file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
MSort.SeqLemmas.fst
MSort.SeqLemmas.append_slice
val append_slice #a (s : S.seq a) (l1:nat) (l2 : nat{S.length s == l2 /\ l1 <= l2}) : Lemma (S.append (S.slice s 0 l1) (S.slice s l1 l2) == s) [SMTPat (S.append (S.slice s 0 l1) (S.slice s l1 l2))]
val append_slice #a (s : S.seq a) (l1:nat) (l2 : nat{S.length s == l2 /\ l1 <= l2}) : Lemma (S.append (S.slice s 0 l1) (S.slice s l1 l2) == s) [SMTPat (S.append (S.slice s 0 l1) (S.slice s l1 l2))]
let append_slice s l1 l2 = assert (S.equal (S.append (S.slice s 0 l1) (S.slice s l1 l2)) s); ()
{ "file_name": "share/steel/examples/pulse/MSort.SeqLemmas.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 4, "end_line": 52, "start_col": 0, "start_line": 50 }
module MSort.SeqLemmas open FStar.Ghost module S = FStar.Seq assume val sort : Seq.seq int -> Seq.seq int assume val sorted : Seq.seq int -> bool assume val sort_is_sorted (s:Seq.seq int) : Lemma (sorted (sort s)) assume val sort_len (s:Seq.seq int) : Lemma (S.length (sort s) == S.length s) [SMTPat (S.length (sort s))] assume val singl_is_sorted (s : S.seq int) : Lemma (requires S.length s < 2) (ensures s == sort s) type seq_view a = | Nil | Cons : a -> S.seq a -> seq_view a let view #a (s : S.seq a) : seq_view a = if S.length s = 0 then Nil else Cons (S.head s) (S.tail s) val merge : Seq.seq int -> Seq.seq int -> Seq.seq int let rec merge s1 s2 : Tot (S.seq int) (decreases S.length s1 + S.length s2) = match view s1, view s2 with | Nil, Nil -> S.empty | Nil, Cons h t -> S.cons h t | Cons h t, Nil -> S.cons h t | Cons h1 t1, Cons h2 t2 -> if h1 <= h2 then S.cons h1 (merge t1 s2) else S.cons h2 (merge s1 t2) assume val merge_len (s1 s2 : S.seq int) : Lemma (ensures S.length (merge s1 s2) == S.length s1 + S.length s2) [SMTPat (merge s1 s2)] assume val merge_sorted' (s1 s2 : S.seq int) : Lemma (ensures merge (sort s1) (sort s2) == sort (s1 `S.append` s2)) [SMTPat (merge (sort s1) (sort s2))] assume val merge_sorted (s1 s2 : S.seq int) : Lemma (requires sorted s1 /\ sorted s2) (ensures sorted (merge s1 s2)) [SMTPat (sorted (merge s1 s2))] val append_slice #a (s : S.seq a) (l1:nat) (l2 : nat{S.length s == l2 /\ l1 <= l2}) : Lemma (S.append (S.slice s 0 l1) (S.slice s l1 l2) == s)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "MSort.SeqLemmas.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MSort", "short_module": null }, { "abbrev": false, "full_module": "MSort", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> l1: Prims.nat -> l2: Prims.nat{FStar.Seq.Base.length s == l2 /\ l1 <= l2} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.append (FStar.Seq.Base.slice s 0 l1) (FStar.Seq.Base.slice s l1 l2) == s) [SMTPat (FStar.Seq.Base.append (FStar.Seq.Base.slice s 0 l1) (FStar.Seq.Base.slice s l1 l2))]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.length", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.append", "FStar.Seq.Base.slice" ]
[]
true
false
true
false
false
let append_slice s l1 l2 =
assert (S.equal (S.append (S.slice s 0 l1) (S.slice s l1 l2)) s); ()
false
Vale.Transformers.InstructionReorderSanityChecks.fst
Vale.Transformers.InstructionReorderSanityChecks.ins_exchange_sanity_check1
val ins_exchange_sanity_check1 : Prims.unit
let ins_exchange_sanity_check1 = assert_norm !!(ins_exchange_sanity_check1_1); assert_norm !!(ins_exchange_sanity_check1_2)
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.InstructionReorderSanityChecks.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 46, "end_line": 39, "start_col": 0, "start_line": 37 }
module Vale.Transformers.InstructionReorderSanityChecks open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s open Vale.X64.InsLemmas // this one is from [code]; is that ok?; we use it primarily for the sanity checks open Vale.Def.PossiblyMonad open Vale.Transformers.Locations friend Vale.Transformers.Locations open Vale.Transformers.BoundedInstructionEffects friend Vale.Transformers.BoundedInstructionEffects open Vale.Transformers.InstructionReorder #push-options "--lax" (* XXX: This part of the file causes an F* SMTEncoding bug. I've reported it, and once it is fixed, we should remove this --lax *) let ins_exchange_sanity_check1_1 : pbool = normalize_term ( ins_exchange_allowed (make_instr ins_IMul64 (OReg rRax) (OReg rRbx)) (make_instr ins_IMul64 (OReg rRcx) (OReg rRdx)) ) let ins_exchange_sanity_check1_2 : pbool = normalize_term ( ins_exchange_allowed (make_instr ins_Mov64 (OReg rRax) (OConst 100)) (make_instr ins_Add64 (OReg rRbx) (OConst 299)) )
{ "checked_file": "/", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Transformers.Locations.fst.checked", "Vale.Transformers.Locations.fst.checked", "Vale.Transformers.InstructionReorder.fst.checked", "Vale.Transformers.BoundedInstructionEffects.fst.checked", "Vale.Transformers.BoundedInstructionEffects.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Vale.Transformers.InstructionReorderSanityChecks.fst" }
[ { "abbrev": false, "full_module": "Vale.X64.InsLemmas // this one is from [code]; is that ok?; we use it primarily for the sanity checks", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.BoundedInstructionEffects", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.Locations", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.unit
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.assert_norm", "Prims.b2t", "Vale.Def.PossiblyMonad.op_Bang_Bang", "Vale.Transformers.InstructionReorderSanityChecks.ins_exchange_sanity_check1_2", "Prims.unit", "Vale.Transformers.InstructionReorderSanityChecks.ins_exchange_sanity_check1_1" ]
[]
false
false
false
true
false
let ins_exchange_sanity_check1 =
assert_norm !!(ins_exchange_sanity_check1_1); assert_norm !!(ins_exchange_sanity_check1_2)
false
CDDL.Pulse.fst
CDDL.Pulse.impl_matches_map_entry_zero_or_more
val impl_matches_map_entry_zero_or_more : g: CDDL.Spec.map_group (FStar.Ghost.reveal b) -> Type0
let impl_matches_map_entry_zero_or_more (#b: Ghost.erased (option raw_data_item)) (g: map_group b) = c: cbor_map_entry -> (#p: perm) -> (#v: Ghost.erased (raw_data_item & raw_data_item)) -> stt bool ( raw_data_item_map_entry_match p c v ** pure (opt_precedes (Ghost.reveal v) b) ) (fun res -> raw_data_item_map_entry_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ res == List.Tot.existsb (pull_rel matches_map_group_entry' (Ghost.reveal v)) g.zero_or_more) )
{ "file_name": "share/steel/examples/pulse/dice/cbor/CDDL.Pulse.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 9, "end_line": 802, "start_col": 0, "start_line": 786 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module CDDL.Pulse open Pulse.Lib.Pervasives open Pulse.Lib.Stick open CBOR.Spec open CBOR.Pulse open CDDL.Spec module R = Pulse.Lib.Reference inline_for_extraction noextract [@@noextract_to "krml"] let impl_typ (#b: option raw_data_item) (t: bounded_typ_gen b) = (c: cbor) -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b )) (fun res -> raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b /\ res == t v )) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_coerce_to_bounded_typ (b: Ghost.erased (option raw_data_item)) (#t: typ) (f: impl_typ t) : impl_typ #b (coerce_to_bounded_typ b t) // FIXME: WHY WHY WHY do I need to provide the implicit argument = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { f c; } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_choice (#b: Ghost.erased (option raw_data_item)) (#t1 #t2: bounded_typ_gen b) (f1: impl_typ t1) (f2: impl_typ t2) : impl_typ #b (t_choice t1 t2) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let test = f1 c; if (test) { true } else { f2 c } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_t_choice_none // FIXME: WHY WHY WHY can F* not automatically infer t1 and t2 by reducing (reveal (hide None)) to None? (#t1 #t2: bounded_typ_gen None) (f1: impl_typ t1) (f2: impl_typ t2) : Tot (impl_typ (t_choice t1 t2)) = impl_t_choice #None #t1 #t2 f1 f2 inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_any (_: unit) : impl_typ #None any = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { true } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint (_: unit) : impl_typ #None uint = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_uint64) } ``` module U64 = FStar.UInt64 (* FIXME: WHY WHY WHY does this one not work? inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal (n: U64.t) : impl_typ #None (t_uint_literal n) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; if (mt = major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` *) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal' (n: U64.t) (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) requires (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) )) returns res: bool ensures (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) /\ res == t_uint_literal n v )) { let mt = cbor_get_major_type c; if (mt = cbor_major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_uint_literal (n: U64.t) : impl_typ (t_uint_literal n) = impl_uint_literal' n inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_bytes (_: unit) : impl_typ #None bytes = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_byte_string) } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_array_group3 (#b: Ghost.erased (option raw_data_item)) (g: array_group3 b) = (pi: R.ref cbor_array_iterator_t) -> (#p: perm) -> (#i: Ghost.erased cbor_array_iterator_t) -> (#l: Ghost.erased (list raw_data_item)) -> stt bool (R.pts_to pi i ** cbor_array_iterator_match p i l ** pure (opt_precedes (Ghost.reveal l) b) ) (fun res -> exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ```pulse ghost fn intro_impl_array_group3_post (#b: option raw_data_item) (g: array_group3 b) (pi: R.ref cbor_array_iterator_t) (p: perm) (i: cbor_array_iterator_t) (l: list raw_data_item) (res: bool) (i': cbor_array_iterator_t) (l': list raw_data_item) requires ( R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ensures (exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) { () } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_concat (#b: Ghost.erased (option raw_data_item)) (#g1: array_group3 b) (f1: impl_array_group3 g1) (#g2: array_group3 b) (f2: impl_array_group3 g2) : impl_array_group3 #b (array_group3_concat g1 g2) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let test1 = f1 pi; if (test1) { let test2 = f2 pi; stick_trans (); test2 } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_item (#b: Ghost.erased (option raw_data_item)) (#ty: bounded_typ_gen b) (fty: impl_typ ty) : impl_array_group3 #b (array_group3_item ty) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let i = !pi; rewrite (cbor_array_iterator_match p gi l) as (cbor_array_iterator_match p i l); let is_done = cbor_array_iterator_is_done i; rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p gi l); if (is_done) { stick_refl0 (cbor_array_iterator_match p gi l); intro_impl_array_group3_post (array_group3_item ty) pi p gi l false gi l; // FIXME: WHY WHY WHY? and also WHY WHY WHY here and not in the other "false" case below? false } else { let c = cbor_array_iterator_next pi #p #l #gi; // FIXME: WHY WHY WHY those explicit arguments? with gc i' l' . assert ( raw_data_item_match p c gc ** cbor_array_iterator_match p i' l' ** ((raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') @==> cbor_array_iterator_match p gi l) ); // this is needed for the explicit arguments to split_consume_l below let test = fty c; if (test) { stick_consume_l () #(raw_data_item_match p c gc) #(cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l) // FIXME: WHY WHY WHY those explicit arguments? (for which the with above is needed) ; true } else { elim_stick0 () #(raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l); // FIXME: WHY WHY WHY those explicit arguments? pi := i; rewrite (R.pts_to pi i) as (R.pts_to pi gi); stick_refl0 (cbor_array_iterator_match p gi l); false } } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_array (#b: Ghost.erased (option raw_data_item)) (#g: (array_group3 b)) (ig: (impl_array_group3 (g))) : impl_typ #b (t_array3 g) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let ty = cbor_get_major_type c; if (ty = cbor_major_type_array) { let i = cbor_array_iterator_init c; with l . assert (cbor_array_iterator_match p i l); rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l); let mut pi = i; let b_success = ig pi; with gi' l' . assert (cbor_array_iterator_match p gi' l'); let i' = ! pi; rewrite (cbor_array_iterator_match p gi' l') as (cbor_array_iterator_match p i' l'); let b_end = cbor_array_iterator_is_done i'; rewrite (cbor_array_iterator_match p i' l') as (cbor_array_iterator_match p gi' l'); elim_stick0 (); rewrite (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l) as (cbor_array_iterator_match p i l); elim_stick0 (); (b_success && b_end) } else { false } } ``` module U8 = FStar.UInt8 noextract [@@noextract_to "krml"] let cbor_read_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_success_postcond va c v rem /\ t v == true module A = Pulse.Lib.Array let cbor_read_with_typ_success_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) : Tot vprop = exists* v rem. raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem ** ((raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem) @==> A.pts_to a #p va) ** pure (cbor_read_with_typ_success_postcond t va c v rem) noextract [@@noextract_to "krml"] let cbor_read_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . Ghost.reveal va == serialize_cbor v `Seq.append` suff ==> t v == false let cbor_read_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> t v' == true) let cbor_read_with_typ_error_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) : Tot vprop = A.pts_to a #p va ** pure (cbor_read_with_typ_error_postcond t va) let cbor_read_with_typ_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = if res.cbor_read_is_success then cbor_read_with_typ_success_post t a p va res else cbor_read_with_typ_error_post t a p va module SZ = FStar.SizeT inline_for_extraction noextract let mk_cbor_read_error (res: cbor_read_t) : Tot cbor_read_t = {res with cbor_read_is_success = false} inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_read_with_typ (#t: typ) (ft: impl_typ t) (a: A.array U8.t) (sz: SZ.t) (#va: Ghost.erased (Seq.seq U8.t)) (#p: perm) requires (A.pts_to a #p va ** pure ( (SZ.v sz == Seq.length va \/ SZ.v sz == A.length a) )) returns res: cbor_read_t ensures cbor_read_with_typ_post t a p va res { let res = cbor_read a sz; if (res.cbor_read_is_success) { rewrite (cbor_read_post a p va res) as (cbor_read_success_post a p va res); unfold (cbor_read_success_post a p va res); let test = ft res.cbor_read_payload; if (test) { fold (cbor_read_with_typ_success_post t a p va res); rewrite (cbor_read_with_typ_success_post t a p va res) as (cbor_read_with_typ_post t a p va res); res } else { with v . assert (raw_data_item_match full_perm res.cbor_read_payload v); with vrem . assert (A.pts_to res.cbor_read_remainder #p vrem); cbor_read_with_typ_error_postcond_intro_typ_fail t va res v vrem; elim_stick0 () #(raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p vrem); fold (cbor_read_with_typ_error_post t a p va); let res = mk_cbor_read_error res; rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } else { rewrite (cbor_read_post a p va res) as (cbor_read_error_post a p va); unfold (cbor_read_error_post a p va); fold (cbor_read_with_typ_error_post t a p va); rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } ``` noextract [@@noextract_to "krml"] let cbor_read_deterministically_encoded_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == true noextract [@@noextract_to "krml"] let cbor_read_deterministically_encoded_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . (Ghost.reveal va == serialize_cbor v `Seq.append` suff /\ data_item_wf deterministically_encoded_cbor_map_key_order v == true ) ==> t v == false let cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_deterministically_encoded_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> data_item_wf deterministically_encoded_cbor_map_key_order v' == true /\ t v' == true) let cbor_read_deterministically_encoded_with_typ_success_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = exists* v rem. raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p rem ** ((raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p rem) @==> A.pts_to a #p va) ** pure (cbor_read_deterministically_encoded_with_typ_success_postcond t va res v rem) let cbor_read_deterministically_encoded_with_typ_error_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) : Tot vprop = A.pts_to a #p va ** pure (cbor_read_deterministically_encoded_with_typ_error_postcond t va) let cbor_read_deterministically_encoded_with_typ_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = if res.cbor_read_is_success then cbor_read_deterministically_encoded_with_typ_success_post t a p va res else cbor_read_deterministically_encoded_with_typ_error_post t a p va module SZ = FStar.SizeT inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_read_deterministically_encoded_with_typ (#t: typ) (ft: impl_typ t) (a: A.array U8.t) (sz: SZ.t) (#va: Ghost.erased (Seq.seq U8.t)) (#p: perm) requires (A.pts_to a #p va ** pure ( (SZ.v sz == Seq.length va \/ SZ.v sz == A.length a) )) returns res: cbor_read_t ensures cbor_read_deterministically_encoded_with_typ_post t a p va res { let res = cbor_read_deterministically_encoded a sz; if (res.cbor_read_is_success) { rewrite (cbor_read_deterministically_encoded_post a p va res) as (cbor_read_deterministically_encoded_success_post a p va res); unfold (cbor_read_deterministically_encoded_success_post a p va res); let test = ft res.cbor_read_payload; if (test) { fold (cbor_read_deterministically_encoded_with_typ_success_post t a p va res); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } else { with v . assert (raw_data_item_match full_perm res.cbor_read_payload v); with vrem . assert (A.pts_to res.cbor_read_remainder #p vrem); cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail t va res v vrem; elim_stick0 () #(raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p vrem); let res = mk_cbor_read_error res; fold (cbor_read_deterministically_encoded_with_typ_error_post t a p va); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } } else { rewrite (cbor_read_deterministically_encoded_post a p va res) as (cbor_read_deterministically_encoded_error_post a p va); unfold (cbor_read_deterministically_encoded_error_post a p va); fold (cbor_read_deterministically_encoded_with_typ_error_post t a p va); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } } ``` noextract let cbor_map_get_with_typ_post_found (t: typ) (vkey: raw_data_item) (vmap: raw_data_item) (vvalue: raw_data_item) : Tot prop = Map? vmap /\ list_ghost_assoc vkey (Map?.v vmap) == Some vvalue /\ t vvalue == true let cbor_map_get_with_typ_post (t: typ) (p: perm) (vkey: raw_data_item) (vmap: raw_data_item) (map: cbor) (res: cbor_map_get_t) : Tot vprop = match res with | NotFound -> raw_data_item_match p map vmap ** pure ( Map? vmap /\ begin match list_ghost_assoc vkey (Map?.v vmap) with | None -> True | Some v -> t v == false end ) | Found value -> exists* vvalue. raw_data_item_match p value vvalue ** (raw_data_item_match p value vvalue @==> raw_data_item_match p map vmap) ** pure (cbor_map_get_with_typ_post_found t vkey vmap vvalue) let cbor_map_get_post_eq_found (p: perm) (vkey: raw_data_item) (vmap: raw_data_item) (map: cbor) (res: cbor_map_get_t) (fres: cbor) : Lemma (requires (res == Found fres)) (ensures ( cbor_map_get_post p vkey vmap map res == cbor_map_get_post_found p vkey vmap map fres )) = () ```pulse ghost fn manurewrite (pre post: vprop) requires pre ** pure (pre == post) ensures post { rewrite pre as post } ``` ```pulse ghost fn cbor_map_get_found_elim (p: perm) (vkey: Ghost.erased raw_data_item) (vmap: Ghost.erased raw_data_item) (map: cbor) (res: cbor_map_get_t) (fres: cbor) requires cbor_map_get_post p vkey vmap map res ** pure (res == Found fres) ensures cbor_map_get_post_found p vkey vmap map fres { manurewrite (cbor_map_get_post p vkey vmap map res) (cbor_map_get_post_found p vkey vmap map fres) // rewrite ... as ... fails: WHY WHY WHY?? } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_map_get_with_typ (#t: typ) (ft: impl_typ t) (key: cbor) (map: cbor) (#pkey: perm) (#vkey: Ghost.erased raw_data_item) (#pmap: perm) (#vmap: Ghost.erased raw_data_item) requires (raw_data_item_match pkey key vkey ** raw_data_item_match pmap map vmap ** pure ( Map? vmap /\ (~ (Tagged? vkey \/ Array? vkey \/ Map? vkey)) )) returns res: cbor_map_get_t ensures (raw_data_item_match pkey key vkey ** cbor_map_get_with_typ_post t pmap vkey vmap map res ** pure ( Map? vmap /\ Found? res == begin match list_ghost_assoc (Ghost.reveal vkey) (Map?.v vmap) with | None -> false | Some v -> t v end )) { let res = cbor_map_get key map; if (Found? res) { let fres = Found?._0 res; manurewrite (cbor_map_get_post pmap vkey vmap map res) (cbor_map_get_post_found pmap vkey vmap map fres); unfold (cbor_map_get_post_found pmap vkey vmap map fres); let test = ft fres; if (test) { fold (cbor_map_get_with_typ_post t pmap vkey vmap map (Found fres)); res } else { elim_stick0 (); fold (cbor_map_get_with_typ_post t pmap vkey vmap map NotFound); NotFound } } else { rewrite (cbor_map_get_post pmap vkey vmap map res) as (cbor_map_get_post_not_found pmap vkey vmap map); unfold (cbor_map_get_post_not_found pmap vkey vmap map); fold (cbor_map_get_with_typ_post t pmap vkey vmap map NotFound); res } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_matches_map_group (#b: Ghost.erased (option raw_data_item)) (g: map_group b) = c: cbor -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool ( raw_data_item_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ Map? v) ) (fun res -> raw_data_item_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ Map? v /\ res == matches_map_group g (Map?.v v)) ) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_map (#b: Ghost.erased (option raw_data_item)) (#g: map_group b) (ig: (impl_matches_map_group (g))) : impl_typ #b (t_map g) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let ty = cbor_get_major_type c; if (ty = cbor_major_type_map) { ig c; } else { false } } ```
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Stick.fsti.checked", "Pulse.Lib.Reference.fsti.checked", "Pulse.Lib.Pervasives.fst.checked", "Pulse.Lib.Array.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "CDDL.Spec.fsti.checked", "CBOR.Spec.fsti.checked", "CBOR.Pulse.fst.checked" ], "interface_file": false, "source_file": "CDDL.Pulse.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "Pulse.Lib.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "Pulse.Lib.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "CDDL.Spec", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Pulse", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Spec", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Stick", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: CDDL.Spec.map_group (FStar.Ghost.reveal b) -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Ghost.erased", "FStar.Pervasives.Native.option", "CBOR.Spec.Type.raw_data_item", "CDDL.Spec.map_group", "FStar.Ghost.reveal", "CBOR.Pulse.Type.cbor_map_entry", "PulseCore.FractionalPermission.perm", "FStar.Pervasives.Native.tuple2", "Pulse.Lib.Core.stt", "Prims.bool", "Pulse.Lib.Core.op_Star_Star", "CBOR.Pulse.Extern.raw_data_item_map_entry_match", "Pulse.Lib.Core.pure", "CDDL.Spec.opt_precedes", "Prims.l_and", "Prims.eq2", "FStar.List.Tot.Base.existsb", "CDDL.Spec.map_group_entry", "CDDL.Spec.pull_rel", "CDDL.Spec.matches_map_group_entry'", "CDDL.Spec.__proj__Mkmap_group__item__zero_or_more", "Pulse.Lib.Core.vprop" ]
[]
false
false
false
false
true
let impl_matches_map_entry_zero_or_more (#b: Ghost.erased (option raw_data_item)) (g: map_group b) =
c: cbor_map_entry -> #p: perm -> #v: Ghost.erased (raw_data_item & raw_data_item) -> stt bool (raw_data_item_map_entry_match p c v ** pure (opt_precedes (Ghost.reveal v) b)) (fun res -> raw_data_item_map_entry_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ res == List.Tot.existsb (pull_rel matches_map_group_entry' (Ghost.reveal v)) g.zero_or_more))
false
MSort.SeqLemmas.fst
MSort.SeqLemmas.partial_merge
val partial_merge (s1 s2: S.seq int) (s3: S.seq int {S.length s3 == S.length s1 + S.length s2}) (i: nat{i <= S.length s1}) (j: nat{j <= S.length s2}) : Seq.lseq int (S.length s1 + S.length s2)
val partial_merge (s1 s2: S.seq int) (s3: S.seq int {S.length s3 == S.length s1 + S.length s2}) (i: nat{i <= S.length s1}) (j: nat{j <= S.length s2}) : Seq.lseq int (S.length s1 + S.length s2)
let partial_merge (s1 s2 : S.seq int) (s3 : S.seq int {S.length s3 == S.length s1 + S.length s2}) (i:nat{i <= S.length s1}) (j : nat{j <= S.length s2}) : Seq.lseq int (S.length s1 + S.length s2) = S.append (merge (stake i s1) (stake j s2)) (sdrop (i+j) s3)
{ "file_name": "share/steel/examples/pulse/MSort.SeqLemmas.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 61, "end_line": 113, "start_col": 0, "start_line": 108 }
module MSort.SeqLemmas open FStar.Ghost module S = FStar.Seq assume val sort : Seq.seq int -> Seq.seq int assume val sorted : Seq.seq int -> bool assume val sort_is_sorted (s:Seq.seq int) : Lemma (sorted (sort s)) assume val sort_len (s:Seq.seq int) : Lemma (S.length (sort s) == S.length s) [SMTPat (S.length (sort s))] assume val singl_is_sorted (s : S.seq int) : Lemma (requires S.length s < 2) (ensures s == sort s) type seq_view a = | Nil | Cons : a -> S.seq a -> seq_view a let view #a (s : S.seq a) : seq_view a = if S.length s = 0 then Nil else Cons (S.head s) (S.tail s) val merge : Seq.seq int -> Seq.seq int -> Seq.seq int let rec merge s1 s2 : Tot (S.seq int) (decreases S.length s1 + S.length s2) = match view s1, view s2 with | Nil, Nil -> S.empty | Nil, Cons h t -> S.cons h t | Cons h t, Nil -> S.cons h t | Cons h1 t1, Cons h2 t2 -> if h1 <= h2 then S.cons h1 (merge t1 s2) else S.cons h2 (merge s1 t2) assume val merge_len (s1 s2 : S.seq int) : Lemma (ensures S.length (merge s1 s2) == S.length s1 + S.length s2) [SMTPat (merge s1 s2)] assume val merge_sorted' (s1 s2 : S.seq int) : Lemma (ensures merge (sort s1) (sort s2) == sort (s1 `S.append` s2)) [SMTPat (merge (sort s1) (sort s2))] assume val merge_sorted (s1 s2 : S.seq int) : Lemma (requires sorted s1 /\ sorted s2) (ensures sorted (merge s1 s2)) [SMTPat (sorted (merge s1 s2))] val append_slice #a (s : S.seq a) (l1:nat) (l2 : nat{S.length s == l2 /\ l1 <= l2}) : Lemma (S.append (S.slice s 0 l1) (S.slice s l1 l2) == s) [SMTPat (S.append (S.slice s 0 l1) (S.slice s l1 l2))] let append_slice s l1 l2 = assert (S.equal (S.append (S.slice s 0 l1) (S.slice s l1 l2)) s); () (* These two must be total or the invariant of the loop fails to typecheck. I think the problem is that the pure assertions within the invariant are not used to typecheck the other components of the invariant. *) let stake #a (i:nat) (s : S.seq a) : Tot (S.seq a) = if i <= S.length s then S.slice s 0 i else s let sdrop #a (i:nat) (s : S.seq a) : Tot (S.seq a) = if i <= S.length s then S.slice s i (S.length s) else S.empty let take_0_lem #a (s : S.seq a) : Lemma (stake 0 s == S.empty) [SMTPat (stake 0 s)] = () let drop_0_lem #a (s : S.seq a) : Lemma (sdrop 0 s == s) [SMTPat (sdrop 0 s)] = () let take_len_lem #a (s : S.seq a) : Lemma (stake (S.length s) s == s) [SMTPat (stake (S.length s) s)] = () let drop_len_lem #a (s : S.seq a) : Lemma (sdrop (S.length s) s == S.empty) [SMTPat (sdrop (S.length s) s)] = () // let nil_app_l #a (s : S.seq a) : Lemma (S.append S.empty s == s) [SMTPat (S.append S.empty s)] = S.append_empty_l s let nil_app_r #a (s : S.seq a) : Lemma (S.append s S.empty == s) [SMTPat (S.append s S.empty)] = S.append_empty_r s let lem_upd_spliced #a (l:nat) (s1 s2 : S.seq a) (i : nat) : Lemma (requires S.length s1 == l /\ S.length s2 == l /\ 0 <= i /\ i < l ) (ensures S.upd (stake i s1 `S.append` sdrop i s2) i (S.index s1 i) == (stake (i+1) s1 `S.append` sdrop (i+1) s2)) = assert (S.equal (S.upd (stake i s1 `S.append` sdrop i s2) i (S.index s1 i)) (stake (i+1) s1 `S.append` sdrop (i+1) s2)); ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "MSort.SeqLemmas.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MSort", "short_module": null }, { "abbrev": false, "full_module": "MSort", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq Prims.int -> s2: FStar.Seq.Base.seq Prims.int -> s3: FStar.Seq.Base.seq Prims.int {FStar.Seq.Base.length s3 == FStar.Seq.Base.length s1 + FStar.Seq.Base.length s2} -> i: Prims.nat{i <= FStar.Seq.Base.length s1} -> j: Prims.nat{j <= FStar.Seq.Base.length s2} -> FStar.Seq.Properties.lseq Prims.int (FStar.Seq.Base.length s1 + FStar.Seq.Base.length s2)
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "Prims.int", "Prims.eq2", "FStar.Seq.Base.length", "Prims.op_Addition", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.append", "MSort.SeqLemmas.merge", "MSort.SeqLemmas.stake", "MSort.SeqLemmas.sdrop", "FStar.Seq.Properties.lseq" ]
[]
false
false
false
false
false
let partial_merge (s1 s2: S.seq int) (s3: S.seq int {S.length s3 == S.length s1 + S.length s2}) (i: nat{i <= S.length s1}) (j: nat{j <= S.length s2}) : Seq.lseq int (S.length s1 + S.length s2) =
S.append (merge (stake i s1) (stake j s2)) (sdrop (i + j) s3)
false
MSort.SeqLemmas.fst
MSort.SeqLemmas.lem_upd_spliced
val lem_upd_spliced (#a: _) (l: nat) (s1 s2: S.seq a) (i: nat) : Lemma (requires S.length s1 == l /\ S.length s2 == l /\ 0 <= i /\ i < l) (ensures S.upd ((stake i s1) `S.append` (sdrop i s2)) i (S.index s1 i) == ((stake (i + 1) s1) `S.append` (sdrop (i + 1) s2)))
val lem_upd_spliced (#a: _) (l: nat) (s1 s2: S.seq a) (i: nat) : Lemma (requires S.length s1 == l /\ S.length s2 == l /\ 0 <= i /\ i < l) (ensures S.upd ((stake i s1) `S.append` (sdrop i s2)) i (S.index s1 i) == ((stake (i + 1) s1) `S.append` (sdrop (i + 1) s2)))
let lem_upd_spliced #a (l:nat) (s1 s2 : S.seq a) (i : nat) : Lemma (requires S.length s1 == l /\ S.length s2 == l /\ 0 <= i /\ i < l ) (ensures S.upd (stake i s1 `S.append` sdrop i s2) i (S.index s1 i) == (stake (i+1) s1 `S.append` sdrop (i+1) s2)) = assert (S.equal (S.upd (stake i s1 `S.append` sdrop i s2) i (S.index s1 i)) (stake (i+1) s1 `S.append` sdrop (i+1) s2)); ()
{ "file_name": "share/steel/examples/pulse/MSort.SeqLemmas.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 6, "end_line": 106, "start_col": 0, "start_line": 98 }
module MSort.SeqLemmas open FStar.Ghost module S = FStar.Seq assume val sort : Seq.seq int -> Seq.seq int assume val sorted : Seq.seq int -> bool assume val sort_is_sorted (s:Seq.seq int) : Lemma (sorted (sort s)) assume val sort_len (s:Seq.seq int) : Lemma (S.length (sort s) == S.length s) [SMTPat (S.length (sort s))] assume val singl_is_sorted (s : S.seq int) : Lemma (requires S.length s < 2) (ensures s == sort s) type seq_view a = | Nil | Cons : a -> S.seq a -> seq_view a let view #a (s : S.seq a) : seq_view a = if S.length s = 0 then Nil else Cons (S.head s) (S.tail s) val merge : Seq.seq int -> Seq.seq int -> Seq.seq int let rec merge s1 s2 : Tot (S.seq int) (decreases S.length s1 + S.length s2) = match view s1, view s2 with | Nil, Nil -> S.empty | Nil, Cons h t -> S.cons h t | Cons h t, Nil -> S.cons h t | Cons h1 t1, Cons h2 t2 -> if h1 <= h2 then S.cons h1 (merge t1 s2) else S.cons h2 (merge s1 t2) assume val merge_len (s1 s2 : S.seq int) : Lemma (ensures S.length (merge s1 s2) == S.length s1 + S.length s2) [SMTPat (merge s1 s2)] assume val merge_sorted' (s1 s2 : S.seq int) : Lemma (ensures merge (sort s1) (sort s2) == sort (s1 `S.append` s2)) [SMTPat (merge (sort s1) (sort s2))] assume val merge_sorted (s1 s2 : S.seq int) : Lemma (requires sorted s1 /\ sorted s2) (ensures sorted (merge s1 s2)) [SMTPat (sorted (merge s1 s2))] val append_slice #a (s : S.seq a) (l1:nat) (l2 : nat{S.length s == l2 /\ l1 <= l2}) : Lemma (S.append (S.slice s 0 l1) (S.slice s l1 l2) == s) [SMTPat (S.append (S.slice s 0 l1) (S.slice s l1 l2))] let append_slice s l1 l2 = assert (S.equal (S.append (S.slice s 0 l1) (S.slice s l1 l2)) s); () (* These two must be total or the invariant of the loop fails to typecheck. I think the problem is that the pure assertions within the invariant are not used to typecheck the other components of the invariant. *) let stake #a (i:nat) (s : S.seq a) : Tot (S.seq a) = if i <= S.length s then S.slice s 0 i else s let sdrop #a (i:nat) (s : S.seq a) : Tot (S.seq a) = if i <= S.length s then S.slice s i (S.length s) else S.empty let take_0_lem #a (s : S.seq a) : Lemma (stake 0 s == S.empty) [SMTPat (stake 0 s)] = () let drop_0_lem #a (s : S.seq a) : Lemma (sdrop 0 s == s) [SMTPat (sdrop 0 s)] = () let take_len_lem #a (s : S.seq a) : Lemma (stake (S.length s) s == s) [SMTPat (stake (S.length s) s)] = () let drop_len_lem #a (s : S.seq a) : Lemma (sdrop (S.length s) s == S.empty) [SMTPat (sdrop (S.length s) s)] = () // let nil_app_l #a (s : S.seq a) : Lemma (S.append S.empty s == s) [SMTPat (S.append S.empty s)] = S.append_empty_l s let nil_app_r #a (s : S.seq a) : Lemma (S.append s S.empty == s) [SMTPat (S.append s S.empty)] = S.append_empty_r s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "MSort.SeqLemmas.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MSort", "short_module": null }, { "abbrev": false, "full_module": "MSort", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.nat -> s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a -> i: Prims.nat -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length s1 == l /\ FStar.Seq.Base.length s2 == l /\ 0 <= i /\ i < l) (ensures FStar.Seq.Base.upd (FStar.Seq.Base.append (MSort.SeqLemmas.stake i s1) (MSort.SeqLemmas.sdrop i s2)) i (FStar.Seq.Base.index s1 i) == FStar.Seq.Base.append (MSort.SeqLemmas.stake (i + 1) s1) (MSort.SeqLemmas.sdrop (i + 1) s2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "FStar.Seq.Base.seq", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.upd", "FStar.Seq.Base.append", "MSort.SeqLemmas.stake", "MSort.SeqLemmas.sdrop", "FStar.Seq.Base.index", "Prims.op_Addition", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.length", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let lem_upd_spliced #a (l: nat) (s1: S.seq a) (s2: S.seq a) (i: nat) : Lemma (requires S.length s1 == l /\ S.length s2 == l /\ 0 <= i /\ i < l) (ensures S.upd ((stake i s1) `S.append` (sdrop i s2)) i (S.index s1 i) == ((stake (i + 1) s1) `S.append` (sdrop (i + 1) s2))) =
assert (S.equal (S.upd ((stake i s1) `S.append` (sdrop i s2)) i (S.index s1 i)) ((stake (i + 1) s1) `S.append` (sdrop (i + 1) s2))); ()
false
CDDL.Pulse.fst
CDDL.Pulse.impl_matches_map_entry_zero_or_more_nil
val impl_matches_map_entry_zero_or_more_nil (b: Ghost.erased (option raw_data_item)) : Tot (impl_matches_map_entry_zero_or_more (map_group_empty #b))
val impl_matches_map_entry_zero_or_more_nil (b: Ghost.erased (option raw_data_item)) : Tot (impl_matches_map_entry_zero_or_more (map_group_empty #b))
let impl_matches_map_entry_zero_or_more_nil (b: Ghost.erased (option raw_data_item)) : Tot (impl_matches_map_entry_zero_or_more (map_group_empty #b)) = impl_matches_map_entry_zero_or_more_nil' b
{ "file_name": "share/steel/examples/pulse/dice/cbor/CDDL.Pulse.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 44, "end_line": 849, "start_col": 0, "start_line": 846 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module CDDL.Pulse open Pulse.Lib.Pervasives open Pulse.Lib.Stick open CBOR.Spec open CBOR.Pulse open CDDL.Spec module R = Pulse.Lib.Reference inline_for_extraction noextract [@@noextract_to "krml"] let impl_typ (#b: option raw_data_item) (t: bounded_typ_gen b) = (c: cbor) -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b )) (fun res -> raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b /\ res == t v )) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_coerce_to_bounded_typ (b: Ghost.erased (option raw_data_item)) (#t: typ) (f: impl_typ t) : impl_typ #b (coerce_to_bounded_typ b t) // FIXME: WHY WHY WHY do I need to provide the implicit argument = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { f c; } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_choice (#b: Ghost.erased (option raw_data_item)) (#t1 #t2: bounded_typ_gen b) (f1: impl_typ t1) (f2: impl_typ t2) : impl_typ #b (t_choice t1 t2) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let test = f1 c; if (test) { true } else { f2 c } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_t_choice_none // FIXME: WHY WHY WHY can F* not automatically infer t1 and t2 by reducing (reveal (hide None)) to None? (#t1 #t2: bounded_typ_gen None) (f1: impl_typ t1) (f2: impl_typ t2) : Tot (impl_typ (t_choice t1 t2)) = impl_t_choice #None #t1 #t2 f1 f2 inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_any (_: unit) : impl_typ #None any = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { true } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint (_: unit) : impl_typ #None uint = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_uint64) } ``` module U64 = FStar.UInt64 (* FIXME: WHY WHY WHY does this one not work? inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal (n: U64.t) : impl_typ #None (t_uint_literal n) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; if (mt = major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` *) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal' (n: U64.t) (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) requires (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) )) returns res: bool ensures (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) /\ res == t_uint_literal n v )) { let mt = cbor_get_major_type c; if (mt = cbor_major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_uint_literal (n: U64.t) : impl_typ (t_uint_literal n) = impl_uint_literal' n inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_bytes (_: unit) : impl_typ #None bytes = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_byte_string) } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_array_group3 (#b: Ghost.erased (option raw_data_item)) (g: array_group3 b) = (pi: R.ref cbor_array_iterator_t) -> (#p: perm) -> (#i: Ghost.erased cbor_array_iterator_t) -> (#l: Ghost.erased (list raw_data_item)) -> stt bool (R.pts_to pi i ** cbor_array_iterator_match p i l ** pure (opt_precedes (Ghost.reveal l) b) ) (fun res -> exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ```pulse ghost fn intro_impl_array_group3_post (#b: option raw_data_item) (g: array_group3 b) (pi: R.ref cbor_array_iterator_t) (p: perm) (i: cbor_array_iterator_t) (l: list raw_data_item) (res: bool) (i': cbor_array_iterator_t) (l': list raw_data_item) requires ( R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ensures (exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) { () } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_concat (#b: Ghost.erased (option raw_data_item)) (#g1: array_group3 b) (f1: impl_array_group3 g1) (#g2: array_group3 b) (f2: impl_array_group3 g2) : impl_array_group3 #b (array_group3_concat g1 g2) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let test1 = f1 pi; if (test1) { let test2 = f2 pi; stick_trans (); test2 } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_item (#b: Ghost.erased (option raw_data_item)) (#ty: bounded_typ_gen b) (fty: impl_typ ty) : impl_array_group3 #b (array_group3_item ty) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let i = !pi; rewrite (cbor_array_iterator_match p gi l) as (cbor_array_iterator_match p i l); let is_done = cbor_array_iterator_is_done i; rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p gi l); if (is_done) { stick_refl0 (cbor_array_iterator_match p gi l); intro_impl_array_group3_post (array_group3_item ty) pi p gi l false gi l; // FIXME: WHY WHY WHY? and also WHY WHY WHY here and not in the other "false" case below? false } else { let c = cbor_array_iterator_next pi #p #l #gi; // FIXME: WHY WHY WHY those explicit arguments? with gc i' l' . assert ( raw_data_item_match p c gc ** cbor_array_iterator_match p i' l' ** ((raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') @==> cbor_array_iterator_match p gi l) ); // this is needed for the explicit arguments to split_consume_l below let test = fty c; if (test) { stick_consume_l () #(raw_data_item_match p c gc) #(cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l) // FIXME: WHY WHY WHY those explicit arguments? (for which the with above is needed) ; true } else { elim_stick0 () #(raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l); // FIXME: WHY WHY WHY those explicit arguments? pi := i; rewrite (R.pts_to pi i) as (R.pts_to pi gi); stick_refl0 (cbor_array_iterator_match p gi l); false } } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_array (#b: Ghost.erased (option raw_data_item)) (#g: (array_group3 b)) (ig: (impl_array_group3 (g))) : impl_typ #b (t_array3 g) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let ty = cbor_get_major_type c; if (ty = cbor_major_type_array) { let i = cbor_array_iterator_init c; with l . assert (cbor_array_iterator_match p i l); rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l); let mut pi = i; let b_success = ig pi; with gi' l' . assert (cbor_array_iterator_match p gi' l'); let i' = ! pi; rewrite (cbor_array_iterator_match p gi' l') as (cbor_array_iterator_match p i' l'); let b_end = cbor_array_iterator_is_done i'; rewrite (cbor_array_iterator_match p i' l') as (cbor_array_iterator_match p gi' l'); elim_stick0 (); rewrite (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l) as (cbor_array_iterator_match p i l); elim_stick0 (); (b_success && b_end) } else { false } } ``` module U8 = FStar.UInt8 noextract [@@noextract_to "krml"] let cbor_read_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_success_postcond va c v rem /\ t v == true module A = Pulse.Lib.Array let cbor_read_with_typ_success_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) : Tot vprop = exists* v rem. raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem ** ((raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem) @==> A.pts_to a #p va) ** pure (cbor_read_with_typ_success_postcond t va c v rem) noextract [@@noextract_to "krml"] let cbor_read_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . Ghost.reveal va == serialize_cbor v `Seq.append` suff ==> t v == false let cbor_read_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> t v' == true) let cbor_read_with_typ_error_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) : Tot vprop = A.pts_to a #p va ** pure (cbor_read_with_typ_error_postcond t va) let