (shift (to_poly e) (-(I.uint_v n)))
#reset-options
(*
Various definitions of multiply, ranging from Poly2 definition to GaloisField definition:
- Vale.Math.Poly2.Defs_s.mul
- mul_def: same as Defs_s.mul, but using abstract definition of poly
- pmul: equivalent to mul_def, but defined recursively based on adds and shifts by n
- mmul: same as pmul, but also do a "mod m" in the add
- smul: same as mmul, but incrementally shift by 1 rather than shifting by n and implement "mod m" using add
- gmul: same as fmul, but defined using recursion instead of repeati
- fmul: same as Spec.GaloisField.fmul, but use named function instead of lambda
- Spec.GaloisField.fmul
*) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Vale.Math.Poly2_s.poly -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Prims.op_Addition",
"Vale.Math.Poly2_s.degree",
"Prims.unit",
"Prims.op_LessThan",
"Vale.Math.Poly2.Lemmas.lemma_degree_negative",
"Prims.bool",
"Prims.nat"
] | [] | false | false | false | true | false | let poly_length (p: poly) : nat =
| (if degree p < 0 then PL.lemma_degree_negative p);
1 + degree p | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.lemma_add | val lemma_add (f:G.field) (e1 e2:G.felem f) : Lemma
(requires True)
(ensures to_poly (G.fadd e1 e2) == to_poly e1 +. to_poly e2)
[SMTPat (to_poly (G.fadd e1 e2))] | val lemma_add (f:G.field) (e1 e2:G.felem f) : Lemma
(requires True)
(ensures to_poly (G.fadd e1 e2) == to_poly e1 +. to_poly e2)
[SMTPat (to_poly (G.fadd e1 e2))] | let lemma_add f e1 e2 =
let G.GF t irred = f in
GI.define_logxor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_add_define_all ();
lemma_equal (to_poly (G.fadd e1 e2)) (to_poly e1 +. to_poly e2) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 65,
"end_line": 111,
"start_col": 0,
"start_line": 105
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
()
let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
()
let lemma_zero f =
let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
//let lemma_zero' (f:G.field) : Lemma
// (G.zero == to_felem f zero)
// =
// lemma_zero f;
// lemma_felem_poly #f G.zero
let lemma_one f =
let G.GF t irred = f in
let n = I.bits t in
let a = one in
let b = to_poly #f G.one in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_one_define ();
(if 0 <= i && i < n then U.one_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Spec.GaloisField.field -> e1: Spec.GaloisField.felem f -> e2: Spec.GaloisField.felem f
-> FStar.Pervasives.Lemma
(ensures
Vale.Math.Poly2.Galois.to_poly (Spec.GaloisField.fadd e1 e2) ==
Vale.Math.Poly2.Galois.to_poly e1 +. Vale.Math.Poly2.Galois.to_poly e2)
[SMTPat (Vale.Math.Poly2.Galois.to_poly (Spec.GaloisField.fadd e1 e2))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.GaloisField.field",
"Spec.GaloisField.felem",
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.op_disEquality",
"Lib.IntTypes.U1",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Vale.Math.Poly2.lemma_equal",
"Vale.Math.Poly2.Galois.to_poly",
"Spec.GaloisField.fadd",
"Vale.Math.Poly2.op_Plus_Dot",
"Prims.unit",
"Vale.Math.Poly2.Lemmas.lemma_add_define_all",
"Vale.Math.Poly2.Lemmas.lemma_reverse_define_all",
"Vale.Math.Poly2.Lemmas.lemma_index_all",
"Vale.Math.Poly2.Galois.IntTypes.define_logxor"
] | [] | false | false | true | false | false | let lemma_add f e1 e2 =
| let G.GF t irred = f in
GI.define_logxor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_add_define_all ();
lemma_equal (to_poly (G.fadd e1 e2)) (to_poly e1 +. to_poly e2) | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.lemma_or | val lemma_or (f:G.field) (e1 e2:G.felem f) : Lemma
(requires True)
(ensures to_poly (I.logor e1 e2) == (to_poly e1 |. to_poly e2))
[SMTPat (to_poly (I.logor e1 e2))] | val lemma_or (f:G.field) (e1 e2:G.felem f) : Lemma
(requires True)
(ensures to_poly (I.logor e1 e2) == (to_poly e1 |. to_poly e2))
[SMTPat (to_poly (I.logor e1 e2))] | let lemma_or f e1 e2 =
let G.GF t irred = f in
GI.define_logor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_or_define_all ();
lemma_equal (to_poly (I.logor e1 e2)) (to_poly e1 |. to_poly e2) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 66,
"end_line": 127,
"start_col": 0,
"start_line": 121
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
()
let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
()
let lemma_zero f =
let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
//let lemma_zero' (f:G.field) : Lemma
// (G.zero == to_felem f zero)
// =
// lemma_zero f;
// lemma_felem_poly #f G.zero
let lemma_one f =
let G.GF t irred = f in
let n = I.bits t in
let a = one in
let b = to_poly #f G.one in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_one_define ();
(if 0 <= i && i < n then U.one_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
let lemma_add f e1 e2 =
let G.GF t irred = f in
GI.define_logxor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_add_define_all ();
lemma_equal (to_poly (G.fadd e1 e2)) (to_poly e1 +. to_poly e2)
let lemma_and f e1 e2 =
let G.GF t irred = f in
GI.define_logand t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_and_define_all ();
lemma_equal (to_poly (I.logand e1 e2)) (to_poly e1 &. to_poly e2) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Spec.GaloisField.field -> e1: Spec.GaloisField.felem f -> e2: Spec.GaloisField.felem f
-> FStar.Pervasives.Lemma
(ensures
Vale.Math.Poly2.Galois.to_poly (Lib.IntTypes.logor e1 e2) ==
(Vale.Math.Poly2.Galois.to_poly e1 |. Vale.Math.Poly2.Galois.to_poly e2))
[SMTPat (Vale.Math.Poly2.Galois.to_poly (Lib.IntTypes.logor e1 e2))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.GaloisField.field",
"Spec.GaloisField.felem",
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.op_disEquality",
"Lib.IntTypes.U1",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Vale.Math.Poly2.lemma_equal",
"Vale.Math.Poly2.Galois.to_poly",