cbor_read_with_typ_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = if res.cbor_read_is_success then cbor_read_with_typ_success_post t a p va res else cbor_read_with_typ_error_post t a p va module SZ = FStar.SizeT inline_for_extraction noextract let mk_cbor_read_error (res: cbor_read_t) : Tot cbor_read_t = {res with cbor_read_is_success = false} inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_read_with_typ (#t: typ) (ft: impl_typ t) (a: A.array U8.t) (sz: SZ.t) (#va: Ghost.erased (Seq.seq U8.t)) (#p: perm) requires (A.pts_to a #p va ** pure ( (SZ.v sz == Seq.length va \/ SZ.v sz == A.length a) )) returns res: cbor_read_t ensures cbor_read_with_typ_post t a p va res { let res = cbor_read a sz; if (res.cbor_read_is_success) { rewrite (cbor_read_post a p va res) as (cbor_read_success_post a p va res); unfold (cbor_read_success_post a p va res); let test = ft res.cbor_read_payload; if (test) { fold (cbor_read_with_typ_success_post t a p va res); rewrite (cbor_read_with_typ_success_post t a p va res) as (cbor_read_with_typ_post t a p va res); res } else { with v . assert (raw_data_item_match full_perm res.cbor_read_payload v); with vrem . assert (A.pts_to res.cbor_read_remainder #p vrem); cbor_read_with_typ_error_postcond_intro_typ_fail t va res v vrem; elim_stick0 () #(raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p vrem); fold (cbor_read_with_typ_error_post t a p va); let res = mk_cbor_read_error res; rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } else { rewrite (cbor_read_post a p va res) as (cbor_read_error_post a p va); unfold (cbor_read_error_post a p va); fold (cbor_read_with_typ_error_post t a p va); rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } ``` noextract [@@noextract_to "krml"] let cbor_read_deterministically_encoded_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == true noextract [@@noextract_to "krml"] let cbor_read_deterministically_encoded_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . (Ghost.reveal va == serialize_cbor v `Seq.append` suff /\ data_item_wf deterministically_encoded_cbor_map_key_order v == true ) ==> t v == false let cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_deterministically_encoded_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> data_item_wf deterministically_encoded_cbor_map_key_order v' == true /\ t v' == true) let cbor_read_deterministically_encoded_with_typ_success_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = exists* v rem. raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p rem ** ((raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p rem) @==> A.pts_to a #p va) ** pure (cbor_read_deterministically_encoded_with_typ_success_postcond t va res v rem) let cbor_read_deterministically_encoded_with_typ_error_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) : Tot vprop = A.pts_to a #p va ** pure (cbor_read_deterministically_encoded_with_typ_error_postcond t va) let cbor_read_deterministically_encoded_with_typ_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = if res.cbor_read_is_success then cbor_read_deterministically_encoded_with_typ_success_post t a p va res else cbor_read_deterministically_encoded_with_typ_error_post t a p va module SZ = FStar.SizeT inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_read_deterministically_encoded_with_typ (#t: typ) (ft: impl_typ t) (a: A.array U8.t) (sz: SZ.t) (#va: Ghost.erased (Seq.seq U8.t)) (#p: perm) requires (A.pts_to a #p va ** pure ( (SZ.v sz == Seq.length va \/ SZ.v sz == A.length a) )) returns res: cbor_read_t ensures cbor_read_deterministically_encoded_with_typ_post t a p va res { let res = cbor_read_deterministically_encoded a sz; if (res.cbor_read_is_success) { rewrite (cbor_read_deterministically_encoded_post a p va res) as (cbor_read_deterministically_encoded_success_post a p va res); unfold (cbor_read_deterministically_encoded_success_post a p va res); let test = ft res.cbor_read_payload; if (test) { fold (cbor_read_deterministically_encoded_with_typ_success_post t a p va res); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } else { with v . assert (raw_data_item_match full_perm res.cbor_read_payload v); with vrem . assert (A.pts_to res.cbor_read_remainder #p vrem); cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail t va res v vrem; elim_stick0 () #(raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p vrem); let res = mk_cbor_read_error res; fold (cbor_read_deterministically_encoded_with_typ_error_post t a p va); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } } else { rewrite (cbor_read_deterministically_encoded_post a p va res) as (cbor_read_deterministically_encoded_error_post a p va); unfold (cbor_read_deterministically_encoded_error_post a p va); fold (cbor_read_deterministically_encoded_with_typ_error_post t a p va); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } } ``` noextract let cbor_map_get_with_typ_post_found (t: typ) (vkey: raw_data_item) (vmap: raw_data_item) (vvalue: raw_data_item) : Tot prop = Map? vmap /\ list_ghost_assoc vkey (Map?.v vmap) == Some vvalue /\ t vvalue == true let cbor_map_get_with_typ_post (t: typ) (p: perm) (vkey: raw_data_item) (vmap: raw_data_item) (map: cbor) (res: cbor_map_get_t) : Tot vprop = match res with | NotFound -> raw_data_item_match p map vmap ** pure ( Map? vmap /\ begin match list_ghost_assoc vkey (Map?.v vmap) with | None -> True | Some v -> t v == false end ) | Found value -> exists* vvalue. raw_data_item_match p value vvalue ** (raw_data_item_match p value vvalue @==> raw_data_item_match p map vmap) ** pure (cbor_map_get_with_typ_post_found t vkey vmap vvalue) let cbor_map_get_post_eq_found (p: perm) (vkey: raw_data_item) (vmap: raw_data_item) (map: cbor) (res: cbor_map_get_t) (fres: cbor) : Lemma (requires (res == Found fres)) (ensures ( cbor_map_get_post p vkey vmap map res == cbor_map_get_post_found p vkey vmap map fres )) = () ```pulse ghost fn manurewrite (pre post: vprop) requires pre ** pure (pre == post) ensures post { rewrite pre as post } ``` ```pulse ghost fn cbor_map_get_found_elim (p: perm) (vkey: Ghost.erased raw_data_item) (vmap: Ghost.erased raw_data_item) (map: cbor) (res: cbor_map_get_t) (fres: cbor) requires cbor_map_get_post p vkey vmap map res ** pure (res == Found fres) ensures cbor_map_get_post_found p vkey vmap map fres { manurewrite (cbor_map_get_post p vkey vmap map res) (cbor_map_get_post_found p vkey vmap map fres) // rewrite ... as ... fails: WHY WHY WHY?? } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_map_get_with_typ (#t: typ) (ft: impl_typ t) (key: cbor) (map: cbor) (#pkey: perm) (#vkey: Ghost.erased raw_data_item) (#pmap: perm) (#vmap: Ghost.erased raw_data_item) requires (raw_data_item_match pkey key vkey ** raw_data_item_match pmap map vmap ** pure ( Map? vmap /\ (~ (Tagged? vkey \/ Array? vkey \/ Map? vkey)) )) returns res: cbor_map_get_t ensures (raw_data_item_match pkey key vkey ** cbor_map_get_with_typ_post t pmap vkey vmap map res ** pure ( Map? vmap /\ Found? res == begin match list_ghost_assoc (Ghost.reveal vkey) (Map?.v vmap) with | None -> false | Some v -> t v end )) { let res = cbor_map_get key map; if (Found? res) { let fres = Found?._0 res; manurewrite (cbor_map_get_post pmap vkey vmap map res) (cbor_map_get_post_found pmap vkey vmap map fres); unfold (cbor_map_get_post_found pmap vkey vmap map fres); let test = ft fres; if (test) { fold (cbor_map_get_with_typ_post t pmap vkey vmap map (Found fres)); res } else { elim_stick0 (); fold (cbor_map_get_with_typ_post t pmap vkey vmap map NotFound); NotFound } } else { rewrite (cbor_map_get_post pmap vkey vmap map res) as (cbor_map_get_post_not_found pmap vkey vmap map); unfold (cbor_map_get_post_not_found pmap vkey vmap map); fold (cbor_map_get_with_typ_post t pmap vkey vmap map NotFound); res } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_matches_map_group (#b: Ghost.erased (option raw_data_item)) (g: map_group b) = c: cbor -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool ( raw_data_item_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ Map? v) ) (fun res -> raw_data_item_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ Map? v /\ res == matches_map_group g (Map?.v v)) ) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_map (#b: Ghost.erased (option raw_data_item)) (#g: map_group b) (ig: (impl_matches_map_group (g))) : impl_typ #b (t_map g) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let ty = cbor_get_major_type c; if (ty = cbor_major_type_map) { ig c; } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_matches_map_entry_zero_or_more (#b: Ghost.erased (option raw_data_item)) (g: map_group b) = c: cbor_map_entry -> (#p: perm) -> (#v: Ghost.erased (raw_data_item & raw_data_item)) -> stt bool ( raw_data_item_map_entry_match p c v ** pure (opt_precedes (Ghost.reveal v) b) ) (fun res -> raw_data_item_map_entry_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ res == List.Tot.existsb (pull_rel matches_map_group_entry' (Ghost.reveal v)) g.zero_or_more) ) (* FIXME: WHY WHY WHY does this one not work? inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_matches_map_entry_zero_or_more_nil (b: Ghost.erased (option raw_data_item)) : impl_matches_map_entry_zero_or_more #b map_group_empty = (c: cbor_map_entry) (#p: perm) (#v: Ghost.erased (raw_data_item & raw_data_item)) { false } ``` *) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_matches_map_entry_zero_or_more_nil' (b: Ghost.erased (option raw_data_item)) (c: cbor_map_entry) (#p: perm) (#v: Ghost.erased (raw_data_item & raw_data_item)) requires ( raw_data_item_map_entry_match p c v ** pure (opt_precedes (Ghost.reveal v) b) ) returns res: bool ensures ( raw_data_item_map_entry_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ res == List.Tot.existsb (pull_rel matches_map_group_entry' (Ghost.reveal v)) (map_group_empty #b).zero_or_more) ) { false } ```
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Stick.fsti.checked", "Pulse.Lib.Reference.fsti.checked", "Pulse.Lib.Pervasives.fst.checked", "Pulse.Lib.Array.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "CDDL.Spec.fsti.checked", "CBOR.Spec.fsti.checked", "CBOR.Pulse.fst.checked" ], "interface_file": false, "source_file": "CDDL.Pulse.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "Pulse.Lib.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "Pulse.Lib.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "CDDL.Spec", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Pulse", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Spec", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Stick", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: FStar.Ghost.erased (FStar.Pervasives.Native.option CBOR.Spec.Type.raw_data_item) -> CDDL.Pulse.impl_matches_map_entry_zero_or_more CDDL.Spec.map_group_empty
Prims.Tot
[ "total" ]
[]
[ "FStar.Ghost.erased", "FStar.Pervasives.Native.option", "CBOR.Spec.Type.raw_data_item", "CDDL.Pulse.impl_matches_map_entry_zero_or_more_nil'", "CDDL.Pulse.impl_matches_map_entry_zero_or_more", "CDDL.Spec.map_group_empty", "FStar.Ghost.reveal" ]
[]
false
false
false
false
false
let impl_matches_map_entry_zero_or_more_nil (b: Ghost.erased (option raw_data_item)) : Tot (impl_matches_map_entry_zero_or_more (map_group_empty #b)) =
impl_matches_map_entry_zero_or_more_nil' b
false
MSort.SeqLemmas.fst
MSort.SeqLemmas.lemma_eq_intro_explicit
val lemma_eq_intro_explicit (#a: Type) (s1: S.seq a) (s2: S.seq a {S.length s2 == S.length s1}) (pf: (i: nat{i < S.length s1} -> Lemma (S.index s1 i == S.index s2 i))) : Lemma (S.equal s1 s2)
val lemma_eq_intro_explicit (#a: Type) (s1: S.seq a) (s2: S.seq a {S.length s2 == S.length s1}) (pf: (i: nat{i < S.length s1} -> Lemma (S.index s1 i == S.index s2 i))) : Lemma (S.equal s1 s2)
let lemma_eq_intro_explicit (#a : Type) (s1 : S.seq a) (s2 : S.seq a{S.length s2 == S.length s1}) (pf : ((i:nat{i < S.length s1}) -> Lemma (S.index s1 i == S.index s2 i))) : Lemma (S.equal s1 s2) = Classical.forall_intro pf; S.lemma_eq_intro s1 s2
{ "file_name": "share/steel/examples/pulse/MSort.SeqLemmas.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 26, "end_line": 121, "start_col": 0, "start_line": 117 }
module MSort.SeqLemmas open FStar.Ghost module S = FStar.Seq assume val sort : Seq.seq int -> Seq.seq int assume val sorted : Seq.seq int -> bool assume val sort_is_sorted (s:Seq.seq int) : Lemma (sorted (sort s)) assume val sort_len (s:Seq.seq int) : Lemma (S.length (sort s) == S.length s) [SMTPat (S.length (sort s))] assume val singl_is_sorted (s : S.seq int) : Lemma (requires S.length s < 2) (ensures s == sort s) type seq_view a = | Nil | Cons : a -> S.seq a -> seq_view a let view #a (s : S.seq a) : seq_view a = if S.length s = 0 then Nil else Cons (S.head s) (S.tail s) val merge : Seq.seq int -> Seq.seq int -> Seq.seq int let rec merge s1 s2 : Tot (S.seq int) (decreases S.length s1 + S.length s2) = match view s1, view s2 with | Nil, Nil -> S.empty | Nil, Cons h t -> S.cons h t | Cons h t, Nil -> S.cons h t | Cons h1 t1, Cons h2 t2 -> if h1 <= h2 then S.cons h1 (merge t1 s2) else S.cons h2 (merge s1 t2) assume val merge_len (s1 s2 : S.seq int) : Lemma (ensures S.length (merge s1 s2) == S.length s1 + S.length s2) [SMTPat (merge s1 s2)] assume val merge_sorted' (s1 s2 : S.seq int) : Lemma (ensures merge (sort s1) (sort s2) == sort (s1 `S.append` s2)) [SMTPat (merge (sort s1) (sort s2))] assume val merge_sorted (s1 s2 : S.seq int) : Lemma (requires sorted s1 /\ sorted s2) (ensures sorted (merge s1 s2)) [SMTPat (sorted (merge s1 s2))] val append_slice #a (s : S.seq a) (l1:nat) (l2 : nat{S.length s == l2 /\ l1 <= l2}) : Lemma (S.append (S.slice s 0 l1) (S.slice s l1 l2) == s) [SMTPat (S.append (S.slice s 0 l1) (S.slice s l1 l2))] let append_slice s l1 l2 = assert (S.equal (S.append (S.slice s 0 l1) (S.slice s l1 l2)) s); () (* These two must be total or the invariant of the loop fails to typecheck. I think the problem is that the pure assertions within the invariant are not used to typecheck the other components of the invariant. *) let stake #a (i:nat) (s : S.seq a) : Tot (S.seq a) = if i <= S.length s then S.slice s 0 i else s let sdrop #a (i:nat) (s : S.seq a) : Tot (S.seq a) = if i <= S.length s then S.slice s i (S.length s) else S.empty let take_0_lem #a (s : S.seq a) : Lemma (stake 0 s == S.empty) [SMTPat (stake 0 s)] = () let drop_0_lem #a (s : S.seq a) : Lemma (sdrop 0 s == s) [SMTPat (sdrop 0 s)] = () let take_len_lem #a (s : S.seq a) : Lemma (stake (S.length s) s == s) [SMTPat (stake (S.length s) s)] = () let drop_len_lem #a (s : S.seq a) : Lemma (sdrop (S.length s) s == S.empty) [SMTPat (sdrop (S.length s) s)] = () // let nil_app_l #a (s : S.seq a) : Lemma (S.append S.empty s == s) [SMTPat (S.append S.empty s)] = S.append_empty_l s let nil_app_r #a (s : S.seq a) : Lemma (S.append s S.empty == s) [SMTPat (S.append s S.empty)] = S.append_empty_r s let lem_upd_spliced #a (l:nat) (s1 s2 : S.seq a) (i : nat) : Lemma (requires S.length s1 == l /\ S.length s2 == l /\ 0 <= i /\ i < l ) (ensures S.upd (stake i s1 `S.append` sdrop i s2) i (S.index s1 i) == (stake (i+1) s1 `S.append` sdrop (i+1) s2)) = assert (S.equal (S.upd (stake i s1 `S.append` sdrop i s2) i (S.index s1 i)) (stake (i+1) s1 `S.append` sdrop (i+1) s2)); () let partial_merge (s1 s2 : S.seq int) (s3 : S.seq int {S.length s3 == S.length s1 + S.length s2}) (i:nat{i <= S.length s1}) (j : nat{j <= S.length s2}) : Seq.lseq int (S.length s1 + S.length s2) = S.append (merge (stake i s1) (stake j s2)) (sdrop (i+j) s3) #set-options "--z3rlimit 20"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "MSort.SeqLemmas.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "MSort", "short_module": null }, { "abbrev": false, "full_module": "MSort", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq a -> s2: FStar.Seq.Base.seq a {FStar.Seq.Base.length s2 == FStar.Seq.Base.length s1} -> pf: (i: Prims.nat{i < FStar.Seq.Base.length s1} -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index s1 i == FStar.Seq.Base.index s2 i) ) -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.equal s1 s2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Prims.b2t", "Prims.op_LessThan", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Seq.Base.index", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Seq.Base.lemma_eq_intro", "FStar.Classical.forall_intro", "FStar.Seq.Base.equal" ]
[]
false
false
true
false
false
let lemma_eq_intro_explicit (#a: Type) (s1: S.seq a) (s2: S.seq a {S.length s2 == S.length s1}) (pf: (i: nat{i < S.length s1} -> Lemma (S.index s1 i == S.index s2 i))) : Lemma (S.equal s1 s2) =
Classical.forall_intro pf; S.lemma_eq_intro s1 s2
false
CDDL.Pulse.fst
CDDL.Pulse.impl_str_size
val impl_str_size (ty: major_type_byte_string_or_text_string) (sz: SZ.t{SZ.fits_u64}) : impl_typ (str_size ty (SZ.v sz))
val impl_str_size (ty: major_type_byte_string_or_text_string) (sz: SZ.t{SZ.fits_u64}) : impl_typ (str_size ty (SZ.v sz))
let impl_str_size (ty: major_type_byte_string_or_text_string) (sz: SZ.t {SZ.fits_u64}) : impl_typ (str_size ty (SZ.v sz)) = impl_str_size' ty sz
{ "file_name": "share/steel/examples/pulse/dice/cbor/CDDL.Pulse.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 22, "end_line": 1005, "start_col": 0, "start_line": 1001 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module CDDL.Pulse open Pulse.Lib.Pervasives open Pulse.Lib.Stick open CBOR.Spec open CBOR.Pulse open CDDL.Spec module R = Pulse.Lib.Reference inline_for_extraction noextract [@@noextract_to "krml"] let impl_typ (#b: option raw_data_item) (t: bounded_typ_gen b) = (c: cbor) -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b )) (fun res -> raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b /\ res == t v )) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_coerce_to_bounded_typ (b: Ghost.erased (option raw_data_item)) (#t: typ) (f: impl_typ t) : impl_typ #b (coerce_to_bounded_typ b t) // FIXME: WHY WHY WHY do I need to provide the implicit argument = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { f c; } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_choice (#b: Ghost.erased (option raw_data_item)) (#t1 #t2: bounded_typ_gen b) (f1: impl_typ t1) (f2: impl_typ t2) : impl_typ #b (t_choice t1 t2) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let test = f1 c; if (test) { true } else { f2 c } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_t_choice_none // FIXME: WHY WHY WHY can F* not automatically infer t1 and t2 by reducing (reveal (hide None)) to None? (#t1 #t2: bounded_typ_gen None) (f1: impl_typ t1) (f2: impl_typ t2) : Tot (impl_typ (t_choice t1 t2)) = impl_t_choice #None #t1 #t2 f1 f2 inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_any (_: unit) : impl_typ #None any = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { true } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint (_: unit) : impl_typ #None uint = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_uint64) } ``` module U64 = FStar.UInt64 (* FIXME: WHY WHY WHY does this one not work? inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal (n: U64.t) : impl_typ #None (t_uint_literal n) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; if (mt = major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` *) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal' (n: U64.t) (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) requires (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) )) returns res: bool ensures (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) /\ res == t_uint_literal n v )) { let mt = cbor_get_major_type c; if (mt = cbor_major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_uint_literal (n: U64.t) : impl_typ (t_uint_literal n) = impl_uint_literal' n inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_bytes (_: unit) : impl_typ #None bytes = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_byte_string) } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_array_group3 (#b: Ghost.erased (option raw_data_item)) (g: array_group3 b) = (pi: R.ref cbor_array_iterator_t) -> (#p: perm) -> (#i: Ghost.erased cbor_array_iterator_t) -> (#l: Ghost.erased (list raw_data_item)) -> stt bool (R.pts_to pi i ** cbor_array_iterator_match p i l ** pure (opt_precedes (Ghost.reveal l) b) ) (fun res -> exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ```pulse ghost fn intro_impl_array_group3_post (#b: option raw_data_item) (g: array_group3 b) (pi: R.ref cbor_array_iterator_t) (p: perm) (i: cbor_array_iterator_t) (l: list raw_data_item) (res: bool) (i': cbor_array_iterator_t) (l': list raw_data_item) requires ( R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ensures (exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) { () } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_concat (#b: Ghost.erased (option raw_data_item)) (#g1: array_group3 b) (f1: impl_array_group3 g1) (#g2: array_group3 b) (f2: impl_array_group3 g2) : impl_array_group3 #b (array_group3_concat g1 g2) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let test1 = f1 pi; if (test1) { let test2 = f2 pi; stick_trans (); test2 } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_item (#b: Ghost.erased (option raw_data_item)) (#ty: bounded_typ_gen b) (fty: impl_typ ty) : impl_array_group3 #b (array_group3_item ty) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let i = !pi; rewrite (cbor_array_iterator_match p gi l) as (cbor_array_iterator_match p i l); let is_done = cbor_array_iterator_is_done i; rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p gi l); if (is_done) { stick_refl0 (cbor_array_iterator_match p gi l); intro_impl_array_group3_post (array_group3_item ty) pi p gi l false gi l; // FIXME: WHY WHY WHY? and also WHY WHY WHY here and not in the other "false" case below? false } else { let c = cbor_array_iterator_next pi #p #l #gi; // FIXME: WHY WHY WHY those explicit arguments? with gc i' l' . assert ( raw_data_item_match p c gc ** cbor_array_iterator_match p i' l' ** ((raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') @==> cbor_array_iterator_match p gi l) ); // this is needed for the explicit arguments to split_consume_l below let test = fty c; if (test) { stick_consume_l () #(raw_data_item_match p c gc) #(cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l) // FIXME: WHY WHY WHY those explicit arguments? (for which the with above is needed) ; true } else { elim_stick0 () #(raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l); // FIXME: WHY WHY WHY those explicit arguments? pi := i; rewrite (R.pts_to pi i) as (R.pts_to pi gi); stick_refl0 (cbor_array_iterator_match p gi l); false } } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_array (#b: Ghost.erased (option raw_data_item)) (#g: (array_group3 b)) (ig: (impl_array_group3 (g))) : impl_typ #b (t_array3 g) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let ty = cbor_get_major_type c; if (ty = cbor_major_type_array) { let i = cbor_array_iterator_init c; with l . assert (cbor_array_iterator_match p i l); rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l); let mut pi = i; let b_success = ig pi; with gi' l' . assert (cbor_array_iterator_match p gi' l'); let i' = ! pi; rewrite (cbor_array_iterator_match p gi' l') as (cbor_array_iterator_match p i' l'); let b_end = cbor_array_iterator_is_done i'; rewrite (cbor_array_iterator_match p i' l') as (cbor_array_iterator_match p gi' l'); elim_stick0 (); rewrite (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l) as (cbor_array_iterator_match p i l); elim_stick0 (); (b_success && b_end) } else { false } } ``` module U8 = FStar.UInt8 noextract [@@noextract_to "krml"] let cbor_read_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_success_postcond va c v rem /\ t v == true module A = Pulse.Lib.Array let cbor_read_with_typ_success_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) : Tot vprop = exists* v rem. raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem ** ((raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem) @==> A.pts_to a #p va) ** pure (cbor_read_with_typ_success_postcond t va c v rem) noextract [@@noextract_to "krml"] let cbor_read_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . Ghost.reveal va == serialize_cbor v `Seq.append` suff ==> t v == false let cbor_read_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> t v' == true) let cbor_read_with_typ_error_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) : Tot vprop = A.pts_to a #p va ** pure (cbor_read_with_typ_error_postcond t va) let cbor_read_with_typ_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = if res.cbor_read_is_success then cbor_read_with_typ_success_post t a p va res else cbor_read_with_typ_error_post t a p va module SZ = FStar.SizeT inline_for_extraction noextract let mk_cbor_read_error (res: cbor_read_t) : Tot cbor_read_t = {res with cbor_read_is_success = false} inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_read_with_typ (#t: typ) (ft: impl_typ t) (a: A.array U8.t) (sz: SZ.t) (#va: Ghost.erased (Seq.seq U8.t)) (#p: perm) requires (A.pts_to a #p va ** pure ( (SZ.v sz == Seq.length va \/ SZ.v sz == A.length a) )) returns res: cbor_read_t ensures cbor_read_with_typ_post t a p va res { let res = cbor_read a sz; if (res.cbor_read_is_success) { rewrite (cbor_read_post a p va res) as (cbor_read_success_post a p va res); unfold (cbor_read_success_post a p va res); let test = ft res.cbor_read_payload; if (test) { fold (cbor_read_with_typ_success_post t a p va res); rewrite (cbor_read_with_typ_success_post t a p va res) as (cbor_read_with_typ_post t a p va res); res } else { with v . assert (raw_data_item_match full_perm res.cbor_read_payload v); with vrem . assert (A.pts_to res.cbor_read_remainder #p vrem); cbor_read_with_typ_error_postcond_intro_typ_fail t va res v vrem; elim_stick0 () #(raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p vrem); fold (cbor_read_with_typ_error_post t a p va); let res = mk_cbor_read_error res; rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } else { rewrite (cbor_read_post a p va res) as (cbor_read_error_post a p va); unfold (cbor_read_error_post a p va); fold (cbor_read_with_typ_error_post t a p va); rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } ``` noextract [@@noextract_to "krml"] let cbor_read_deterministically_encoded_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == true noextract [@@noextract_to "krml"] let cbor_read_deterministically_encoded_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . (Ghost.reveal va == serialize_cbor v `Seq.append` suff /\ data_item_wf deterministically_encoded_cbor_map_key_order v == true ) ==> t v == false let cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_deterministically_encoded_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> data_item_wf deterministically_encoded_cbor_map_key_order v' == true /\ t v' == true) let cbor_read_deterministically_encoded_with_typ_success_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = exists* v rem. raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p rem ** ((raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p rem) @==> A.pts_to a #p va) ** pure (cbor_read_deterministically_encoded_with_typ_success_postcond t va res v rem) let cbor_read_deterministically_encoded_with_typ_error_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) : Tot vprop = A.pts_to a #p va ** pure (cbor_read_deterministically_encoded_with_typ_error_postcond t va) let cbor_read_deterministically_encoded_with_typ_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = if res.cbor_read_is_success then cbor_read_deterministically_encoded_with_typ_success_post t a p va res else cbor_read_deterministically_encoded_with_typ_error_post t a p va module SZ = FStar.SizeT inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_read_deterministically_encoded_with_typ (#t: typ) (ft: impl_typ t) (a: A.array U8.t) (sz: SZ.t) (#va: Ghost.erased (Seq.seq U8.t)) (#p: perm) requires (A.pts_to a #p va ** pure ( (SZ.v sz == Seq.length va \/ SZ.v sz == A.length a) )) returns res: cbor_read_t ensures cbor_read_deterministically_encoded_with_typ_post t a p va res { let res = cbor_read_deterministically_encoded a sz; if (res.cbor_read_is_success) { rewrite (cbor_read_deterministically_encoded_post a p va res) as (cbor_read_deterministically_encoded_success_post a p va res); unfold (cbor_read_deterministically_encoded_success_post a p va res); let test = ft res.cbor_read_payload; if (test) { fold (cbor_read_deterministically_encoded_with_typ_success_post t a p va res); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } else { with v . assert (raw_data_item_match full_perm res.cbor_read_payload v); with vrem . assert (A.pts_to res.cbor_read_remainder #p vrem); cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail t va res v vrem; elim_stick0 () #(raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p vrem); let res = mk_cbor_read_error res; fold (cbor_read_deterministically_encoded_with_typ_error_post t a p va); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } } else { rewrite (cbor_read_deterministically_encoded_post a p va res) as (cbor_read_deterministically_encoded_error_post a p va); unfold (cbor_read_deterministically_encoded_error_post a p va); fold (cbor_read_deterministically_encoded_with_typ_error_post t a p va); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } } ``` noextract let cbor_map_get_with_typ_post_found (t: typ) (vkey: raw_data_item) (vmap: raw_data_item) (vvalue: raw_data_item) : Tot prop = Map? vmap /\ list_ghost_assoc vkey (Map?.v vmap) == Some vvalue /\ t vvalue == true let cbor_map_get_with_typ_post (t: typ) (p: perm) (vkey: raw_data_item) (vmap: raw_data_item) (map: cbor) (res: cbor_map_get_t) : Tot vprop = match res with | NotFound -> raw_data_item_match p map vmap ** pure ( Map? vmap /\ begin match list_ghost_assoc vkey (Map?.v vmap) with | None -> True | Some v -> t v == false end ) | Found value -> exists* vvalue. raw_data_item_match p value vvalue ** (raw_data_item_match p value vvalue @==> raw_data_item_match p map vmap) ** pure (cbor_map_get_with_typ_post_found t vkey vmap vvalue) let cbor_map_get_post_eq_found (p: perm) (vkey: raw_data_item) (vmap: raw_data_item) (map: cbor) (res: cbor_map_get_t) (fres: cbor) : Lemma (requires (res == Found fres)) (ensures ( cbor_map_get_post p vkey vmap map res == cbor_map_get_post_found p vkey vmap map fres )) = () ```pulse ghost fn manurewrite (pre post: vprop) requires pre ** pure (pre == post) ensures post { rewrite pre as post } ``` ```pulse ghost fn cbor_map_get_found_elim (p: perm) (vkey: Ghost.erased raw_data_item) (vmap: Ghost.erased raw_data_item) (map: cbor) (res: cbor_map_get_t) (fres: cbor) requires cbor_map_get_post p vkey vmap map res ** pure (res == Found fres) ensures cbor_map_get_post_found p vkey vmap map fres { manurewrite (cbor_map_get_post p vkey vmap map res) (cbor_map_get_post_found p vkey vmap map fres) // rewrite ... as ... fails: WHY WHY WHY?? } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_map_get_with_typ (#t: typ) (ft: impl_typ t) (key: cbor) (map: cbor) (#pkey: perm) (#vkey: Ghost.erased raw_data_item) (#pmap: perm) (#vmap: Ghost.erased raw_data_item) requires (raw_data_item_match pkey key vkey ** raw_data_item_match pmap map vmap ** pure ( Map? vmap /\ (~ (Tagged? vkey \/ Array? vkey \/ Map? vkey)) )) returns res: cbor_map_get_t ensures (raw_data_item_match pkey key vkey ** cbor_map_get_with_typ_post t pmap vkey vmap map res ** pure ( Map? vmap /\ Found? res == begin match list_ghost_assoc (Ghost.reveal vkey) (Map?.v vmap) with | None -> false | Some v -> t v end )) { let res = cbor_map_get key map; if (Found? res) { let fres = Found?._0 res; manurewrite (cbor_map_get_post pmap vkey vmap map res) (cbor_map_get_post_found pmap vkey vmap map fres); unfold (cbor_map_get_post_found pmap vkey vmap map fres); let test = ft fres; if (test) { fold (cbor_map_get_with_typ_post t pmap vkey vmap map (Found fres)); res } else { elim_stick0 (); fold (cbor_map_get_with_typ_post t pmap vkey vmap map NotFound); NotFound } } else { rewrite (cbor_map_get_post pmap vkey vmap map res) as (cbor_map_get_post_not_found pmap vkey vmap map); unfold (cbor_map_get_post_not_found pmap vkey vmap map); fold (cbor_map_get_with_typ_post t pmap vkey vmap map NotFound); res } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_matches_map_group (#b: Ghost.erased (option raw_data_item)) (g: map_group b) = c: cbor -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool ( raw_data_item_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ Map? v) ) (fun res -> raw_data_item_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ Map? v /\ res == matches_map_group g (Map?.v v)) ) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_map (#b: Ghost.erased (option raw_data_item)) (#g: map_group b) (ig: (impl_matches_map_group (g))) : impl_typ #b (t_map g) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let ty = cbor_get_major_type c; if (ty = cbor_major_type_map) { ig c; } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_matches_map_entry_zero_or_more (#b: Ghost.erased (option raw_data_item)) (g: map_group b) = c: cbor_map_entry -> (#p: perm) -> (#v: Ghost.erased (raw_data_item & raw_data_item)) -> stt bool ( raw_data_item_map_entry_match p c v ** pure (opt_precedes (Ghost.reveal v) b) ) (fun res -> raw_data_item_map_entry_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ res == List.Tot.existsb (pull_rel matches_map_group_entry' (Ghost.reveal v)) g.zero_or_more) ) (* FIXME: WHY WHY WHY does this one not work? inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_matches_map_entry_zero_or_more_nil (b: Ghost.erased (option raw_data_item)) : impl_matches_map_entry_zero_or_more #b map_group_empty = (c: cbor_map_entry) (#p: perm) (#v: Ghost.erased (raw_data_item & raw_data_item)) { false } ``` *) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_matches_map_entry_zero_or_more_nil' (b: Ghost.erased (option raw_data_item)) (c: cbor_map_entry) (#p: perm) (#v: Ghost.erased (raw_data_item & raw_data_item)) requires ( raw_data_item_map_entry_match p c v ** pure (opt_precedes (Ghost.reveal v) b) ) returns res: bool ensures ( raw_data_item_map_entry_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ res == List.Tot.existsb (pull_rel matches_map_group_entry' (Ghost.reveal v)) (map_group_empty #b).zero_or_more) ) { false } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_matches_map_entry_zero_or_more_nil (b: Ghost.erased (option raw_data_item)) : Tot (impl_matches_map_entry_zero_or_more (map_group_empty #b)) = impl_matches_map_entry_zero_or_more_nil' b inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_matches_map_entry_zero_or_more_cons (#b: Ghost.erased (option raw_data_item)) (e: map_group_entry b) (f_fst: impl_typ e.fst) (f_snd: impl_typ e.snd) (#g: map_group b) (f_g: impl_matches_map_entry_zero_or_more g) : impl_matches_map_entry_zero_or_more #b (map_group_cons_zero_or_more e false g) = (c: cbor_map_entry) (#p: perm) (#v: Ghost.erased (raw_data_item & raw_data_item)) { assert (pure ( List.Tot.existsb (pull_rel matches_map_group_entry' (Ghost.reveal v)) (map_group_cons_zero_or_more e false g).zero_or_more == ( matches_map_group_entry e (Ghost.reveal v) || List.Tot.existsb (pull_rel matches_map_group_entry' (Ghost.reveal v)) g.zero_or_more ))); unfold (raw_data_item_map_entry_match p c v); let test_fst = f_fst (cbor_map_entry_key c); if (test_fst) { let test_snd = f_snd (cbor_map_entry_value c); fold (raw_data_item_map_entry_match p c v); if (test_snd) { true } else { f_g c; } } else { fold (raw_data_item_map_entry_match p c v); f_g c; } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_matches_map_group_no_restricted (#b: Ghost.erased (option raw_data_item)) (#g: map_group b) (ig: (impl_matches_map_entry_zero_or_more (g))) (h_ig: squash ( (Nil? g.one /\ Nil? g.zero_or_one) )) : impl_matches_map_group #b g = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let i0 = cbor_map_iterator_init c; let mut pi = i0; let mut pres = true; let done0 = cbor_map_iterator_is_done i0; let mut pcont = not done0; while (let cont = !pcont ; cont) invariant cont . exists* (i: cbor_map_iterator_t) (l: list (raw_data_item & raw_data_item)) (res: bool) . ( pts_to pcont cont ** pts_to pres res ** pts_to pi i ** cbor_map_iterator_match p i l ** (cbor_map_iterator_match p i l @==> raw_data_item_match p c v) ** pure ( list_ghost_forall_exists matches_map_group_entry' (Map?.v v) g.zero_or_more == (res && list_ghost_forall_exists matches_map_group_entry' l g.zero_or_more) /\ opt_precedes l (Ghost.reveal b) /\ cont == (res && Cons? l) ) ) { let x = cbor_map_iterator_next pi; stick_trans (); let res = ig x; with vx gi l . assert (pts_to pi gi ** raw_data_item_map_entry_match p x vx ** cbor_map_iterator_match p gi l ** ((raw_data_item_map_entry_match p x vx ** cbor_map_iterator_match p gi l) @==> raw_data_item_match p c v)) ; stick_consume_l () #(raw_data_item_map_entry_match p x vx) #(cbor_map_iterator_match p gi l); pres := res; if (res) { let i = !pi; rewrite each gi as i; // FIXME: HOW HOW HOW to do that once the issue with the use of stick_consume_l above is solved and the `with` above is removed? let done = cbor_map_iterator_is_done i; pcont := not done; } else { pcont := false; } }; elim_stick0 (); !pres } ``` (* FIXME: WHY WHY WHY does this one not work? inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_str_size (ty: major_type_byte_string_or_text_string) (sz: (sz: SZ.t { SZ.fits_u64 })) : impl_typ #None (str_size ty (SZ.v sz)) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; if (mt = ty) { let str = cbor_destr_string c; elim_stick0 (); (SZ.uint64_to_sizet str.cbor_string_length = sz) } else { false } } ``` *) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_str_size' (ty: major_type_byte_string_or_text_string) (sz: (sz: SZ.t { SZ.fits_u64 })) (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) requires (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) )) returns res: bool ensures (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) /\ res == str_size ty (SZ.v sz) v )) { let mt = cbor_get_major_type c; if (mt = ty) { let str = cbor_destr_string c; elim_stick0 (); (SZ.uint64_to_sizet str.cbor_string_length = sz) } else { false } } ```
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Stick.fsti.checked", "Pulse.Lib.Reference.fsti.checked", "Pulse.Lib.Pervasives.fst.checked", "Pulse.Lib.Array.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "CDDL.Spec.fsti.checked", "CBOR.Spec.fsti.checked", "CBOR.Pulse.fst.checked" ], "interface_file": false, "source_file": "CDDL.Pulse.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "Pulse.Lib.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "Pulse.Lib.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "CDDL.Spec", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Pulse", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Spec", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Stick", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ty: CBOR.Spec.Constants.major_type_byte_string_or_text_string -> sz: FStar.SizeT.t{FStar.SizeT.fits_u64} -> CDDL.Pulse.impl_typ (CDDL.Spec.str_size ty (FStar.SizeT.v sz))
Prims.Tot
[ "total" ]
[]
[ "CBOR.Spec.Constants.major_type_byte_string_or_text_string", "FStar.SizeT.t", "FStar.SizeT.fits_u64", "CDDL.Pulse.impl_str_size'", "CDDL.Pulse.impl_typ", "FStar.Pervasives.Native.None", "CBOR.Spec.Type.raw_data_item", "CDDL.Spec.str_size", "FStar.SizeT.v" ]
[]
false
false
false
false
false
let impl_str_size (ty: major_type_byte_string_or_text_string) (sz: SZ.t{SZ.fits_u64}) : impl_typ (str_size ty (SZ.v sz)) =
impl_str_size' ty sz
false
CDDL.Pulse.fst
CDDL.Pulse.impl_typ
val impl_typ : t: CDDL.Spec.bounded_typ_gen b -> Type0
let impl_typ (#b: option raw_data_item) (t: bounded_typ_gen b) = (c: cbor) -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b )) (fun res -> raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b /\ res == t v ))
{ "file_name": "share/steel/examples/pulse/dice/cbor/CDDL.Pulse.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 10, "end_line": 41, "start_col": 0, "start_line": 27 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module CDDL.Pulse open Pulse.Lib.Pervasives open Pulse.Lib.Stick open CBOR.Spec open CBOR.Pulse open CDDL.Spec module R = Pulse.Lib.Reference
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Stick.fsti.checked", "Pulse.Lib.Reference.fsti.checked", "Pulse.Lib.Pervasives.fst.checked", "Pulse.Lib.Array.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "CDDL.Spec.fsti.checked", "CBOR.Spec.fsti.checked", "CBOR.Pulse.fst.checked" ], "interface_file": false, "source_file": "CDDL.Pulse.fst" }
[ { "abbrev": true, "full_module": "Pulse.Lib.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "CDDL.Spec", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Pulse", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Spec", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Stick", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: CDDL.Spec.bounded_typ_gen b -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.Native.option", "CBOR.Spec.Type.raw_data_item", "CDDL.Spec.bounded_typ_gen", "CBOR.Pulse.Type.cbor", "PulseCore.FractionalPermission.perm", "FStar.Ghost.erased", "Pulse.Lib.Core.stt", "Prims.bool", "Pulse.Lib.Core.op_Star_Star", "CBOR.Pulse.Extern.raw_data_item_match", "FStar.Ghost.reveal", "Pulse.Lib.Core.pure", "CDDL.Spec.opt_precedes", "Prims.l_and", "Prims.eq2", "Pulse.Lib.Core.vprop" ]
[]
false
false
false
false
true
let impl_typ (#b: option raw_data_item) (t: bounded_typ_gen b) =
c: cbor -> #p: perm -> #v: Ghost.erased raw_data_item -> stt bool (raw_data_item_match p c v ** pure (opt_precedes (Ghost.reveal v) b)) (fun res -> raw_data_item_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ res == t v))
false
CDDL.Pulse.fst
CDDL.Pulse.impl_array_group3
val impl_array_group3 : g: CDDL.Spec.array_group3 (FStar.Ghost.reveal b) -> Type0
let impl_array_group3 (#b: Ghost.erased (option raw_data_item)) (g: array_group3 b) = (pi: R.ref cbor_array_iterator_t) -> (#p: perm) -> (#i: Ghost.erased cbor_array_iterator_t) -> (#l: Ghost.erased (list raw_data_item)) -> stt bool (R.pts_to pi i ** cbor_array_iterator_match p i l ** pure (opt_precedes (Ghost.reveal l) b) ) (fun res -> exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) )