"Lib.IntTypes.logor",
"Spec.GaloisField.__proj__GF__item__t",
"Vale.Math.Poly2.Galois.op_Bar_Dot",
"Prims.unit",
"Vale.Math.Poly2.Lemmas.lemma_or_define_all",
"Vale.Math.Poly2.Lemmas.lemma_reverse_define_all",
"Vale.Math.Poly2.Lemmas.lemma_index_all",
"Vale.Math.Poly2.Galois.IntTypes.define_logor"
] | [] | false | false | true | false | false | let lemma_or f e1 e2 =
| let G.GF t irred = f in
GI.define_logor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_or_define_all ();
lemma_equal (to_poly (I.logor e1 e2)) (to_poly e1 |. to_poly e2) | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.lemma_one | val lemma_one (f:G.field) : Lemma
(requires True)
(ensures to_poly #f G.one == one)
[SMTPat (to_poly #f G.one)] | val lemma_one (f:G.field) : Lemma
(requires True)
(ensures to_poly #f G.one == one)
[SMTPat (to_poly #f G.one)] | let lemma_one f =
let G.GF t irred = f in
let n = I.bits t in
let a = one in
let b = to_poly #f G.one in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_one_define ();
(if 0 <= i && i < n then U.one_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 35,
"end_line": 103,
"start_col": 0,
"start_line": 91
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
()
let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
()
let lemma_zero f =
let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
//let lemma_zero' (f:G.field) : Lemma
// (G.zero == to_felem f zero)
// =
// lemma_zero f;
// lemma_felem_poly #f G.zero | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Spec.GaloisField.field
-> FStar.Pervasives.Lemma
(ensures Vale.Math.Poly2.Galois.to_poly Spec.GaloisField.one == Vale.Math.Poly2_s.one)
[SMTPat (Vale.Math.Poly2.Galois.to_poly Spec.GaloisField.one)] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.GaloisField.field",
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.op_disEquality",
"Lib.IntTypes.U1",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Vale.Math.Poly2.Lemmas.lemma_pointwise_equal",
"Prims.int",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.bool",
"Vale.Math.Poly2_s.poly_index",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims.op_AmpAmp",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"FStar.UInt.one_to_vec_lemma",
"Prims.op_Subtraction",
"Vale.Math.Poly2.Lemmas.lemma_one_define",
"Vale.Math.Poly2.Lemmas.lemma_reverse_define_all",
"Vale.Math.Poly2.Lemmas.lemma_index_all",
"Vale.Math.Poly2_s.op_String_Access",
"Vale.Math.Poly2_s.poly",
"Vale.Math.Poly2.Galois.to_poly",
"Spec.GaloisField.one",
"Vale.Math.Poly2_s.one",
"Lib.IntTypes.bits"
] | [] | false | false | true | false | false | let lemma_one f =
| let G.GF t irred = f in
let n = I.bits t in
let a = one in
let b = to_poly #f G.one in
let eq_i (i: int) : Lemma (a.[ i ] == b.[ i ]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_one_define ();
(if 0 <= i && i < n then U.one_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i | false |
Lib.ByteSequence.fst | Lib.ByteSequence.uints_from_bytes_le_nat_lemma_aux | val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))) | val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))) | let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 104,
"end_line": 460,
"start_col": 0,
"start_line": 455
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes_l l (len * Lib.IntTypes.numbytes t)
-> FStar.Pervasives.Lemma
(ensures
Lib.ByteSequence.nat_from_intseq_le_ (Lib.ByteSequence.uints_from_bytes_le b) ==
Lib.ByteSequence.nat_from_intseq_le_ (Lib.Sequence.slice b 0 (Lib.IntTypes.numbytes t)) +
Prims.pow2 (Lib.IntTypes.bits t) *
Lib.ByteSequence.nat_from_intseq_le_ (Lib.ByteSequence.uints_from_bytes_le (Lib.Sequence.slice
b
(Lib.IntTypes.numbytes t)
(len * Lib.IntTypes.numbytes t)))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Lib.IntTypes.numbytes",
"Prims.pow2",
"Lib.ByteSequence.lbytes_l",
"Prims._assert",
"Prims.eq2",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint_t",
"Prims.op_Subtraction",
"Lib.Sequence.slice",
"Lib.ByteSequence.uints_from_bytes_le",
"Lib.IntTypes.U8",
"Prims.unit",
"Lib.ByteSequence.uints_from_bytes_le_slice_lemma",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"Lib.Sequence.length",
"Lib.IntTypes.bits",
"Lib.IntTypes.range",
"Lib.ByteSequence.nat_from_intseq_le_",
"Lib.IntTypes.v",
"Lib.Sequence.op_String_Access",
"Prims.op_Addition",
"Lib.IntTypes.int_t"
] | [] | true | false | true | false | false | let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
| let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[ 0 ] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[ 0 ]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len ==
uints_from_bytes_le #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.nat_from_intseq_be_inj | val nat_from_intseq_be_inj:
#t:inttype{unsigned t} -> #l:secrecy_level -> b1:seq (uint_t t l) -> b2:seq (uint_t t l) ->
Lemma
(requires length b1 == length b2 /\ nat_from_intseq_be b1 == nat_from_intseq_be b2)
(ensures Seq.equal b1 b2)
(decreases (length b1)) | val nat_from_intseq_be_inj:
#t:inttype{unsigned t} -> #l:secrecy_level -> b1:seq (uint_t t l) -> b2:seq (uint_t t l) ->
Lemma
(requires length b1 == length b2 /\ nat_from_intseq_be b1 == nat_from_intseq_be b2)
(ensures Seq.equal b1 b2)
(decreases (length b1)) | let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 736,
"start_col": 0,
"start_line": 730
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b1: Lib.Sequence.seq (Lib.IntTypes.uint_t t l) -> b2: Lib.Sequence.seq (Lib.IntTypes.uint_t t l)
-> FStar.Pervasives.Lemma
(requires
Lib.Sequence.length b1 == Lib.Sequence.length b2 /\
Lib.ByteSequence.nat_from_intseq_be b1 == Lib.ByteSequence.nat_from_intseq_be b2)
(ensures FStar.Seq.Base.equal b1 b2)
(decreases Lib.Sequence.length b1) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Lib.IntTypes.secrecy_level",
"Lib.Sequence.seq",
"Lib.IntTypes.uint_t",
"Prims.op_Equality",
"Prims.int",
"Lib.Sequence.length",
"Prims.bool",
"FStar.Seq.Properties.lemma_split",
"Prims.op_Subtraction",
"Prims.unit",
"Lib.ByteSequence.nat_from_intseq_be_inj",
"FStar.Seq.Base.slice"
] | [
"recursion"
] | false | false | true | false | false | let rec nat_from_intseq_be_inj #t #l b1 b2 =
| if length b1 = 0
then ()
else
(nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)) | false |
Lib.ByteSequence.fst | Lib.ByteSequence.lemma_uint_from_to_bytes_le_preserves_value | val lemma_uint_from_to_bytes_le_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
s : lbytes_l l (numbytes t) ->
Lemma(uint_to_bytes_le #t #l (uint_from_bytes_le #t #l s) `equal` s) | val lemma_uint_from_to_bytes_le_preserves_value :
#t : inttype{unsigned t /\ ~(U1? t)} ->
#l : secrecy_level ->
s : lbytes_l l (numbytes t) ->
Lemma(uint_to_bytes_le #t #l (uint_from_bytes_le #t #l s) `equal` s) | let lemma_uint_from_to_bytes_le_preserves_value #t #l s =
let i = uint_from_bytes_le #t #l s in
let s' = uint_to_bytes_le #t #l i in
lemma_nat_from_to_bytes_le_preserves_value #l s' (length s');
assert(nat_to_bytes_le #l (length s') (nat_from_bytes_le s') == s');
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i);
assert(s' == nat_to_bytes_le #l (length s') (uint_v i));
assert(s' == nat_to_bytes_le #l (length s') (uint_v (uint_from_bytes_le #t #l s)));
lemma_reveal_uint_to_bytes_le #t #l s;
assert(s' == nat_to_bytes_le #l (length s') (nat_from_bytes_le s));
lemma_nat_from_to_bytes_le_preserves_value #l s (length s) | {
"file_name": "lib/Lib.ByteSequence.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 60,
"end_line": 784,
"start_col": 0,
"start_line": 773
} | module Lib.ByteSequence
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.RawIntTypes
open Lib.LoopCombinators
#reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0"
/// BEGIN constant-time sequence equality
val lemma_not_equal_slice: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat -> j:nat ->
k:nat{i <= j /\ i <= k /\ j <= k /\ k <= Seq.length b1 /\ k <= Seq.length b2 } ->
Lemma
(requires ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
(ensures ~(Seq.equal (Seq.slice b1 i k) (Seq.slice b2 i k)))
let lemma_not_equal_slice #a b1 b2 i j k =
assert (forall (n:nat{n < k - i}). Seq.index (Seq.slice b1 i k) n == Seq.index b1 (n + i))
val lemma_not_equal_last: #a:Type -> b1:Seq.seq a -> b2:Seq.seq a -> i:nat ->
j:nat{i < j /\ j <= Seq.length b1 /\ j <= Seq.length b2} ->
Lemma
(requires ~(Seq.index b1 (j - 1) == Seq.index b2 (j - 1)))
(ensures ~(Seq.equal (Seq.slice b1 i j) (Seq.slice b2 i j)))
let lemma_not_equal_last #a b1 b2 i j =
Seq.lemma_index_slice b1 i j (j - i - 1);
Seq.lemma_index_slice b2 i j (j - i - 1)
val seq_eq_mask_inner: #t:inttype{~(S128? t)} -> #len1:size_nat -> #len2:size_nat
-> b1:lseq (int_t t SEC) len1
-> b2:lseq (int_t t SEC) len2
-> len:size_nat{len <= len1 /\ len <= len2}
-> i:size_nat{i < len}
-> res:int_t t SEC{
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC))}
-> res':int_t t SEC{
(sub b1 0 (i + 1) == sub b2 0 (i + 1) ==> v res' == v (ones t SEC)) /\
(sub b1 0 (i + 1) =!= sub b2 0 (i + 1) ==> v res' == v (zeros t SEC))}
let seq_eq_mask_inner #t #len1 #len2 b1 b2 len i res =
logand_zeros (ones t SEC);
logand_ones (ones t SEC);
logand_zeros (zeros t SEC);
logand_ones (zeros t SEC);
let z0 = res in
let res = eq_mask b1.[i] b2.[i] &. z0 in
logand_spec (eq_mask b1.[i] b2.[i]) z0;
if v res = ones_v t then
begin
let s1 = sub b1 0 (i + 1) in
let s2 = sub b2 0 (i + 1) in
Seq.lemma_split s1 i;
Seq.lemma_split s2 i;
assert (equal s1 s2)
end
else if v z0 = 0 then
lemma_not_equal_slice b1 b2 0 i (i + 1)
else
lemma_not_equal_last b1 b2 0 (i + 1);
res
let seq_eq_mask #t #len1 #len2 b1 b2 len =
repeati_inductive len
(fun (i:nat{i <= len}) res ->
(sub b1 0 i == sub b2 0 i ==> v res == v (ones t SEC)) /\
(sub b1 0 i =!= sub b2 0 i ==> v res == v (zeros t SEC)))
(seq_eq_mask_inner b1 b2 len)
(ones t SEC)
let lbytes_eq #len b1 b2 =
let res = seq_eq_mask b1 b2 len in
RawIntTypes.u8_to_UInt8 res = 255uy
/// END constant-time sequence equality
let mask_select #t mask a b =
b ^. (mask &. (a ^. b))
let mask_select_lemma #t mask a b =
let t1 = mask &. (a ^. b) in
let t2 = b ^. t1 in
logand_lemma mask (a ^.b);
if v mask = 0 then begin
assert (v t1 == 0);
logxor_lemma b t1;
assert (v t2 = v b);
() end
else begin
assert (v t1 == v (a ^. b));
logxor_lemma b a;
assert (v t2 = v a);
() end
let seq_mask_select #t #len a b mask =
let res = map2 (mask_select mask) a b in
let lemma_aux (i:nat{i < len}) : Lemma (v res.[i] == (if v mask = 0 then v b.[i] else v a.[i])) =
mask_select_lemma mask a.[i] b.[i] in
Classical.forall_intro lemma_aux;
if v mask = 0 then eq_intro res b else eq_intro res a;
res
val nat_from_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_be_ #t #l b =
let len = length b in
if len = 0 then 0
else
let l = v (Seq.index b (len - 1)) in
let pre = Seq.slice b 0 (len - 1) in
let shift = pow2 (bits t) in
let n' = nat_from_intseq_be_ pre in
Math.Lemmas.pow2_plus (bits t) (len * bits t - bits t);
l + shift * n'
let nat_from_intseq_be = nat_from_intseq_be_
val nat_from_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> b:seq (uint_t t l)
-> Tot (n:nat{n < pow2 (length b * bits t)}) (decreases (length b))
let rec nat_from_intseq_le_ #t #l b =
let len = length b in
if len = 0 then 0
else
let shift = pow2 (bits t) in
let tt = Seq.slice b 1 len in
let n' = nat_from_intseq_le_ #t #l tt in
let l = v (Seq.index b 0) in
Math.Lemmas.pow2_plus (bits t) ( len * bits t - bits t);
let n = l + shift * n' in
n
let nat_from_intseq_le = nat_from_intseq_le_
#set-options "--max_fuel 1"
val nat_to_intseq_be_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (int_t t l){length b == len /\ n == nat_from_intseq_be b}) (decreases len)
let rec nat_to_intseq_be_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_be_ len' n' in
let b = Seq.append b' (create 1 tt) in