{ "file_name": "share/steel/examples/pulse/dice/cbor/CDDL.Pulse.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 9, "end_line": 215, "start_col": 0, "start_line": 193 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module CDDL.Pulse open Pulse.Lib.Pervasives open Pulse.Lib.Stick open CBOR.Spec open CBOR.Pulse open CDDL.Spec module R = Pulse.Lib.Reference inline_for_extraction noextract [@@noextract_to "krml"] let impl_typ (#b: option raw_data_item) (t: bounded_typ_gen b) = (c: cbor) -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b )) (fun res -> raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b /\ res == t v )) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_coerce_to_bounded_typ (b: Ghost.erased (option raw_data_item)) (#t: typ) (f: impl_typ t) : impl_typ #b (coerce_to_bounded_typ b t) // FIXME: WHY WHY WHY do I need to provide the implicit argument = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { f c; } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_choice (#b: Ghost.erased (option raw_data_item)) (#t1 #t2: bounded_typ_gen b) (f1: impl_typ t1) (f2: impl_typ t2) : impl_typ #b (t_choice t1 t2) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let test = f1 c; if (test) { true } else { f2 c } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_t_choice_none // FIXME: WHY WHY WHY can F* not automatically infer t1 and t2 by reducing (reveal (hide None)) to None? (#t1 #t2: bounded_typ_gen None) (f1: impl_typ t1) (f2: impl_typ t2) : Tot (impl_typ (t_choice t1 t2)) = impl_t_choice #None #t1 #t2 f1 f2 inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_any (_: unit) : impl_typ #None any = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { true } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint (_: unit) : impl_typ #None uint = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_uint64) } ``` module U64 = FStar.UInt64 (* FIXME: WHY WHY WHY does this one not work? inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal (n: U64.t) : impl_typ #None (t_uint_literal n) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; if (mt = major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` *) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal' (n: U64.t) (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) requires (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) )) returns res: bool ensures (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) /\ res == t_uint_literal n v )) { let mt = cbor_get_major_type c; if (mt = cbor_major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_uint_literal (n: U64.t) : impl_typ (t_uint_literal n) = impl_uint_literal' n inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_bytes (_: unit) : impl_typ #None bytes = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_byte_string) } ```
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Stick.fsti.checked", "Pulse.Lib.Reference.fsti.checked", "Pulse.Lib.Pervasives.fst.checked", "Pulse.Lib.Array.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "CDDL.Spec.fsti.checked", "CBOR.Spec.fsti.checked", "CBOR.Pulse.fst.checked" ], "interface_file": false, "source_file": "CDDL.Pulse.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "Pulse.Lib.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "CDDL.Spec", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Pulse", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Spec", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Stick", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: CDDL.Spec.array_group3 (FStar.Ghost.reveal b) -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Ghost.erased", "FStar.Pervasives.Native.option", "CBOR.Spec.Type.raw_data_item", "CDDL.Spec.array_group3", "FStar.Ghost.reveal", "Pulse.Lib.Reference.ref", "CBOR.Pulse.Type.cbor_array_iterator_t", "PulseCore.FractionalPermission.perm", "Prims.list", "Pulse.Lib.Core.stt", "Prims.bool", "Pulse.Lib.Core.op_Star_Star", "Pulse.Lib.Reference.pts_to", "PulseCore.FractionalPermission.full_perm", "CBOR.Pulse.Extern.cbor_array_iterator_match", "Pulse.Lib.Core.pure", "CDDL.Spec.opt_precedes", "Pulse.Lib.Core.op_exists_Star", "Pulse.Lib.Stick.op_At_Equals_Equals_Greater", "Prims.l_and", "Prims.eq2", "FStar.Pervasives.Native.uu___is_Some", "Prims.l_imp", "FStar.Pervasives.Native.__proj__Some__item__v", "Pulse.Lib.Core.vprop" ]
[]
false
false
false
false
true
let impl_array_group3 (#b: Ghost.erased (option raw_data_item)) (g: array_group3 b) =
pi: R.ref cbor_array_iterator_t -> #p: perm -> #i: Ghost.erased cbor_array_iterator_t -> #l: Ghost.erased (list raw_data_item) -> stt bool ((R.pts_to pi i ** cbor_array_iterator_match p i l) ** pure (opt_precedes (Ghost.reveal l) b)) (fun res -> exists* i' l'. ((R.pts_to pi i' ** cbor_array_iterator_match p i' l') ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l)) ** pure (opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l')))
false
Steel.ST.SeqMatch.fst
Steel.ST.SeqMatch.seq_seq_match_seq_list_match
val seq_seq_match_seq_list_match (#opened: _) (#t1 #t2: Type) (p: (t1 -> t2 -> vprop)) (c: Seq.seq t1) (l: list t2) : STGhost unit opened (seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l)) (fun _ -> seq_list_match c l p) (Seq.length c == List.Tot.length l) (fun _ -> True) (decreases l)
val seq_seq_match_seq_list_match (#opened: _) (#t1 #t2: Type) (p: (t1 -> t2 -> vprop)) (c: Seq.seq t1) (l: list t2) : STGhost unit opened (seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l)) (fun _ -> seq_list_match c l p) (Seq.length c == List.Tot.length l) (fun _ -> True) (decreases l)
let rec seq_seq_match_seq_list_match (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: list t2) : STGhost unit opened (seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l)) (fun _ -> seq_list_match c l p) (Seq.length c == List.Tot.length l) (fun _ -> True) (decreases l) = match l with | [] -> drop (seq_seq_match p _ _ _ _); rewrite (seq_list_match_nil0 c) (seq_list_match c l p) | a :: q -> Seq.lemma_seq_of_list_induction (a :: q); seq_list_match_cons_eq c l p; on_range_uncons (seq_seq_match_item p _ _) _ 1 _; rewrite (seq_seq_match_item p _ _ _) (p (Seq.head c) (List.Tot.hd l)); let _ = seq_seq_match_tail_intro p _ _ 1 _ _ in rewrite (seq_seq_match p _ _ _ _) (seq_seq_match p (Seq.tail c) (Seq.seq_of_list (List.Tot.tl l)) 0 (List.Tot.length (List.Tot.tl l))); seq_seq_match_seq_list_match p _ (List.Tot.tl l); rewrite (seq_list_match_cons0 c l p seq_list_match) (seq_list_match c l p)
{ "file_name": "lib/steel/Steel.ST.SeqMatch.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 28, "end_line": 447, "start_col": 0, "start_line": 411 }
module Steel.ST.SeqMatch include Steel.ST.OnRange open Steel.ST.GenElim module Seq = FStar.Seq module SZ = FStar.SizeT (* `seq_list_match` describes how to match a sequence of low-level values (the low-level contents of an array) with a list of high-level values. `seq_list_match` is carefully designed to be usable within (mutually) recursive definitions of matching functions on the type of high-level values. *) [@@__reduce__] let seq_list_match_nil0 (#t: Type) (c: Seq.seq t) : Tot vprop = pure (c `Seq.equal` Seq.empty) [@@__reduce__] let seq_list_match_cons0 (#t #t': Type) (c: Seq.seq t) (l: list t' { Cons? l }) (item_match: (t -> (v': t' { v' << l }) -> vprop)) (seq_list_match: (Seq.seq t -> (v': list t') -> (raw_data_item_match: (t -> (v'': t' { v'' << v' }) -> vprop) { v' << l }) -> vprop)) : Tot vprop = exists_ (fun (c1: t) -> exists_ (fun (c2: Seq.seq t) -> item_match c1 (List.Tot.hd l) `star` seq_list_match c2 (List.Tot.tl l) item_match `star` pure (c `Seq.equal` Seq.cons c1 c2) )) let rec seq_list_match (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : Tot vprop (decreases v) = if Nil? v then seq_list_match_nil0 c else seq_list_match_cons0 c v item_match seq_list_match let seq_list_match_cons_eq (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : Lemma (requires (Cons? v)) (ensures ( seq_list_match c v item_match == seq_list_match_cons0 c v item_match seq_list_match )) = let a :: q = v in assert_norm (seq_list_match c (a :: q) item_match == seq_list_match_cons0 c (a :: q) item_match seq_list_match ) let seq_list_match_nil (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << v }) -> vprop)) : STGhost unit opened emp (fun _ -> seq_list_match c v item_match) (c `Seq.equal` Seq.empty /\ Nil? v) (fun _ -> True) = noop (); rewrite (seq_list_match_nil0 c) (seq_list_match c v item_match) let list_cons_precedes (#t: Type) (a: t) (q: list t) : Lemma ((a << a :: q) /\ (q << a :: q)) [SMTPat (a :: q)] = assert (List.Tot.hd (a :: q) << (a :: q)); assert (List.Tot.tl (a :: q) << (a :: q)) let seq_list_match_cons_intro (#opened: _) (#t #t': Type) (a: t) (a' : t') (c: Seq.seq t) (v: list t') (item_match: (t -> (v': t' { v' << a' :: v }) -> vprop)) : STGhostT unit opened (item_match a a' `star` seq_list_match c v item_match) (fun _ -> seq_list_match (Seq.cons a c) (a' :: v) item_match) = seq_list_match_cons_eq (Seq.cons a c) (a' :: v) item_match; noop (); rewrite (seq_list_match_cons0 (Seq.cons a c) (a' :: v) item_match seq_list_match) (seq_list_match (Seq.cons a c) (a' :: v) item_match) let seq_list_match_cons_elim (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t' { Cons? v \/ Seq.length c > 0 }) (item_match: (t -> (v': t' { v' << v }) -> vprop)) : STGhostT (squash (Cons? v /\ Seq.length c > 0)) opened (seq_list_match c v item_match) (fun _ -> item_match (Seq.head c) (List.Tot.hd v) `star` seq_list_match (Seq.tail c) (List.Tot.tl v) item_match) = if Nil? v then begin rewrite (seq_list_match c v item_match) (seq_list_match_nil0 c); let _ = gen_elim () in assert False; rewrite // by contradiction emp (item_match (Seq.head c) (List.Tot.hd v) `star` seq_list_match (Seq.tail c) (List.Tot.tl v) item_match) end else begin seq_list_match_cons_eq c v item_match; noop (); rewrite (seq_list_match c v item_match) (seq_list_match_cons0 c v item_match seq_list_match); let _ = gen_elim () in let prf : squash (Cons? v /\ Seq.length c > 0) = () in let c1 = vpattern (fun c1 -> item_match c1 (List.Tot.hd v)) in let c2 = vpattern (fun c2 -> seq_list_match c2 (List.Tot.tl v) item_match) in Seq.lemma_cons_inj c1 (Seq.head c) c2 (Seq.tail c); vpattern_rewrite (fun c1 -> item_match c1 (List.Tot.hd v)) (Seq.head c); vpattern_rewrite (fun c2 -> seq_list_match c2 (List.Tot.tl v) item_match) (Seq.tail c); prf end // this one cannot be proven with seq_seq_match because of the << refinement in the type of item_match let rec seq_list_match_weaken (#opened: _) (#t #t': Type) (c: Seq.seq t) (v: list t') (item_match1 item_match2: (t -> (v': t' { v' << v }) -> vprop)) (prf: ( (#opened: _) -> (c': t) -> (v': t' { v' << v }) -> STGhostT unit opened (item_match1 c' v') (fun _ -> item_match2 c' v') )) : STGhostT unit opened (seq_list_match c v item_match1) (fun _ -> seq_list_match c v item_match2) (decreases v) = if Nil? v then rewrite (seq_list_match c v item_match1) (seq_list_match c v item_match2) else begin let _ : squash (Cons? v) = () in seq_list_match_cons_eq c v item_match1; seq_list_match_cons_eq c v item_match2; rewrite (seq_list_match c v item_match1) (seq_list_match_cons0 c v item_match1 seq_list_match); let _ = gen_elim () in prf _ _; seq_list_match_weaken _ (List.Tot.tl v) item_match1 item_match2 prf; rewrite (seq_list_match_cons0 c v item_match2 seq_list_match) (seq_list_match c v item_match2) end (* `seq_seq_match` describes how to match a sequence of low-level values (the low-level contents of an array) with a sequence of high-level values. Contrary to `seq_list_match`, `seq_seq_match` is not meant to be usable within (mutually) recursive definitions of matching functions on the type of high-level values, because no lemma ensures that `Seq.index s i << s` *) let seq_seq_match_item (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq t2) (i: nat) : Tot vprop = if i < Seq.length c && i < Seq.length l then p (Seq.index c i) (Seq.index l i) else pure (squash False) let seq_seq_match_item_tail (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq t2) (delta: nat) (i: nat) : Lemma (requires ( i + delta <= Seq.length c /\ i + delta <= Seq.length l )) (ensures ( seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) i == seq_seq_match_item p c l (i + delta) )) = () [@@__reduce__] let seq_seq_match (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq t2) (i j: nat) : Tot vprop = on_range (seq_seq_match_item p c l) i j let seq_seq_match_length (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (s1: Seq.seq t1) (s2: Seq.seq t2) (i j: nat) : STGhost unit opened (seq_seq_match p s1 s2 i j) (fun _ -> seq_seq_match p s1 s2 i j) True (fun _ -> i <= j /\ (i == j \/ (j <= Seq.length s1 /\ j <= Seq.length s2))) = on_range_le (seq_seq_match_item p s1 s2) i j; if i = j then noop () else begin let j' = j - 1 in if j' < Seq.length s1 && j' < Seq.length s2 then noop () else begin on_range_unsnoc (seq_seq_match_item p s1 s2) i j' j; rewrite (seq_seq_match_item p _ _ _) (pure (squash False)); let _ = gen_elim () in rewrite (seq_seq_match p s1 s2 i j') (seq_seq_match p s1 s2 i j) // by contradiction end end let seq_seq_match_weaken (#opened: _) (#t1 #t2: Type) (p p': t1 -> t2 -> vprop) (w: ((x1: t1) -> (x2: t2) -> STGhostT unit opened (p x1 x2) (fun _ -> p' x1 x2) )) (c1 c1': Seq.seq t1) (c2 c2': Seq.seq t2) (i j: nat) : STGhost unit opened (seq_seq_match p c1 c2 i j) (fun _ -> seq_seq_match p' c1' c2' i j) (i <= j /\ (i == j \/ ( j <= Seq.length c1 /\ j <= Seq.length c2 /\ j <= Seq.length c1' /\ j <= Seq.length c2' /\ Seq.slice c1 i j `Seq.equal` Seq.slice c1' i j /\ Seq.slice c2 i j `Seq.equal` Seq.slice c2' i j ))) (fun _ -> True) = on_range_weaken (seq_seq_match_item p c1 c2) (seq_seq_match_item p' c1' c2') i j (fun k -> rewrite (seq_seq_match_item p c1 c2 k) (p (Seq.index (Seq.slice c1 i j) (k - i)) (Seq.index (Seq.slice c2 i j) (k - i))); w _ _; rewrite (p' _ _) (seq_seq_match_item p' c1' c2' k) ) let seq_seq_match_weaken_with_implies (#opened: _) (#t1 #t2: Type) (p: t1 -> t2 -> vprop) (c1 c1': Seq.seq t1) (c2 c2': Seq.seq t2) (i j: nat) : STGhost unit opened (seq_seq_match p c1 c2 i j) (fun _ -> seq_seq_match p c1' c2' i j `star` (seq_seq_match p c1' c2' i j `implies_` seq_seq_match p c1 c2 i j) ) (i <= j /\ (i == j \/ ( j <= Seq.length c1 /\ j <= Seq.length c2 /\ j <= Seq.length c1' /\ j <= Seq.length c2' /\ Seq.slice c1 i j `Seq.equal` Seq.slice c1' i j /\ Seq.slice c2 i j `Seq.equal` Seq.slice c2' i j ))) (fun _ -> True) = seq_seq_match_weaken p p (fun _ _ -> noop ()) c1 c1' c2 c2' i j; intro_implies (seq_seq_match p c1' c2' i j) (seq_seq_match p c1 c2 i j) emp (fun _ -> seq_seq_match_weaken p p (fun _ _ -> noop ()) c1' c1 c2' c2 i j ) (* Going between `seq_list_match` and `seq_seq_match` *) let seq_seq_match_tail_elim (#t1 #t2: Type) (#opened: _) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq (t2)) (delta: nat { delta <= Seq.length c /\ delta <= Seq.length l }) (i j: nat) : STGhostT unit opened (seq_seq_match p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) i j) (fun _ -> seq_seq_match p c l (i + delta) (j + delta)) = on_range_le (seq_seq_match_item p _ _) _ _; on_range_weaken_and_shift (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l))) (seq_seq_match_item p c l) delta i j (fun k -> if k < Seq.length c - delta && k < Seq.length l - delta then begin seq_seq_match_item_tail p c l delta k; rewrite (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) k) (seq_seq_match_item p c l (k + delta)) end else begin rewrite (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) k) (pure (squash False)); let _ = gen_elim () in rewrite emp (seq_seq_match_item p c l (k + delta)) // by contradiction end ) (i + delta) (j + delta) let seq_seq_match_tail_intro (#t1 #t2: Type) (#opened: _) (p: t1 -> t2 -> vprop) (c: Seq.seq t1) (l: Seq.seq t2) (delta: nat { delta <= Seq.length c /\ delta <= Seq.length l }) (i: nat { delta <= i }) (j: nat) : STGhostT (squash (i <= j)) opened (seq_seq_match p c l i j) (fun _ -> seq_seq_match p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) (i - delta) (j - delta)) = on_range_le (seq_seq_match_item p _ _) _ _; on_range_weaken_and_shift (seq_seq_match_item p c l) (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l))) (0 - delta) i j (fun k -> if k < Seq.length c && k < Seq.length l then begin seq_seq_match_item_tail p c l delta (k - delta); rewrite (seq_seq_match_item p c l k) (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) (k + (0 - delta))) end else begin rewrite (seq_seq_match_item p c l k) (pure (squash False)); let _ = gen_elim () in rewrite emp (seq_seq_match_item p (Seq.slice c delta (Seq.length c)) (Seq.slice l delta (Seq.length l)) (k + (0 - delta))) // by contradiction end ) (i - delta) (j - delta)
{ "checked_file": "/", "dependencies": [ "Steel.ST.OnRange.fsti.checked", "Steel.ST.GenElim.fsti.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Steel.ST.SeqMatch.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "Steel.ST.GenElim", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.OnRange", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: (_: t1 -> _: t2 -> Steel.Effect.Common.vprop) -> c: FStar.Seq.Base.seq t1 -> l: Prims.list t2 -> Steel.ST.Effect.Ghost.STGhost Prims.unit
Steel.ST.Effect.Ghost.STGhost
[ "" ]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "FStar.Seq.Base.seq", "Prims.list", "Steel.ST.Util.rewrite", "Steel.ST.SeqMatch.seq_list_match_nil0", "Steel.ST.SeqMatch.seq_list_match", "Prims.unit", "Steel.ST.Util.drop", "Steel.ST.SeqMatch.seq_seq_match", "FStar.Seq.Base.seq_of_list", "FStar.List.Tot.Base.length", "Steel.ST.SeqMatch.seq_list_match_cons0", "Steel.ST.SeqMatch.seq_seq_match_seq_list_match", "FStar.Seq.Properties.tail", "FStar.List.Tot.Base.tl", "FStar.Seq.Base.slice", "FStar.Seq.Base.length", "Prims.op_Subtraction", "Prims.squash", "Prims.b2t", "Prims.op_LessThanOrEqual", "Steel.ST.SeqMatch.seq_seq_match_tail_intro", "Steel.ST.SeqMatch.seq_seq_match_item", "FStar.Seq.Properties.head", "FStar.List.Tot.Base.hd", "Steel.ST.OnRange.on_range_uncons", "Steel.ST.SeqMatch.seq_list_match_cons_eq", "FStar.Seq.Properties.lemma_seq_of_list_induction", "Prims.Cons", "Prims.eq2", "Prims.nat", "Prims.l_True" ]
[ "recursion" ]
false
true
false
false
false
let rec seq_seq_match_seq_list_match (#opened: _) (#t1 #t2: Type) (p: (t1 -> t2 -> vprop)) (c: Seq.seq t1) (l: list t2) : STGhost unit opened (seq_seq_match p c (Seq.seq_of_list l) 0 (List.Tot.length l)) (fun _ -> seq_list_match c l p) (Seq.length c == List.Tot.length l) (fun _ -> True) (decreases l) =
match l with | [] -> drop (seq_seq_match p _ _ _ _); rewrite (seq_list_match_nil0 c) (seq_list_match c l p) | a :: q -> Seq.lemma_seq_of_list_induction (a :: q); seq_list_match_cons_eq c l p; on_range_uncons (seq_seq_match_item p _ _) _ 1 _; rewrite (seq_seq_match_item p _ _ _) (p (Seq.head c) (List.Tot.hd l)); let _ = seq_seq_match_tail_intro p _ _ 1 _ _ in rewrite (seq_seq_match p _ _ _ _) (seq_seq_match p (Seq.tail c) (Seq.seq_of_list (List.Tot.tl l)) 0 (List.Tot.length (List.Tot.tl l))); seq_seq_match_seq_list_match p _ (List.Tot.tl l); rewrite (seq_list_match_cons0 c l p seq_list_match) (seq_list_match c l p)
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.upper3_equal
val upper3_equal (q0 q1: quad32) : bool
val upper3_equal (q0 q1: quad32) : bool
let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 21, "start_col": 0, "start_line": 18 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
q0: Vale.Def.Types_s.quad32 -> q1: Vale.Def.Types_s.quad32 -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Types_s.quad32", "Prims.op_AmpAmp", "Prims.op_Equality", "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Vale.Def.Words_s.__proj__Mkfour__item__hi3", "Prims.bool" ]
[]
false
false
false
true
false
let upper3_equal (q0 q1: quad32) : bool =
q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3
false
Steel.ST.HigherReference.fst
Steel.ST.HigherReference.with_named_local
val with_named_local (#t: Type) (init: t) (#pre: vprop) (#ret_t: Type) (#post: ret_t -> vprop) (name: string) (body: (r: ref t) -> STT ret_t (pts_to r full_perm init `star` pre) (fun v -> exists_ (pts_to r full_perm) `star` post v) ) : STF ret_t pre post True (fun _ -> True)
val with_named_local (#t: Type) (init: t) (#pre: vprop) (#ret_t: Type) (#post: ret_t -> vprop) (name: string) (body: (r: ref t) -> STT ret_t (pts_to r full_perm init `star` pre) (fun v -> exists_ (pts_to r full_perm) `star` post v) ) : STF ret_t pre post True (fun _ -> True)
let with_named_local (#t: Type) (init: t) (#pre: vprop) (#ret_t: Type) (#post: ret_t -> vprop) (name: string) (body: (r: ref t) -> STT ret_t (pts_to r full_perm init `star` pre) (fun v -> exists_ (pts_to r full_perm) `star` post v) ) : STF ret_t pre post True (fun _ -> True) = _push_frame (); [@(rename_let name)] let r = _alloca init in let v = body r in let _ = elim_exists () in _free_and_pop_frame r; return v
{ "file_name": "lib/steel/Steel.ST.HigherReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 10, "end_line": 166, "start_col": 0, "start_line": 147 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.HigherReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module R = Steel.HigherReference let ref (a:Type u#1) : Type0 = R.ref a let null (#a:Type) : ref a = R.null #a let is_null (#a:Type) (r:ref a) : b:bool{b <==> r == null} = R.is_null r let pts_to (#a:Type) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop = R.pts_to r p v let pts_to_injective_eq (#a: Type) (#opened:inames) (#p0 #p1:perm) (#v0 #v1:a) (r: ref a) : STGhost unit opened (pts_to r p0 v0 `star` pts_to r p1 v1) (fun _ -> pts_to r p0 v0 `star` pts_to r p1 v0) (requires True) (ensures fun _ -> v0 == v1) = coerce_ghost (fun _ -> R.higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #(hide v0) #(hide v1) r) let pts_to_not_null #a #opened #p #v r = extract_fact #opened (pts_to r p v) (r =!= null) (R.pts_to_not_null r p v); () let alloc (#a:Type) (x:a) : ST (ref a) emp (fun r -> pts_to r full_perm x) (requires True) (ensures fun r -> not (is_null r)) = let r = coerce_steel (fun _ -> R.alloc x) in r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) : ST a (pts_to r p v) (fun _ -> pts_to r p v) (requires True) (ensures fun x -> x == Ghost.reveal v) = let u = coerce_steel (fun _ -> R.read r) in return u let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : STT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = coerce_steel (fun _ -> R.write r x); return () let free (#a:Type) (#v:erased a) (r:ref a) : STT unit (pts_to r full_perm v) (fun _ -> emp) = coerce_steel(fun _ -> R.free r); return () /// Local primitive, to be extracted to Low* EPushFrame. To remember /// that we need to call some pop_frame later, we insert some dummy /// vprop into the context. let _stack_frame : vprop = pure True let _push_frame () : STT unit emp (fun _ -> _stack_frame) = rewrite (pure True) _stack_frame /// Local primitive, to be extracted to Low* EBufCreate let _alloca (#a:Type) (x:a) : ST (ref a) emp (fun r -> pts_to r full_perm x) (requires True) (ensures fun r -> not (is_null r)) = alloc x /// Local primitive, to be extracted to Low* EPopFrame let _free_and_pop_frame (#a:Type) (#v:erased a) (r:ref a) : STT unit (pts_to r full_perm v `star` _stack_frame) (fun _ -> emp) = free r; rewrite _stack_frame (pure True); elim_pure _ let with_local (#t: Type) (init: t) (#pre: vprop) (#ret_t: Type) (#post: ret_t -> vprop) (body: (r: ref t) -> STT ret_t (pts_to r full_perm init `star` pre) (fun v -> exists_ (pts_to r full_perm) `star` post v) ) : STF ret_t pre post True (fun _ -> True) = _push_frame (); let r = _alloca init in let v = body r in let _ = elim_exists () in _free_and_pop_frame r; return v
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.HigherReference.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.HigherReference.fst" }
[ { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "R" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
init: t -> name: Prims.string -> body: (r: Steel.ST.HigherReference.ref t -> Steel.ST.Effect.STT ret_t) -> Steel.ST.Effect.STF ret_t
Steel.ST.Effect.STF
[]
[]
[ "Steel.Effect.Common.vprop", "Prims.string", "Steel.ST.HigherReference.ref", "Steel.Effect.Common.star", "Steel.ST.HigherReference.pts_to", "Steel.FractionalPermission.full_perm", "Steel.ST.Util.exists_", "Steel.ST.Util.return", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Prims.unit", "Steel.ST.HigherReference._free_and_pop_frame", "FStar.Ghost.erased", "Steel.ST.Util.elim_exists", "Steel.ST.HigherReference._alloca", "Steel.ST.HigherReference._push_frame", "Prims.l_True" ]
[]
false
true
false
false
false
let with_named_local (#t: Type) (init: t) (#pre: vprop) (#ret_t: Type) (#post: (ret_t -> vprop)) (name: string) (body: (r: ref t -> STT ret_t ((pts_to r full_perm init) `star` pre) (fun v -> (exists_ (pts_to r full_perm)) `star` (post v)))) : STF ret_t pre post True (fun _ -> True) =
_push_frame (); [@@ (rename_let name) ]let r = _alloca init in let v = body r in let _ = elim_exists () in _free_and_pop_frame r; return v
false
CDDL.Pulse.fst
CDDL.Pulse.cbor_read_with_typ_success_postcond
val cbor_read_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop
val cbor_read_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop
let cbor_read_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_success_postcond va c v rem /\ t v == true
{ "file_name": "share/steel/examples/pulse/dice/cbor/CDDL.Pulse.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 15, "end_line": 378, "start_col": 0, "start_line": 369 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module CDDL.Pulse open Pulse.Lib.Pervasives open Pulse.Lib.Stick open CBOR.Spec open CBOR.Pulse open CDDL.Spec module R = Pulse.Lib.Reference inline_for_extraction noextract [@@noextract_to "krml"] let impl_typ (#b: option raw_data_item) (t: bounded_typ_gen b) = (c: cbor) -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b )) (fun res -> raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b /\ res == t v )) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_coerce_to_bounded_typ (b: Ghost.erased (option raw_data_item)) (#t: typ) (f: impl_typ t) : impl_typ #b (coerce_to_bounded_typ b t) // FIXME: WHY WHY WHY do I need to provide the implicit argument = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { f c; } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_choice (#b: Ghost.erased (option raw_data_item)) (#t1 #t2: bounded_typ_gen b) (f1: impl_typ t1) (f2: impl_typ t2) : impl_typ #b (t_choice t1 t2) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let test = f1 c; if (test) { true } else { f2 c } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_t_choice_none // FIXME: WHY WHY WHY can F* not automatically infer t1 and t2 by reducing (reveal (hide None)) to None? (#t1 #t2: bounded_typ_gen None) (f1: impl_typ t1) (f2: impl_typ t2) : Tot (impl_typ (t_choice t1 t2)) = impl_t_choice #None #t1 #t2 f1 f2 inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_any (_: unit) : impl_typ #None any = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { true } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint (_: unit) : impl_typ #None uint = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_uint64) } ``` module U64 = FStar.UInt64 (* FIXME: WHY WHY WHY does this one not work? inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal (n: U64.t) : impl_typ #None (t_uint_literal n) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; if (mt = major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` *) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal' (n: U64.t) (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) requires (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) )) returns res: bool ensures (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) /\ res == t_uint_literal n v )) { let mt = cbor_get_major_type c; if (mt = cbor_major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_uint_literal (n: U64.t) : impl_typ (t_uint_literal n) = impl_uint_literal' n inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_bytes (_: unit) : impl_typ #None bytes = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_byte_string) } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_array_group3 (#b: Ghost.erased (option raw_data_item)) (g: array_group3 b) = (pi: R.ref cbor_array_iterator_t) -> (#p: perm) -> (#i: Ghost.erased cbor_array_iterator_t) -> (#l: Ghost.erased (list raw_data_item)) -> stt bool (R.pts_to pi i ** cbor_array_iterator_match p i l ** pure (opt_precedes (Ghost.reveal l) b) ) (fun res -> exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ```pulse ghost fn intro_impl_array_group3_post (#b: option raw_data_item) (g: array_group3 b) (pi: R.ref cbor_array_iterator_t) (p: perm) (i: cbor_array_iterator_t) (l: list raw_data_item) (res: bool) (i': cbor_array_iterator_t) (l': list raw_data_item) requires ( R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ensures (exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) { () } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_concat (#b: Ghost.erased (option raw_data_item)) (#g1: array_group3 b) (f1: impl_array_group3 g1) (#g2: array_group3 b) (f2: impl_array_group3 g2) : impl_array_group3 #b (array_group3_concat g1 g2) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let test1 = f1 pi; if (test1) { let test2 = f2 pi; stick_trans (); test2 } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_item (#b: Ghost.erased (option raw_data_item)) (#ty: bounded_typ_gen b) (fty: impl_typ ty) : impl_array_group3 #b (array_group3_item ty) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let i = !pi; rewrite (cbor_array_iterator_match p gi l) as (cbor_array_iterator_match p i l); let is_done = cbor_array_iterator_is_done i; rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p gi l); if (is_done) { stick_refl0 (cbor_array_iterator_match p gi l); intro_impl_array_group3_post (array_group3_item ty) pi p gi l false gi l; // FIXME: WHY WHY WHY? and also WHY WHY WHY here and not in the other "false" case below? false } else { let c = cbor_array_iterator_next pi #p #l #gi; // FIXME: WHY WHY WHY those explicit arguments? with gc i' l' . assert ( raw_data_item_match p c gc ** cbor_array_iterator_match p i' l' ** ((raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') @==> cbor_array_iterator_match p gi l) ); // this is needed for the explicit arguments to split_consume_l below let test = fty c; if (test) { stick_consume_l () #(raw_data_item_match p c gc) #(cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l) // FIXME: WHY WHY WHY those explicit arguments? (for which the with above is needed) ; true } else { elim_stick0 () #(raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l); // FIXME: WHY WHY WHY those explicit arguments? pi := i; rewrite (R.pts_to pi i) as (R.pts_to pi gi); stick_refl0 (cbor_array_iterator_match p gi l); false } } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_array (#b: Ghost.erased (option raw_data_item)) (#g: (array_group3 b)) (ig: (impl_array_group3 (g))) : impl_typ #b (t_array3 g) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let ty = cbor_get_major_type c; if (ty = cbor_major_type_array) { let i = cbor_array_iterator_init c; with l . assert (cbor_array_iterator_match p i l); rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l); let mut pi = i; let b_success = ig pi; with gi' l' . assert (cbor_array_iterator_match p gi' l'); let i' = ! pi; rewrite (cbor_array_iterator_match p gi' l') as (cbor_array_iterator_match p i' l'); let b_end = cbor_array_iterator_is_done i'; rewrite (cbor_array_iterator_match p i' l') as (cbor_array_iterator_match p gi' l'); elim_stick0 (); rewrite (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l) as (cbor_array_iterator_match p i l); elim_stick0 (); (b_success && b_end) } else { false } } ``` module U8 = FStar.UInt8
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Stick.fsti.checked", "Pulse.Lib.Reference.fsti.checked", "Pulse.Lib.Pervasives.fst.checked", "Pulse.Lib.Array.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "CDDL.Spec.fsti.checked", "CBOR.Spec.fsti.checked", "CBOR.Pulse.fst.checked" ], "interface_file": false, "source_file": "CDDL.Pulse.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "Pulse.Lib.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "CDDL.Spec", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Pulse", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Spec", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Stick", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: CDDL.Spec.typ -> va: FStar.Ghost.erased (FStar.Seq.Base.seq FStar.UInt8.t) -> c: CBOR.Pulse.Extern.cbor_read_t -> v: CBOR.Spec.Type.raw_data_item -> rem: FStar.Seq.Base.seq FStar.UInt8.t -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "CDDL.Spec.typ", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "FStar.UInt8.t", "CBOR.Pulse.Extern.cbor_read_t", "CBOR.Spec.Type.raw_data_item", "Prims.l_and", "CBOR.Pulse.Extern.cbor_read_success_postcond", "Prims.eq2", "Prims.bool", "Prims.prop" ]
[]
false
false
false
true
true
let cbor_read_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop =
cbor_read_success_postcond va c v rem /\ t v == true
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.append_distributes_be_seq_quad32_to_bytes
val append_distributes_be_seq_quad32_to_bytes (x y: seq quad32) : Lemma (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append x y)) == append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE x)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE y)))
val append_distributes_be_seq_quad32_to_bytes (x y: seq quad32) : Lemma (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append x y)) == append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE x)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE y)))
let append_distributes_be_seq_quad32_to_bytes (x y:seq quad32) : Lemma (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append x y)) == append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE x)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE y))) = append_distributes_be_seq_quad32_to_bytes x y
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 263, "start_col": 0, "start_line": 260 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; () let lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) = ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); () let gcm_encrypt_BE_fst_helper (iv:supported_iv_BE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key )) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () let gcm_encrypt_BE_snd_helper (iv:supported_iv_BE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key) )) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () #reset-options "--z3rlimit 10" let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 ))) (ensures (let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in //cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key)) cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in gctr_partial_opaque_completed alg plain cipher key ctr_BE_2; if p_num_bytes > length p128 * 16 then ( gctr_partial_reveal (); assert (gctr_partial alg (length p128) plain cipher key ctr_BE_2); assert (equal (slice plain 0 (length p128)) (slice p128 0 (length p128))); assert (equal (slice cipher 0 (length p128)) (slice c128 0 (length p128))); gctr_partial_opaque_ignores_postfix alg (length p128) plain p128 cipher c128 key ctr_BE_2; assert (gctr_partial alg (length p128) p128 c128 key ctr_BE_2); gctr_partial_opaque_completed alg p128 c128 key ctr_BE_2; let num_blocks = p_num_bytes / 16 in assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_word alg key (inc32 ctr_BE_2 num_blocks))); gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks; assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks == gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0); aes_encrypt_word_reveal (); gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes; assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ) else ( gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher; assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt ctr_BE_2 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key); let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in assert (equal plain_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain))); assert (equal cipher_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher))); assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ); gcm_encrypt_BE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key; () let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) = assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x)))); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> y: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE (FStar.Seq.Base.append x y)) == FStar.Seq.Base.append (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE x)) (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE y)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Vale.Arch.Types.append_distributes_be_seq_quad32_to_bytes", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Vale.Def.Words_s.nat8", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Types_s.nat32", "FStar.Seq.Base.append", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let append_distributes_be_seq_quad32_to_bytes (x y: seq quad32) : Lemma (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append x y)) == append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE x)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE y))) =
append_distributes_be_seq_quad32_to_bytes x y
false
CDDL.Pulse.fst
CDDL.Pulse.cbor_map_get_with_typ_post_found
val cbor_map_get_with_typ_post_found (t: typ) (vkey vmap vvalue: raw_data_item) : Tot prop
val cbor_map_get_with_typ_post_found (t: typ) (vkey vmap vvalue: raw_data_item) : Tot prop
let cbor_map_get_with_typ_post_found (t: typ) (vkey: raw_data_item) (vmap: raw_data_item) (vvalue: raw_data_item) : Tot prop = Map? vmap /\ list_ghost_assoc vkey (Map?.v vmap) == Some vvalue /\ t vvalue == true
{ "file_name": "share/steel/examples/pulse/dice/cbor/CDDL.Pulse.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 18, "end_line": 622, "start_col": 0, "start_line": 614 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module CDDL.Pulse open Pulse.Lib.Pervasives open Pulse.Lib.Stick open CBOR.Spec open CBOR.Pulse open CDDL.Spec module R = Pulse.Lib.Reference inline_for_extraction noextract [@@noextract_to "krml"] let impl_typ (#b: option raw_data_item) (t: bounded_typ_gen b) = (c: cbor) -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b )) (fun res -> raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b /\ res == t v )) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_coerce_to_bounded_typ (b: Ghost.erased (option raw_data_item)) (#t: typ) (f: impl_typ t) : impl_typ #b (coerce_to_bounded_typ b t) // FIXME: WHY WHY WHY do I need to provide the implicit argument = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { f c; } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_choice (#b: Ghost.erased (option raw_data_item)) (#t1 #t2: bounded_typ_gen b) (f1: impl_typ t1) (f2: impl_typ t2) : impl_typ #b (t_choice t1 t2) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let test = f1 c; if (test) { true } else { f2 c } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_t_choice_none // FIXME: WHY WHY WHY can F* not automatically infer t1 and t2 by reducing (reveal (hide None)) to None? (#t1 #t2: bounded_typ_gen None) (f1: impl_typ t1) (f2: impl_typ t2) : Tot (impl_typ (t_choice t1 t2)) = impl_t_choice #None #t1 #t2 f1 f2 inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_any (_: unit) : impl_typ #None any = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { true } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint (_: unit) : impl_typ #None uint = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_uint64) } ``` module U64 = FStar.UInt64 (* FIXME: WHY WHY WHY does this one not work? inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal (n: U64.t) : impl_typ #None (t_uint_literal n) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; if (mt = major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` *) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal' (n: U64.t) (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) requires (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) )) returns res: bool ensures (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) /\ res == t_uint_literal n v )) { let mt = cbor_get_major_type c; if (mt = cbor_major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_uint_literal (n: U64.t) : impl_typ (t_uint_literal n) = impl_uint_literal' n inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_bytes (_: unit) : impl_typ #None bytes = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_byte_string) } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_array_group3 (#b: Ghost.erased (option raw_data_item)) (g: array_group3 b) = (pi: R.ref cbor_array_iterator_t) -> (#p: perm) -> (#i: Ghost.erased cbor_array_iterator_t) -> (#l: Ghost.erased (list raw_data_item)) -> stt bool (R.pts_to pi i ** cbor_array_iterator_match p i l ** pure (opt_precedes (Ghost.reveal l) b) ) (fun res -> exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ```pulse ghost fn intro_impl_array_group3_post (#b: option raw_data_item) (g: array_group3 b) (pi: R.ref cbor_array_iterator_t) (p: perm) (i: cbor_array_iterator_t) (l: list raw_data_item) (res: bool) (i': cbor_array_iterator_t) (l': list raw_data_item) requires ( R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ensures (exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) { () } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_concat (#b: Ghost.erased (option raw_data_item)) (#g1: array_group3 b) (f1: impl_array_group3 g1) (#g2: array_group3 b) (f2: impl_array_group3 g2) : impl_array_group3 #b (array_group3_concat g1 g2) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let test1 = f1 pi; if (test1) { let test2 = f2 pi; stick_trans (); test2 } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_item (#b: Ghost.erased (option raw_data_item)) (#ty: bounded_typ_gen b) (fty: impl_typ ty) : impl_array_group3 #b (array_group3_item ty) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let i = !pi; rewrite (cbor_array_iterator_match p gi l) as (cbor_array_iterator_match p i l); let is_done = cbor_array_iterator_is_done i; rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p gi l); if (is_done) { stick_refl0 (cbor_array_iterator_match p gi l); intro_impl_array_group3_post (array_group3_item ty) pi p gi l false gi l; // FIXME: WHY WHY WHY? and also WHY WHY WHY here and not in the other "false" case below? false } else { let c = cbor_array_iterator_next pi #p #l #gi; // FIXME: WHY WHY WHY those explicit arguments? with gc i' l' . assert ( raw_data_item_match p c gc ** cbor_array_iterator_match p i' l' ** ((raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') @==> cbor_array_iterator_match p gi l) ); // this is needed for the explicit arguments to split_consume_l below let test = fty c; if (test) { stick_consume_l () #(raw_data_item_match p c gc) #(cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l) // FIXME: WHY WHY WHY those explicit arguments? (for which the with above is needed) ; true } else { elim_stick0 () #(raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l); // FIXME: WHY WHY WHY those explicit arguments? pi := i; rewrite (R.pts_to pi i) as (R.pts_to pi gi); stick_refl0 (cbor_array_iterator_match p gi l); false } } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_array (#b: Ghost.erased (option raw_data_item)) (#g: (array_group3 b)) (ig: (impl_array_group3 (g))) : impl_typ #b (t_array3 g) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let ty = cbor_get_major_type c; if (ty = cbor_major_type_array) { let i = cbor_array_iterator_init c; with l . assert (cbor_array_iterator_match p i l); rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l); let mut pi = i; let b_success = ig pi; with gi' l' . assert (cbor_array_iterator_match p gi' l'); let i' = ! pi; rewrite (cbor_array_iterator_match p gi' l') as (cbor_array_iterator_match p i' l'); let b_end = cbor_array_iterator_is_done i'; rewrite (cbor_array_iterator_match p i' l') as (cbor_array_iterator_match p gi' l'); elim_stick0 (); rewrite (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l) as (cbor_array_iterator_match p i l); elim_stick0 (); (b_success && b_end) } else { false } } ``` module U8 = FStar.UInt8 noextract [@@noextract_to "krml"] let cbor_read_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_success_postcond va c v rem /\ t v == true module A = Pulse.Lib.Array let cbor_read_with_typ_success_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) : Tot vprop = exists* v rem. raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem ** ((raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem) @==> A.pts_to a #p va) ** pure (cbor_read_with_typ_success_postcond t va c v rem) noextract [@@noextract_to "krml"] let cbor_read_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . Ghost.reveal va == serialize_cbor v `Seq.append` suff ==> t v == false let cbor_read_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> t v' == true) let cbor_read_with_typ_error_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) : Tot vprop = A.pts_to a #p va ** pure (cbor_read_with_typ_error_postcond t va) let cbor_read_with_typ_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = if res.cbor_read_is_success then cbor_read_with_typ_success_post t a p va res else cbor_read_with_typ_error_post t a p va module SZ = FStar.SizeT inline_for_extraction noextract let mk_cbor_read_error (res: cbor_read_t) : Tot cbor_read_t = {res with cbor_read_is_success = false} inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_read_with_typ (#t: typ) (ft: impl_typ t) (a: A.array U8.t) (sz: SZ.t) (#va: Ghost.erased (Seq.seq U8.t)) (#p: perm) requires (A.pts_to a #p va ** pure ( (SZ.v sz == Seq.length va \/ SZ.v sz == A.length a) )) returns res: cbor_read_t ensures cbor_read_with_typ_post t a p va res { let res = cbor_read a sz; if (res.cbor_read_is_success) { rewrite (cbor_read_post a p va res) as (cbor_read_success_post a p va res); unfold (cbor_read_success_post a p va res); let test = ft res.cbor_read_payload; if (test) { fold (cbor_read_with_typ_success_post t a p va res); rewrite (cbor_read_with_typ_success_post t a p va res) as (cbor_read_with_typ_post t a p va res); res } else { with v . assert (raw_data_item_match full_perm res.cbor_read_payload v); with vrem . assert (A.pts_to res.cbor_read_remainder #p vrem); cbor_read_with_typ_error_postcond_intro_typ_fail t va res v vrem; elim_stick0 () #(raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p vrem); fold (cbor_read_with_typ_error_post t a p va); let res = mk_cbor_read_error res; rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } else { rewrite (cbor_read_post a p va res) as (cbor_read_error_post a p va); unfold (cbor_read_error_post a p va); fold (cbor_read_with_typ_error_post t a p va); rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } ``` noextract [@@noextract_to "krml"] let cbor_read_deterministically_encoded_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == true noextract [@@noextract_to "krml"] let cbor_read_deterministically_encoded_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . (Ghost.reveal va == serialize_cbor v `Seq.append` suff /\ data_item_wf deterministically_encoded_cbor_map_key_order v == true ) ==> t v == false let cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_deterministically_encoded_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> data_item_wf deterministically_encoded_cbor_map_key_order v' == true /\ t v' == true) let cbor_read_deterministically_encoded_with_typ_success_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = exists* v rem. raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p rem ** ((raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p rem) @==> A.pts_to a #p va) ** pure (cbor_read_deterministically_encoded_with_typ_success_postcond t va res v rem) let cbor_read_deterministically_encoded_with_typ_error_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) : Tot vprop = A.pts_to a #p va ** pure (cbor_read_deterministically_encoded_with_typ_error_postcond t va) let cbor_read_deterministically_encoded_with_typ_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = if res.cbor_read_is_success then cbor_read_deterministically_encoded_with_typ_success_post t a p va res else cbor_read_deterministically_encoded_with_typ_error_post t a p va module SZ = FStar.SizeT inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_read_deterministically_encoded_with_typ (#t: typ) (ft: impl_typ t) (a: A.array U8.t) (sz: SZ.t) (#va: Ghost.erased (Seq.seq U8.t)) (#p: perm) requires (A.pts_to a #p va ** pure ( (SZ.v sz == Seq.length va \/ SZ.v sz == A.length a) )) returns res: cbor_read_t ensures cbor_read_deterministically_encoded_with_typ_post t a p va res { let res = cbor_read_deterministically_encoded a sz; if (res.cbor_read_is_success) { rewrite (cbor_read_deterministically_encoded_post a p va res) as (cbor_read_deterministically_encoded_success_post a p va res); unfold (cbor_read_deterministically_encoded_success_post a p va res); let test = ft res.cbor_read_payload; if (test) { fold (cbor_read_deterministically_encoded_with_typ_success_post t a p va res); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } else { with v . assert (raw_data_item_match full_perm res.cbor_read_payload v); with vrem . assert (A.pts_to res.cbor_read_remainder #p vrem); cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail t va res v vrem; elim_stick0 () #(raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p vrem); let res = mk_cbor_read_error res; fold (cbor_read_deterministically_encoded_with_typ_error_post t a p va); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } } else { rewrite (cbor_read_deterministically_encoded_post a p va res) as (cbor_read_deterministically_encoded_error_post a p va); unfold (cbor_read_deterministically_encoded_error_post a p va); fold (cbor_read_deterministically_encoded_with_typ_error_post t a p va); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } } ```
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Stick.fsti.checked", "Pulse.Lib.Reference.fsti.checked", "Pulse.Lib.Pervasives.fst.checked", "Pulse.Lib.Array.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "CDDL.Spec.fsti.checked", "CBOR.Spec.fsti.checked", "CBOR.Pulse.fst.checked" ], "interface_file": false, "source_file": "CDDL.Pulse.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "Pulse.Lib.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "Pulse.Lib.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "CDDL.Spec", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Pulse", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Spec", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Stick", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: CDDL.Spec.typ -> vkey: CBOR.Spec.Type.raw_data_item -> vmap: CBOR.Spec.Type.raw_data_item -> vvalue: CBOR.Spec.Type.raw_data_item -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "CDDL.Spec.typ", "CBOR.Spec.Type.raw_data_item", "Prims.l_and", "Prims.b2t", "CBOR.Spec.Type.uu___is_Map", "Prims.eq2", "FStar.Pervasives.Native.option", "CBOR.Pulse.list_ghost_assoc", "CBOR.Spec.Type.__proj__Map__item__v", "FStar.Pervasives.Native.Some", "Prims.bool", "Prims.prop" ]
[]
false
false
false
true
true
let cbor_map_get_with_typ_post_found (t: typ) (vkey vmap vvalue: raw_data_item) : Tot prop =
Map? vmap /\ list_ghost_assoc vkey (Map?.v vmap) == Some vvalue /\ t vvalue == true
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.lemma_be_bytes_to_quad32_prefix_equality
val lemma_be_bytes_to_quad32_prefix_equality (b0: seq nat8 {length b0 == 16}) (b1: seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1))
val lemma_be_bytes_to_quad32_prefix_equality (b0: seq nat8 {length b0 == 16}) (b1: seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1))
let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i))
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 80, "end_line": 34, "start_col": 0, "start_line": 23 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b0: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length b0 == 16} -> b1: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 {FStar.Seq.Base.length b1 == 16} -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.slice b0 0 12 == FStar.Seq.Base.slice b1 0 12) (ensures Vale.AES.GCM_BE.upper3_equal (Vale.Def.Types_s.be_bytes_to_quad32 b0) (Vale.Def.Types_s.be_bytes_to_quad32 b1))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Prims._assert", "Prims.l_Forall", "Prims.l_imp", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Seq.Base.index", "FStar.Seq.Base.slice", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Prims.op_Modulus", "Vale.Def.Words_s.four", "Prims.op_Division", "Vale.Def.Words.Seq_s.seq_to_seq_four_BE", "Vale.Def.Types_s.be_bytes_to_quad32_reveal", "Vale.Def.Types_s.quad32", "Vale.Def.Types_s.be_bytes_to_quad32", "Prims.squash", "Vale.AES.GCM_BE.upper3_equal", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_be_bytes_to_quad32_prefix_equality (b0: seq nat8 {length b0 == 16}) (b1: seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) =
let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i: int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i))
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.gcm_encrypt_BE_fst_helper
val gcm_encrypt_BE_fst_helper (iv: supported_iv_BE) (iv_enc iv_BE: quad32) (plain auth cipher: seq nat8) (alg: algorithm) (key: seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key)) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth))
val gcm_encrypt_BE_fst_helper (iv: supported_iv_BE) (iv_enc iv_BE: quad32) (plain auth cipher: seq nat8) (alg: algorithm) (key: seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key)) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth))
let gcm_encrypt_BE_fst_helper (iv:supported_iv_BE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key )) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 125, "start_col": 0, "start_line": 114 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; () let lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) = ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
iv: Vale.AES.GCM_BE_s.supported_iv_BE -> iv_enc: Vale.Def.Types_s.quad32 -> iv_BE: Vale.Def.Types_s.quad32 -> plain: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> auth: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> cipher: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 -> FStar.Pervasives.Lemma (requires Vale.AES.AES_BE_s.is_aes_key_word alg key /\ FStar.Seq.Base.length plain < Vale.Def.Words_s.pow2_32 /\ FStar.Seq.Base.length auth < Vale.Def.Words_s.pow2_32 /\ (let h_BE = Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) in iv_enc == Vale.AES.GCTR_BE_s.inc32 (Vale.AES.GCM_BE_s.compute_iv_BE h_BE iv) 1 /\ cipher == Vale.AES.GCTR_BE_s.gctr_encrypt iv_enc plain alg key)) (ensures cipher == FStar.Pervasives.Native.fst (Vale.AES.GCM_BE_s.gcm_encrypt_BE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE key) iv plain auth))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.AES.GCM_BE_s.supported_iv_BE", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Vale.AES.AES_common_s.algorithm", "Vale.Def.Words_s.nat32", "Vale.AES.GCM_BE_s.gcm_encrypt_BE_reveal", "Prims.unit", "Prims.l_and", "Vale.AES.AES_BE_s.is_aes_key_word", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Vale.Def.Words_s.pow2_32", "Prims.eq2", "Vale.AES.GCTR_BE_s.inc32", "Vale.AES.GCM_BE_s.compute_iv_BE", "Vale.Def.Types_s.nat8", "Vale.AES.GCTR_BE_s.gctr_encrypt", "Vale.AES.AES_BE_s.aes_encrypt_word", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.nat32", "Prims.squash", "FStar.Pervasives.Native.fst", "Vale.AES.GCM_BE_s.gcm_encrypt_BE", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let gcm_encrypt_BE_fst_helper (iv: supported_iv_BE) (iv_enc iv_BE: quad32) (plain auth cipher: seq nat8) (alg: algorithm) (key: seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key)) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) =
gcm_encrypt_BE_reveal ()
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.slice_append_back
val slice_append_back (#a: Type) (x y: seq a) (i: nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
val slice_append_back (#a: Type) (x y: seq a) (i: nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x)))
let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) = assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x)))); ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 258, "start_col": 0, "start_line": 253 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; () let lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) = ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); () let gcm_encrypt_BE_fst_helper (iv:supported_iv_BE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key )) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () let gcm_encrypt_BE_snd_helper (iv:supported_iv_BE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key) )) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () #reset-options "--z3rlimit 10" let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 ))) (ensures (let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in //cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key)) cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in gctr_partial_opaque_completed alg plain cipher key ctr_BE_2; if p_num_bytes > length p128 * 16 then ( gctr_partial_reveal (); assert (gctr_partial alg (length p128) plain cipher key ctr_BE_2); assert (equal (slice plain 0 (length p128)) (slice p128 0 (length p128))); assert (equal (slice cipher 0 (length p128)) (slice c128 0 (length p128))); gctr_partial_opaque_ignores_postfix alg (length p128) plain p128 cipher c128 key ctr_BE_2; assert (gctr_partial alg (length p128) p128 c128 key ctr_BE_2); gctr_partial_opaque_completed alg p128 c128 key ctr_BE_2; let num_blocks = p_num_bytes / 16 in assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_word alg key (inc32 ctr_BE_2 num_blocks))); gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks; assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks == gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0); aes_encrypt_word_reveal (); gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes; assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ) else ( gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher; assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt ctr_BE_2 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key); let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in assert (equal plain_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain))); assert (equal cipher_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher))); assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ); gcm_encrypt_BE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key; ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Seq.Base.seq a -> y: FStar.Seq.Base.seq a -> i: Prims.nat -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length x <= i /\ i <= FStar.Seq.Base.length x + FStar.Seq.Base.length y) (ensures FStar.Seq.Base.slice (FStar.Seq.Base.append x y) 0 i == FStar.Seq.Base.append x (FStar.Seq.Base.slice y 0 (i - FStar.Seq.Base.length x)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Prims.nat", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "FStar.Seq.Base.append", "Prims.op_Subtraction", "FStar.Seq.Base.length", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let slice_append_back (#a: Type) (x y: seq a) (i: nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) =
assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x)))); ()
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.lemma_be_seq_quad32_to_bytes_prefix_equality
val lemma_be_seq_quad32_to_bytes_prefix_equality (q: quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12)
val lemma_be_seq_quad32_to_bytes_prefix_equality (q: quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12)
let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 41, "start_col": 0, "start_line": 36 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i))
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
q: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice (Vale.Arch.Types.be_quad32_to_bytes q) 0 12 == FStar.Seq.Base.slice (Vale.AES.GCTR_BE_s.pad_to_128_bits (FStar.Seq.Base.slice (Vale.Arch.Types.be_quad32_to_bytes q) 0 12)) 0 12)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.Def.Types_s.quad32", "Prims.unit", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Types_s.nat8", "FStar.Seq.Base.slice", "Vale.AES.GCTR_BE_s.pad_to_128_bits", "Vale.Def.Words_s.nat8", "Vale.Arch.Types.be_quad32_to_bytes", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.seq", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let lemma_be_seq_quad32_to_bytes_prefix_equality (q: quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) =
assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); ()
false
CDDL.Pulse.fst
CDDL.Pulse.cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail
val cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires (cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == false)) (ensures (cbor_read_deterministically_encoded_with_typ_error_postcond t va))
val cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires (cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == false)) (ensures (cbor_read_deterministically_encoded_with_typ_error_postcond t va))
let cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_deterministically_encoded_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> data_item_wf deterministically_encoded_cbor_map_key_order v' == true /\ t v' == true)
{ "file_name": "share/steel/examples/pulse/dice/cbor/CDDL.Pulse.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 142, "end_line": 530, "start_col": 0, "start_line": 516 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module CDDL.Pulse open Pulse.Lib.Pervasives open Pulse.Lib.Stick open CBOR.Spec open CBOR.Pulse open CDDL.Spec module R = Pulse.Lib.Reference inline_for_extraction noextract [@@noextract_to "krml"] let impl_typ (#b: option raw_data_item) (t: bounded_typ_gen b) = (c: cbor) -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b )) (fun res -> raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b /\ res == t v )) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_coerce_to_bounded_typ (b: Ghost.erased (option raw_data_item)) (#t: typ) (f: impl_typ t) : impl_typ #b (coerce_to_bounded_typ b t) // FIXME: WHY WHY WHY do I need to provide the implicit argument = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { f c; } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_choice (#b: Ghost.erased (option raw_data_item)) (#t1 #t2: bounded_typ_gen b) (f1: impl_typ t1) (f2: impl_typ t2) : impl_typ #b (t_choice t1 t2) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let test = f1 c; if (test) { true } else { f2 c } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_t_choice_none // FIXME: WHY WHY WHY can F* not automatically infer t1 and t2 by reducing (reveal (hide None)) to None? (#t1 #t2: bounded_typ_gen None) (f1: impl_typ t1) (f2: impl_typ t2) : Tot (impl_typ (t_choice t1 t2)) = impl_t_choice #None #t1 #t2 f1 f2 inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_any (_: unit) : impl_typ #None any = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { true } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint (_: unit) : impl_typ #None uint = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_uint64) } ``` module U64 = FStar.UInt64 (* FIXME: WHY WHY WHY does this one not work? inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal (n: U64.t) : impl_typ #None (t_uint_literal n) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; if (mt = major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` *) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal' (n: U64.t) (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) requires (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) )) returns res: bool ensures (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) /\ res == t_uint_literal n v )) { let mt = cbor_get_major_type c; if (mt = cbor_major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_uint_literal (n: U64.t) : impl_typ (t_uint_literal n) = impl_uint_literal' n inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_bytes (_: unit) : impl_typ #None bytes = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_byte_string) } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_array_group3 (#b: Ghost.erased (option raw_data_item)) (g: array_group3 b) = (pi: R.ref cbor_array_iterator_t) -> (#p: perm) -> (#i: Ghost.erased cbor_array_iterator_t) -> (#l: Ghost.erased (list raw_data_item)) -> stt bool (R.pts_to pi i ** cbor_array_iterator_match p i l ** pure (opt_precedes (Ghost.reveal l) b) ) (fun res -> exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ```pulse ghost fn intro_impl_array_group3_post (#b: option raw_data_item) (g: array_group3 b) (pi: R.ref cbor_array_iterator_t) (p: perm) (i: cbor_array_iterator_t) (l: list raw_data_item) (res: bool) (i': cbor_array_iterator_t) (l': list raw_data_item) requires ( R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ensures (exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) { () } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_concat (#b: Ghost.erased (option raw_data_item)) (#g1: array_group3 b) (f1: impl_array_group3 g1) (#g2: array_group3 b) (f2: impl_array_group3 g2) : impl_array_group3 #b (array_group3_concat g1 g2) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let test1 = f1 pi; if (test1) { let test2 = f2 pi; stick_trans (); test2 } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_item (#b: Ghost.erased (option raw_data_item)) (#ty: bounded_typ_gen b) (fty: impl_typ ty) : impl_array_group3 #b (array_group3_item ty) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let i = !pi; rewrite (cbor_array_iterator_match p gi l) as (cbor_array_iterator_match p i l); let is_done = cbor_array_iterator_is_done i; rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p gi l); if (is_done) { stick_refl0 (cbor_array_iterator_match p gi l); intro_impl_array_group3_post (array_group3_item ty) pi p gi l false gi l; // FIXME: WHY WHY WHY? and also WHY WHY WHY here and not in the other "false" case below? false } else { let c = cbor_array_iterator_next pi #p #l #gi; // FIXME: WHY WHY WHY those explicit arguments? with gc i' l' . assert ( raw_data_item_match p c gc ** cbor_array_iterator_match p i' l' ** ((raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') @==> cbor_array_iterator_match p gi l) ); // this is needed for the explicit arguments to split_consume_l below let test = fty c; if (test) { stick_consume_l () #(raw_data_item_match p c gc) #(cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l) // FIXME: WHY WHY WHY those explicit arguments? (for which the with above is needed) ; true } else { elim_stick0 () #(raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l); // FIXME: WHY WHY WHY those explicit arguments? pi := i; rewrite (R.pts_to pi i) as (R.pts_to pi gi); stick_refl0 (cbor_array_iterator_match p gi l); false } } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_array (#b: Ghost.erased (option raw_data_item)) (#g: (array_group3 b)) (ig: (impl_array_group3 (g))) : impl_typ #b (t_array3 g) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let ty = cbor_get_major_type c; if (ty = cbor_major_type_array) { let i = cbor_array_iterator_init c; with l . assert (cbor_array_iterator_match p i l); rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l); let mut pi = i; let b_success = ig pi; with gi' l' . assert (cbor_array_iterator_match p gi' l'); let i' = ! pi; rewrite (cbor_array_iterator_match p gi' l') as (cbor_array_iterator_match p i' l'); let b_end = cbor_array_iterator_is_done i'; rewrite (cbor_array_iterator_match p i' l') as (cbor_array_iterator_match p gi' l'); elim_stick0 (); rewrite (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l) as (cbor_array_iterator_match p i l); elim_stick0 (); (b_success && b_end) } else { false } } ``` module U8 = FStar.UInt8 noextract [@@noextract_to "krml"] let cbor_read_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_success_postcond va c v rem /\ t v == true module A = Pulse.Lib.Array let cbor_read_with_typ_success_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) : Tot vprop = exists* v rem. raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem ** ((raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem) @==> A.pts_to a #p va) ** pure (cbor_read_with_typ_success_postcond t va c v rem) noextract [@@noextract_to "krml"] let cbor_read_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . Ghost.reveal va == serialize_cbor v `Seq.append` suff ==> t v == false let cbor_read_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> t v' == true) let cbor_read_with_typ_error_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) : Tot vprop = A.pts_to a #p va ** pure (cbor_read_with_typ_error_postcond t va) let cbor_read_with_typ_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = if res.cbor_read_is_success then cbor_read_with_typ_success_post t a p va res else cbor_read_with_typ_error_post t a p va module SZ = FStar.SizeT inline_for_extraction noextract let mk_cbor_read_error (res: cbor_read_t) : Tot cbor_read_t = {res with cbor_read_is_success = false} inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_read_with_typ (#t: typ) (ft: impl_typ t) (a: A.array U8.t) (sz: SZ.t) (#va: Ghost.erased (Seq.seq U8.t)) (#p: perm) requires (A.pts_to a #p va ** pure ( (SZ.v sz == Seq.length va \/ SZ.v sz == A.length a) )) returns res: cbor_read_t ensures cbor_read_with_typ_post t a p va res { let res = cbor_read a sz; if (res.cbor_read_is_success) { rewrite (cbor_read_post a p va res) as (cbor_read_success_post a p va res); unfold (cbor_read_success_post a p va res); let test = ft res.cbor_read_payload; if (test) { fold (cbor_read_with_typ_success_post t a p va res); rewrite (cbor_read_with_typ_success_post t a p va res) as (cbor_read_with_typ_post t a p va res); res } else { with v . assert (raw_data_item_match full_perm res.cbor_read_payload v); with vrem . assert (A.pts_to res.cbor_read_remainder #p vrem); cbor_read_with_typ_error_postcond_intro_typ_fail t va res v vrem; elim_stick0 () #(raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p vrem); fold (cbor_read_with_typ_error_post t a p va); let res = mk_cbor_read_error res; rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } else { rewrite (cbor_read_post a p va res) as (cbor_read_error_post a p va); unfold (cbor_read_error_post a p va); fold (cbor_read_with_typ_error_post t a p va); rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } ``` noextract [@@noextract_to "krml"] let cbor_read_deterministically_encoded_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == true noextract [@@noextract_to "krml"] let cbor_read_deterministically_encoded_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . (Ghost.reveal va == serialize_cbor v `Seq.append` suff /\ data_item_wf deterministically_encoded_cbor_map_key_order v == true ) ==> t v == false
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Stick.fsti.checked", "Pulse.Lib.Reference.fsti.checked", "Pulse.Lib.Pervasives.fst.checked", "Pulse.Lib.Array.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "CDDL.Spec.fsti.checked", "CBOR.Spec.fsti.checked", "CBOR.Pulse.fst.checked" ], "interface_file": false, "source_file": "CDDL.Pulse.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "Pulse.Lib.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "Pulse.Lib.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "CDDL.Spec", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Pulse", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Spec", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Stick", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: CDDL.Spec.typ -> va: FStar.Ghost.erased (FStar.Seq.Base.seq FStar.UInt8.t) -> c: CBOR.Pulse.Extern.cbor_read_t -> v: CBOR.Spec.Type.raw_data_item -> rem: FStar.Seq.Base.seq FStar.UInt8.t -> FStar.Pervasives.Lemma (requires CBOR.Pulse.Extern.cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == false) (ensures CDDL.Pulse.cbor_read_deterministically_encoded_with_typ_error_postcond t va)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "CDDL.Spec.typ", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "FStar.UInt8.t", "CBOR.Pulse.Extern.cbor_read_t", "CBOR.Spec.Type.raw_data_item", "CBOR.Spec.serialize_cbor_with_test_correct", "Prims.l_and", "Prims.eq2", "Prims.bool", "CBOR.Spec.Type.data_item_wf", "FStar.Ghost.reveal", "CBOR.Spec.deterministically_encoded_cbor_map_key_order", "Prims.prop", "Prims.unit", "CBOR.Pulse.Extern.cbor_read_deterministically_encoded_success_postcond", "Prims.squash", "CDDL.Pulse.cbor_read_deterministically_encoded_with_typ_error_postcond", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires (cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == false)) (ensures (cbor_read_deterministically_encoded_with_typ_error_postcond t va)) =
serialize_cbor_with_test_correct v rem (fun v' rem' -> data_item_wf deterministically_encoded_cbor_map_key_order v' == true /\ t v' == true)
false
CDDL.Pulse.fst
CDDL.Pulse.cbor_read_deterministically_encoded_with_typ_success_postcond
val cbor_read_deterministically_encoded_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop
val cbor_read_deterministically_encoded_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop
let cbor_read_deterministically_encoded_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == true
{ "file_name": "share/steel/examples/pulse/dice/cbor/CDDL.Pulse.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 15, "end_line": 503, "start_col": 0, "start_line": 494 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module CDDL.Pulse open Pulse.Lib.Pervasives open Pulse.Lib.Stick open CBOR.Spec open CBOR.Pulse open CDDL.Spec module R = Pulse.Lib.Reference inline_for_extraction noextract [@@noextract_to "krml"] let impl_typ (#b: option raw_data_item) (t: bounded_typ_gen b) = (c: cbor) -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b )) (fun res -> raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b /\ res == t v )) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_coerce_to_bounded_typ (b: Ghost.erased (option raw_data_item)) (#t: typ) (f: impl_typ t) : impl_typ #b (coerce_to_bounded_typ b t) // FIXME: WHY WHY WHY do I need to provide the implicit argument = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { f c; } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_choice (#b: Ghost.erased (option raw_data_item)) (#t1 #t2: bounded_typ_gen b) (f1: impl_typ t1) (f2: impl_typ t2) : impl_typ #b (t_choice t1 t2) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let test = f1 c; if (test) { true } else { f2 c } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_t_choice_none // FIXME: WHY WHY WHY can F* not automatically infer t1 and t2 by reducing (reveal (hide None)) to None? (#t1 #t2: bounded_typ_gen None) (f1: impl_typ t1) (f2: impl_typ t2) : Tot (impl_typ (t_choice t1 t2)) = impl_t_choice #None #t1 #t2 f1 f2 inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_any (_: unit) : impl_typ #None any = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { true } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint (_: unit) : impl_typ #None uint = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_uint64) } ``` module U64 = FStar.UInt64 (* FIXME: WHY WHY WHY does this one not work? inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal (n: U64.t) : impl_typ #None (t_uint_literal n) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; if (mt = major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` *) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal' (n: U64.t) (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) requires (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) )) returns res: bool ensures (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) /\ res == t_uint_literal n v )) { let mt = cbor_get_major_type c; if (mt = cbor_major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_uint_literal (n: U64.t) : impl_typ (t_uint_literal n) = impl_uint_literal' n inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_bytes (_: unit) : impl_typ #None bytes = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_byte_string) } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_array_group3 (#b: Ghost.erased (option raw_data_item)) (g: array_group3 b) = (pi: R.ref cbor_array_iterator_t) -> (#p: perm) -> (#i: Ghost.erased cbor_array_iterator_t) -> (#l: Ghost.erased (list raw_data_item)) -> stt bool (R.pts_to pi i ** cbor_array_iterator_match p i l ** pure (opt_precedes (Ghost.reveal l) b) ) (fun res -> exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ```pulse ghost fn intro_impl_array_group3_post (#b: option raw_data_item) (g: array_group3 b) (pi: R.ref cbor_array_iterator_t) (p: perm) (i: cbor_array_iterator_t) (l: list raw_data_item) (res: bool) (i': cbor_array_iterator_t) (l': list raw_data_item) requires ( R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ensures (exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) { () } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_concat (#b: Ghost.erased (option raw_data_item)) (#g1: array_group3 b) (f1: impl_array_group3 g1) (#g2: array_group3 b) (f2: impl_array_group3 g2) : impl_array_group3 #b (array_group3_concat g1 g2) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let test1 = f1 pi; if (test1) { let test2 = f2 pi; stick_trans (); test2 } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_item (#b: Ghost.erased (option raw_data_item)) (#ty: bounded_typ_gen b) (fty: impl_typ ty) : impl_array_group3 #b (array_group3_item ty) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let i = !pi; rewrite (cbor_array_iterator_match p gi l) as (cbor_array_iterator_match p i l); let is_done = cbor_array_iterator_is_done i; rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p gi l); if (is_done) { stick_refl0 (cbor_array_iterator_match p gi l); intro_impl_array_group3_post (array_group3_item ty) pi p gi l false gi l; // FIXME: WHY WHY WHY? and also WHY WHY WHY here and not in the other "false" case below? false } else { let c = cbor_array_iterator_next pi #p #l #gi; // FIXME: WHY WHY WHY those explicit arguments? with gc i' l' . assert ( raw_data_item_match p c gc ** cbor_array_iterator_match p i' l' ** ((raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') @==> cbor_array_iterator_match p gi l) ); // this is needed for the explicit arguments to split_consume_l below let test = fty c; if (test) { stick_consume_l () #(raw_data_item_match p c gc) #(cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l) // FIXME: WHY WHY WHY those explicit arguments? (for which the with above is needed) ; true } else { elim_stick0 () #(raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l); // FIXME: WHY WHY WHY those explicit arguments? pi := i; rewrite (R.pts_to pi i) as (R.pts_to pi gi); stick_refl0 (cbor_array_iterator_match p gi l); false } } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_array (#b: Ghost.erased (option raw_data_item)) (#g: (array_group3 b)) (ig: (impl_array_group3 (g))) : impl_typ #b (t_array3 g) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let ty = cbor_get_major_type c; if (ty = cbor_major_type_array) { let i = cbor_array_iterator_init c; with l . assert (cbor_array_iterator_match p i l); rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l); let mut pi = i; let b_success = ig pi; with gi' l' . assert (cbor_array_iterator_match p gi' l'); let i' = ! pi; rewrite (cbor_array_iterator_match p gi' l') as (cbor_array_iterator_match p i' l'); let b_end = cbor_array_iterator_is_done i'; rewrite (cbor_array_iterator_match p i' l') as (cbor_array_iterator_match p gi' l'); elim_stick0 (); rewrite (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l) as (cbor_array_iterator_match p i l); elim_stick0 (); (b_success && b_end) } else { false } } ``` module U8 = FStar.UInt8 noextract [@@noextract_to "krml"] let cbor_read_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_success_postcond va c v rem /\ t v == true module A = Pulse.Lib.Array let cbor_read_with_typ_success_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) : Tot vprop = exists* v rem. raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem ** ((raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem) @==> A.pts_to a #p va) ** pure (cbor_read_with_typ_success_postcond t va c v rem) noextract [@@noextract_to "krml"] let cbor_read_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . Ghost.reveal va == serialize_cbor v `Seq.append` suff ==> t v == false let cbor_read_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> t v' == true) let cbor_read_with_typ_error_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) : Tot vprop = A.pts_to a #p va ** pure (cbor_read_with_typ_error_postcond t va) let cbor_read_with_typ_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = if res.cbor_read_is_success then cbor_read_with_typ_success_post t a p va res else cbor_read_with_typ_error_post t a p va module SZ = FStar.SizeT inline_for_extraction noextract let mk_cbor_read_error (res: cbor_read_t) : Tot cbor_read_t = {res with cbor_read_is_success = false} inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_read_with_typ (#t: typ) (ft: impl_typ t) (a: A.array U8.t) (sz: SZ.t) (#va: Ghost.erased (Seq.seq U8.t)) (#p: perm) requires (A.pts_to a #p va ** pure ( (SZ.v sz == Seq.length va \/ SZ.v sz == A.length a) )) returns res: cbor_read_t ensures cbor_read_with_typ_post t a p va res { let res = cbor_read a sz; if (res.cbor_read_is_success) { rewrite (cbor_read_post a p va res) as (cbor_read_success_post a p va res); unfold (cbor_read_success_post a p va res); let test = ft res.cbor_read_payload; if (test) { fold (cbor_read_with_typ_success_post t a p va res); rewrite (cbor_read_with_typ_success_post t a p va res) as (cbor_read_with_typ_post t a p va res); res } else { with v . assert (raw_data_item_match full_perm res.cbor_read_payload v); with vrem . assert (A.pts_to res.cbor_read_remainder #p vrem); cbor_read_with_typ_error_postcond_intro_typ_fail t va res v vrem; elim_stick0 () #(raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p vrem); fold (cbor_read_with_typ_error_post t a p va); let res = mk_cbor_read_error res; rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } else { rewrite (cbor_read_post a p va res) as (cbor_read_error_post a p va); unfold (cbor_read_error_post a p va); fold (cbor_read_with_typ_error_post t a p va); rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } ```
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Stick.fsti.checked", "Pulse.Lib.Reference.fsti.checked", "Pulse.Lib.Pervasives.fst.checked", "Pulse.Lib.Array.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "CDDL.Spec.fsti.checked", "CBOR.Spec.fsti.checked", "CBOR.Pulse.fst.checked" ], "interface_file": false, "source_file": "CDDL.Pulse.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "Pulse.Lib.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "Pulse.Lib.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "CDDL.Spec", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Pulse", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Spec", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Stick", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: CDDL.Spec.typ -> va: FStar.Ghost.erased (FStar.Seq.Base.seq FStar.UInt8.t) -> c: CBOR.Pulse.Extern.cbor_read_t -> v: CBOR.Spec.Type.raw_data_item -> rem: FStar.Seq.Base.seq FStar.UInt8.t -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "CDDL.Spec.typ", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "FStar.UInt8.t", "CBOR.Pulse.Extern.cbor_read_t", "CBOR.Spec.Type.raw_data_item", "Prims.l_and", "CBOR.Pulse.Extern.cbor_read_deterministically_encoded_success_postcond", "Prims.eq2", "Prims.bool", "Prims.prop" ]
[]
false
false
false
true
true
let cbor_read_deterministically_encoded_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop =
cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == true
false
Vale.Transformers.MovMovElim.fst
Vale.Transformers.MovMovElim.mov_mov_elim_ph
val mov_mov_elim_ph : Vale.Transformers.PeepHole.pre_peephole
let mov_mov_elim_ph = { ph = (fun is -> if safe_mov_mov_elim is then ( let [i1; i2] = is in Some [i2] ) else None); input_hint = 2; }
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.MovMovElim.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 1, "end_line": 54, "start_col": 0, "start_line": 47 }