Seq.append_slices b' (create 1 tt);
b
let nat_to_intseq_be = nat_to_intseq_be_
val nat_to_intseq_le_:
#t:inttype{unsigned t} -> #l:secrecy_level
-> len:nat
-> n:nat{n < pow2 (bits t * len)}
-> Tot (b:seq (uint_t t l){length b == len /\ n == nat_from_intseq_le b}) (decreases len)
let rec nat_to_intseq_le_ #t #l len n =
if len = 0 then Seq.empty
else
let len' = len - 1 in
let tt = uint #t #l (n % modulus t) in
let n' = n / modulus t in
assert (modulus t = pow2 (bits t));
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
let b' = nat_to_intseq_le_ len' n' in
let b = Seq.append (create 1 tt) b' in
Seq.append_slices (create 1 tt) b';
b
let nat_to_intseq_le = nat_to_intseq_le_
/// These lemmas allow to unfold the definition of nat_to_intseq_{b}e without using
/// fuel > 0 below, which makes the proof more expensive
val head_nat_to_intseq_le:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_le #t #l len n) 0 ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_le #t #l len n = ()
val nat_to_intseq_le_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_le #t #l len n ==
Seq.append (create 1 (uint #t #l (n % modulus t)))
(nat_to_intseq_le (len - 1) (n / modulus t)))
let nat_to_intseq_le_pos #t #l len n = ()
val head_nat_to_intseq_be:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (Seq.index (nat_to_intseq_be #t #l len n) (len - 1) ==
uint #t #l (n % pow2 (bits t)))
let head_nat_to_intseq_be #t #l len n = ()
val nat_to_intseq_be_pos:
#t:inttype{unsigned t}
-> #l:secrecy_level
-> len:size_pos
-> n:nat{n < pow2 (bits t * len)}
-> Lemma (nat_to_intseq_be #t #l len n ==
Seq.append (nat_to_intseq_be (len - 1) (n / modulus t))
(create 1 (uint #t #l (n % modulus t))))
let nat_to_intseq_be_pos #t #l len n = ()
#push-options "--fuel 0 --ifuel 0"
let rec index_nat_to_intseq_le #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_le #t #l len n
else
begin
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_le #t #l (len - 1) (n / modulus t)) (i - 1);
== { index_nat_to_intseq_le #t #l (len - 1) (n / modulus t) (i - 1) }
uint ((n / modulus t) / pow2 (bits t * (i - 1)) % modulus t);
== { Math.Lemmas.division_multiplication_lemma n (modulus t) (pow2 (bits t * (i - 1))) }
uint ((n / (pow2 (bits t) * pow2 (bits t * (i - 1)))) % modulus t);
== { Math.Lemmas.pow2_plus (bits t) (bits t * (i - 1)) }
uint ((n / pow2 (bits t + bits t * (i - 1))) % modulus t);
== { Math.Lemmas.distributivity_add_right (bits t) i (-1) }
uint (n / pow2 (bits t + (bits t * i - bits t)) % modulus t);
== { }
uint (n / pow2 (bits t * i) % pow2 (bits t));
};
nat_to_intseq_le_pos #t #l len n
end
let rec index_nat_to_intseq_be #t #l len n i =
if i = 0 then
if len = 0 then () else head_nat_to_intseq_be #t #l len n
else
begin
let len' = len - 1 in
let i' = i - 1 in
let n' = n / pow2 (bits t) in
FStar.Math.Lemmas.lemma_div_lt_nat n (bits t * len) (bits t);
calc (==) {
Seq.index (nat_to_intseq_be #t #l len' n') (len' - i' - 1);
== {index_nat_to_intseq_be #t #l len' n' i'}
uint (n' / pow2 (bits t * i') % pow2 (bits t));
== {}
uint (n / pow2 (bits t) / pow2 (bits t * i') % pow2 (bits t));
== {Math.Lemmas.division_multiplication_lemma n (pow2 (bits t)) (pow2 (bits t * i'))}
uint (n / (pow2 (bits t) * pow2 (bits t * i')) % pow2 (bits t));
== {Math.Lemmas.pow2_plus (bits t) (bits t * i')}
uint (n / (pow2 (bits t + bits t * i')) % pow2 (bits t));
== {Math.Lemmas.distributivity_add_right (bits t) 1 (i - 1)}
uint (n / (pow2 (bits t * i)) % pow2 (bits t));
};
nat_to_intseq_be_pos #t #l len n
end
let uint_to_bytes_le #t #l n =
nat_to_bytes_le (numbytes t) (v n)
let index_uint_to_bytes_le #t #l u =
Classical.forall_intro (index_nat_to_intseq_le #U8 #l (numbytes t) (v u))
let uint_to_bytes_be #t #l n =
nat_to_bytes_be (numbytes t) (v n)
let index_uint_to_bytes_be #t #l u =
Classical.forall_intro (index_nat_to_intseq_be #U8 #l (numbytes t) (v u))
let uint_from_bytes_le #t #l b =
let n = nat_from_intseq_le #U8 b in
uint #t #l n
let uint_from_bytes_be #t #l b =
let n = nat_from_intseq_be #U8 b in
uint #t #l n
val uints_to_bytes_le_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_le_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_le #t #l b.[i]
let uints_to_bytes_le #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_le_inner #t #l #len ul) () in
o
(* Could also be written more simply as:
let uints_to_bytes_le #t #l #len ul =
createi (len * numbytes t)
(fun i -> let s = uint_to_bytes_le ul.[i / numbytes t] in
s.[i % numbytes t])
*)
let index_uints_to_bytes_le #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_le_inner #t #l #len ul) i
val uints_to_bytes_be_inner: #t:inttype{unsigned t} -> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> lseq (int_t t l) len
-> i:nat{i < len} -> unit -> unit & (lseq (uint_t U8 l) (numbytes t))
let uints_to_bytes_be_inner #t #l #len b i () =
let open Lib.Sequence in
(), uint_to_bytes_be #t #l b.[i]
let uints_to_bytes_be #t #l #len ul =
let a_spec (i:nat{i <= len}) = unit in
let _, o = generate_blocks (numbytes t) len len a_spec
(uints_to_bytes_be_inner #t #l #len ul) () in
o
let index_uints_to_bytes_be #t #l #len ul i =
index_generate_blocks (numbytes t) len len (uints_to_bytes_be_inner #t #l #len ul) i
let uints_from_bytes_le #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_le (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_le #t #l #len b i = ()
let uints_from_bytes_be #t #l #len b =
Lib.Sequence.createi #(int_t t l) len
(fun i -> uint_from_bytes_be (sub b (i * numbytes t) (numbytes t)))
let index_uints_from_bytes_be #t #l #len b i = ()
let uint_at_index_le #t #l #len b i =
uint_from_bytes_le (sub b (i * numbytes t) (numbytes t))
let uint_at_index_be #t #l #len b i =
uint_from_bytes_be (sub b (i * numbytes t) (numbytes t))
#push-options "--max_fuel 1"
val nat_from_intseq_slice_lemma_aux: len:pos -> a:nat -> b:nat -> c:nat -> i:pos{i <= len} ->