module Vale.Transformers.MovMovElim open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s open Vale.Def.PossiblyMonad open Vale.Transformers.InstructionReorder open Vale.X64.InsLemmas open Vale.Transformers.PeepHole (* * AR: this proof relies on multiple inductive type inversions to know that * oprs1 is a Mov64 (resp. for oprs2) * * this used to go through earlier with just ifuel 1, because F* was weakening * the branch VCs with discriminator expressions, thereby unintentionally * triggering the inversions, this is no longer true in F*, and hence more ifuel *) #push-options "--ifuel 4" let safe_mov_mov_elim (is:list ins) : Tot bool = match is with | [Instr i1 oprs1 (AnnotateMov64 ()); Instr i2 oprs2 (AnnotateMov64 ())] -> let oprs1:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs1 in let oprs2:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs2 in let (dst1, (src1, ())) = oprs1 in let (dst2, (src2, ())) = oprs2 in dst1 = dst2 && OReg? dst1 && ( let OReg rd = dst1 in match src2 with | OConst _ -> true | OReg rs2 -> not (rs2 = rd) | OStack (m, _) | OMem (m, _) -> match m with | MConst _ -> true | _ -> false // TODO: Can we relax this restriction? ) | _ -> false #pop-options
{ "checked_file": "/", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Transformers.PeepHole.fsti.checked", "Vale.Transformers.InstructionReorder.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.Transformers.MovMovElim.fst" }
[ { "abbrev": false, "full_module": "Vale.Transformers.PeepHole", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Vale.Transformers.PeepHole.pre_peephole
Prims.Tot
[ "total" ]
[]
[ "Vale.Transformers.PeepHole.Mkpre_peephole", "Prims.list", "Vale.X64.Machine_Semantics_s.ins", "Vale.Transformers.MovMovElim.safe_mov_mov_elim", "FStar.Pervasives.Native.Some", "Prims.Cons", "Prims.Nil", "FStar.Pervasives.Native.option", "Prims.bool", "FStar.Pervasives.Native.None" ]
[]
false
false
false
true
false
let mov_mov_elim_ph =
{ ph = (fun is -> if safe_mov_mov_elim is then (let [i1 ; i2] = is in Some [i2]) else None); input_hint = 2 }
false
CDDL.Pulse.fst
CDDL.Pulse.cbor_read_with_typ_error_postcond_intro_typ_fail
val cbor_read_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires (cbor_read_success_postcond va c v rem /\ t v == false)) (ensures (cbor_read_with_typ_error_postcond t va))
val cbor_read_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires (cbor_read_success_postcond va c v rem /\ t v == false)) (ensures (cbor_read_with_typ_error_postcond t va))
let cbor_read_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> t v' == true)
{ "file_name": "share/steel/examples/pulse/dice/cbor/CDDL.Pulse.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 70, "end_line": 419, "start_col": 0, "start_line": 405 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module CDDL.Pulse open Pulse.Lib.Pervasives open Pulse.Lib.Stick open CBOR.Spec open CBOR.Pulse open CDDL.Spec module R = Pulse.Lib.Reference inline_for_extraction noextract [@@noextract_to "krml"] let impl_typ (#b: option raw_data_item) (t: bounded_typ_gen b) = (c: cbor) -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b )) (fun res -> raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b /\ res == t v )) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_coerce_to_bounded_typ (b: Ghost.erased (option raw_data_item)) (#t: typ) (f: impl_typ t) : impl_typ #b (coerce_to_bounded_typ b t) // FIXME: WHY WHY WHY do I need to provide the implicit argument = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { f c; } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_choice (#b: Ghost.erased (option raw_data_item)) (#t1 #t2: bounded_typ_gen b) (f1: impl_typ t1) (f2: impl_typ t2) : impl_typ #b (t_choice t1 t2) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let test = f1 c; if (test) { true } else { f2 c } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_t_choice_none // FIXME: WHY WHY WHY can F* not automatically infer t1 and t2 by reducing (reveal (hide None)) to None? (#t1 #t2: bounded_typ_gen None) (f1: impl_typ t1) (f2: impl_typ t2) : Tot (impl_typ (t_choice t1 t2)) = impl_t_choice #None #t1 #t2 f1 f2 inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_any (_: unit) : impl_typ #None any = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { true } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint (_: unit) : impl_typ #None uint = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_uint64) } ``` module U64 = FStar.UInt64 (* FIXME: WHY WHY WHY does this one not work? inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal (n: U64.t) : impl_typ #None (t_uint_literal n) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; if (mt = major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` *) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal' (n: U64.t) (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) requires (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) )) returns res: bool ensures (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) /\ res == t_uint_literal n v )) { let mt = cbor_get_major_type c; if (mt = cbor_major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_uint_literal (n: U64.t) : impl_typ (t_uint_literal n) = impl_uint_literal' n inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_bytes (_: unit) : impl_typ #None bytes = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_byte_string) } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_array_group3 (#b: Ghost.erased (option raw_data_item)) (g: array_group3 b) = (pi: R.ref cbor_array_iterator_t) -> (#p: perm) -> (#i: Ghost.erased cbor_array_iterator_t) -> (#l: Ghost.erased (list raw_data_item)) -> stt bool (R.pts_to pi i ** cbor_array_iterator_match p i l ** pure (opt_precedes (Ghost.reveal l) b) ) (fun res -> exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ```pulse ghost fn intro_impl_array_group3_post (#b: option raw_data_item) (g: array_group3 b) (pi: R.ref cbor_array_iterator_t) (p: perm) (i: cbor_array_iterator_t) (l: list raw_data_item) (res: bool) (i': cbor_array_iterator_t) (l': list raw_data_item) requires ( R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ensures (exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) { () } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_concat (#b: Ghost.erased (option raw_data_item)) (#g1: array_group3 b) (f1: impl_array_group3 g1) (#g2: array_group3 b) (f2: impl_array_group3 g2) : impl_array_group3 #b (array_group3_concat g1 g2) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let test1 = f1 pi; if (test1) { let test2 = f2 pi; stick_trans (); test2 } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_item (#b: Ghost.erased (option raw_data_item)) (#ty: bounded_typ_gen b) (fty: impl_typ ty) : impl_array_group3 #b (array_group3_item ty) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let i = !pi; rewrite (cbor_array_iterator_match p gi l) as (cbor_array_iterator_match p i l); let is_done = cbor_array_iterator_is_done i; rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p gi l); if (is_done) { stick_refl0 (cbor_array_iterator_match p gi l); intro_impl_array_group3_post (array_group3_item ty) pi p gi l false gi l; // FIXME: WHY WHY WHY? and also WHY WHY WHY here and not in the other "false" case below? false } else { let c = cbor_array_iterator_next pi #p #l #gi; // FIXME: WHY WHY WHY those explicit arguments? with gc i' l' . assert ( raw_data_item_match p c gc ** cbor_array_iterator_match p i' l' ** ((raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') @==> cbor_array_iterator_match p gi l) ); // this is needed for the explicit arguments to split_consume_l below let test = fty c; if (test) { stick_consume_l () #(raw_data_item_match p c gc) #(cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l) // FIXME: WHY WHY WHY those explicit arguments? (for which the with above is needed) ; true } else { elim_stick0 () #(raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l); // FIXME: WHY WHY WHY those explicit arguments? pi := i; rewrite (R.pts_to pi i) as (R.pts_to pi gi); stick_refl0 (cbor_array_iterator_match p gi l); false } } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_array (#b: Ghost.erased (option raw_data_item)) (#g: (array_group3 b)) (ig: (impl_array_group3 (g))) : impl_typ #b (t_array3 g) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let ty = cbor_get_major_type c; if (ty = cbor_major_type_array) { let i = cbor_array_iterator_init c; with l . assert (cbor_array_iterator_match p i l); rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l); let mut pi = i; let b_success = ig pi; with gi' l' . assert (cbor_array_iterator_match p gi' l'); let i' = ! pi; rewrite (cbor_array_iterator_match p gi' l') as (cbor_array_iterator_match p i' l'); let b_end = cbor_array_iterator_is_done i'; rewrite (cbor_array_iterator_match p i' l') as (cbor_array_iterator_match p gi' l'); elim_stick0 (); rewrite (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l) as (cbor_array_iterator_match p i l); elim_stick0 (); (b_success && b_end) } else { false } } ``` module U8 = FStar.UInt8 noextract [@@noextract_to "krml"] let cbor_read_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_success_postcond va c v rem /\ t v == true module A = Pulse.Lib.Array let cbor_read_with_typ_success_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) : Tot vprop = exists* v rem. raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem ** ((raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem) @==> A.pts_to a #p va) ** pure (cbor_read_with_typ_success_postcond t va c v rem) noextract [@@noextract_to "krml"] let cbor_read_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . Ghost.reveal va == serialize_cbor v `Seq.append` suff ==> t v == false
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Stick.fsti.checked", "Pulse.Lib.Reference.fsti.checked", "Pulse.Lib.Pervasives.fst.checked", "Pulse.Lib.Array.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "CDDL.Spec.fsti.checked", "CBOR.Spec.fsti.checked", "CBOR.Pulse.fst.checked" ], "interface_file": false, "source_file": "CDDL.Pulse.fst" }
[ { "abbrev": true, "full_module": "Pulse.Lib.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "Pulse.Lib.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "CDDL.Spec", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Pulse", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Spec", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Stick", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: CDDL.Spec.typ -> va: FStar.Ghost.erased (FStar.Seq.Base.seq FStar.UInt8.t) -> c: CBOR.Pulse.Extern.cbor_read_t -> v: CBOR.Spec.Type.raw_data_item -> rem: FStar.Seq.Base.seq FStar.UInt8.t -> FStar.Pervasives.Lemma (requires CBOR.Pulse.Extern.cbor_read_success_postcond va c v rem /\ t v == false) (ensures CDDL.Pulse.cbor_read_with_typ_error_postcond t va)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "CDDL.Spec.typ", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "FStar.UInt8.t", "CBOR.Pulse.Extern.cbor_read_t", "CBOR.Spec.Type.raw_data_item", "CBOR.Spec.serialize_cbor_with_test_correct", "Prims.eq2", "Prims.bool", "Prims.prop", "Prims.unit", "Prims.l_and", "CBOR.Pulse.Extern.cbor_read_success_postcond", "Prims.squash", "CDDL.Pulse.cbor_read_with_typ_error_postcond", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let cbor_read_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires (cbor_read_success_postcond va c v rem /\ t v == false)) (ensures (cbor_read_with_typ_error_postcond t va)) =
serialize_cbor_with_test_correct v rem (fun v' rem' -> t v' == true)
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.gcm_encrypt_BE_snd_helper
val gcm_encrypt_BE_snd_helper (iv: supported_iv_BE) (j0_BE length_quad32 hash mac: quad32) (plain auth cipher: seq nat8) (alg: algorithm) (key: seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key))) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth))
val gcm_encrypt_BE_snd_helper (iv: supported_iv_BE) (j0_BE length_quad32 hash mac: quad32) (plain auth cipher: seq nat8) (alg: algorithm) (key: seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key))) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth))
let gcm_encrypt_BE_snd_helper (iv:supported_iv_BE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key) )) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 143, "start_col": 0, "start_line": 127 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; () let lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) = ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); () let gcm_encrypt_BE_fst_helper (iv:supported_iv_BE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key )) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
iv: Vale.AES.GCM_BE_s.supported_iv_BE -> j0_BE: Vale.Def.Types_s.quad32 -> length_quad32: Vale.Def.Types_s.quad32 -> hash: Vale.Def.Types_s.quad32 -> mac: Vale.Def.Types_s.quad32 -> plain: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> auth: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> cipher: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 -> FStar.Pervasives.Lemma (requires Vale.AES.AES_BE_s.is_aes_key_word alg key /\ FStar.Seq.Base.length plain < Vale.Def.Words_s.pow2_32 /\ FStar.Seq.Base.length auth < Vale.Def.Words_s.pow2_32 /\ (let h_BE = Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) in j0_BE = Vale.AES.GCM_BE_s.compute_iv_BE h_BE iv /\ cipher == FStar.Pervasives.Native.fst (Vale.AES.GCM_BE_s.gcm_encrypt_BE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == Vale.Def.Words.Four_s.two_two_to_four (Vale.Def.Words_s.Mktwo (Vale.Def.Words.Two_s.nat_to_two 32 (8 * FStar.Seq.Base.length auth)) (Vale.Def.Words.Two_s.nat_to_two 32 (8 * FStar.Seq.Base.length plain))) /\ (let auth_padded_quads = Vale.Def.Types_s.be_bytes_to_seq_quad32 (Vale.AES.GCTR_BE_s.pad_to_128_bits auth) in let cipher_padded_quads = Vale.Def.Types_s.be_bytes_to_seq_quad32 (Vale.AES.GCTR_BE_s.pad_to_128_bits cipher) in hash == Vale.AES.GHash_BE_s.ghash_BE h_BE (FStar.Seq.Base.append auth_padded_quads (FStar.Seq.Base.append cipher_padded_quads (FStar.Seq.Base.create 1 length_quad32) )) /\ Vale.Arch.Types.be_quad32_to_bytes mac == Vale.AES.GCTR_BE_s.gctr_encrypt j0_BE (Vale.Arch.Types.be_quad32_to_bytes hash) alg key) )) (ensures Vale.Arch.Types.be_quad32_to_bytes mac == FStar.Pervasives.Native.snd (Vale.AES.GCM_BE_s.gcm_encrypt_BE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE key) iv plain auth))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.AES.GCM_BE_s.supported_iv_BE", "Vale.Def.Types_s.quad32", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Vale.AES.AES_common_s.algorithm", "Vale.Def.Words_s.nat32", "Vale.AES.GCM_BE_s.gcm_encrypt_BE_reveal", "Prims.unit", "Prims.l_and", "Vale.AES.AES_BE_s.is_aes_key_word", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Vale.Def.Words_s.pow2_32", "Prims.op_Equality", "Vale.AES.GCM_BE_s.compute_iv_BE", "Prims.eq2", "Vale.Def.Types_s.nat8", "FStar.Pervasives.Native.fst", "Vale.AES.GCM_BE_s.gcm_encrypt_BE", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.two_two_to_four", "Vale.Def.Words_s.Mktwo", "Vale.Def.Words_s.two", "Vale.Def.Words.Two_s.nat_to_two", "FStar.Mul.op_Star", "Vale.AES.GHash_BE_s.ghash_BE", "FStar.Seq.Base.append", "FStar.Seq.Base.create", "Vale.Arch.Types.be_quad32_to_bytes", "Vale.AES.GCTR_BE_s.gctr_encrypt", "Vale.Def.Types_s.be_bytes_to_seq_quad32", "Vale.AES.GCTR_BE_s.pad_to_128_bits", "Vale.AES.AES_BE_s.aes_encrypt_word", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.nat32", "Prims.squash", "FStar.Pervasives.Native.snd", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let gcm_encrypt_BE_snd_helper (iv: supported_iv_BE) (j0_BE length_quad32 hash mac: quad32) (plain auth cipher: seq nat8) (alg: algorithm) (key: seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key))) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) =
gcm_encrypt_BE_reveal ()
false
Vale.Transformers.MovMovElim.fst
Vale.Transformers.MovMovElim.safe_mov_mov_elim
val safe_mov_mov_elim (is: list ins) : Tot bool
val safe_mov_mov_elim (is: list ins) : Tot bool
let safe_mov_mov_elim (is:list ins) : Tot bool = match is with | [Instr i1 oprs1 (AnnotateMov64 ()); Instr i2 oprs2 (AnnotateMov64 ())] -> let oprs1:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs1 in let oprs2:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs2 in let (dst1, (src1, ())) = oprs1 in let (dst2, (src2, ())) = oprs2 in dst1 = dst2 && OReg? dst1 && ( let OReg rd = dst1 in match src2 with | OConst _ -> true | OReg rs2 -> not (rs2 = rd) | OStack (m, _) | OMem (m, _) -> match m with | MConst _ -> true | _ -> false // TODO: Can we relax this restriction? ) | _ -> false
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.MovMovElim.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 44, "start_col": 0, "start_line": 25 }
module Vale.Transformers.MovMovElim open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s open Vale.Def.PossiblyMonad open Vale.Transformers.InstructionReorder open Vale.X64.InsLemmas open Vale.Transformers.PeepHole (* * AR: this proof relies on multiple inductive type inversions to know that * oprs1 is a Mov64 (resp. for oprs2) * * this used to go through earlier with just ifuel 1, because F* was weakening * the branch VCs with discriminator expressions, thereby unintentionally * triggering the inversions, this is no longer true in F*, and hence more ifuel *)
{ "checked_file": "/", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Transformers.PeepHole.fsti.checked", "Vale.Transformers.InstructionReorder.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.Transformers.MovMovElim.fst" }
[ { "abbrev": false, "full_module": "Vale.Transformers.PeepHole", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 4, "max_fuel": 1, "max_ifuel": 4, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
is: Prims.list Vale.X64.Machine_Semantics_s.ins -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Instruction_s.instr_t_record", "Vale.X64.Instruction_s.instr_operands_t", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__outs", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__args", "Vale.X64.Machine_s.operand64", "Prims.op_AmpAmp", "Prims.op_Equality", "Vale.X64.Machine_s.uu___is_OReg", "Vale.X64.Machine_s.nat64", "Vale.X64.Machine_s.reg_64", "Prims.op_Negation", "Vale.X64.Machine_s.maddr", "Vale.Arch.HeapTypes_s.taint", "Prims.int", "Prims.bool", "FStar.Pervasives.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.zeta", "FStar.Pervasives.iota", "FStar.Pervasives.delta_attr", "Prims.string", "Prims.Nil", "Vale.X64.Instruction_s.instr_out", "FStar.Pervasives.Native.Mktuple2", "Vale.X64.Instruction_s.instr_operand_inout", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.Out", "Vale.X64.Instruction_s.IOpEx", "Vale.X64.Instruction_s.IOp64", "Vale.Transformers.PeepHole.coerce_to_normal", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.op64" ]
[]
false
false
false
true
false
let safe_mov_mov_elim (is: list ins) : Tot bool =
match is with | [Instr i1 oprs1 (AnnotateMov64 ()) ; Instr i2 oprs2 (AnnotateMov64 ())] -> let oprs1:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs1 in let oprs2:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs2 in let dst1, (src1, ()) = oprs1 in let dst2, (src2, ()) = oprs2 in dst1 = dst2 && OReg? dst1 && (let OReg rd = dst1 in match src2 with | OConst _ -> true | OReg rs2 -> not (rs2 = rd) | OStack (m, _) | OMem (m, _) -> match m with | MConst _ -> true | _ -> false) | _ -> false
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.lemma_compute_iv_hard
val lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv)
val lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv)
let lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) = ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 112, "start_col": 0, "start_line": 101 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
iv: Vale.AES.GCM_BE_s.supported_iv_BE -> quads: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> length_quad: Vale.Def.Types_s.quad32 -> h_BE: Vale.Def.Types_s.quad32 -> j0: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires ~(FStar.Seq.Base.length iv == 96 / 8) /\ quads == Vale.Def.Types_s.be_bytes_to_seq_quad32 (Vale.AES.GCTR_BE_s.pad_to_128_bits iv) /\ j0 == Vale.AES.GHash_BE.ghash_incremental h_BE (Vale.Def.Words_s.Mkfour 0 0 0 0) (FStar.Seq.Base.append quads (FStar.Seq.Base.create 1 length_quad)) /\ length_quad == Vale.Def.Words.Four_s.two_two_to_four (Vale.Def.Words_s.Mktwo (Vale.Def.Words.Two_s.nat_to_two 32 0) (Vale.Def.Words.Two_s.nat_to_two 32 (8 * FStar.Seq.Base.length iv)))) (ensures j0 == Vale.AES.GCM_BE_s.compute_iv_BE h_BE iv)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.AES.GCM_BE_s.supported_iv_BE", "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Prims.unit", "Vale.AES.GCM_BE_s.compute_iv_BE_reveal", "Vale.AES.GHash_BE.ghash_incremental_to_ghash", "FStar.Seq.Base.append", "FStar.Seq.Base.create", "Prims.l_and", "Prims.l_not", "Prims.eq2", "Prims.int", "FStar.Seq.Base.length", "Vale.Def.Types_s.nat8", "Prims.op_Division", "Vale.Def.Types_s.be_bytes_to_seq_quad32", "Vale.AES.GCTR_BE_s.pad_to_128_bits", "Vale.AES.GHash_BE.ghash_incremental", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.two_two_to_four", "Vale.Def.Words_s.Mktwo", "Vale.Def.Words_s.two", "Vale.Def.Words.Two_s.nat_to_two", "FStar.Mul.op_Star", "Prims.squash", "Vale.AES.GCM_BE_s.compute_iv_BE", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let lemma_compute_iv_hard (iv: supported_iv_BE) (quads: seq quad32) (length_quad h_BE j0: quad32) : Lemma (requires ~(length iv == 96 / 8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) =
ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); ()
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.pad_to_128_bits_multiple_append
val pad_to_128_bits_multiple_append (x y: seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
val pad_to_128_bits_multiple_append (x y: seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y))
let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) = assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 78, "end_line": 269, "start_col": 0, "start_line": 265 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; () let lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) = ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); () let gcm_encrypt_BE_fst_helper (iv:supported_iv_BE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key )) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () let gcm_encrypt_BE_snd_helper (iv:supported_iv_BE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key) )) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () #reset-options "--z3rlimit 10" let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 ))) (ensures (let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in //cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key)) cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in gctr_partial_opaque_completed alg plain cipher key ctr_BE_2; if p_num_bytes > length p128 * 16 then ( gctr_partial_reveal (); assert (gctr_partial alg (length p128) plain cipher key ctr_BE_2); assert (equal (slice plain 0 (length p128)) (slice p128 0 (length p128))); assert (equal (slice cipher 0 (length p128)) (slice c128 0 (length p128))); gctr_partial_opaque_ignores_postfix alg (length p128) plain p128 cipher c128 key ctr_BE_2; assert (gctr_partial alg (length p128) p128 c128 key ctr_BE_2); gctr_partial_opaque_completed alg p128 c128 key ctr_BE_2; let num_blocks = p_num_bytes / 16 in assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_word alg key (inc32 ctr_BE_2 num_blocks))); gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks; assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks == gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0); aes_encrypt_word_reveal (); gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes; assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ) else ( gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher; assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt ctr_BE_2 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key); let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in assert (equal plain_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain))); assert (equal cipher_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher))); assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ); gcm_encrypt_BE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key; () let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) = assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x)))); () let append_distributes_be_seq_quad32_to_bytes (x y:seq quad32) : Lemma (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append x y)) == append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE x)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE y))) = append_distributes_be_seq_quad32_to_bytes x y
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> y: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length x % 16 == 0) (ensures Vale.AES.GCTR_BE_s.pad_to_128_bits (FStar.Seq.Base.append x y) == FStar.Seq.Base.append x (Vale.AES.GCTR_BE_s.pad_to_128_bits y))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Prims._assert", "FStar.Seq.Base.equal", "Vale.Def.Types_s.nat8", "Vale.AES.GCTR_BE_s.pad_to_128_bits", "FStar.Seq.Base.append", "Prims.unit", "Prims.eq2", "Prims.int", "Prims.op_Modulus", "FStar.Seq.Base.length", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let pad_to_128_bits_multiple_append (x y: seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) =
assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.lemma_gcm_encrypt_decrypt_equiv
val lemma_gcm_encrypt_decrypt_equiv (alg: algorithm) (key: seq nat32) (iv: supported_iv_BE) (j0_BE: quad32) (plain cipher auth alleged_tag: seq nat8) : Lemma (requires is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv) /\ length cipher < pow2_32 /\ length auth < pow2_32 /\ plain == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth)) (ensures plain == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth alleged_tag))
val lemma_gcm_encrypt_decrypt_equiv (alg: algorithm) (key: seq nat32) (iv: supported_iv_BE) (j0_BE: quad32) (plain cipher auth alleged_tag: seq nat8) : Lemma (requires is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv) /\ length cipher < pow2_32 /\ length auth < pow2_32 /\ plain == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth)) (ensures plain == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth alleged_tag))
let lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_BE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma (requires is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv) /\ length cipher < pow2_32 /\ length auth < pow2_32 /\ plain == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth) ) (ensures plain == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth alleged_tag)) = gcm_encrypt_BE_reveal (); gcm_decrypt_BE_reveal (); ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 650, "start_col": 0, "start_line": 637 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; () let lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) = ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); () let gcm_encrypt_BE_fst_helper (iv:supported_iv_BE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key )) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () let gcm_encrypt_BE_snd_helper (iv:supported_iv_BE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key) )) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () #reset-options "--z3rlimit 10" let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 ))) (ensures (let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in //cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key)) cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in gctr_partial_opaque_completed alg plain cipher key ctr_BE_2; if p_num_bytes > length p128 * 16 then ( gctr_partial_reveal (); assert (gctr_partial alg (length p128) plain cipher key ctr_BE_2); assert (equal (slice plain 0 (length p128)) (slice p128 0 (length p128))); assert (equal (slice cipher 0 (length p128)) (slice c128 0 (length p128))); gctr_partial_opaque_ignores_postfix alg (length p128) plain p128 cipher c128 key ctr_BE_2; assert (gctr_partial alg (length p128) p128 c128 key ctr_BE_2); gctr_partial_opaque_completed alg p128 c128 key ctr_BE_2; let num_blocks = p_num_bytes / 16 in assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_word alg key (inc32 ctr_BE_2 num_blocks))); gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks; assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks == gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0); aes_encrypt_word_reveal (); gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes; assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ) else ( gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher; assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt ctr_BE_2 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key); let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in assert (equal plain_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain))); assert (equal cipher_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher))); assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ); gcm_encrypt_BE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key; () let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) = assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x)))); () let append_distributes_be_seq_quad32_to_bytes (x y:seq quad32) : Lemma (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append x y)) == append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE x)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE y))) = append_distributes_be_seq_quad32_to_bytes x y let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) = assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y))) #reset-options "--z3rlimit 100" let gcm_blocks_helper (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in let hash = ghash_BE h final_quads in gcm_blocks_helper_enc alg key p128 p_bytes c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE; calc (==) { enc_hash; == {} gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0; == {} gctr_encrypt_block ctr_BE_1 hash alg key 0; == {} quad32_xor hash (aes_encrypt_word alg key ctr_BE_1); }; calc (==) { gctr_encrypt ctr_BE_1 (be_quad32_to_bytes hash) alg key; == { gctr_encrypt_one_block ctr_BE_1 hash alg key } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor hash (aes_encrypt_word alg key ctr_BE_1)))); == {} seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 enc_hash)); == { be_seq_quad32_to_bytes_of_singleton enc_hash } be_quad32_to_bytes enc_hash; }; if p_num_bytes > length p128 * 16 then ( let c = append c128 c_bytes in calc (==) { append (append auth_quads c128) c_bytes; == { append_assoc auth_quads c128 c_bytes } append auth_quads (append c128 c_bytes); == {} append auth_quads c; }; calc (==) { append (append (append auth_quads c128) c_bytes) (create 1 length_quad); = {} // See previous calc append (append auth_quads (append c128 c_bytes)) (create 1 length_quad); == { append_assoc auth_quads c (create 1 length_quad) } append auth_quads (append c (create 1 length_quad)); }; let raw_quads_old = append auth_quads c in calc (==) { raw_quads; == {} be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes)); == { calc (==) { pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes); == { calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes; == { append_distributes_be_seq_quad32_to_bytes auth_quads c } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) 0 total_bytes; == { slice_append_back (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) total_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes); == {} append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes; } } pad_to_128_bits (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes); == { pad_to_128_bits_multiple_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes); } } be_bytes_to_seq_quad32 (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes)); == { append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes) } append (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads))) (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); == { be_bytes_to_seq_quad32_to_bytes auth_quads } append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); }; let auth_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in let cipher_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in calc (==) { append raw_quads (create 1 length_quad); == {} append (append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad); == { assert (equal auth_quads auth_padded_quads') } append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad); == { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) } append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad)); }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ) else ( calc (==) { append (append auth_quads c128) (create 1 length_quad); == { append_assoc auth_quads c128 (create 1 length_quad) } append auth_quads (append c128 (create 1 length_quad)); }; let c = c128 in calc (==) { be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)); == { assert (equal (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)) } be_bytes_to_seq_quad32 (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))); == { assert (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) } be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)); == { be_bytes_to_seq_quad32_to_bytes c } c; }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ); () let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1 ) (ensures slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE t)) 0 num_bytes == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes) = if num_bytes > (length s) * 16 then ( () ) else ( calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes; == { append_distributes_be_seq_quad32_to_bytes s bytes } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes))) 0 num_bytes; == { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes)) } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s); == { assert (length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == num_bytes) } slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes; }; () ) #reset-options "--z3rlimit 10" let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > length a128 * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = append a128 a_bytes in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)) ) = gcm_blocks_helper alg key a128 a_bytes p128 p_bytes c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad; let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher_raw_quads:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes; lemma_length_simplifier p128 p_bytes plain_raw_quads p_num_bytes; lemma_length_simplifier c128 c_bytes cipher_raw_quads p_num_bytes; ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 -> iv: Vale.AES.GCM_BE_s.supported_iv_BE -> j0_BE: Vale.Def.Types_s.quad32 -> plain: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> cipher: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> auth: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> alleged_tag: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> FStar.Pervasives.Lemma (requires Vale.AES.AES_BE_s.is_aes_key_word alg key /\ (let h_BE = Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) in j0_BE = Vale.AES.GCM_BE_s.compute_iv_BE h_BE iv) /\ FStar.Seq.Base.length cipher < Vale.Def.Words_s.pow2_32 /\ FStar.Seq.Base.length auth < Vale.Def.Words_s.pow2_32 /\ plain == FStar.Pervasives.Native.fst (Vale.AES.GCM_BE_s.gcm_encrypt_BE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE key) iv cipher auth)) (ensures plain == FStar.Pervasives.Native.fst (Vale.AES.GCM_BE_s.gcm_decrypt_BE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE key) iv cipher auth alleged_tag))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat32", "Vale.AES.GCM_BE_s.supported_iv_BE", "Vale.Def.Types_s.quad32", "Vale.Def.Words_s.nat8", "Prims.unit", "Vale.AES.GCM_BE_s.gcm_decrypt_BE_reveal", "Vale.AES.GCM_BE_s.gcm_encrypt_BE_reveal", "Prims.l_and", "Vale.AES.AES_BE_s.is_aes_key_word", "Prims.b2t", "Prims.op_Equality", "Vale.AES.GCM_BE_s.compute_iv_BE", "Vale.AES.AES_BE_s.aes_encrypt_word", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.nat32", "Prims.op_LessThan", "FStar.Seq.Base.length", "Vale.Def.Words_s.pow2_32", "Prims.eq2", "Vale.Def.Types_s.nat8", "FStar.Pervasives.Native.fst", "Vale.AES.GCM_BE_s.gcm_encrypt_BE", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Prims.squash", "Prims.bool", "Vale.AES.GCM_BE_s.gcm_decrypt_BE", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let lemma_gcm_encrypt_decrypt_equiv (alg: algorithm) (key: seq nat32) (iv: supported_iv_BE) (j0_BE: quad32) (plain cipher auth alleged_tag: seq nat8) : Lemma (requires is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv) /\ length cipher < pow2_32 /\ length auth < pow2_32 /\ plain == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth)) (ensures plain == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth alleged_tag)) =
gcm_encrypt_BE_reveal (); gcm_decrypt_BE_reveal (); ()
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.decrypt_helper
val decrypt_helper (alg:algorithm) (key:seq nat8) (iv:supported_iv_BE) (cipher:seq nat8) (auth:seq nat8) (r3:nat64) (alleged_tag_quad computed_tag:quad32) : Lemma (requires is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32 /\ (if alleged_tag_quad = computed_tag then r3 = 0 else r3 > 0) /\ be_quad32_to_bytes computed_tag == gcm_decrypt_BE_tag alg key iv cipher auth ) (ensures (r3 = 0) == snd (gcm_decrypt_BE alg key iv cipher auth (be_quad32_to_bytes alleged_tag_quad)))
val decrypt_helper (alg:algorithm) (key:seq nat8) (iv:supported_iv_BE) (cipher:seq nat8) (auth:seq nat8) (r3:nat64) (alleged_tag_quad computed_tag:quad32) : Lemma (requires is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32 /\ (if alleged_tag_quad = computed_tag then r3 = 0 else r3 > 0) /\ be_quad32_to_bytes computed_tag == gcm_decrypt_BE_tag alg key iv cipher auth ) (ensures (r3 = 0) == snd (gcm_decrypt_BE alg key iv cipher auth (be_quad32_to_bytes alleged_tag_quad)))