Lemma (pow2 ((i - 1) * c) * (a + pow2 c * b) == pow2 ((i - 1) * c) * a + pow2 (i * c) * b)
let nat_from_intseq_slice_lemma_aux len a b c i =
FStar.Math.Lemmas.distributivity_add_right (pow2 ((i - 1) * c)) a (pow2 c * b);
FStar.Math.Lemmas.paren_mul_right (pow2 ((i - 1) * c)) (pow2 c) b;
FStar.Math.Lemmas.pow2_plus ((i - 1) * c) c
val nat_from_intseq_le_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 i) + pow2 (i * bits t) * nat_from_intseq_le_ (slice b i len))
let rec nat_from_intseq_le_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = 0 then ()
else begin
let b1 = slice b 0 i in
nat_from_intseq_le_slice_lemma_ #t #l #i b1 (i - 1);
assert (nat_from_intseq_le_ b1 == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * v b.[i - 1]);
nat_from_intseq_le_slice_lemma_ #t #l #len b (i - 1);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (i - 1)) + pow2 ((i - 1) * bits t) * nat_from_intseq_le_ (slice b (i - 1) len));
nat_from_intseq_slice_lemma_aux len (v b.[i - 1]) (nat_from_intseq_le_ (slice b i len)) (bits t) i
end
end
let nat_from_intseq_le_lemma0 #t #l b = ()
let nat_from_intseq_le_slice_lemma #t #l #len b i =
nat_from_intseq_le_slice_lemma_ b i
val nat_from_intseq_be_slice_lemma_:
#t:inttype{unsigned t} -> #l:secrecy_level -> #len:size_nat
-> b:lseq (int_t t l) len
-> i:nat{i <= len} ->
Lemma (ensures (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b i len) + pow2 ((len - i) * bits t) * nat_from_intseq_be_ (slice b 0 i)))
(decreases (len - i))
let rec nat_from_intseq_be_slice_lemma_ #t #l #len b i =
if len = 0 then ()
else begin
if i = len then ()
else begin
let b1 = slice b i len in
nat_from_intseq_be_slice_lemma_ #t #l #(len - i) b1 1;
assert (nat_from_intseq_be_ b1 == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * v b.[i]);
nat_from_intseq_be_slice_lemma_ #t #l #len b (i + 1);
assert (nat_from_intseq_be_ b == nat_from_intseq_be_ (slice b (i + 1) len) + pow2 ((len - i - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (i + 1)));
nat_from_intseq_slice_lemma_aux len (v b.[i]) (nat_from_intseq_be_ (slice b 0 i)) (bits t) (len - i)
end
end
let nat_from_intseq_be_lemma0 #t #l b = ()
#pop-options
let nat_from_intseq_be_slice_lemma #t #l #len b i =
nat_from_intseq_be_slice_lemma_ #t #l #len b i
val uints_from_bytes_le_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_le #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_le_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_le #t #l #(j-i) b1 in
index_uints_from_bytes_le #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_le (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_le_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_le_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_le #t #l #len b) i j) (uints_from_bytes_le #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
#push-options "--max_fuel 1"
val uints_from_bytes_le_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) ==
nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) *
nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))))
let uints_from_bytes_le_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_le #t #l #len b in
assert (nat_from_intseq_le_ r == v r.[0] + pow2 (bits t) * nat_from_intseq_le_ (slice r 1 len));
assert (nat_from_intseq_le_ (slice b 0 (numbytes t)) == v r.[0]);
uints_from_bytes_le_slice_lemma #t #l #len b 1 len;
assert (slice r 1 len == uints_from_bytes_le #t #l #(len-1) (slice b (numbytes t) (len * numbytes t)))
val uints_from_bytes_le_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_le_ (uints_from_bytes_le #t #l #len b) == nat_from_intseq_le_ b)
let rec uints_from_bytes_le_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
let b1 = slice b (numbytes t) (len * numbytes t) in
nat_from_intseq_le_slice_lemma_ #U8 #l #(len * numbytes t) b (numbytes t);
assert (nat_from_intseq_le_ b == nat_from_intseq_le_ (slice b 0 (numbytes t)) + pow2 (bits t) * nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_ #t #l #(len - 1) b1;
assert (nat_from_intseq_le_ (uints_from_bytes_le #t #l #(len - 1) b1) == nat_from_intseq_le_ b1);
uints_from_bytes_le_nat_lemma_aux #t #l #len b
end
let uints_from_bytes_le_nat_lemma #t #l #len b =
uints_from_bytes_le_nat_lemma_ #t #l #len b
val uints_from_bytes_be_slice_lemma_lp:
#t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} -> k:nat{k < j - i} ->
Lemma (index (slice (uints_from_bytes_le #t #l #len b) i j) k ==
uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_lp #t #l #len b i j k =
let r = slice (uints_from_bytes_le #t #l #len b) i j in
index_uints_from_bytes_be #t #l #len b (i + k);
assert (r.[k] == uint_from_bytes_le (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma_rp:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t)
-> i:nat
-> j:nat{i <= j /\ j <= len}
-> k:nat{k < j - i} ->
Lemma (index (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t))) k ==
uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
let uints_from_bytes_be_slice_lemma_rp #t #l #len b i j k =
let b1 = slice b (i * numbytes t) (j * numbytes t) in
let r = uints_from_bytes_be #t #l #(j-i) b1 in
index_uints_from_bytes_be #t #l #(j-i) b1 k;
assert (r.[k] == uint_from_bytes_be (sub b1 (k * numbytes t) (numbytes t)));
assert (r.[k] == uint_from_bytes_be (sub b ((i + k) * numbytes t) (numbytes t)))
val uints_from_bytes_be_slice_lemma: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level -> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) -> i:nat -> j:nat{i <= j /\ j <= len} ->
Lemma (slice (uints_from_bytes_be #t #l #len b) i j == uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
let uints_from_bytes_be_slice_lemma #t #l #len b i j =
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_lp #t #l #len b i j);
FStar.Classical.forall_intro (uints_from_bytes_be_slice_lemma_rp #t #l #len b i j);
eq_intro (slice (uints_from_bytes_be #t #l #len b) i j) (uints_from_bytes_be #t #l #(j-i) (slice b (i * numbytes t) (j * numbytes t)))