let decrypt_helper (alg:algorithm) (key:seq nat8) (iv:supported_iv_BE) (cipher:seq nat8) (auth:seq nat8) (r3:nat64) (alleged_tag_quad computed_tag:quad32) : Lemma (requires is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32 /\ (if alleged_tag_quad = computed_tag then r3 = 0 else r3 > 0) /\ be_quad32_to_bytes computed_tag == gcm_decrypt_BE_tag alg key iv cipher auth ) (ensures (r3 = 0) == snd (gcm_decrypt_BE alg key iv cipher auth (be_quad32_to_bytes alleged_tag_quad))) = gcm_decrypt_BE_reveal (); be_quad32_to_bytes_injective_specific alleged_tag_quad computed_tag; ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 1065, "start_col": 0, "start_line": 1051 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; () let lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) = ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); () let gcm_encrypt_BE_fst_helper (iv:supported_iv_BE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key )) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () let gcm_encrypt_BE_snd_helper (iv:supported_iv_BE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key) )) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () #reset-options "--z3rlimit 10" let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 ))) (ensures (let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in //cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key)) cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in gctr_partial_opaque_completed alg plain cipher key ctr_BE_2; if p_num_bytes > length p128 * 16 then ( gctr_partial_reveal (); assert (gctr_partial alg (length p128) plain cipher key ctr_BE_2); assert (equal (slice plain 0 (length p128)) (slice p128 0 (length p128))); assert (equal (slice cipher 0 (length p128)) (slice c128 0 (length p128))); gctr_partial_opaque_ignores_postfix alg (length p128) plain p128 cipher c128 key ctr_BE_2; assert (gctr_partial alg (length p128) p128 c128 key ctr_BE_2); gctr_partial_opaque_completed alg p128 c128 key ctr_BE_2; let num_blocks = p_num_bytes / 16 in assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_word alg key (inc32 ctr_BE_2 num_blocks))); gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks; assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks == gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0); aes_encrypt_word_reveal (); gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes; assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ) else ( gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher; assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt ctr_BE_2 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key); let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in assert (equal plain_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain))); assert (equal cipher_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher))); assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ); gcm_encrypt_BE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key; () let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) = assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x)))); () let append_distributes_be_seq_quad32_to_bytes (x y:seq quad32) : Lemma (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append x y)) == append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE x)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE y))) = append_distributes_be_seq_quad32_to_bytes x y let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) = assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y))) #reset-options "--z3rlimit 100" let gcm_blocks_helper (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in let hash = ghash_BE h final_quads in gcm_blocks_helper_enc alg key p128 p_bytes c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE; calc (==) { enc_hash; == {} gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0; == {} gctr_encrypt_block ctr_BE_1 hash alg key 0; == {} quad32_xor hash (aes_encrypt_word alg key ctr_BE_1); }; calc (==) { gctr_encrypt ctr_BE_1 (be_quad32_to_bytes hash) alg key; == { gctr_encrypt_one_block ctr_BE_1 hash alg key } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor hash (aes_encrypt_word alg key ctr_BE_1)))); == {} seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 enc_hash)); == { be_seq_quad32_to_bytes_of_singleton enc_hash } be_quad32_to_bytes enc_hash; }; if p_num_bytes > length p128 * 16 then ( let c = append c128 c_bytes in calc (==) { append (append auth_quads c128) c_bytes; == { append_assoc auth_quads c128 c_bytes } append auth_quads (append c128 c_bytes); == {} append auth_quads c; }; calc (==) { append (append (append auth_quads c128) c_bytes) (create 1 length_quad); = {} // See previous calc append (append auth_quads (append c128 c_bytes)) (create 1 length_quad); == { append_assoc auth_quads c (create 1 length_quad) } append auth_quads (append c (create 1 length_quad)); }; let raw_quads_old = append auth_quads c in calc (==) { raw_quads; == {} be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes)); == { calc (==) { pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes); == { calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes; == { append_distributes_be_seq_quad32_to_bytes auth_quads c } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) 0 total_bytes; == { slice_append_back (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) total_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes); == {} append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes; } } pad_to_128_bits (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes); == { pad_to_128_bits_multiple_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes); } } be_bytes_to_seq_quad32 (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes)); == { append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes) } append (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads))) (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); == { be_bytes_to_seq_quad32_to_bytes auth_quads } append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); }; let auth_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in let cipher_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in calc (==) { append raw_quads (create 1 length_quad); == {} append (append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad); == { assert (equal auth_quads auth_padded_quads') } append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad); == { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) } append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad)); }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ) else ( calc (==) { append (append auth_quads c128) (create 1 length_quad); == { append_assoc auth_quads c128 (create 1 length_quad) } append auth_quads (append c128 (create 1 length_quad)); }; let c = c128 in calc (==) { be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)); == { assert (equal (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)) } be_bytes_to_seq_quad32 (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))); == { assert (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) } be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)); == { be_bytes_to_seq_quad32_to_bytes c } c; }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ); () let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1 ) (ensures slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE t)) 0 num_bytes == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes) = if num_bytes > (length s) * 16 then ( () ) else ( calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes; == { append_distributes_be_seq_quad32_to_bytes s bytes } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes))) 0 num_bytes; == { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes)) } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s); == { assert (length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == num_bytes) } slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes; }; () ) #reset-options "--z3rlimit 10" let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > length a128 * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = append a128 a_bytes in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)) ) = gcm_blocks_helper alg key a128 a_bytes p128 p_bytes c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad; let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher_raw_quads:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes; lemma_length_simplifier p128 p_bytes plain_raw_quads p_num_bytes; lemma_length_simplifier c128 c_bytes cipher_raw_quads p_num_bytes; () let lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_BE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma (requires is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv) /\ length cipher < pow2_32 /\ length auth < pow2_32 /\ plain == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth) ) (ensures plain == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth alleged_tag)) = gcm_encrypt_BE_reveal (); gcm_decrypt_BE_reveal (); () let gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes alleged_tag:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 )) (ensures (let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes alleged_tag))) = gcm_blocks_helper_enc alg key p128 p_bytes c128 c_bytes auth_bytes p_num_bytes iv j0_BE; let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher_raw_quads:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in lemma_length_simplifier p128 p_bytes plain_raw_quads p_num_bytes; lemma_length_simplifier c128 c_bytes cipher_raw_quads p_num_bytes; let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in assert (cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)); lemma_gcm_encrypt_decrypt_equiv alg key iv j0_BE cipher_bytes plain_bytes auth_bytes alleged_tag; () #reset-options "--z3rlimit 60" let gcm_blocks_dec_helper (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads p128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads p_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes >length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ be_quad32_to_bytes enc_hash == gcm_decrypt_BE_tag alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)) = let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in let auth_raw_quads = if a_num_bytes > length a128 * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads p128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads p_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in let hash = ghash_BE h final_quads in calc (==) { enc_hash; == {} gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0; == {} gctr_encrypt_block ctr_BE_1 hash alg key 0; == {} quad32_xor hash (aes_encrypt_word alg key ctr_BE_1); }; calc (==) { gctr_encrypt ctr_BE_1 (be_quad32_to_bytes hash) alg key; == { gctr_encrypt_one_block ctr_BE_1 hash alg key } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor hash (aes_encrypt_word alg key ctr_BE_1)))); == {} seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 enc_hash)); == { be_seq_quad32_to_bytes_of_singleton enc_hash } be_quad32_to_bytes enc_hash; }; if p_num_bytes > length p128 * 16 then ( let c = append p128 p_bytes in calc (==) { append (append auth_quads p128) p_bytes; == { append_assoc auth_quads p128 p_bytes } append auth_quads (append p128 p_bytes); == {} append auth_quads c; }; calc (==) { append (append (append auth_quads p128) p_bytes) (create 1 length_quad); = {} // See previous calc append (append auth_quads (append p128 p_bytes)) (create 1 length_quad); == { append_assoc auth_quads c (create 1 length_quad) } append auth_quads (append c (create 1 length_quad)); }; let raw_quads_old = append auth_quads c in calc (==) { raw_quads; == {} be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes)); == { calc (==) { pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes); == { calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes; == { append_distributes_be_seq_quad32_to_bytes auth_quads c } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) 0 total_bytes; == { slice_append_back (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) total_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes); == { assert(equal (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes) plain_bytes) } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) plain_bytes; } } pad_to_128_bits (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) plain_bytes); == { pad_to_128_bits_multiple_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) plain_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits plain_bytes); } } be_bytes_to_seq_quad32 (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits plain_bytes)); == { append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits plain_bytes) } append (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads))) (be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes)); == { be_bytes_to_seq_quad32_to_bytes auth_quads } append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes)); }; let auth_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in let cipher_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes) in calc (==) { append raw_quads (create 1 length_quad); == {} append (append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes))) (create 1 length_quad); == { assert (equal auth_quads auth_padded_quads') } append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad); == { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) } append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad)); }; () ) else ( calc (==) { append (append auth_quads p128) (create 1 length_quad); == { append_assoc auth_quads p128 (create 1 length_quad) } append auth_quads (append p128 (create 1 length_quad)); }; let c = p128 in calc (==) { be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)); == { assert (equal (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)) } be_bytes_to_seq_quad32 (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))); == { assert (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) } be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)); == { be_bytes_to_seq_quad32_to_bytes c } c; }; () ); () #reset-options "" let gcm_blocks_dec_helper_simplified (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads p128 in let total_bytes = (length auth_quads) * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads p_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures(let auth_raw_quads = append a128 a_bytes in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ be_quad32_to_bytes enc_hash == gcm_decrypt_BE_tag alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)) = gcm_blocks_dec_helper alg key a128 a_bytes p128 p_bytes c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad; let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher_raw_quads:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes; lemma_length_simplifier p128 p_bytes plain_raw_quads p_num_bytes; lemma_length_simplifier c128 c_bytes cipher_raw_quads p_num_bytes; ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> iv: Vale.AES.GCM_BE_s.supported_iv_BE -> cipher: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> auth: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> r3: Vale.Def.Words_s.nat64 -> alleged_tag_quad: Vale.Def.Types_s.quad32 -> computed_tag: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires Vale.AES.AES_common_s.is_aes_key alg key /\ FStar.Seq.Base.length cipher < Vale.Def.Words_s.pow2_32 /\ FStar.Seq.Base.length auth < Vale.Def.Words_s.pow2_32 /\ (match alleged_tag_quad = computed_tag with | true -> r3 = 0 | _ -> r3 > 0) /\ Vale.Arch.Types.be_quad32_to_bytes computed_tag == Vale.AES.GCM_BE.gcm_decrypt_BE_tag alg key iv cipher auth) (ensures r3 = 0 == FStar.Pervasives.Native.snd (Vale.AES.GCM_BE_s.gcm_decrypt_BE alg key iv cipher auth (Vale.Arch.Types.be_quad32_to_bytes alleged_tag_quad)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat8", "Vale.AES.GCM_BE_s.supported_iv_BE", "Vale.Def.Words_s.nat64", "Vale.Def.Types_s.quad32", "Prims.unit", "Vale.Arch.Types.be_quad32_to_bytes_injective_specific", "Vale.AES.GCM_BE_s.gcm_decrypt_BE_reveal", "Prims.l_and", "Vale.AES.AES_common_s.is_aes_key", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.length", "Vale.Def.Words_s.pow2_32", "Prims.op_Equality", "Prims.int", "Prims.bool", "Prims.op_GreaterThan", "Prims.logical", "Prims.eq2", "Vale.Arch.Types.be_quad32_to_bytes", "Vale.AES.GCM_BE.gcm_decrypt_BE_tag", "Prims.squash", "FStar.Pervasives.Native.snd", "Vale.Def.Types_s.nat8", "Vale.AES.GCM_BE_s.gcm_decrypt_BE", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let decrypt_helper (alg: algorithm) (key: seq nat8) (iv: supported_iv_BE) (cipher auth: seq nat8) (r3: nat64) (alleged_tag_quad computed_tag: quad32) : Lemma (requires is_aes_key alg key /\ length cipher < pow2_32 /\ length auth < pow2_32 /\ (if alleged_tag_quad = computed_tag then r3 = 0 else r3 > 0) /\ be_quad32_to_bytes computed_tag == gcm_decrypt_BE_tag alg key iv cipher auth) (ensures (r3 = 0) == snd (gcm_decrypt_BE alg key iv cipher auth (be_quad32_to_bytes alleged_tag_quad))) =
gcm_decrypt_BE_reveal (); be_quad32_to_bytes_injective_specific alleged_tag_quad computed_tag; ()
false
Vale.Transformers.MovMovElim.fst
Vale.Transformers.MovMovElim.mov_mov_elim_correct
val mov_mov_elim_correct (is: list ins) (s: machine_state) : Lemma (peephole_correct mov_mov_elim_ph is s) [SMTPat (peephole_correct mov_mov_elim_ph is s)]
val mov_mov_elim_correct (is: list ins) (s: machine_state) : Lemma (peephole_correct mov_mov_elim_ph is s) [SMTPat (peephole_correct mov_mov_elim_ph is s)]
let mov_mov_elim_correct (is:list ins) (s:machine_state) : Lemma (peephole_correct mov_mov_elim_ph is s) [SMTPat (peephole_correct mov_mov_elim_ph is s)] = if safe_mov_mov_elim is then ( let [i1; i2] = is in lemma_mov_mov_is_mov i1 i2 s ) else ()
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.MovMovElim.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 97, "start_col": 0, "start_line": 91 }
module Vale.Transformers.MovMovElim open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s open Vale.Def.PossiblyMonad open Vale.Transformers.InstructionReorder open Vale.X64.InsLemmas open Vale.Transformers.PeepHole (* * AR: this proof relies on multiple inductive type inversions to know that * oprs1 is a Mov64 (resp. for oprs2) * * this used to go through earlier with just ifuel 1, because F* was weakening * the branch VCs with discriminator expressions, thereby unintentionally * triggering the inversions, this is no longer true in F*, and hence more ifuel *) #push-options "--ifuel 4" let safe_mov_mov_elim (is:list ins) : Tot bool = match is with | [Instr i1 oprs1 (AnnotateMov64 ()); Instr i2 oprs2 (AnnotateMov64 ())] -> let oprs1:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs1 in let oprs2:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs2 in let (dst1, (src1, ())) = oprs1 in let (dst2, (src2, ())) = oprs2 in dst1 = dst2 && OReg? dst1 && ( let OReg rd = dst1 in match src2 with | OConst _ -> true | OReg rs2 -> not (rs2 = rd) | OStack (m, _) | OMem (m, _) -> match m with | MConst _ -> true | _ -> false // TODO: Can we relax this restriction? ) | _ -> false #pop-options let mov_mov_elim_ph = { ph = (fun is -> if safe_mov_mov_elim is then ( let [i1; i2] = is in Some [i2] ) else None); input_hint = 2; } module T = Vale.Def.Types_s module H = Vale.Arch.Heap #push-options "--initial_fuel 2 --max_fuel 8 --initial_ifuel 1 --max_ifuel 2 --query_stats" let lemma_mov_mov_is_mov (i1 i2:ins) (s:machine_state) : Lemma (requires (safe_mov_mov_elim [i1; i2])) (ensures ( let s1 = machine_eval_ins i2 (machine_eval_ins i1 s) in let s2 = machine_eval_ins i2 s in s1.ms_ok ==> equiv_states s1 s2)) = let Instr ii1 oprs1 (AnnotateMov64 ()) = i1 in let Instr ii2 oprs2 (AnnotateMov64 ()) = i2 in let oprs1:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs1 in let oprs2:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs2 in let (dst1, (src1, ())) = oprs1 in let (dst2, (src2, ())) = oprs2 in let dst = assert (dst1 == dst2); dst1 in let pre_s1 = machine_eval_ins i1 s in let s1 = machine_eval_ins i2 pre_s1 in let s2 = machine_eval_ins i2 s in if s1.ms_ok then ( assert (pre_s1.ms_ok); let v1 = eval_operand src1 s in let v2' = eval_operand src2 s in let v2 = eval_operand src2 pre_s1 in assert (v2 == v2'); lemma_double_update_reg dst s pre_s1 s1 s2 v1 v2 ) else () #pop-options
{ "checked_file": "/", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Transformers.PeepHole.fsti.checked", "Vale.Transformers.InstructionReorder.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.Transformers.MovMovElim.fst" }
[ { "abbrev": true, "full_module": "Vale.Arch.Heap", "short_module": "H" }, { "abbrev": true, "full_module": "Vale.Def.Types_s", "short_module": "T" }, { "abbrev": false, "full_module": "Vale.Transformers.PeepHole", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 3, "initial_ifuel": 0, "max_fuel": 3, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
is: Prims.list Vale.X64.Machine_Semantics_s.ins -> s: Vale.X64.Machine_Semantics_s.machine_state -> FStar.Pervasives.Lemma (ensures Vale.Transformers.PeepHole.peephole_correct Vale.Transformers.MovMovElim.mov_mov_elim_ph is s) [ SMTPat (Vale.Transformers.PeepHole.peephole_correct Vale.Transformers.MovMovElim.mov_mov_elim_ph is s) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.Transformers.MovMovElim.safe_mov_mov_elim", "Vale.Transformers.MovMovElim.lemma_mov_mov_is_mov", "Prims.unit", "Prims.bool", "Prims.l_True", "Prims.squash", "Vale.Transformers.PeepHole.peephole_correct", "Vale.Transformers.MovMovElim.mov_mov_elim_ph", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
false
false
true
false
false
let mov_mov_elim_correct (is: list ins) (s: machine_state) : Lemma (peephole_correct mov_mov_elim_ph is s) [SMTPat (peephole_correct mov_mov_elim_ph is s)] =
if safe_mov_mov_elim is then (let [i1 ; i2] = is in lemma_mov_mov_is_mov i1 i2 s)
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.lemma_length_simplifier
val lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1 ) (ensures slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE t)) 0 num_bytes == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes)
val lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1 ) (ensures slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE t)) 0 num_bytes == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes)
let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1 ) (ensures slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE t)) 0 num_bytes == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes) = if num_bytes > (length s) * 16 then ( () ) else ( calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes; == { append_distributes_be_seq_quad32_to_bytes s bytes } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes))) 0 num_bytes; == { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes)) } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s); == { assert (length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == num_bytes) } slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes; }; () )
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 536, "start_col": 0, "start_line": 513 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; () let lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) = ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); () let gcm_encrypt_BE_fst_helper (iv:supported_iv_BE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key )) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () let gcm_encrypt_BE_snd_helper (iv:supported_iv_BE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key) )) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () #reset-options "--z3rlimit 10" let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 ))) (ensures (let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in //cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key)) cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in gctr_partial_opaque_completed alg plain cipher key ctr_BE_2; if p_num_bytes > length p128 * 16 then ( gctr_partial_reveal (); assert (gctr_partial alg (length p128) plain cipher key ctr_BE_2); assert (equal (slice plain 0 (length p128)) (slice p128 0 (length p128))); assert (equal (slice cipher 0 (length p128)) (slice c128 0 (length p128))); gctr_partial_opaque_ignores_postfix alg (length p128) plain p128 cipher c128 key ctr_BE_2; assert (gctr_partial alg (length p128) p128 c128 key ctr_BE_2); gctr_partial_opaque_completed alg p128 c128 key ctr_BE_2; let num_blocks = p_num_bytes / 16 in assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_word alg key (inc32 ctr_BE_2 num_blocks))); gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks; assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks == gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0); aes_encrypt_word_reveal (); gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes; assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ) else ( gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher; assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt ctr_BE_2 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key); let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in assert (equal plain_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain))); assert (equal cipher_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher))); assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ); gcm_encrypt_BE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key; () let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) = assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x)))); () let append_distributes_be_seq_quad32_to_bytes (x y:seq quad32) : Lemma (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append x y)) == append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE x)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE y))) = append_distributes_be_seq_quad32_to_bytes x y let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) = assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y))) #reset-options "--z3rlimit 100" let gcm_blocks_helper (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in let hash = ghash_BE h final_quads in gcm_blocks_helper_enc alg key p128 p_bytes c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE; calc (==) { enc_hash; == {} gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0; == {} gctr_encrypt_block ctr_BE_1 hash alg key 0; == {} quad32_xor hash (aes_encrypt_word alg key ctr_BE_1); }; calc (==) { gctr_encrypt ctr_BE_1 (be_quad32_to_bytes hash) alg key; == { gctr_encrypt_one_block ctr_BE_1 hash alg key } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor hash (aes_encrypt_word alg key ctr_BE_1)))); == {} seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 enc_hash)); == { be_seq_quad32_to_bytes_of_singleton enc_hash } be_quad32_to_bytes enc_hash; }; if p_num_bytes > length p128 * 16 then ( let c = append c128 c_bytes in calc (==) { append (append auth_quads c128) c_bytes; == { append_assoc auth_quads c128 c_bytes } append auth_quads (append c128 c_bytes); == {} append auth_quads c; }; calc (==) { append (append (append auth_quads c128) c_bytes) (create 1 length_quad); = {} // See previous calc append (append auth_quads (append c128 c_bytes)) (create 1 length_quad); == { append_assoc auth_quads c (create 1 length_quad) } append auth_quads (append c (create 1 length_quad)); }; let raw_quads_old = append auth_quads c in calc (==) { raw_quads; == {} be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes)); == { calc (==) { pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes); == { calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes; == { append_distributes_be_seq_quad32_to_bytes auth_quads c } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) 0 total_bytes; == { slice_append_back (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) total_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes); == {} append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes; } } pad_to_128_bits (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes); == { pad_to_128_bits_multiple_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes); } } be_bytes_to_seq_quad32 (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes)); == { append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes) } append (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads))) (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); == { be_bytes_to_seq_quad32_to_bytes auth_quads } append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); }; let auth_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in let cipher_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in calc (==) { append raw_quads (create 1 length_quad); == {} append (append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad); == { assert (equal auth_quads auth_padded_quads') } append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad); == { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) } append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad)); }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ) else ( calc (==) { append (append auth_quads c128) (create 1 length_quad); == { append_assoc auth_quads c128 (create 1 length_quad) } append auth_quads (append c128 (create 1 length_quad)); }; let c = c128 in calc (==) { be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)); == { assert (equal (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)) } be_bytes_to_seq_quad32 (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))); == { assert (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) } be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)); == { be_bytes_to_seq_quad32_to_bytes c } c; }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> t: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> num_bytes: Prims.nat -> FStar.Pervasives.Lemma (requires t == (match num_bytes > FStar.Seq.Base.length s * 16 with | true -> FStar.Seq.Base.append s bytes | _ -> s) /\ (num_bytes <= FStar.Seq.Base.length s * 16 ==> num_bytes == FStar.Seq.Base.length s * 16) /\ FStar.Seq.Base.length s * 16 <= num_bytes /\ num_bytes < FStar.Seq.Base.length s * 16 + 16 /\ FStar.Seq.Base.length bytes == 1) (ensures FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE t)) 0 num_bytes == FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE (FStar.Seq.Base.append s bytes))) 0 num_bytes)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Prims.nat", "Prims.op_GreaterThan", "FStar.Mul.op_Star", "FStar.Seq.Base.length", "Prims.bool", "Prims.unit", "FStar.Calc.calc_finish", "Vale.Def.Words_s.nat8", "Prims.eq2", "FStar.Seq.Base.slice", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Types_s.nat32", "FStar.Seq.Base.append", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Vale.AES.GCM_BE.append_distributes_be_seq_quad32_to_bytes", "Prims.squash", "Vale.Lib.Seqs.lemma_slice_first_exactly_in_append", "Prims._assert", "Prims.l_and", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.int", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_length_simplifier (s bytes t: seq quad32) (num_bytes: nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1) (ensures slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE t)) 0 num_bytes == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes) =
if num_bytes > (length s) * 16 then (()) else (calc ( == ) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes; ( == ) { append_distributes_be_seq_quad32_to_bytes s bytes } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes))) 0 num_bytes; ( == ) { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes)) } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s); ( == ) { assert (length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == num_bytes) } slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes; }; ())
false
CDDL.Pulse.fst
CDDL.Pulse.impl_matches_map_group
val impl_matches_map_group : g: CDDL.Spec.map_group (FStar.Ghost.reveal b) -> Type0
let impl_matches_map_group (#b: Ghost.erased (option raw_data_item)) (g: map_group b) = c: cbor -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool ( raw_data_item_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ Map? v) ) (fun res -> raw_data_item_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ Map? v /\ res == matches_map_group g (Map?.v v)) )
{ "file_name": "share/steel/examples/pulse/dice/cbor/CDDL.Pulse.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 9, "end_line": 762, "start_col": 0, "start_line": 747 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module CDDL.Pulse open Pulse.Lib.Pervasives open Pulse.Lib.Stick open CBOR.Spec open CBOR.Pulse open CDDL.Spec module R = Pulse.Lib.Reference inline_for_extraction noextract [@@noextract_to "krml"] let impl_typ (#b: option raw_data_item) (t: bounded_typ_gen b) = (c: cbor) -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b )) (fun res -> raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b /\ res == t v )) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_coerce_to_bounded_typ (b: Ghost.erased (option raw_data_item)) (#t: typ) (f: impl_typ t) : impl_typ #b (coerce_to_bounded_typ b t) // FIXME: WHY WHY WHY do I need to provide the implicit argument = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { f c; } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_choice (#b: Ghost.erased (option raw_data_item)) (#t1 #t2: bounded_typ_gen b) (f1: impl_typ t1) (f2: impl_typ t2) : impl_typ #b (t_choice t1 t2) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let test = f1 c; if (test) { true } else { f2 c } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_t_choice_none // FIXME: WHY WHY WHY can F* not automatically infer t1 and t2 by reducing (reveal (hide None)) to None? (#t1 #t2: bounded_typ_gen None) (f1: impl_typ t1) (f2: impl_typ t2) : Tot (impl_typ (t_choice t1 t2)) = impl_t_choice #None #t1 #t2 f1 f2 inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_any (_: unit) : impl_typ #None any = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { true } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint (_: unit) : impl_typ #None uint = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_uint64) } ``` module U64 = FStar.UInt64 (* FIXME: WHY WHY WHY does this one not work? inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal (n: U64.t) : impl_typ #None (t_uint_literal n) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; if (mt = major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` *) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal' (n: U64.t) (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) requires (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) )) returns res: bool ensures (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) /\ res == t_uint_literal n v )) { let mt = cbor_get_major_type c; if (mt = cbor_major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_uint_literal (n: U64.t) : impl_typ (t_uint_literal n) = impl_uint_literal' n inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_bytes (_: unit) : impl_typ #None bytes = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_byte_string) } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_array_group3 (#b: Ghost.erased (option raw_data_item)) (g: array_group3 b) = (pi: R.ref cbor_array_iterator_t) -> (#p: perm) -> (#i: Ghost.erased cbor_array_iterator_t) -> (#l: Ghost.erased (list raw_data_item)) -> stt bool (R.pts_to pi i ** cbor_array_iterator_match p i l ** pure (opt_precedes (Ghost.reveal l) b) ) (fun res -> exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ```pulse ghost fn intro_impl_array_group3_post (#b: option raw_data_item) (g: array_group3 b) (pi: R.ref cbor_array_iterator_t) (p: perm) (i: cbor_array_iterator_t) (l: list raw_data_item) (res: bool) (i': cbor_array_iterator_t) (l': list raw_data_item) requires ( R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ensures (exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) { () } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_concat (#b: Ghost.erased (option raw_data_item)) (#g1: array_group3 b) (f1: impl_array_group3 g1) (#g2: array_group3 b) (f2: impl_array_group3 g2) : impl_array_group3 #b (array_group3_concat g1 g2) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let test1 = f1 pi; if (test1) { let test2 = f2 pi; stick_trans (); test2 } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_item (#b: Ghost.erased (option raw_data_item)) (#ty: bounded_typ_gen b) (fty: impl_typ ty) : impl_array_group3 #b (array_group3_item ty) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let i = !pi; rewrite (cbor_array_iterator_match p gi l) as (cbor_array_iterator_match p i l); let is_done = cbor_array_iterator_is_done i; rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p gi l); if (is_done) { stick_refl0 (cbor_array_iterator_match p gi l); intro_impl_array_group3_post (array_group3_item ty) pi p gi l false gi l; // FIXME: WHY WHY WHY? and also WHY WHY WHY here and not in the other "false" case below? false } else { let c = cbor_array_iterator_next pi #p #l #gi; // FIXME: WHY WHY WHY those explicit arguments? with gc i' l' . assert ( raw_data_item_match p c gc ** cbor_array_iterator_match p i' l' ** ((raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') @==> cbor_array_iterator_match p gi l) ); // this is needed for the explicit arguments to split_consume_l below let test = fty c; if (test) { stick_consume_l () #(raw_data_item_match p c gc) #(cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l) // FIXME: WHY WHY WHY those explicit arguments? (for which the with above is needed) ; true } else { elim_stick0 () #(raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l); // FIXME: WHY WHY WHY those explicit arguments? pi := i; rewrite (R.pts_to pi i) as (R.pts_to pi gi); stick_refl0 (cbor_array_iterator_match p gi l); false } } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_array (#b: Ghost.erased (option raw_data_item)) (#g: (array_group3 b)) (ig: (impl_array_group3 (g))) : impl_typ #b (t_array3 g) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let ty = cbor_get_major_type c; if (ty = cbor_major_type_array) { let i = cbor_array_iterator_init c; with l . assert (cbor_array_iterator_match p i l); rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l); let mut pi = i; let b_success = ig pi; with gi' l' . assert (cbor_array_iterator_match p gi' l'); let i' = ! pi; rewrite (cbor_array_iterator_match p gi' l') as (cbor_array_iterator_match p i' l'); let b_end = cbor_array_iterator_is_done i'; rewrite (cbor_array_iterator_match p i' l') as (cbor_array_iterator_match p gi' l'); elim_stick0 (); rewrite (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l) as (cbor_array_iterator_match p i l); elim_stick0 (); (b_success && b_end) } else { false } } ``` module U8 = FStar.UInt8 noextract [@@noextract_to "krml"] let cbor_read_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_success_postcond va c v rem /\ t v == true module A = Pulse.Lib.Array let cbor_read_with_typ_success_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) : Tot vprop = exists* v rem. raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem ** ((raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem) @==> A.pts_to a #p va) ** pure (cbor_read_with_typ_success_postcond t va c v rem) noextract [@@noextract_to "krml"] let cbor_read_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . Ghost.reveal va == serialize_cbor v `Seq.append` suff ==> t v == false let cbor_read_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> t v' == true) let cbor_read_with_typ_error_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) : Tot vprop = A.pts_to a #p va ** pure (cbor_read_with_typ_error_postcond t va) let cbor_read_with_typ_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = if res.cbor_read_is_success then cbor_read_with_typ_success_post t a p va res else cbor_read_with_typ_error_post t a p va module SZ = FStar.SizeT inline_for_extraction noextract let mk_cbor_read_error (res: cbor_read_t) : Tot cbor_read_t = {res with cbor_read_is_success = false} inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_read_with_typ (#t: typ) (ft: impl_typ t) (a: A.array U8.t) (sz: SZ.t) (#va: Ghost.erased (Seq.seq U8.t)) (#p: perm) requires (A.pts_to a #p va ** pure ( (SZ.v sz == Seq.length va \/ SZ.v sz == A.length a) )) returns res: cbor_read_t ensures cbor_read_with_typ_post t a p va res { let res = cbor_read a sz; if (res.cbor_read_is_success) { rewrite (cbor_read_post a p va res) as (cbor_read_success_post a p va res); unfold (cbor_read_success_post a p va res); let test = ft res.cbor_read_payload; if (test) { fold (cbor_read_with_typ_success_post t a p va res); rewrite (cbor_read_with_typ_success_post t a p va res) as (cbor_read_with_typ_post t a p va res); res } else { with v . assert (raw_data_item_match full_perm res.cbor_read_payload v); with vrem . assert (A.pts_to res.cbor_read_remainder #p vrem); cbor_read_with_typ_error_postcond_intro_typ_fail t va res v vrem; elim_stick0 () #(raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p vrem); fold (cbor_read_with_typ_error_post t a p va); let res = mk_cbor_read_error res; rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } else { rewrite (cbor_read_post a p va res) as (cbor_read_error_post a p va); unfold (cbor_read_error_post a p va); fold (cbor_read_with_typ_error_post t a p va); rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } ``` noextract [@@noextract_to "krml"] let cbor_read_deterministically_encoded_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == true noextract [@@noextract_to "krml"] let cbor_read_deterministically_encoded_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . (Ghost.reveal va == serialize_cbor v `Seq.append` suff /\ data_item_wf deterministically_encoded_cbor_map_key_order v == true ) ==> t v == false let cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_deterministically_encoded_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> data_item_wf deterministically_encoded_cbor_map_key_order v' == true /\ t v' == true) let cbor_read_deterministically_encoded_with_typ_success_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = exists* v rem. raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p rem ** ((raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p rem) @==> A.pts_to a #p va) ** pure (cbor_read_deterministically_encoded_with_typ_success_postcond t va res v rem) let cbor_read_deterministically_encoded_with_typ_error_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) : Tot vprop = A.pts_to a #p va ** pure (cbor_read_deterministically_encoded_with_typ_error_postcond t va) let cbor_read_deterministically_encoded_with_typ_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = if res.cbor_read_is_success then cbor_read_deterministically_encoded_with_typ_success_post t a p va res else cbor_read_deterministically_encoded_with_typ_error_post t a p va module SZ = FStar.SizeT inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_read_deterministically_encoded_with_typ (#t: typ) (ft: impl_typ t) (a: A.array U8.t) (sz: SZ.t) (#va: Ghost.erased (Seq.seq U8.t)) (#p: perm) requires (A.pts_to a #p va ** pure ( (SZ.v sz == Seq.length va \/ SZ.v sz == A.length a) )) returns res: cbor_read_t ensures cbor_read_deterministically_encoded_with_typ_post t a p va res { let res = cbor_read_deterministically_encoded a sz; if (res.cbor_read_is_success) { rewrite (cbor_read_deterministically_encoded_post a p va res) as (cbor_read_deterministically_encoded_success_post a p va res); unfold (cbor_read_deterministically_encoded_success_post a p va res); let test = ft res.cbor_read_payload; if (test) { fold (cbor_read_deterministically_encoded_with_typ_success_post t a p va res); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } else { with v . assert (raw_data_item_match full_perm res.cbor_read_payload v); with vrem . assert (A.pts_to res.cbor_read_remainder #p vrem); cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail t va res v vrem; elim_stick0 () #(raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p vrem); let res = mk_cbor_read_error res; fold (cbor_read_deterministically_encoded_with_typ_error_post t a p va); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } } else { rewrite (cbor_read_deterministically_encoded_post a p va res) as (cbor_read_deterministically_encoded_error_post a p va); unfold (cbor_read_deterministically_encoded_error_post a p va); fold (cbor_read_deterministically_encoded_with_typ_error_post t a p va); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } } ``` noextract let cbor_map_get_with_typ_post_found (t: typ) (vkey: raw_data_item) (vmap: raw_data_item) (vvalue: raw_data_item) : Tot prop = Map? vmap /\ list_ghost_assoc vkey (Map?.v vmap) == Some vvalue /\ t vvalue == true let cbor_map_get_with_typ_post (t: typ) (p: perm) (vkey: raw_data_item) (vmap: raw_data_item) (map: cbor) (res: cbor_map_get_t) : Tot vprop = match res with | NotFound -> raw_data_item_match p map vmap ** pure ( Map? vmap /\ begin match list_ghost_assoc vkey (Map?.v vmap) with | None -> True | Some v -> t v == false end ) | Found value -> exists* vvalue. raw_data_item_match p value vvalue ** (raw_data_item_match p value vvalue @==> raw_data_item_match p map vmap) ** pure (cbor_map_get_with_typ_post_found t vkey vmap vvalue) let cbor_map_get_post_eq_found (p: perm) (vkey: raw_data_item) (vmap: raw_data_item) (map: cbor) (res: cbor_map_get_t) (fres: cbor) : Lemma (requires (res == Found fres)) (ensures ( cbor_map_get_post p vkey vmap map res == cbor_map_get_post_found p vkey vmap map fres )) = () ```pulse ghost fn manurewrite (pre post: vprop) requires pre ** pure (pre == post) ensures post { rewrite pre as post } ``` ```pulse ghost fn cbor_map_get_found_elim (p: perm) (vkey: Ghost.erased raw_data_item) (vmap: Ghost.erased raw_data_item) (map: cbor) (res: cbor_map_get_t) (fres: cbor) requires cbor_map_get_post p vkey vmap map res ** pure (res == Found fres) ensures cbor_map_get_post_found p vkey vmap map fres { manurewrite (cbor_map_get_post p vkey vmap map res) (cbor_map_get_post_found p vkey vmap map fres) // rewrite ... as ... fails: WHY WHY WHY?? } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_map_get_with_typ (#t: typ) (ft: impl_typ t) (key: cbor) (map: cbor) (#pkey: perm) (#vkey: Ghost.erased raw_data_item) (#pmap: perm) (#vmap: Ghost.erased raw_data_item) requires (raw_data_item_match pkey key vkey ** raw_data_item_match pmap map vmap ** pure ( Map? vmap /\ (~ (Tagged? vkey \/ Array? vkey \/ Map? vkey)) )) returns res: cbor_map_get_t ensures (raw_data_item_match pkey key vkey ** cbor_map_get_with_typ_post t pmap vkey vmap map res ** pure ( Map? vmap /\ Found? res == begin match list_ghost_assoc (Ghost.reveal vkey) (Map?.v vmap) with | None -> false | Some v -> t v end )) { let res = cbor_map_get key map; if (Found? res) { let fres = Found?._0 res; manurewrite (cbor_map_get_post pmap vkey vmap map res) (cbor_map_get_post_found pmap vkey vmap map fres); unfold (cbor_map_get_post_found pmap vkey vmap map fres); let test = ft fres; if (test) { fold (cbor_map_get_with_typ_post t pmap vkey vmap map (Found fres)); res } else { elim_stick0 (); fold (cbor_map_get_with_typ_post t pmap vkey vmap map NotFound); NotFound } } else { rewrite (cbor_map_get_post pmap vkey vmap map res) as (cbor_map_get_post_not_found pmap vkey vmap map); unfold (cbor_map_get_post_not_found pmap vkey vmap map); fold (cbor_map_get_with_typ_post t pmap vkey vmap map NotFound); res } } ```
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Stick.fsti.checked", "Pulse.Lib.Reference.fsti.checked", "Pulse.Lib.Pervasives.fst.checked", "Pulse.Lib.Array.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "CDDL.Spec.fsti.checked", "CBOR.Spec.fsti.checked", "CBOR.Pulse.fst.checked" ], "interface_file": false, "source_file": "CDDL.Pulse.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "Pulse.Lib.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "Pulse.Lib.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "CDDL.Spec", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Pulse", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Spec", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Stick", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: CDDL.Spec.map_group (FStar.Ghost.reveal b) -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Ghost.erased", "FStar.Pervasives.Native.option", "CBOR.Spec.Type.raw_data_item", "CDDL.Spec.map_group", "FStar.Ghost.reveal", "CBOR.Pulse.Type.cbor", "PulseCore.FractionalPermission.perm", "Pulse.Lib.Core.stt", "Prims.bool", "Pulse.Lib.Core.op_Star_Star", "CBOR.Pulse.Extern.raw_data_item_match", "Pulse.Lib.Core.pure", "Prims.l_and", "CDDL.Spec.opt_precedes", "Prims.b2t", "CBOR.Spec.Type.uu___is_Map", "Prims.eq2", "CDDL.Spec.matches_map_group", "CBOR.Spec.Type.__proj__Map__item__v", "Pulse.Lib.Core.vprop" ]
[]
false
false
false
false
true
let impl_matches_map_group (#b: Ghost.erased (option raw_data_item)) (g: map_group b) =
c: cbor -> #p: perm -> #v: Ghost.erased raw_data_item -> stt bool (raw_data_item_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ Map? v)) (fun res -> raw_data_item_match p c v ** pure (opt_precedes (Ghost.reveal v) b /\ Map? v /\ res == matches_map_group g (Map?.v v)))
false
CDDL.Pulse.fst
CDDL.Pulse.cbor_map_get_with_typ_post
val cbor_map_get_with_typ_post (t: typ) (p: perm) (vkey vmap: raw_data_item) (map: cbor) (res: cbor_map_get_t) : Tot vprop
val cbor_map_get_with_typ_post (t: typ) (p: perm) (vkey vmap: raw_data_item) (map: cbor) (res: cbor_map_get_t) : Tot vprop
let cbor_map_get_with_typ_post (t: typ) (p: perm) (vkey: raw_data_item) (vmap: raw_data_item) (map: cbor) (res: cbor_map_get_t) : Tot vprop = match res with | NotFound -> raw_data_item_match p map vmap ** pure ( Map? vmap /\ begin match list_ghost_assoc vkey (Map?.v vmap) with | None -> True | Some v -> t v == false end ) | Found value -> exists* vvalue. raw_data_item_match p value vvalue ** (raw_data_item_match p value vvalue @==> raw_data_item_match p map vmap) ** pure (cbor_map_get_with_typ_post_found t vkey vmap vvalue)
{ "file_name": "share/steel/examples/pulse/dice/cbor/CDDL.Pulse.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 66, "end_line": 646, "start_col": 0, "start_line": 625 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module CDDL.Pulse open Pulse.Lib.Pervasives open Pulse.Lib.Stick open CBOR.Spec open CBOR.Pulse open CDDL.Spec module R = Pulse.Lib.Reference inline_for_extraction noextract [@@noextract_to "krml"] let impl_typ (#b: option raw_data_item) (t: bounded_typ_gen b) = (c: cbor) -> (#p: perm) -> (#v: Ghost.erased raw_data_item) -> stt bool (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b )) (fun res -> raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) b /\ res == t v )) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_coerce_to_bounded_typ (b: Ghost.erased (option raw_data_item)) (#t: typ) (f: impl_typ t) : impl_typ #b (coerce_to_bounded_typ b t) // FIXME: WHY WHY WHY do I need to provide the implicit argument = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { f c; } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_choice (#b: Ghost.erased (option raw_data_item)) (#t1 #t2: bounded_typ_gen b) (f1: impl_typ t1) (f2: impl_typ t2) : impl_typ #b (t_choice t1 t2) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let test = f1 c; if (test) { true } else { f2 c } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_t_choice_none // FIXME: WHY WHY WHY can F* not automatically infer t1 and t2 by reducing (reveal (hide None)) to None? (#t1 #t2: bounded_typ_gen None) (f1: impl_typ t1) (f2: impl_typ t2) : Tot (impl_typ (t_choice t1 t2)) = impl_t_choice #None #t1 #t2 f1 f2 inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_any (_: unit) : impl_typ #None any = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { true } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint (_: unit) : impl_typ #None uint = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_uint64) } ``` module U64 = FStar.UInt64 (* FIXME: WHY WHY WHY does this one not work? inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal (n: U64.t) : impl_typ #None (t_uint_literal n) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; if (mt = major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` *) inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_uint_literal' (n: U64.t) (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) requires (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) )) returns res: bool ensures (raw_data_item_match p c v ** pure ( opt_precedes (Ghost.reveal v) (None #raw_data_item) /\ res == t_uint_literal n v )) { let mt = cbor_get_major_type c; if (mt = cbor_major_type_uint64) { let i = cbor_destr_int64 c; (i.cbor_int_value = n) } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_uint_literal (n: U64.t) : impl_typ (t_uint_literal n) = impl_uint_literal' n inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_bytes (_: unit) : impl_typ #None bytes = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let mt = cbor_get_major_type c; (mt = cbor_major_type_byte_string) } ``` inline_for_extraction noextract [@@noextract_to "krml"] let impl_array_group3 (#b: Ghost.erased (option raw_data_item)) (g: array_group3 b) = (pi: R.ref cbor_array_iterator_t) -> (#p: perm) -> (#i: Ghost.erased cbor_array_iterator_t) -> (#l: Ghost.erased (list raw_data_item)) -> stt bool (R.pts_to pi i ** cbor_array_iterator_match p i l ** pure (opt_precedes (Ghost.reveal l) b) ) (fun res -> exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ```pulse ghost fn intro_impl_array_group3_post (#b: option raw_data_item) (g: array_group3 b) (pi: R.ref cbor_array_iterator_t) (p: perm) (i: cbor_array_iterator_t) (l: list raw_data_item) (res: bool) (i': cbor_array_iterator_t) (l': list raw_data_item) requires ( R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) ensures (exists* i' l'. R.pts_to pi i' ** cbor_array_iterator_match p i' l' ** (cbor_array_iterator_match p i' l' @==> cbor_array_iterator_match p i l) ** pure ( opt_precedes (Ghost.reveal l) b /\ res == Some? (g l) /\ (res == true ==> Some?.v (g l) == l') ) ) { () } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_concat (#b: Ghost.erased (option raw_data_item)) (#g1: array_group3 b) (f1: impl_array_group3 g1) (#g2: array_group3 b) (f2: impl_array_group3 g2) : impl_array_group3 #b (array_group3_concat g1 g2) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let test1 = f1 pi; if (test1) { let test2 = f2 pi; stick_trans (); test2 } else { false } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_array_group3_item (#b: Ghost.erased (option raw_data_item)) (#ty: bounded_typ_gen b) (fty: impl_typ ty) : impl_array_group3 #b (array_group3_item ty) = (pi: R.ref cbor_array_iterator_t) (#p: perm) (#gi: Ghost.erased cbor_array_iterator_t) (#l: Ghost.erased (list raw_data_item)) { let i = !pi; rewrite (cbor_array_iterator_match p gi l) as (cbor_array_iterator_match p i l); let is_done = cbor_array_iterator_is_done i; rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p gi l); if (is_done) { stick_refl0 (cbor_array_iterator_match p gi l); intro_impl_array_group3_post (array_group3_item ty) pi p gi l false gi l; // FIXME: WHY WHY WHY? and also WHY WHY WHY here and not in the other "false" case below? false } else { let c = cbor_array_iterator_next pi #p #l #gi; // FIXME: WHY WHY WHY those explicit arguments? with gc i' l' . assert ( raw_data_item_match p c gc ** cbor_array_iterator_match p i' l' ** ((raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') @==> cbor_array_iterator_match p gi l) ); // this is needed for the explicit arguments to split_consume_l below let test = fty c; if (test) { stick_consume_l () #(raw_data_item_match p c gc) #(cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l) // FIXME: WHY WHY WHY those explicit arguments? (for which the with above is needed) ; true } else { elim_stick0 () #(raw_data_item_match p c gc ** cbor_array_iterator_match p i' l') #(cbor_array_iterator_match p gi l); // FIXME: WHY WHY WHY those explicit arguments? pi := i; rewrite (R.pts_to pi i) as (R.pts_to pi gi); stick_refl0 (cbor_array_iterator_match p gi l); false } } } ``` inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn impl_t_array (#b: Ghost.erased (option raw_data_item)) (#g: (array_group3 b)) (ig: (impl_array_group3 (g))) : impl_typ #b (t_array3 g) = (c: cbor) (#p: perm) (#v: Ghost.erased raw_data_item) { let ty = cbor_get_major_type c; if (ty = cbor_major_type_array) { let i = cbor_array_iterator_init c; with l . assert (cbor_array_iterator_match p i l); rewrite (cbor_array_iterator_match p i l) as (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l); let mut pi = i; let b_success = ig pi; with gi' l' . assert (cbor_array_iterator_match p gi' l'); let i' = ! pi; rewrite (cbor_array_iterator_match p gi' l') as (cbor_array_iterator_match p i' l'); let b_end = cbor_array_iterator_is_done i'; rewrite (cbor_array_iterator_match p i' l') as (cbor_array_iterator_match p gi' l'); elim_stick0 (); rewrite (cbor_array_iterator_match p (Ghost.reveal (Ghost.hide i)) l) as (cbor_array_iterator_match p i l); elim_stick0 (); (b_success && b_end) } else { false } } ``` module U8 = FStar.UInt8 noextract [@@noextract_to "krml"] let cbor_read_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_success_postcond va c v rem /\ t v == true module A = Pulse.Lib.Array let cbor_read_with_typ_success_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) : Tot vprop = exists* v rem. raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem ** ((raw_data_item_match full_perm c.cbor_read_payload v ** A.pts_to c.cbor_read_remainder #p rem) @==> A.pts_to a #p va) ** pure (cbor_read_with_typ_success_postcond t va c v rem) noextract [@@noextract_to "krml"] let cbor_read_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . Ghost.reveal va == serialize_cbor v `Seq.append` suff ==> t v == false let cbor_read_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> t v' == true) let cbor_read_with_typ_error_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) : Tot vprop = A.pts_to a #p va ** pure (cbor_read_with_typ_error_postcond t va) let cbor_read_with_typ_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = if res.cbor_read_is_success then cbor_read_with_typ_success_post t a p va res else cbor_read_with_typ_error_post t a p va module SZ = FStar.SizeT inline_for_extraction noextract let mk_cbor_read_error (res: cbor_read_t) : Tot cbor_read_t = {res with cbor_read_is_success = false} inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_read_with_typ (#t: typ) (ft: impl_typ t) (a: A.array U8.t) (sz: SZ.t) (#va: Ghost.erased (Seq.seq U8.t)) (#p: perm) requires (A.pts_to a #p va ** pure ( (SZ.v sz == Seq.length va \/ SZ.v sz == A.length a) )) returns res: cbor_read_t ensures cbor_read_with_typ_post t a p va res { let res = cbor_read a sz; if (res.cbor_read_is_success) { rewrite (cbor_read_post a p va res) as (cbor_read_success_post a p va res); unfold (cbor_read_success_post a p va res); let test = ft res.cbor_read_payload; if (test) { fold (cbor_read_with_typ_success_post t a p va res); rewrite (cbor_read_with_typ_success_post t a p va res) as (cbor_read_with_typ_post t a p va res); res } else { with v . assert (raw_data_item_match full_perm res.cbor_read_payload v); with vrem . assert (A.pts_to res.cbor_read_remainder #p vrem); cbor_read_with_typ_error_postcond_intro_typ_fail t va res v vrem; elim_stick0 () #(raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p vrem); fold (cbor_read_with_typ_error_post t a p va); let res = mk_cbor_read_error res; rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } else { rewrite (cbor_read_post a p va res) as (cbor_read_error_post a p va); unfold (cbor_read_error_post a p va); fold (cbor_read_with_typ_error_post t a p va); rewrite (cbor_read_with_typ_error_post t a p va) as (cbor_read_with_typ_post t a p va res); res } } ``` noextract [@@noextract_to "krml"] let cbor_read_deterministically_encoded_with_typ_success_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Tot prop = cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == true noextract [@@noextract_to "krml"] let cbor_read_deterministically_encoded_with_typ_error_postcond (t: typ) (va: Ghost.erased (Seq.seq U8.t)) : Tot prop = forall v suff . (Ghost.reveal va == serialize_cbor v `Seq.append` suff /\ data_item_wf deterministically_encoded_cbor_map_key_order v == true ) ==> t v == false let cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail (t: typ) (va: Ghost.erased (Seq.seq U8.t)) (c: cbor_read_t) (v: raw_data_item) (rem: Seq.seq U8.t) : Lemma (requires ( cbor_read_deterministically_encoded_success_postcond va c v rem /\ t v == false )) (ensures ( cbor_read_deterministically_encoded_with_typ_error_postcond t va )) = serialize_cbor_with_test_correct v rem (fun v' rem' -> data_item_wf deterministically_encoded_cbor_map_key_order v' == true /\ t v' == true) let cbor_read_deterministically_encoded_with_typ_success_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = exists* v rem. raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p rem ** ((raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p rem) @==> A.pts_to a #p va) ** pure (cbor_read_deterministically_encoded_with_typ_success_postcond t va res v rem) let cbor_read_deterministically_encoded_with_typ_error_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) : Tot vprop = A.pts_to a #p va ** pure (cbor_read_deterministically_encoded_with_typ_error_postcond t va) let cbor_read_deterministically_encoded_with_typ_post (t: typ) (a: A.array U8.t) (p: perm) (va: Ghost.erased (Seq.seq U8.t)) (res: cbor_read_t) : Tot vprop = if res.cbor_read_is_success then cbor_read_deterministically_encoded_with_typ_success_post t a p va res else cbor_read_deterministically_encoded_with_typ_error_post t a p va module SZ = FStar.SizeT inline_for_extraction noextract [@@noextract_to "krml"] ```pulse fn cbor_read_deterministically_encoded_with_typ (#t: typ) (ft: impl_typ t) (a: A.array U8.t) (sz: SZ.t) (#va: Ghost.erased (Seq.seq U8.t)) (#p: perm) requires (A.pts_to a #p va ** pure ( (SZ.v sz == Seq.length va \/ SZ.v sz == A.length a) )) returns res: cbor_read_t ensures cbor_read_deterministically_encoded_with_typ_post t a p va res { let res = cbor_read_deterministically_encoded a sz; if (res.cbor_read_is_success) { rewrite (cbor_read_deterministically_encoded_post a p va res) as (cbor_read_deterministically_encoded_success_post a p va res); unfold (cbor_read_deterministically_encoded_success_post a p va res); let test = ft res.cbor_read_payload; if (test) { fold (cbor_read_deterministically_encoded_with_typ_success_post t a p va res); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } else { with v . assert (raw_data_item_match full_perm res.cbor_read_payload v); with vrem . assert (A.pts_to res.cbor_read_remainder #p vrem); cbor_read_deterministically_encoded_with_typ_error_postcond_intro_typ_fail t va res v vrem; elim_stick0 () #(raw_data_item_match full_perm res.cbor_read_payload v ** A.pts_to res.cbor_read_remainder #p vrem); let res = mk_cbor_read_error res; fold (cbor_read_deterministically_encoded_with_typ_error_post t a p va); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } } else { rewrite (cbor_read_deterministically_encoded_post a p va res) as (cbor_read_deterministically_encoded_error_post a p va); unfold (cbor_read_deterministically_encoded_error_post a p va); fold (cbor_read_deterministically_encoded_with_typ_error_post t a p va); fold (cbor_read_deterministically_encoded_with_typ_post t a p va res); res } } ``` noextract let cbor_map_get_with_typ_post_found (t: typ) (vkey: raw_data_item) (vmap: raw_data_item) (vvalue: raw_data_item) : Tot prop = Map? vmap /\ list_ghost_assoc vkey (Map?.v vmap) == Some vvalue /\ t vvalue == true
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Stick.fsti.checked", "Pulse.Lib.Reference.fsti.checked", "Pulse.Lib.Pervasives.fst.checked", "Pulse.Lib.Array.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Ghost.fsti.checked", "CDDL.Spec.fsti.checked", "CBOR.Spec.fsti.checked", "CBOR.Pulse.fst.checked" ], "interface_file": false, "source_file": "CDDL.Pulse.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "SZ" }, { "abbrev": true, "full_module": "Pulse.Lib.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "Pulse.Lib.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "CDDL.Spec", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Pulse", "short_module": null }, { "abbrev": false, "full_module": "CBOR.Spec", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Stick", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "CDDL", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: CDDL.Spec.typ -> p: PulseCore.FractionalPermission.perm -> vkey: CBOR.Spec.Type.raw_data_item -> vmap: CBOR.Spec.Type.raw_data_item -> map: CBOR.Pulse.Type.cbor -> res: CBOR.Pulse.cbor_map_get_t -> Pulse.Lib.Core.vprop
Prims.Tot
[ "total" ]
[]
[ "CDDL.Spec.typ", "PulseCore.FractionalPermission.perm", "CBOR.Spec.Type.raw_data_item", "CBOR.Pulse.Type.cbor", "CBOR.Pulse.cbor_map_get_t", "Pulse.Lib.Core.op_Star_Star", "CBOR.Pulse.Extern.raw_data_item_match", "Pulse.Lib.Core.pure", "Prims.l_and", "Prims.b2t", "CBOR.Spec.Type.uu___is_Map", "CBOR.Pulse.list_ghost_assoc", "CBOR.Spec.Type.__proj__Map__item__v", "Prims.l_True", "Prims.eq2", "Prims.bool", "Prims.logical", "Pulse.Lib.Core.op_exists_Star", "Pulse.Lib.Stick.op_At_Equals_Equals_Greater", "CDDL.Pulse.cbor_map_get_with_typ_post_found", "Pulse.Lib.Core.vprop" ]
[]
false
false
false
true
false
let cbor_map_get_with_typ_post (t: typ) (p: perm) (vkey vmap: raw_data_item) (map: cbor) (res: cbor_map_get_t) : Tot vprop =
match res with | NotFound -> raw_data_item_match p map vmap ** pure (Map? vmap /\ (match list_ghost_assoc vkey (Map?.v vmap) with | None -> True | Some v -> t v == false)) | Found value -> exists* vvalue. (raw_data_item_match p value vvalue ** (raw_data_item_match p value vvalue @==> raw_data_item_match p map vmap)) ** pure (cbor_map_get_with_typ_post_found t vkey vmap vvalue)
false
Pulse.C.Types.Base.fsti
Pulse.C.Types.Base.ref
val ref (#t: Type) (td: typedef t) : Tot Type0
val ref (#t: Type) (td: typedef t) : Tot Type0
let ref (#t: Type) (td: typedef t) : Tot Type0 = (p: ptr td { ~ (p == null td) })
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Base.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 81, "end_line": 99, "start_col": 0, "start_line": 99 }
module Pulse.C.Types.Base open Pulse.Lib.Pervasives /// Helper to compose two permissions into one val prod_perm (p1 p2: perm) : Pure perm (requires True) (ensures (fun p -> ((p1 `lesser_equal_perm` full_perm /\ p2 `lesser_equal_perm` full_perm) ==> p `lesser_equal_perm` full_perm) /\ p.v == (let open FStar.Real in p1.v *. p2.v) )) [@@noextract_to "krml"] // proof-only val typedef (t: Type0) : Type0 inline_for_extraction [@@noextract_to "krml"] let typeof (#t: Type0) (td: typedef t) : Tot Type0 = t val fractionable (#t: Type0) (td: typedef t) (x: t) : GTot prop val mk_fraction (#t: Type0) (td: typedef t) (x: t) (p: perm) : Ghost t (requires (fractionable td x)) (ensures (fun y -> p `lesser_equal_perm` full_perm ==> fractionable td y)) val mk_fraction_full (#t: Type0) (td: typedef t) (x: t) : Lemma (requires (fractionable td x)) (ensures (mk_fraction td x full_perm == x)) [SMTPat (mk_fraction td x full_perm)] val mk_fraction_compose (#t: Type0) (td: typedef t) (x: t) (p1 p2: perm) : Lemma (requires (fractionable td x /\ p1 `lesser_equal_perm` full_perm /\ p2 `lesser_equal_perm` full_perm)) (ensures (mk_fraction td (mk_fraction td x p1) p2 == mk_fraction td x (p1 `prod_perm` p2))) val full (#t: Type0) (td: typedef t) (v: t) : GTot prop val uninitialized (#t: Type0) (td: typedef t) : Ghost t (requires True) (ensures (fun y -> full td y /\ fractionable td y)) val unknown (#t: Type0) (td: typedef t) : Ghost t (requires True) (ensures (fun y -> fractionable td y)) val full_not_unknown (#t: Type) (td: typedef t) (v: t) : Lemma (requires (full td v)) (ensures (~ (v == unknown td))) [SMTPat (full td v)] val mk_fraction_unknown (#t: Type0) (td: typedef t) (p: perm) : Lemma (ensures (mk_fraction td (unknown td) p == unknown td)) val mk_fraction_eq_unknown (#t: Type0) (td: typedef t) (v: t) (p: perm) : Lemma (requires (fractionable td v /\ mk_fraction td v p == unknown td)) (ensures (v == unknown td)) // To be extracted as: void* [@@noextract_to "krml"] // primitive val void_ptr : Type0 // To be extracted as: NULL [@@noextract_to "krml"] // primitive val void_null: void_ptr // To be extracted as: *t [@@noextract_to "krml"] // primitive val ptr_gen ([@@@unused] t: Type) : Type0 [@@noextract_to "krml"] // primitive val null_gen (t: Type) : Tot (ptr_gen t) val ghost_void_ptr_of_ptr_gen (#[@@@unused] t: Type) (x: ptr_gen t) : GTot void_ptr val ghost_ptr_gen_of_void_ptr (x: void_ptr) ([@@@unused] t: Type) : GTot (ptr_gen t) val ghost_void_ptr_of_ptr_gen_of_void_ptr (x: void_ptr) (t: Type) : Lemma (ghost_void_ptr_of_ptr_gen (ghost_ptr_gen_of_void_ptr x t) == x) [SMTPat (ghost_void_ptr_of_ptr_gen (ghost_ptr_gen_of_void_ptr x t))] val ghost_ptr_gen_of_void_ptr_of_ptr_gen (#t: Type) (x: ptr_gen t) : Lemma (ghost_ptr_gen_of_void_ptr (ghost_void_ptr_of_ptr_gen x) t == x) [SMTPat (ghost_ptr_gen_of_void_ptr (ghost_void_ptr_of_ptr_gen x) t)] inline_for_extraction [@@noextract_to "krml"] // primitive let ptr (#t: Type) (td: typedef t) : Tot Type0 = ptr_gen t inline_for_extraction [@@noextract_to "krml"] // primitive let null (#t: Type) (td: typedef t) : Tot (ptr td) = null_gen t
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Base.fsti" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
td: Pulse.C.Types.Base.typedef t -> Type0
Prims.Tot
[ "total" ]
[]
[ "Pulse.C.Types.Base.typedef", "Pulse.C.Types.Base.ptr", "Prims.l_not", "Prims.eq2", "Pulse.C.Types.Base.null" ]
[]
false
false
false
true
true
let ref (#t: Type) (td: typedef t) : Tot Type0 =
(p: ptr td {~(p == null td)})
false
Hacl.Impl.P256.Scalar.fsti
Hacl.Impl.P256.Scalar.qmont_as_nat
val qmont_as_nat : h: FStar.Monotonic.HyperStack.mem -> a: Hacl.Impl.P256.Bignum.felem -> Prims.GTot Spec.P256.PointOps.qelem
let qmont_as_nat (h:mem) (a:felem) = SM.from_qmont (as_nat h a)
{ "file_name": "code/ecdsap256/Hacl.Impl.P256.Scalar.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 19, "start_col": 0, "start_line": 19 }
module Hacl.Impl.P256.Scalar open FStar.Mul open FStar.HyperStack.All open FStar.HyperStack module ST = FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Hacl.Impl.P256.Bignum module S = Spec.P256 module SM = Hacl.Spec.P256.Montgomery module BSeq = Lib.ByteSequence #set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "Spec.P256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.P256.Montgomery.fsti.checked", "Hacl.Impl.P256.Bignum.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.P256.Scalar.fsti" }
[ { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 30, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> a: Hacl.Impl.P256.Bignum.felem -> Prims.GTot Spec.P256.PointOps.qelem
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.P256.Bignum.felem", "Hacl.Spec.P256.Montgomery.from_qmont", "Hacl.Impl.P256.Bignum.as_nat", "Spec.P256.PointOps.qelem" ]
[]
false
false
false
false
false
let qmont_as_nat (h: mem) (a: felem) =
SM.from_qmont (as_nat h a)
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.gcm_blocks_helper_dec_simplified
val gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes alleged_tag:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 )) (ensures (let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes alleged_tag)))
val gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes alleged_tag:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 )) (ensures (let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes alleged_tag)))
let gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes alleged_tag:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 )) (ensures (let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes alleged_tag))) = gcm_blocks_helper_enc alg key p128 p_bytes c128 c_bytes auth_bytes p_num_bytes iv j0_BE; let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher_raw_quads:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in lemma_length_simplifier p128 p_bytes plain_raw_quads p_num_bytes; lemma_length_simplifier c128 c_bytes cipher_raw_quads p_num_bytes; let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in assert (cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)); lemma_gcm_encrypt_decrypt_equiv alg key iv j0_BE cipher_bytes plain_bytes auth_bytes alleged_tag; ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 718, "start_col": 0, "start_line": 652 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; () let lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) = ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); () let gcm_encrypt_BE_fst_helper (iv:supported_iv_BE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key )) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () let gcm_encrypt_BE_snd_helper (iv:supported_iv_BE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key) )) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () #reset-options "--z3rlimit 10" let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 ))) (ensures (let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in //cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key)) cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in gctr_partial_opaque_completed alg plain cipher key ctr_BE_2; if p_num_bytes > length p128 * 16 then ( gctr_partial_reveal (); assert (gctr_partial alg (length p128) plain cipher key ctr_BE_2); assert (equal (slice plain 0 (length p128)) (slice p128 0 (length p128))); assert (equal (slice cipher 0 (length p128)) (slice c128 0 (length p128))); gctr_partial_opaque_ignores_postfix alg (length p128) plain p128 cipher c128 key ctr_BE_2; assert (gctr_partial alg (length p128) p128 c128 key ctr_BE_2); gctr_partial_opaque_completed alg p128 c128 key ctr_BE_2; let num_blocks = p_num_bytes / 16 in assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_word alg key (inc32 ctr_BE_2 num_blocks))); gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks; assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks == gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0); aes_encrypt_word_reveal (); gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes; assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ) else ( gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher; assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt ctr_BE_2 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key); let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in assert (equal plain_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain))); assert (equal cipher_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher))); assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ); gcm_encrypt_BE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key; () let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) = assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x)))); () let append_distributes_be_seq_quad32_to_bytes (x y:seq quad32) : Lemma (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append x y)) == append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE x)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE y))) = append_distributes_be_seq_quad32_to_bytes x y let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) = assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y))) #reset-options "--z3rlimit 100" let gcm_blocks_helper (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in let hash = ghash_BE h final_quads in gcm_blocks_helper_enc alg key p128 p_bytes c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE; calc (==) { enc_hash; == {} gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0; == {} gctr_encrypt_block ctr_BE_1 hash alg key 0; == {} quad32_xor hash (aes_encrypt_word alg key ctr_BE_1); }; calc (==) { gctr_encrypt ctr_BE_1 (be_quad32_to_bytes hash) alg key; == { gctr_encrypt_one_block ctr_BE_1 hash alg key } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor hash (aes_encrypt_word alg key ctr_BE_1)))); == {} seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 enc_hash)); == { be_seq_quad32_to_bytes_of_singleton enc_hash } be_quad32_to_bytes enc_hash; }; if p_num_bytes > length p128 * 16 then ( let c = append c128 c_bytes in calc (==) { append (append auth_quads c128) c_bytes; == { append_assoc auth_quads c128 c_bytes } append auth_quads (append c128 c_bytes); == {} append auth_quads c; }; calc (==) { append (append (append auth_quads c128) c_bytes) (create 1 length_quad); = {} // See previous calc append (append auth_quads (append c128 c_bytes)) (create 1 length_quad); == { append_assoc auth_quads c (create 1 length_quad) } append auth_quads (append c (create 1 length_quad)); }; let raw_quads_old = append auth_quads c in calc (==) { raw_quads; == {} be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes)); == { calc (==) { pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes); == { calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes; == { append_distributes_be_seq_quad32_to_bytes auth_quads c } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) 0 total_bytes; == { slice_append_back (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) total_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes); == {} append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes; } } pad_to_128_bits (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes); == { pad_to_128_bits_multiple_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes); } } be_bytes_to_seq_quad32 (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes)); == { append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes) } append (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads))) (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); == { be_bytes_to_seq_quad32_to_bytes auth_quads } append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); }; let auth_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in let cipher_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in calc (==) { append raw_quads (create 1 length_quad); == {} append (append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad); == { assert (equal auth_quads auth_padded_quads') } append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad); == { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) } append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad)); }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ) else ( calc (==) { append (append auth_quads c128) (create 1 length_quad); == { append_assoc auth_quads c128 (create 1 length_quad) } append auth_quads (append c128 (create 1 length_quad)); }; let c = c128 in calc (==) { be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)); == { assert (equal (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)) } be_bytes_to_seq_quad32 (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))); == { assert (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) } be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)); == { be_bytes_to_seq_quad32_to_bytes c } c; }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ); () let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1 ) (ensures slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE t)) 0 num_bytes == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes) = if num_bytes > (length s) * 16 then ( () ) else ( calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes; == { append_distributes_be_seq_quad32_to_bytes s bytes } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes))) 0 num_bytes; == { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes)) } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s); == { assert (length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == num_bytes) } slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes; }; () ) #reset-options "--z3rlimit 10" let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > length a128 * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = append a128 a_bytes in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)) ) = gcm_blocks_helper alg key a128 a_bytes p128 p_bytes c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad; let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher_raw_quads:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes; lemma_length_simplifier p128 p_bytes plain_raw_quads p_num_bytes; lemma_length_simplifier c128 c_bytes cipher_raw_quads p_num_bytes; () let lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_BE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma (requires is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv) /\ length cipher < pow2_32 /\ length auth < pow2_32 /\ plain == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth) ) (ensures plain == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth alleged_tag)) = gcm_encrypt_BE_reveal (); gcm_decrypt_BE_reveal (); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 -> p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> auth_bytes: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> alleged_tag: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> p_num_bytes: Prims.nat -> iv: Vale.AES.GCM_BE_s.supported_iv_BE -> j0_BE: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\ p_num_bytes < FStar.Seq.Base.length p128 * 16 + 16 /\ FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\ FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\ FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\ Vale.AES.AES_BE_s.is_aes_key_word alg key /\ (let h_BE = Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) in j0_BE = Vale.AES.GCM_BE_s.compute_iv_BE h_BE iv) /\ p_num_bytes < Vale.Def.Words_s.pow2_32 /\ (let ctr_BE_2 = Vale.AES.GCTR_BE_s.inc32 j0_BE 1 in let plain = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append p128 p_bytes | _ -> p128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let cipher = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append c128 c_bytes | _ -> c128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let cipher_bound = FStar.Seq.Base.length p128 + (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> 1 | _ -> 0) in Vale.AES.GCTR_BE.gctr_partial alg cipher_bound plain cipher key ctr_BE_2)) (ensures (let plain_raw_quads = FStar.Seq.Base.append p128 p_bytes in let plain_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append c128 c_bytes in let cipher_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\ FStar.Seq.Base.length plain_bytes < Vale.Def.Words_s.pow2_32 /\ cipher_bytes == FStar.Pervasives.Native.fst (Vale.AES.GCM_BE_s.gcm_decrypt_BE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes alleged_tag)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat32", "Vale.Def.Types_s.quad32", "Vale.Def.Words_s.nat8", "Prims.nat", "Vale.AES.GCM_BE_s.supported_iv_BE", "Prims.unit", "Vale.AES.GCM_BE.lemma_gcm_encrypt_decrypt_equiv", "Prims._assert", "Prims.eq2", "Vale.Def.Types_s.nat8", "FStar.Pervasives.Native.fst", "Vale.AES.GCM_BE_s.gcm_encrypt_BE", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "FStar.Seq.Base.slice", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Types_s.nat32", "FStar.Seq.Base.append", "Vale.AES.GCM_BE.lemma_length_simplifier", "Prims.op_GreaterThan", "FStar.Mul.op_Star", "FStar.Seq.Base.length", "Prims.bool", "Vale.AES.GCM_BE.gcm_blocks_helper_enc", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "Prims.int", "Vale.Def.Words_s.pow2_32", "Vale.AES.AES_BE_s.is_aes_key_word", "Prims.op_Equality", "Vale.AES.GCM_BE_s.compute_iv_BE", "Vale.AES.AES_BE_s.aes_encrypt_word", "Vale.Def.Words_s.Mkfour", "Vale.AES.GCTR_BE.gctr_partial", "Vale.AES.GCTR_BE_s.inc32", "Prims.squash", "Vale.AES.GCM_BE_s.gcm_decrypt_BE", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let gcm_blocks_helper_dec_simplified (alg: algorithm) (key: seq nat32) (p128 p_bytes c128 c_bytes: seq quad32) (auth_bytes alleged_tag: seq nat8) (p_num_bytes: nat) (iv: supported_iv_BE) (j0_BE: quad32) : Lemma (requires length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv) /\ p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2)) (ensures (let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes alleged_tag))) =
gcm_blocks_helper_enc alg key p128 p_bytes c128 c_bytes auth_bytes p_num_bytes iv j0_BE; let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher_raw_quads:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in lemma_length_simplifier p128 p_bytes plain_raw_quads p_num_bytes; lemma_length_simplifier c128 c_bytes cipher_raw_quads p_num_bytes; let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in assert (cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)); lemma_gcm_encrypt_decrypt_equiv alg key iv j0_BE cipher_bytes plain_bytes auth_bytes alleged_tag; ()
false
Pulse.C.Types.Base.fsti
Pulse.C.Types.Base.ptr
val ptr (#t: Type) (td: typedef t) : Tot Type0
val ptr (#t: Type) (td: typedef t) : Tot Type0
let ptr (#t: Type) (td: typedef t) : Tot Type0 = ptr_gen t
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Base.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 58, "end_line": 94, "start_col": 0, "start_line": 94 }
module Pulse.C.Types.Base open Pulse.Lib.Pervasives /// Helper to compose two permissions into one val prod_perm (p1 p2: perm) : Pure perm (requires True) (ensures (fun p -> ((p1 `lesser_equal_perm` full_perm /\ p2 `lesser_equal_perm` full_perm) ==> p `lesser_equal_perm` full_perm) /\ p.v == (let open FStar.Real in p1.v *. p2.v) )) [@@noextract_to "krml"] // proof-only val typedef (t: Type0) : Type0 inline_for_extraction [@@noextract_to "krml"] let typeof (#t: Type0) (td: typedef t) : Tot Type0 = t val fractionable (#t: Type0) (td: typedef t) (x: t) : GTot prop val mk_fraction (#t: Type0) (td: typedef t) (x: t) (p: perm) : Ghost t (requires (fractionable td x)) (ensures (fun y -> p `lesser_equal_perm` full_perm ==> fractionable td y)) val mk_fraction_full (#t: Type0) (td: typedef t) (x: t) : Lemma (requires (fractionable td x)) (ensures (mk_fraction td x full_perm == x)) [SMTPat (mk_fraction td x full_perm)] val mk_fraction_compose (#t: Type0) (td: typedef t) (x: t) (p1 p2: perm) : Lemma (requires (fractionable td x /\ p1 `lesser_equal_perm` full_perm /\ p2 `lesser_equal_perm` full_perm)) (ensures (mk_fraction td (mk_fraction td x p1) p2 == mk_fraction td x (p1 `prod_perm` p2))) val full (#t: Type0) (td: typedef t) (v: t) : GTot prop val uninitialized (#t: Type0) (td: typedef t) : Ghost t (requires True) (ensures (fun y -> full td y /\ fractionable td y)) val unknown (#t: Type0) (td: typedef t) : Ghost t (requires True) (ensures (fun y -> fractionable td y)) val full_not_unknown (#t: Type) (td: typedef t) (v: t) : Lemma (requires (full td v)) (ensures (~ (v == unknown td))) [SMTPat (full td v)] val mk_fraction_unknown (#t: Type0) (td: typedef t) (p: perm) : Lemma (ensures (mk_fraction td (unknown td) p == unknown td)) val mk_fraction_eq_unknown (#t: Type0) (td: typedef t) (v: t) (p: perm) : Lemma (requires (fractionable td v /\ mk_fraction td v p == unknown td)) (ensures (v == unknown td)) // To be extracted as: void* [@@noextract_to "krml"] // primitive val void_ptr : Type0 // To be extracted as: NULL [@@noextract_to "krml"] // primitive val void_null: void_ptr // To be extracted as: *t [@@noextract_to "krml"] // primitive val ptr_gen ([@@@unused] t: Type) : Type0 [@@noextract_to "krml"] // primitive val null_gen (t: Type) : Tot (ptr_gen t) val ghost_void_ptr_of_ptr_gen (#[@@@unused] t: Type) (x: ptr_gen t) : GTot void_ptr val ghost_ptr_gen_of_void_ptr (x: void_ptr) ([@@@unused] t: Type) : GTot (ptr_gen t) val ghost_void_ptr_of_ptr_gen_of_void_ptr (x: void_ptr) (t: Type) : Lemma (ghost_void_ptr_of_ptr_gen (ghost_ptr_gen_of_void_ptr x t) == x) [SMTPat (ghost_void_ptr_of_ptr_gen (ghost_ptr_gen_of_void_ptr x t))] val ghost_ptr_gen_of_void_ptr_of_ptr_gen (#t: Type) (x: ptr_gen t) : Lemma (ghost_ptr_gen_of_void_ptr (ghost_void_ptr_of_ptr_gen x) t == x) [SMTPat (ghost_ptr_gen_of_void_ptr (ghost_void_ptr_of_ptr_gen x) t)]
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Base.fsti" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
td: Pulse.C.Types.Base.typedef t -> Type0
Prims.Tot
[ "total" ]
[]
[ "Pulse.C.Types.Base.typedef", "Pulse.C.Types.Base.ptr_gen" ]
[]
false
false
false
true
true
let ptr (#t: Type) (td: typedef t) : Tot Type0 =
ptr_gen t
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.gcm_blocks_helper_enc
val gcm_blocks_helper_enc (alg: algorithm) (key: seq nat32) (p128 p_bytes c128 c_bytes: seq quad32) (auth_bytes: seq nat8) (p_num_bytes: nat) (iv: supported_iv_BE) (j0_BE: quad32) : Lemma (requires length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2))) (ensures (let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)))
val gcm_blocks_helper_enc (alg: algorithm) (key: seq nat32) (p128 p_bytes c128 c_bytes: seq quad32) (auth_bytes: seq nat8) (p_num_bytes: nat) (iv: supported_iv_BE) (j0_BE: quad32) : Lemma (requires length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2))) (ensures (let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)))