val uints_from_bytes_be_nat_lemma_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_pos{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) ==
nat_from_intseq_be (uints_from_bytes_be #t #l #(len-1) (slice b (numbytes t) (len * numbytes t))) + pow2 ((len - 1) * bits t) * nat_from_intseq_be_ (slice b 0 (numbytes t)))
let uints_from_bytes_be_nat_lemma_aux #t #l #len b =
let r = uints_from_bytes_be #t #l #len b in
uints_from_bytes_be_slice_lemma #t #l #len b 1 len;
nat_from_intseq_be_slice_lemma r 1;
assert (nat_from_intseq_be_ r == nat_from_intseq_be (slice r 1 len) + pow2 ((len - 1) * bits t) * uint_v r.[0])
val uints_from_bytes_be_nat_lemma_:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> #len:size_nat{len * numbytes t < pow2 32}
-> b:lbytes_l l (len * numbytes t) ->
Lemma (nat_from_intseq_be_ (uints_from_bytes_be #t #l #len b) == nat_from_intseq_be_ b)
let rec uints_from_bytes_be_nat_lemma_ #t #l #len b =
if len = 0 then ()
else begin
uints_from_bytes_be_nat_lemma_aux #t #l #len b;
nat_from_intseq_be_slice_lemma_ b (numbytes t);
uints_from_bytes_be_nat_lemma_ #t #l #(len - 1) (slice b (numbytes t) (len * numbytes t))
end
let uints_from_bytes_be_nat_lemma #t #l #len b =
uints_from_bytes_be_nat_lemma_ #t #l #len b
#pop-options
val index_uints_to_bytes_le_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (uints_to_bytes_le #t #l #len s) i ==
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_le_aux #t #l len n i =
let open Lib.Sequence in
let s: lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_le_inner #t #l #len s) i
val index_uints_to_bytes_be_aux:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (uints_to_bytes_be #t #l #len s) i ==
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t))
let index_uints_to_bytes_be_aux #t #l len n i =
let open Lib.Sequence in
let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
index_generate_blocks (numbytes t) len len
(uints_to_bytes_be_inner #t #l #len s) i
val modulo_pow2_prop: r:pos -> a:nat -> b:nat -> c:nat{c < b} -> Lemma
((a % pow2 (r * b) / pow2 (r * c)) % pow2 r == (a / pow2 (r * c)) % pow2 r)
let modulo_pow2_prop r a b c =
calc (==) {
((a % pow2 (r * b)) / pow2 (r * c)) % pow2 r;
== { Math.Lemmas.pow2_modulo_division_lemma_1 a (r * c) (r * b) }
((a / pow2 (r * c) % pow2 (r * b - r * c))) % pow2 r;
== { Math.Lemmas.lemma_mul_sub_distr r b c }
((a / pow2 (r * c) % pow2 (r * (b - c)))) % pow2 r;
== { Math.Lemmas.pow2_plus r (r * (b - c) - r) }
(a / pow2 (r * c)) % (pow2 r * pow2 (r * (b - c) - r)) % pow2 r;
== { Math.Lemmas.modulo_modulo_lemma (a / pow2 (r * c)) (pow2 r) (pow2 (r * (b - c) - r))}
(a / pow2 (r * c)) % pow2 r;
}
val some_arithmetic: t:inttype{~(U1? t)} -> n:nat -> i:nat -> Lemma
(let m = numbytes t in
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8 ==
n / pow2 (8 * i) % pow2 8)
#push-options "--z3rlimit 150 --fuel 0 --ifuel 0"
let some_arithmetic t n i =
let m = numbytes t in
calc (==) {
n / pow2 (bits t * (i / m)) % pow2 (bits t) / pow2 (8 * (i % m)) % pow2 8;
== { assert (bits t == 8 * m) }
n / pow2 ((8 * m) * (i / m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { FStar.Math.Lemmas.paren_mul_right 8 m (i / m);
FStar.Math.Lemmas.euclidean_division_definition i m }
n / pow2 (8 * (i - i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.distributivity_sub_right 8 i (i % m) }
n / pow2 (8 * i - 8 * (i % m)) % pow2 (8 * m) / pow2 (8 * (i % m)) % pow2 8;
== { modulo_pow2_prop 8 (n / pow2 (8 * i - 8 * (i % m))) m (i % m) }
(n / pow2 (8 * i - 8 * (i % m))) / pow2 (8 * (i % m)) % pow2 8;
== { Math.Lemmas.division_multiplication_lemma n
(pow2 (8 * i - 8 * (i % m))) (pow2 (8 * (i % m))) }
(n / (pow2 (8 * i - 8 * (i % m)) * pow2 (8 * (i % m)))) % pow2 8;
== { Math.Lemmas.pow2_plus (8 * i - 8 * (i % m)) (8 * (i % m)) }
(n / pow2 (8 * i)) % pow2 8;
}
#pop-options
val index_nat_to_intseq_to_bytes_le:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t) ==
Seq.index (nat_to_bytes_le #l (len * numbytes t) n) i)
let index_nat_to_intseq_to_bytes_le #t #l len n i =
let s:lseq (int_t t l) len = nat_to_intseq_le #t #l len n in
let m = numbytes t in
index_nat_to_intseq_le #U8 #l (len * m) n i;
assert (Seq.index (nat_to_bytes_le #l (len * m) n) i ==
uint (n / pow2 (8 * i) % pow2 8));
index_nat_to_intseq_le #U8 #l m (v s.[i / m]) (i % m);
assert (Seq.index (nat_to_bytes_le #l m (v s.[i / m])) (i % m) ==
uint (v s.[i / m] / pow2 (8 * (i % m)) % pow2 8));
index_nat_to_intseq_le #t #l len n (i / m);
some_arithmetic t n i
val uints_to_bytes_le_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i ==
Seq.index (nat_to_bytes_le (len * numbytes t) n) i)
let uints_to_bytes_le_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_le #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n)) i;
== { index_uints_to_bytes_le_aux #t #l len n i }
Seq.index (nat_to_bytes_le #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_le #t #l len n i}
Seq.index (nat_to_bytes_le (len * numbytes t) n) i;
}
let uints_to_bytes_le_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_le_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_le #t #l #len (nat_to_intseq_le #t #l len n))
(nat_to_bytes_le (len * numbytes t) n)
val index_nat_to_intseq_to_bytes_be:
#t:inttype{unsigned t /\ ~(U1? t)}
-> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma (let s:lseq (int_t t l) len = nat_to_intseq_be #t #l len n in
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[len - 1 - i / numbytes t])) (numbytes t - 1 - i % numbytes t) ==
Seq.index (nat_to_bytes_be #l (len * numbytes t) n) (len * numbytes t - i - 1))
let index_nat_to_intseq_to_bytes_be #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
let m = numbytes t in
calc (==) {
Seq.index (nat_to_bytes_be #l m (v s.[len - 1 - i / m])) (m - (i % m) - 1);
== { index_nat_to_intseq_be #U8 #l m (v s.[len - 1 - i / m]) (i % m) }
uint (v s.[len - 1 - i / m] / pow2 (8 * (i % m)) % pow2 8);
== { index_nat_to_intseq_be #t #l len n (i / m) }
uint ((n / pow2 (bits t * (i / m)) % pow2 (bits t)) / pow2 (8 * (i % m)) % pow2 8);
== { some_arithmetic t n i }
uint (n / pow2 (8 * i) % pow2 8);
== { index_nat_to_intseq_be #U8 #l (len * m) n i }
Seq.index (nat_to_bytes_be #l (len * m) n) (len * m - 1 - i);
}
val uints_to_bytes_be_nat_lemma_: #t:inttype{unsigned t /\ ~(U1? t)} -> #l:secrecy_level
-> len:nat{len * numbytes t < pow2 32}
-> n:nat{n < pow2 (bits t * len)}
-> i:nat{i < len * numbytes t}
-> Lemma
(Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i ==
Seq.index (nat_to_bytes_be (len * numbytes t) n) i)
let uints_to_bytes_be_nat_lemma_ #t #l len n i =
let s:lseq (uint_t t l) len = nat_to_intseq_be #t #l len n in
calc (==) {
Seq.index (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n)) i;
== { index_uints_to_bytes_be_aux #t #l len n i }
Seq.index (nat_to_bytes_be #l (numbytes t) (v s.[i / numbytes t])) (i % numbytes t);
== { index_nat_to_intseq_to_bytes_be #t #l len n (len * numbytes t - 1 - i)}
Seq.index (nat_to_bytes_be (len * numbytes t) n) i;
}
let uints_to_bytes_be_nat_lemma #t #l len n =
Classical.forall_intro (uints_to_bytes_be_nat_lemma_ #t #l len n);
eq_intro (uints_to_bytes_be #t #l #len (nat_to_intseq_be #t #l len n))
(nat_to_bytes_be (len * numbytes t) n)
#push-options "--max_fuel 1"
let rec nat_from_intseq_le_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_le_inj (Seq.slice b1 1 (length b1)) (Seq.slice b2 1 (length b2));
Seq.lemma_split b1 1;
Seq.lemma_split b2 1
end
let rec nat_from_intseq_be_inj #t #l b1 b2 =
if length b1 = 0 then ()
else begin
nat_from_intseq_be_inj (Seq.slice b1 0 (length b1 - 1)) (Seq.slice b2 0 (length b2 - 1));
Seq.lemma_split b1 (length b1 - 1);
Seq.lemma_split b2 (length b2 - 1)
end
let lemma_nat_to_from_bytes_be_preserves_value #l b len x = ()
let lemma_nat_to_from_bytes_le_preserves_value #l b len x = ()
let lemma_uint_to_bytes_le_preserves_value #t #l x = ()
let lemma_uint_to_bytes_be_preserves_value #t #l x = ()
let lemma_nat_from_to_intseq_le_preserves_value #t #l len b =
nat_from_intseq_le_inj (nat_to_intseq_le len (nat_from_intseq_le b)) b
let lemma_nat_from_to_intseq_be_preserves_value #t #l len b =
nat_from_intseq_be_inj (nat_to_intseq_be len (nat_from_intseq_be b)) b
let lemma_nat_from_to_bytes_le_preserves_value #l b len =
lemma_nat_from_to_intseq_le_preserves_value len b
let lemma_nat_from_to_bytes_be_preserves_value #l b len =
lemma_nat_from_to_intseq_be_preserves_value len b
let lemma_reveal_uint_to_bytes_le #t #l b = ()
let lemma_reveal_uint_to_bytes_be #t #l b = ()
let lemma_uint_to_from_bytes_le_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_le #t #l (uint_to_bytes_le #t #l i);
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) ==
uint_v (uint_from_bytes_le #t #l (uint_to_bytes_le #t #l i)));
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert(nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i)
let lemma_uint_to_from_bytes_be_preserves_value #t #l i =
lemma_reveal_uint_to_bytes_be #t #l (uint_to_bytes_be #t #l i);
lemma_uint_to_bytes_be_preserves_value #t #l i | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Classical.fsti.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Lib.ByteSequence.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Lib.ByteSequence.lbytes_l l (Lib.IntTypes.numbytes t)
-> FStar.Pervasives.Lemma
(ensures
Lib.Sequence.equal (Lib.ByteSequence.uint_to_bytes_le (Lib.ByteSequence.uint_from_bytes_le s))
s) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.l_not",
"Lib.IntTypes.uu___is_U1",
"Lib.IntTypes.secrecy_level",
"Lib.ByteSequence.lbytes_l",
"Lib.IntTypes.numbytes",
"Lib.ByteSequence.lemma_nat_from_to_bytes_le_preserves_value",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Lib.Sequence.seq",
"Prims.l_or",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"Lib.ByteSequence.nat_from_bytes_le",
"Lib.ByteSequence.nat_from_intseq_le",
"FStar.Seq.Base.length",
"Lib.ByteSequence.nat_to_bytes_le",
"Lib.ByteSequence.lemma_reveal_uint_to_bytes_le",
"Lib.IntTypes.uint_v",
"Lib.ByteSequence.uint_from_bytes_le",
"Prims.int",
"Prims.op_GreaterThanOrEqual",
"Lib.ByteSequence.uint_to_bytes_le",
"Lib.IntTypes.range",
"Lib.ByteSequence.lemma_uint_to_bytes_le_preserves_value",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t"
] | [] | true | false | true | false | false | let lemma_uint_from_to_bytes_le_preserves_value #t #l s =
| let i = uint_from_bytes_le #t #l s in
let s' = uint_to_bytes_le #t #l i in
lemma_nat_from_to_bytes_le_preserves_value #l s' (length s');
assert (nat_to_bytes_le #l (length s') (nat_from_bytes_le s') == s');
lemma_uint_to_bytes_le_preserves_value #t #l i;
assert (nat_from_bytes_le (uint_to_bytes_le #t #l i) == uint_v i);
assert (s' == nat_to_bytes_le #l (length s') (uint_v i));
assert (s' == nat_to_bytes_le #l (length s') (uint_v (uint_from_bytes_le #t #l s)));
lemma_reveal_uint_to_bytes_le #t #l s;
assert (s' == nat_to_bytes_le #l (length s') (nat_from_bytes_le s));
lemma_nat_from_to_bytes_le_preserves_value #l s (length s) | false |
Vale.Math.Poly2.Galois.fst | Vale.Math.Poly2.Galois.lemma_shift_left | val lemma_shift_left (f:G.field) (e:G.felem f) (n:I.shiftval f.G.t) : Lemma
(requires True)
(ensures to_poly (I.shift_left e n) == shift (to_poly e) (I.uint_v n) %. monomial (I.bits f.G.t))
[SMTPat (to_poly (I.shift_left e n))] | val lemma_shift_left (f:G.field) (e:G.felem f) (n:I.shiftval f.G.t) : Lemma
(requires True)
(ensures to_poly (I.shift_left e n) == shift (to_poly e) (I.uint_v n) %. monomial (I.bits f.G.t))
[SMTPat (to_poly (I.shift_left e n))] | let lemma_shift_left f e n =
let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
PL.lemma_mod_monomial (shift (to_poly e) (I.uint_v n)) nf;
assert (I.uint_v (I.shift_left e n) == U.shift_left #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_left e n)) (shift (to_poly e) (I.uint_v n) %. monomial (I.bits f.G.t)) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Galois.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 102,
"end_line": 137,
"start_col": 0,
"start_line": 129
} | module Vale.Math.Poly2.Galois
open FStar.Mul
module U = FStar.UInt
module PL = Vale.Math.Poly2.Lemmas
module D = Vale.Math.Poly2.Defs_s
//module PD = Vale.Math.Poly2.Defs
module GI = Vale.Math.Poly2.Galois.IntTypes
// recursive definitions of from_vec/to_vec are prone to matching loops, so use no fuel from here on
#reset-options "--max_fuel 0 --max_ifuel 0"
let to_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
reverse (of_seq (U.to_vec #n (I.v e))) (n - 1)
let to_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let p = reverse p (n - 1) in
Lib.IntTypes.Compatibility.nat_to_uint (U.from_vec #n (to_seq p n))
let lemma_to_poly_degree #f e =
reveal_defs ()
let lemma_irred_degree f =
let G.GF t irred = f in
let n = I.bits t in
PL.lemma_index_all ();
PL.lemma_monomial_define n;
PL.lemma_add_define_all ();
PL.lemma_degree_is (irred_poly f) n;
()
let lemma_poly_felem f p =
let G.GF t irred = f in
let n = I.bits t in
let r = reverse p (n - 1) in
let s = to_seq r n in
let u = U.from_vec #n s in
let e = Lib.IntTypes.Compatibility.nat_to_uint u in
let u' = I.v #t #I.SEC e in
let s' = U.to_vec #n u' in
let r' = of_seq s' in
let p' = reverse r' (n - 1) in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
lemma_equal p p';
()
let lemma_felem_poly #f e =
let G.GF t irred = f in
let n = I.bits t in
let u = I.v #t #I.SEC e in
let s = U.to_vec #n u in
let r = of_seq s in
let p = reverse r (n - 1) in
let r' = reverse p (n - 1) in
let s' = to_seq r' n in
let u' = U.from_vec #n s' in
let e' = Lib.IntTypes.Compatibility.nat_to_uint #t #I.SEC u' in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
lemma_equal r r';
assert (equal s s');
Lib.IntTypes.Compatibility.uintv_extensionality e e';
()
let lemma_zero f =
let G.GF t irred = f in
let n = I.bits t in
let a = zero in
let b = to_poly #f G.zero in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_zero_define ();
(if 0 <= i && i < n then U.zero_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
//let lemma_zero' (f:G.field) : Lemma
// (G.zero == to_felem f zero)
// =
// lemma_zero f;
// lemma_felem_poly #f G.zero
let lemma_one f =
let G.GF t irred = f in
let n = I.bits t in
let a = one in
let b = to_poly #f G.one in
let eq_i (i:int) : Lemma (a.[i] == b.[i]) =
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_one_define ();
(if 0 <= i && i < n then U.one_to_vec_lemma #n (n - 1 - i));
()
in
PL.lemma_pointwise_equal a b eq_i
let lemma_add f e1 e2 =
let G.GF t irred = f in
GI.define_logxor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_add_define_all ();
lemma_equal (to_poly (G.fadd e1 e2)) (to_poly e1 +. to_poly e2)
let lemma_and f e1 e2 =
let G.GF t irred = f in
GI.define_logand t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_and_define_all ();
lemma_equal (to_poly (I.logand e1 e2)) (to_poly e1 &. to_poly e2)
let lemma_or f e1 e2 =
let G.GF t irred = f in
GI.define_logor t e1 e2;
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_or_define_all ();
lemma_equal (to_poly (I.logor e1 e2)) (to_poly e1 |. to_poly e2) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Galois.IntTypes.fsti.checked",
"Vale.Math.Poly2.Defs_s.fst.checked",
"prims.fst.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.Compatibility.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Math.Poly2.Galois.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Galois.IntTypes",
"short_module": "GI"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": "D"
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": "PL"
},
{
"abbrev": true,
"full_module": "FStar.UInt",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.Math.Poly2_s",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Spec.GaloisField",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "I"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Spec.GaloisField.field -> e: Spec.GaloisField.felem f -> n: Lib.IntTypes.shiftval (GF?.t f)
-> FStar.Pervasives.Lemma
(ensures
Vale.Math.Poly2.Galois.to_poly (Lib.IntTypes.shift_left e n) ==
Vale.Math.Poly2_s.shift (Vale.Math.Poly2.Galois.to_poly e) (Lib.IntTypes.uint_v n) %.
Vale.Math.Poly2_s.monomial (Lib.IntTypes.bits (GF?.t f)))
[SMTPat (Vale.Math.Poly2.Galois.to_poly (Lib.IntTypes.shift_left e n))] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.GaloisField.field",
"Spec.GaloisField.felem",
"Lib.IntTypes.shiftval",
"Spec.GaloisField.__proj__GF__item__t",
"Lib.IntTypes.inttype",
"Prims.l_and",
"Prims.b2t",
"Lib.IntTypes.unsigned",
"Prims.op_disEquality",
"Lib.IntTypes.U1",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Vale.Math.Poly2.lemma_equal",
"Vale.Math.Poly2.Galois.to_poly",
"Lib.IntTypes.shift_left",
"Vale.Math.Poly2.op_Percent_Dot",
"Vale.Math.Poly2_s.shift",
"Lib.IntTypes.uint_v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Vale.Math.Poly2_s.monomial",
"Lib.IntTypes.bits",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Lib.IntTypes.range",
"FStar.UInt.size",
"FStar.UInt.shift_left",
"Vale.Math.Poly2.Lemmas.lemma_mod_monomial",
"Vale.Math.Poly2.Lemmas.lemma_shift_define_all",
"Vale.Math.Poly2.Lemmas.lemma_reverse_define_all",
"Vale.Math.Poly2.Lemmas.lemma_index_all"
] | [] | false | false | true | false | false | let lemma_shift_left f e n =
| let G.GF t irred = f in
let nf = I.bits t in
PL.lemma_index_all ();
PL.lemma_reverse_define_all ();
PL.lemma_shift_define_all ();
PL.lemma_mod_monomial (shift (to_poly e) (I.uint_v n)) nf;
assert (I.uint_v (I.shift_left e n) == U.shift_left #nf (I.uint_v e) (I.uint_v n));
lemma_equal (to_poly (I.shift_left e n)) (shift (to_poly e) (I.uint_v n) %. monomial (I.bits f.G.t)) | false |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.