let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 ))) (ensures (let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in //cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key)) cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in gctr_partial_opaque_completed alg plain cipher key ctr_BE_2; if p_num_bytes > length p128 * 16 then ( gctr_partial_reveal (); assert (gctr_partial alg (length p128) plain cipher key ctr_BE_2); assert (equal (slice plain 0 (length p128)) (slice p128 0 (length p128))); assert (equal (slice cipher 0 (length p128)) (slice c128 0 (length p128))); gctr_partial_opaque_ignores_postfix alg (length p128) plain p128 cipher c128 key ctr_BE_2; assert (gctr_partial alg (length p128) p128 c128 key ctr_BE_2); gctr_partial_opaque_completed alg p128 c128 key ctr_BE_2; let num_blocks = p_num_bytes / 16 in assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_word alg key (inc32 ctr_BE_2 num_blocks))); gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks; assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks == gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0); aes_encrypt_word_reveal (); gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes; assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ) else ( gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher; assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt ctr_BE_2 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key); let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in assert (equal plain_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain))); assert (equal cipher_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher))); assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ); gcm_encrypt_BE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key; ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 251, "start_col": 0, "start_line": 146 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; () let lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) = ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); () let gcm_encrypt_BE_fst_helper (iv:supported_iv_BE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key )) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () let gcm_encrypt_BE_snd_helper (iv:supported_iv_BE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key) )) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 -> p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> auth_bytes: FStar.Seq.Base.seq Vale.Def.Words_s.nat8 -> p_num_bytes: Prims.nat -> iv: Vale.AES.GCM_BE_s.supported_iv_BE -> j0_BE: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\ p_num_bytes < FStar.Seq.Base.length p128 * 16 + 16 /\ FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\ FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\ FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\ Vale.AES.AES_BE_s.is_aes_key_word alg key /\ (let h_BE = Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) in j0_BE = Vale.AES.GCM_BE_s.compute_iv_BE h_BE iv /\ p_num_bytes < Vale.Def.Words_s.pow2_32 /\ (let ctr_BE_2 = Vale.AES.GCTR_BE_s.inc32 j0_BE 1 in let plain = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append p128 p_bytes | _ -> p128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let cipher = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append c128 c_bytes | _ -> c128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let cipher_bound = FStar.Seq.Base.length p128 + (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> 1 | _ -> 0) in Vale.AES.GCTR_BE.gctr_partial alg cipher_bound plain cipher key ctr_BE_2))) (ensures (let plain = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append p128 p_bytes | _ -> p128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let cipher = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append c128 c_bytes | _ -> c128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let ctr_BE_2 = Vale.AES.GCTR_BE_s.inc32 j0_BE 1 in let plain_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE cipher)) 0 p_num_bytes in cipher_bytes == FStar.Pervasives.Native.fst (Vale.AES.GCM_BE_s.gcm_encrypt_BE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat32", "Vale.Def.Types_s.quad32", "Vale.Def.Words_s.nat8", "Prims.nat", "Vale.AES.GCM_BE_s.supported_iv_BE", "Prims.unit", "Vale.AES.GCM_BE.gcm_encrypt_BE_fst_helper", "Prims.op_GreaterThan", "FStar.Mul.op_Star", "FStar.Seq.Base.length", "Prims._assert", "Prims.eq2", "Vale.AES.GCTR_BE_s.gctr_encrypt", "Vale.AES.GCTR_BE.gctr_partial_to_full_advanced", "Vale.AES.AES_BE_s.aes_encrypt_word_reveal", "Vale.AES.GCTR_BE_s.gctr_encrypt_block", "FStar.Seq.Base.index", "Vale.AES.GCTR_BE_s.inc32", "Vale.AES.GCTR_BE.gctr_encrypt_block_offset", "Vale.Def.Types_s.quad32_xor", "Vale.AES.AES_BE_s.aes_encrypt_word", "Prims.int", "Prims.op_Division", "Vale.AES.GCTR_BE.gctr_partial_opaque_completed", "Vale.AES.GCTR_BE.gctr_partial", "Vale.AES.GCTR_BE.gctr_partial_opaque_ignores_postfix", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "Vale.AES.GCTR_BE.gctr_partial_reveal", "Prims.bool", "Vale.Def.Types_s.nat8", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Types_s.nat32", "Vale.AES.GCTR_BE.gctr_partial_to_full_basic", "Prims.op_Addition", "FStar.Seq.Base.append", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Vale.Def.Words_s.pow2_32", "Vale.AES.AES_BE_s.is_aes_key_word", "Prims.op_Equality", "Vale.AES.GCM_BE_s.compute_iv_BE", "Vale.Def.Words_s.Mkfour", "Prims.squash", "FStar.Pervasives.Native.fst", "Vale.AES.GCM_BE_s.gcm_encrypt_BE", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let gcm_blocks_helper_enc (alg: algorithm) (key: seq nat32) (p128 p_bytes c128 c_bytes: seq quad32) (auth_bytes: seq nat8) (p_num_bytes: nat) (iv: supported_iv_BE) (j0_BE: quad32) : Lemma (requires length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2))) (ensures (let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) =
let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in gctr_partial_opaque_completed alg plain cipher key ctr_BE_2; if p_num_bytes > length p128 * 16 then (gctr_partial_reveal (); assert (gctr_partial alg (length p128) plain cipher key ctr_BE_2); assert (equal (slice plain 0 (length p128)) (slice p128 0 (length p128))); assert (equal (slice cipher 0 (length p128)) (slice c128 0 (length p128))); gctr_partial_opaque_ignores_postfix alg (length p128) plain p128 cipher c128 key ctr_BE_2; assert (gctr_partial alg (length p128) p128 c128 key ctr_BE_2); gctr_partial_opaque_completed alg p128 c128 key ctr_BE_2; let num_blocks = p_num_bytes / 16 in assert (index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_word alg key (inc32 ctr_BE_2 num_blocks))); gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks; assert (gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks == gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0); aes_encrypt_word_reveal (); gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes; assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key)) else (gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher; assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt ctr_BE_2 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key); let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in assert (equal plain_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain))); assert (equal cipher_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher))); assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key)); gcm_encrypt_BE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key; ()
false
Pulse.C.Types.Base.fsti
Pulse.C.Types.Base.typeof
val typeof (#t: Type0) (td: typedef t) : Tot Type0
val typeof (#t: Type0) (td: typedef t) : Tot Type0
let typeof (#t: Type0) (td: typedef t) : Tot Type0 = t
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Base.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 54, "end_line": 17, "start_col": 0, "start_line": 17 }
module Pulse.C.Types.Base open Pulse.Lib.Pervasives /// Helper to compose two permissions into one val prod_perm (p1 p2: perm) : Pure perm (requires True) (ensures (fun p -> ((p1 `lesser_equal_perm` full_perm /\ p2 `lesser_equal_perm` full_perm) ==> p `lesser_equal_perm` full_perm) /\ p.v == (let open FStar.Real in p1.v *. p2.v) )) [@@noextract_to "krml"] // proof-only val typedef (t: Type0) : Type0
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Base.fsti" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
td: Pulse.C.Types.Base.typedef t -> Type0
Prims.Tot
[ "total" ]
[]
[ "Pulse.C.Types.Base.typedef" ]
[]
false
false
false
true
true
let typeof (#t: Type0) (td: typedef t) : Tot Type0 =
t
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.lemma_compute_iv_easy
val lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv)
val lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv)
let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 99, "start_col": 0, "start_line": 43 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
iv_b: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> iv_extra_b: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> iv: Vale.AES.GCM_BE_s.supported_iv_BE -> num_bytes: Vale.Def.Words_s.nat64 -> h_BE: Vale.Def.Types_s.quad32 -> j0: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length iv_extra_b == 1 /\ FStar.Seq.Base.length iv_b * (128 / 8) <= num_bytes /\ num_bytes < FStar.Seq.Base.length iv_b * (128 / 8) + 128 / 8 /\ num_bytes == 96 / 8 /\ (let iv_BE = FStar.Seq.Base.index iv_extra_b 0 in j0 == Vale.Def.Words_s.Mkfour 1 (Mkfour?.lo1 iv_BE) (Mkfour?.hi2 iv_BE) (Mkfour?.hi3 iv_BE)) /\ (let raw_quads = FStar.Seq.Base.append iv_b iv_extra_b in let iv_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == Vale.AES.GCM_BE_s.compute_iv_BE h_BE iv)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Vale.Def.Types_s.quad32", "Vale.AES.GCM_BE_s.supported_iv_BE", "Vale.Def.Words_s.nat64", "Prims.unit", "FStar.Calc.calc_finish", "Prims.eq2", "Vale.AES.GCM_BE_s.compute_iv_BE", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Vale.AES.GCM_BE.set_to_one", "Vale.Def.Types_s.be_bytes_to_quad32", "Vale.AES.GCTR_BE_s.pad_to_128_bits", "FStar.Seq.Base.slice", "Vale.Def.Words_s.nat8", "Vale.Arch.Types.be_quad32_to_bytes", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Vale.Arch.Types.be_bytes_to_quad32_to_bytes", "Vale.AES.GCM_BE.lemma_be_bytes_to_quad32_prefix_equality", "Vale.AES.GCM_BE.lemma_be_seq_quad32_to_bytes_prefix_equality", "Vale.AES.GCM_BE_s.compute_iv_BE_reveal", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Types_s.nat32", "Vale.Def.Types_s.nat8", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.create", "Vale.Arch.Types.be_seq_quad32_to_bytes_of_singleton", "FStar.Seq.Base.index", "FStar.Seq.Base.append", "FStar.Seq.Base.append_empty_l", "FStar.Seq.Base.lemma_empty", "Prims.int", "FStar.Seq.Base.length", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Prims.op_Division", "Prims.op_LessThan", "Prims.op_Addition", "Vale.Def.Words_s.four", "Vale.Def.Words_s.Mkfour", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Vale.Def.Words_s.__proj__Mkfour__item__hi3", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_compute_iv_easy (iv_b iv_extra_b: seq quad32) (iv: supported_iv_BE) (num_bytes: nat64) (h_BE j0: quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128 / 8) <= num_bytes /\ num_bytes < length iv_b * (128 / 8) + 128 / 8 /\ num_bytes == 96 / 8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) =
assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc ( == ) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; ( == ) { () } slice (pad_to_128_bits iv) 0 12; }; calc ( == ) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); ( == ) { () } be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b )) 0 num_bytes)); ( == ) { () } be_bytes_to_quad32 (pad_to_128_bits iv); }; calc ( == ) { j0; ( == ) { () } set_to_one q; ( == ) { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); ( == ) { (lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); ( == ) { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); ( == ) { compute_iv_BE_reveal () } compute_iv_BE h_BE iv; }; ()
false
Pulse.C.Types.Base.fsti
Pulse.C.Types.Base.null
val null (#t: Type) (td: typedef t) : Tot (ptr td)
val null (#t: Type) (td: typedef t) : Tot (ptr td)
let null (#t: Type) (td: typedef t) : Tot (ptr td) = null_gen t
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Base.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 63, "end_line": 96, "start_col": 0, "start_line": 96 }
module Pulse.C.Types.Base open Pulse.Lib.Pervasives /// Helper to compose two permissions into one val prod_perm (p1 p2: perm) : Pure perm (requires True) (ensures (fun p -> ((p1 `lesser_equal_perm` full_perm /\ p2 `lesser_equal_perm` full_perm) ==> p `lesser_equal_perm` full_perm) /\ p.v == (let open FStar.Real in p1.v *. p2.v) )) [@@noextract_to "krml"] // proof-only val typedef (t: Type0) : Type0 inline_for_extraction [@@noextract_to "krml"] let typeof (#t: Type0) (td: typedef t) : Tot Type0 = t val fractionable (#t: Type0) (td: typedef t) (x: t) : GTot prop val mk_fraction (#t: Type0) (td: typedef t) (x: t) (p: perm) : Ghost t (requires (fractionable td x)) (ensures (fun y -> p `lesser_equal_perm` full_perm ==> fractionable td y)) val mk_fraction_full (#t: Type0) (td: typedef t) (x: t) : Lemma (requires (fractionable td x)) (ensures (mk_fraction td x full_perm == x)) [SMTPat (mk_fraction td x full_perm)] val mk_fraction_compose (#t: Type0) (td: typedef t) (x: t) (p1 p2: perm) : Lemma (requires (fractionable td x /\ p1 `lesser_equal_perm` full_perm /\ p2 `lesser_equal_perm` full_perm)) (ensures (mk_fraction td (mk_fraction td x p1) p2 == mk_fraction td x (p1 `prod_perm` p2))) val full (#t: Type0) (td: typedef t) (v: t) : GTot prop val uninitialized (#t: Type0) (td: typedef t) : Ghost t (requires True) (ensures (fun y -> full td y /\ fractionable td y)) val unknown (#t: Type0) (td: typedef t) : Ghost t (requires True) (ensures (fun y -> fractionable td y)) val full_not_unknown (#t: Type) (td: typedef t) (v: t) : Lemma (requires (full td v)) (ensures (~ (v == unknown td))) [SMTPat (full td v)] val mk_fraction_unknown (#t: Type0) (td: typedef t) (p: perm) : Lemma (ensures (mk_fraction td (unknown td) p == unknown td)) val mk_fraction_eq_unknown (#t: Type0) (td: typedef t) (v: t) (p: perm) : Lemma (requires (fractionable td v /\ mk_fraction td v p == unknown td)) (ensures (v == unknown td)) // To be extracted as: void* [@@noextract_to "krml"] // primitive val void_ptr : Type0 // To be extracted as: NULL [@@noextract_to "krml"] // primitive val void_null: void_ptr // To be extracted as: *t [@@noextract_to "krml"] // primitive val ptr_gen ([@@@unused] t: Type) : Type0 [@@noextract_to "krml"] // primitive val null_gen (t: Type) : Tot (ptr_gen t) val ghost_void_ptr_of_ptr_gen (#[@@@unused] t: Type) (x: ptr_gen t) : GTot void_ptr val ghost_ptr_gen_of_void_ptr (x: void_ptr) ([@@@unused] t: Type) : GTot (ptr_gen t) val ghost_void_ptr_of_ptr_gen_of_void_ptr (x: void_ptr) (t: Type) : Lemma (ghost_void_ptr_of_ptr_gen (ghost_ptr_gen_of_void_ptr x t) == x) [SMTPat (ghost_void_ptr_of_ptr_gen (ghost_ptr_gen_of_void_ptr x t))] val ghost_ptr_gen_of_void_ptr_of_ptr_gen (#t: Type) (x: ptr_gen t) : Lemma (ghost_ptr_gen_of_void_ptr (ghost_void_ptr_of_ptr_gen x) t == x) [SMTPat (ghost_ptr_gen_of_void_ptr (ghost_void_ptr_of_ptr_gen x) t)] inline_for_extraction [@@noextract_to "krml"] // primitive let ptr (#t: Type) (td: typedef t) : Tot Type0 = ptr_gen t
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Base.fsti" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
td: Pulse.C.Types.Base.typedef t -> Pulse.C.Types.Base.ptr td
Prims.Tot
[ "total" ]
[]
[ "Pulse.C.Types.Base.typedef", "Pulse.C.Types.Base.null_gen", "Pulse.C.Types.Base.ptr" ]
[]
false
false
false
false
false
let null (#t: Type) (td: typedef t) : Tot (ptr td) =
null_gen t
false
Pulse.C.Types.Base.fsti
Pulse.C.Types.Base.norm_field_steps
val norm_field_steps : Prims.list FStar.Pervasives.norm_step
let norm_field_steps = [ delta_attr [`%norm_field_attr]; iota; zeta; primops; ]
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Base.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 1, "end_line": 356, "start_col": 0, "start_line": 353 }
module Pulse.C.Types.Base open Pulse.Lib.Pervasives /// Helper to compose two permissions into one val prod_perm (p1 p2: perm) : Pure perm (requires True) (ensures (fun p -> ((p1 `lesser_equal_perm` full_perm /\ p2 `lesser_equal_perm` full_perm) ==> p `lesser_equal_perm` full_perm) /\ p.v == (let open FStar.Real in p1.v *. p2.v) )) [@@noextract_to "krml"] // proof-only val typedef (t: Type0) : Type0 inline_for_extraction [@@noextract_to "krml"] let typeof (#t: Type0) (td: typedef t) : Tot Type0 = t val fractionable (#t: Type0) (td: typedef t) (x: t) : GTot prop val mk_fraction (#t: Type0) (td: typedef t) (x: t) (p: perm) : Ghost t (requires (fractionable td x)) (ensures (fun y -> p `lesser_equal_perm` full_perm ==> fractionable td y)) val mk_fraction_full (#t: Type0) (td: typedef t) (x: t) : Lemma (requires (fractionable td x)) (ensures (mk_fraction td x full_perm == x)) [SMTPat (mk_fraction td x full_perm)] val mk_fraction_compose (#t: Type0) (td: typedef t) (x: t) (p1 p2: perm) : Lemma (requires (fractionable td x /\ p1 `lesser_equal_perm` full_perm /\ p2 `lesser_equal_perm` full_perm)) (ensures (mk_fraction td (mk_fraction td x p1) p2 == mk_fraction td x (p1 `prod_perm` p2))) val full (#t: Type0) (td: typedef t) (v: t) : GTot prop val uninitialized (#t: Type0) (td: typedef t) : Ghost t (requires True) (ensures (fun y -> full td y /\ fractionable td y)) val unknown (#t: Type0) (td: typedef t) : Ghost t (requires True) (ensures (fun y -> fractionable td y)) val full_not_unknown (#t: Type) (td: typedef t) (v: t) : Lemma (requires (full td v)) (ensures (~ (v == unknown td))) [SMTPat (full td v)] val mk_fraction_unknown (#t: Type0) (td: typedef t) (p: perm) : Lemma (ensures (mk_fraction td (unknown td) p == unknown td)) val mk_fraction_eq_unknown (#t: Type0) (td: typedef t) (v: t) (p: perm) : Lemma (requires (fractionable td v /\ mk_fraction td v p == unknown td)) (ensures (v == unknown td)) // To be extracted as: void* [@@noextract_to "krml"] // primitive val void_ptr : Type0 // To be extracted as: NULL [@@noextract_to "krml"] // primitive val void_null: void_ptr // To be extracted as: *t [@@noextract_to "krml"] // primitive val ptr_gen ([@@@unused] t: Type) : Type0 [@@noextract_to "krml"] // primitive val null_gen (t: Type) : Tot (ptr_gen t) val ghost_void_ptr_of_ptr_gen (#[@@@unused] t: Type) (x: ptr_gen t) : GTot void_ptr val ghost_ptr_gen_of_void_ptr (x: void_ptr) ([@@@unused] t: Type) : GTot (ptr_gen t) val ghost_void_ptr_of_ptr_gen_of_void_ptr (x: void_ptr) (t: Type) : Lemma (ghost_void_ptr_of_ptr_gen (ghost_ptr_gen_of_void_ptr x t) == x) [SMTPat (ghost_void_ptr_of_ptr_gen (ghost_ptr_gen_of_void_ptr x t))] val ghost_ptr_gen_of_void_ptr_of_ptr_gen (#t: Type) (x: ptr_gen t) : Lemma (ghost_ptr_gen_of_void_ptr (ghost_void_ptr_of_ptr_gen x) t == x) [SMTPat (ghost_ptr_gen_of_void_ptr (ghost_void_ptr_of_ptr_gen x) t)] inline_for_extraction [@@noextract_to "krml"] // primitive let ptr (#t: Type) (td: typedef t) : Tot Type0 = ptr_gen t inline_for_extraction [@@noextract_to "krml"] // primitive let null (#t: Type) (td: typedef t) : Tot (ptr td) = null_gen t inline_for_extraction [@@noextract_to "krml"] let ref (#t: Type) (td: typedef t) : Tot Type0 = (p: ptr td { ~ (p == null td) }) val pts_to (#t: Type) (#[@@@equate_by_smt]td: typedef t) (r: ref td) ([@@@equate_by_smt] v: Ghost.erased t) : vprop let pts_to_or_null (#t: Type) (#[@@@equate_by_smt]td: typedef t) (p: ptr td) ([@@@equate_by_smt] v: Ghost.erased t) : vprop = if FStar.StrongExcludedMiddle.strong_excluded_middle (p == null _) then emp else pts_to p v [@@noextract_to "krml"] // primitive val is_null (#t: Type) // (#opened: _) (#td: typedef t) (#v: Ghost.erased t) (p: ptr td) // : STAtomicBase bool false opened Unobservable : stt bool (pts_to_or_null p v) (fun res -> pts_to_or_null p v ** pure ( res == true <==> p == null _ )) ```pulse ghost fn assert_null (#t: Type) (#td: typedef t) (#v: Ghost.erased t) (p: ptr td) requires (pts_to_or_null p v ** pure ( p == null _ )) ensures emp { rewrite (pts_to_or_null p v) as emp } ``` ```pulse ghost fn assert_not_null (#t: Type) (#td: typedef t) (#v: Ghost.erased t) (p: ptr td) requires (pts_to_or_null p v ** pure ( ~ (p == null _) )) returns _:(squash (~ (p == null _))) ensures (pts_to p v) { rewrite (pts_to_or_null p v) as (pts_to p v) } ``` [@@noextract_to "krml"] // primitive // val void_ptr_of_ptr (#t: Type) (#opened: _) (#td: typedef t) (#v: Ghost.erased t) (x: ptr td) : STAtomicBase void_ptr false opened Unobservable val void_ptr_of_ptr (#t: Type) (#td: typedef t) (#v: Ghost.erased t) (x: ptr td) : stt void_ptr (pts_to_or_null x v) (fun y -> pts_to_or_null x v ** pure ( y == ghost_void_ptr_of_ptr_gen x )) [@@noextract_to "krml"] inline_for_extraction // let void_ptr_of_ref (#t: Type) (#opened: _) (#td: typedef t) (#v: Ghost.erased t) (x: ref td) : STAtomicBase void_ptr false opened Unobservable ```pulse fn void_ptr_of_ref (#t: Type) (#td: typedef t) (#v: Ghost.erased t) (x: ref td) requires (pts_to x v) returns y: void_ptr ensures (pts_to x v ** pure ( y == ghost_void_ptr_of_ptr_gen x )) { rewrite (pts_to x v) as (pts_to_or_null x v); let res = void_ptr_of_ptr x; rewrite (pts_to_or_null x v) as (pts_to x v); res } ``` [@@noextract_to "krml"] // primitive // val ptr_of_void_ptr (#t: Type) (#opened: _) (#td: typedef t) (#v: Ghost.erased t) (x: void_ptr) : STAtomicBase (ptr td) false opened Unobservable val ptr_of_void_ptr (#t: Type) (#td: typedef t) (#v: Ghost.erased t) (x: void_ptr) : stt (ptr td) (pts_to_or_null #t #td (ghost_ptr_gen_of_void_ptr x t) v) (fun y -> pts_to_or_null y v ** pure ( y == ghost_ptr_gen_of_void_ptr x t )) [@@noextract_to "krml"] inline_for_extraction // let ref_of_void_ptr (#t: Type) (#opened: _) (#td: typedef t) (#v: Ghost.erased t) (x: void_ptr) (y': Ghost.erased (ref td)) : STAtomicBase (ref td) false opened Unobservable ```pulse fn ref_of_void_ptr (#t: Type) (#td: typedef t) (#v: Ghost.erased t) (x: void_ptr) (y': Ghost.erased (ref td)) requires (pts_to y' v ** pure ( ghost_ptr_gen_of_void_ptr x t == Ghost.reveal y' )) returns y: (ref td) ensures (pts_to y v ** pure ( Ghost.reveal y' == y )) { rewrite (pts_to y' v) as (pts_to_or_null #t #td (ghost_ptr_gen_of_void_ptr x t) v); let y = ptr_of_void_ptr #t #td #v x; rewrite (pts_to_or_null y v) as (pts_to y v); y } ``` val ref_equiv (#t: Type) (#td: typedef t) (r1 r2: ref td) : Tot vprop val pts_to_equiv (#t: Type) (#td: typedef t) (r1 r2: ref td) (v: Ghost.erased t) : stt_ghost unit (ref_equiv r1 r2 ** pts_to r1 v) (fun _ -> ref_equiv r1 r2 ** pts_to r2 v) val freeable (#t: Type) (#td: typedef t) (r: ref td) : Tot vprop val freeable_dup (#t: Type) (#td: typedef t) (r: ref td) : stt_ghost unit (freeable r) (fun _ -> freeable r ** freeable r) val freeable_equiv (#t: Type) (#td: typedef t) (r1 r2: ref td) : stt_ghost unit (ref_equiv r1 r2 ** freeable r1) (fun _ -> ref_equiv r1 r2 ** freeable r2) let freeable_or_null (#t: Type) (#td: typedef t) (r: ptr td) : Tot vprop = if FStar.StrongExcludedMiddle.strong_excluded_middle (r == null _) then emp else freeable r (* let freeable_or_null_dup (#opened: _) (#t: Type) (#td: typedef t) (r: ptr td) : SteelGhostT vprop opened (freeable_or_null r) (fun _ -> freeable_or_null r ** freeable_or_null r) = if FStar.StrongExcludedMiddle.strong_excluded_middle (r == null _) then () else freeable r *) [@@noextract_to "krml"] // primitive val alloc (#t: Type) (td: typedef t) : stt (ptr td) emp (fun p -> pts_to_or_null p (uninitialized td) ** freeable_or_null p) [@@noextract_to "krml"] // primitive val free (#t: Type) (#td: typedef t) (#v: Ghost.erased t) (r: ref td) : stt unit (pts_to r v ** freeable r ** pure ( full td v )) (fun _ -> emp) val mk_fraction_split_gen (#t: Type) (#td: typedef t) (r: ref td) (v: t { fractionable td v }) (p p1 p2: perm) : stt_ghost unit (pts_to r (mk_fraction td v p) ** pure ( p == p1 `sum_perm` p2 /\ p `lesser_equal_perm` full_perm )) (fun _ -> pts_to r (mk_fraction td v p1) ** pts_to r (mk_fraction td v p2)) val mk_fraction_split (#t: Type) (#td: typedef t) (r: ref td) (v: Ghost.erased t { fractionable td v }) (p1 p2: perm) : stt_ghost unit (pts_to r v ** pure ( full_perm == p1 `sum_perm` p2 )) (fun _ -> pts_to r (mk_fraction td v p1) ** pts_to r (mk_fraction td v p2)) (* = mk_fraction_full td v; rewrite (pts_to _ _) (pts_to _ _); mk_fraction_split_gen r v full_perm p1 p2 *) val mk_fraction_join (#t: Type) (#td: typedef t) (r: ref td) (v: t { fractionable td v }) (p1 p2: perm) : stt_ghost unit (pts_to r (mk_fraction td v p1) ** pts_to r (mk_fraction td v p2)) (fun _ -> pts_to r (mk_fraction td v (p1 `sum_perm` p2))) val fractional_permissions_theorem (#t: Type) (#td: typedef t) (v1: t { fractionable td v1 }) (v2: t { fractionable td v2 }) (p1 p2: perm) (r: ref td) : stt_ghost unit (pts_to r (mk_fraction td v1 p1) ** pts_to r (mk_fraction td v2 p2) ** pure ( full td v1 /\ full td v2 )) (fun _ -> pts_to r (mk_fraction td v1 p1) ** pts_to r (mk_fraction td v2 p2) ** pure ( v1 == v2 /\ (p1 `sum_perm` p2) `lesser_equal_perm` full_perm )) [@@noextract_to "krml"] // primitive val copy (#t: Type) (#td: typedef t) (#v_src: Ghost.erased t { full td v_src /\ fractionable td v_src }) (#p_src: perm) (#v_dst: Ghost.erased t { full td v_dst }) (src: ref td) (dst: ref td) : stt unit (pts_to src (mk_fraction td v_src p_src) ** pts_to dst v_dst) (fun _ -> pts_to src (mk_fraction td v_src p_src) ** pts_to dst v_src) val norm_field_attr : unit
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Base.fsti" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.list FStar.Pervasives.norm_step
Prims.Tot
[ "total" ]
[]
[ "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_attr", "Prims.string", "Prims.Nil", "FStar.Pervasives.iota", "FStar.Pervasives.zeta", "FStar.Pervasives.primops" ]
[]
false
false
false
true
false
let norm_field_steps =
[delta_attr [`%norm_field_attr]; iota; zeta; primops]
false
Vale.Transformers.MovMovElim.fst
Vale.Transformers.MovMovElim.lemma_mov_mov_is_mov
val lemma_mov_mov_is_mov (i1 i2: ins) (s: machine_state) : Lemma (requires (safe_mov_mov_elim [i1; i2])) (ensures (let s1 = machine_eval_ins i2 (machine_eval_ins i1 s) in let s2 = machine_eval_ins i2 s in s1.ms_ok ==> equiv_states s1 s2))
val lemma_mov_mov_is_mov (i1 i2: ins) (s: machine_state) : Lemma (requires (safe_mov_mov_elim [i1; i2])) (ensures (let s1 = machine_eval_ins i2 (machine_eval_ins i1 s) in let s2 = machine_eval_ins i2 s in s1.ms_ok ==> equiv_states s1 s2))
let lemma_mov_mov_is_mov (i1 i2:ins) (s:machine_state) : Lemma (requires (safe_mov_mov_elim [i1; i2])) (ensures ( let s1 = machine_eval_ins i2 (machine_eval_ins i1 s) in let s2 = machine_eval_ins i2 s in s1.ms_ok ==> equiv_states s1 s2)) = let Instr ii1 oprs1 (AnnotateMov64 ()) = i1 in let Instr ii2 oprs2 (AnnotateMov64 ()) = i2 in let oprs1:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs1 in let oprs2:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs2 in let (dst1, (src1, ())) = oprs1 in let (dst2, (src2, ())) = oprs2 in let dst = assert (dst1 == dst2); dst1 in let pre_s1 = machine_eval_ins i1 s in let s1 = machine_eval_ins i2 pre_s1 in let s2 = machine_eval_ins i2 s in if s1.ms_ok then ( assert (pre_s1.ms_ok); let v1 = eval_operand src1 s in let v2' = eval_operand src2 s in let v2 = eval_operand src2 pre_s1 in assert (v2 == v2'); lemma_double_update_reg dst s pre_s1 s1 s2 v1 v2 ) else ()
{ "file_name": "vale/code/lib/transformers/Vale.Transformers.MovMovElim.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 86, "start_col": 0, "start_line": 60 }
module Vale.Transformers.MovMovElim open Vale.X64.Bytes_Code_s open Vale.X64.Instruction_s open Vale.X64.Instructions_s open Vale.X64.Machine_Semantics_s open Vale.X64.Machine_s open Vale.X64.Print_s open Vale.Def.PossiblyMonad open Vale.Transformers.InstructionReorder open Vale.X64.InsLemmas open Vale.Transformers.PeepHole (* * AR: this proof relies on multiple inductive type inversions to know that * oprs1 is a Mov64 (resp. for oprs2) * * this used to go through earlier with just ifuel 1, because F* was weakening * the branch VCs with discriminator expressions, thereby unintentionally * triggering the inversions, this is no longer true in F*, and hence more ifuel *) #push-options "--ifuel 4" let safe_mov_mov_elim (is:list ins) : Tot bool = match is with | [Instr i1 oprs1 (AnnotateMov64 ()); Instr i2 oprs2 (AnnotateMov64 ())] -> let oprs1:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs1 in let oprs2:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs2 in let (dst1, (src1, ())) = oprs1 in let (dst2, (src2, ())) = oprs2 in dst1 = dst2 && OReg? dst1 && ( let OReg rd = dst1 in match src2 with | OConst _ -> true | OReg rs2 -> not (rs2 = rd) | OStack (m, _) | OMem (m, _) -> match m with | MConst _ -> true | _ -> false // TODO: Can we relax this restriction? ) | _ -> false #pop-options let mov_mov_elim_ph = { ph = (fun is -> if safe_mov_mov_elim is then ( let [i1; i2] = is in Some [i2] ) else None); input_hint = 2; } module T = Vale.Def.Types_s module H = Vale.Arch.Heap
{ "checked_file": "/", "dependencies": [ "Vale.X64.Print_s.fst.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.Instructions_s.fsti.checked", "Vale.X64.Instruction_s.fsti.checked", "Vale.X64.InsLemmas.fsti.checked", "Vale.X64.Bytes_Code_s.fst.checked", "Vale.Transformers.PeepHole.fsti.checked", "Vale.Transformers.InstructionReorder.fst.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.PossiblyMonad.fst.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.Transformers.MovMovElim.fst" }
[ { "abbrev": true, "full_module": "Vale.Arch.Heap", "short_module": "H" }, { "abbrev": true, "full_module": "Vale.Def.Types_s", "short_module": "T" }, { "abbrev": false, "full_module": "Vale.Transformers.PeepHole", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers.InstructionReorder", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.PossiblyMonad", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Print_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instructions_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Instruction_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Bytes_Code_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Transformers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i1: Vale.X64.Machine_Semantics_s.ins -> i2: Vale.X64.Machine_Semantics_s.ins -> s: Vale.X64.Machine_Semantics_s.machine_state -> FStar.Pervasives.Lemma (requires Vale.Transformers.MovMovElim.safe_mov_mov_elim [i1; i2]) (ensures (let s1 = Vale.X64.Machine_Semantics_s.machine_eval_ins i2 (Vale.X64.Machine_Semantics_s.machine_eval_ins i1 s) in let s2 = Vale.X64.Machine_Semantics_s.machine_eval_ins i2 s in Mkmachine_state?.ms_ok s1 ==> Vale.Transformers.InstructionReorder.equiv_states s1 s2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.X64.Machine_Semantics_s.ins", "Vale.X64.Machine_Semantics_s.machine_state", "Vale.X64.Instruction_s.instr_t_record", "Vale.X64.Instruction_s.instr_operands_t", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__outs", "Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__args", "Vale.X64.Machine_s.operand64", "Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_ok", "Vale.Transformers.PeepHole.lemma_double_update_reg", "Prims.unit", "Prims._assert", "Prims.eq2", "Vale.Def.Types_s.nat64", "Vale.Def.Words_s.nat64", "Vale.X64.Machine_Semantics_s.eval_operand", "Prims.b2t", "Prims.bool", "Vale.X64.Machine_Semantics_s.machine_eval_ins", "FStar.Pervasives.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.zeta", "FStar.Pervasives.iota", "FStar.Pervasives.delta_attr", "Prims.string", "Prims.Nil", "Vale.X64.Instruction_s.instr_out", "FStar.Pervasives.Native.Mktuple2", "Vale.X64.Instruction_s.instr_operand_inout", "Vale.X64.Instruction_s.instr_operand", "Vale.X64.Instruction_s.Out", "Vale.X64.Instruction_s.IOpEx", "Vale.X64.Instruction_s.IOp64", "Vale.Transformers.PeepHole.coerce_to_normal", "Vale.X64.Instruction_s.out", "Vale.X64.Instruction_s.op64", "Vale.Transformers.MovMovElim.safe_mov_mov_elim", "Prims.squash", "Prims.l_imp", "Vale.Transformers.InstructionReorder.equiv_states", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lemma_mov_mov_is_mov (i1 i2: ins) (s: machine_state) : Lemma (requires (safe_mov_mov_elim [i1; i2])) (ensures (let s1 = machine_eval_ins i2 (machine_eval_ins i1 s) in let s2 = machine_eval_ins i2 s in s1.ms_ok ==> equiv_states s1 s2)) =
let Instr ii1 oprs1 (AnnotateMov64 ()) = i1 in let Instr ii2 oprs2 (AnnotateMov64 ()) = i2 in let oprs1:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs1 in let oprs2:normal (instr_operands_t [out op64] [op64]) = coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs2 in let dst1, (src1, ()) = oprs1 in let dst2, (src2, ()) = oprs2 in let dst = assert (dst1 == dst2); dst1 in let pre_s1 = machine_eval_ins i1 s in let s1 = machine_eval_ins i2 pre_s1 in let s2 = machine_eval_ins i2 s in if s1.ms_ok then (assert (pre_s1.ms_ok); let v1 = eval_operand src1 s in let v2' = eval_operand src2 s in let v2 = eval_operand src2 pre_s1 in assert (v2 == v2'); lemma_double_update_reg dst s pre_s1 s1 s2 v1 v2)
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.gcm_blocks_helper_simplified
val gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > length a128 * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = append a128 a_bytes in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)) )
val gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > length a128 * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = append a128 a_bytes in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)) )
let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > length a128 * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = append a128 a_bytes in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)) ) = gcm_blocks_helper alg key a128 a_bytes p128 p_bytes c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad; let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher_raw_quads:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes; lemma_length_simplifier p128 p_bytes plain_raw_quads p_num_bytes; lemma_length_simplifier c128 c_bytes cipher_raw_quads p_num_bytes; ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 635, "start_col": 0, "start_line": 539 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; () let lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) = ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); () let gcm_encrypt_BE_fst_helper (iv:supported_iv_BE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key )) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () let gcm_encrypt_BE_snd_helper (iv:supported_iv_BE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key) )) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () #reset-options "--z3rlimit 10" let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 ))) (ensures (let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in //cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key)) cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in gctr_partial_opaque_completed alg plain cipher key ctr_BE_2; if p_num_bytes > length p128 * 16 then ( gctr_partial_reveal (); assert (gctr_partial alg (length p128) plain cipher key ctr_BE_2); assert (equal (slice plain 0 (length p128)) (slice p128 0 (length p128))); assert (equal (slice cipher 0 (length p128)) (slice c128 0 (length p128))); gctr_partial_opaque_ignores_postfix alg (length p128) plain p128 cipher c128 key ctr_BE_2; assert (gctr_partial alg (length p128) p128 c128 key ctr_BE_2); gctr_partial_opaque_completed alg p128 c128 key ctr_BE_2; let num_blocks = p_num_bytes / 16 in assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_word alg key (inc32 ctr_BE_2 num_blocks))); gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks; assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks == gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0); aes_encrypt_word_reveal (); gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes; assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ) else ( gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher; assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt ctr_BE_2 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key); let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in assert (equal plain_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain))); assert (equal cipher_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher))); assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ); gcm_encrypt_BE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key; () let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) = assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x)))); () let append_distributes_be_seq_quad32_to_bytes (x y:seq quad32) : Lemma (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append x y)) == append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE x)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE y))) = append_distributes_be_seq_quad32_to_bytes x y let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) = assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y))) #reset-options "--z3rlimit 100" let gcm_blocks_helper (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in let hash = ghash_BE h final_quads in gcm_blocks_helper_enc alg key p128 p_bytes c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE; calc (==) { enc_hash; == {} gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0; == {} gctr_encrypt_block ctr_BE_1 hash alg key 0; == {} quad32_xor hash (aes_encrypt_word alg key ctr_BE_1); }; calc (==) { gctr_encrypt ctr_BE_1 (be_quad32_to_bytes hash) alg key; == { gctr_encrypt_one_block ctr_BE_1 hash alg key } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor hash (aes_encrypt_word alg key ctr_BE_1)))); == {} seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 enc_hash)); == { be_seq_quad32_to_bytes_of_singleton enc_hash } be_quad32_to_bytes enc_hash; }; if p_num_bytes > length p128 * 16 then ( let c = append c128 c_bytes in calc (==) { append (append auth_quads c128) c_bytes; == { append_assoc auth_quads c128 c_bytes } append auth_quads (append c128 c_bytes); == {} append auth_quads c; }; calc (==) { append (append (append auth_quads c128) c_bytes) (create 1 length_quad); = {} // See previous calc append (append auth_quads (append c128 c_bytes)) (create 1 length_quad); == { append_assoc auth_quads c (create 1 length_quad) } append auth_quads (append c (create 1 length_quad)); }; let raw_quads_old = append auth_quads c in calc (==) { raw_quads; == {} be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes)); == { calc (==) { pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes); == { calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes; == { append_distributes_be_seq_quad32_to_bytes auth_quads c } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) 0 total_bytes; == { slice_append_back (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) total_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes); == {} append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes; } } pad_to_128_bits (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes); == { pad_to_128_bits_multiple_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes); } } be_bytes_to_seq_quad32 (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes)); == { append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes) } append (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads))) (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); == { be_bytes_to_seq_quad32_to_bytes auth_quads } append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); }; let auth_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in let cipher_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in calc (==) { append raw_quads (create 1 length_quad); == {} append (append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad); == { assert (equal auth_quads auth_padded_quads') } append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad); == { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) } append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad)); }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ) else ( calc (==) { append (append auth_quads c128) (create 1 length_quad); == { append_assoc auth_quads c128 (create 1 length_quad) } append auth_quads (append c128 (create 1 length_quad)); }; let c = c128 in calc (==) { be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)); == { assert (equal (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)) } be_bytes_to_seq_quad32 (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))); == { assert (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) } be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)); == { be_bytes_to_seq_quad32_to_bytes c } c; }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ); () let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1 ) (ensures slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE t)) 0 num_bytes == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes) = if num_bytes > (length s) * 16 then ( () ) else ( calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes; == { append_distributes_be_seq_quad32_to_bytes s bytes } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes))) 0 num_bytes; == { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes)) } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s); == { assert (length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == num_bytes) } slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes; }; () )
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 10, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 -> a128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> a_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p_num_bytes: Prims.nat -> a_num_bytes: Prims.nat -> iv: Vale.AES.GCM_BE_s.supported_iv_BE -> j0_BE: Vale.Def.Types_s.quad32 -> h: Vale.Def.Types_s.quad32 -> enc_hash: Vale.Def.Types_s.quad32 -> length_quad: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\ p_num_bytes < FStar.Seq.Base.length p128 * 16 + 16 /\ FStar.Seq.Base.length a128 * 16 <= a_num_bytes /\ a_num_bytes < FStar.Seq.Base.length a128 * 16 + 16 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\ FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\ FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\ FStar.Seq.Base.length a_bytes == 1 /\ Vale.AES.AES_BE_s.is_aes_key_word alg key /\ j0_BE == Vale.AES.GCM_BE_s.compute_iv_BE h iv /\ h = Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) /\ p_num_bytes < Vale.Def.Words_s.pow2_32 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\ length_quad == Vale.Def.Words.Four_s.two_two_to_four (Vale.Def.Words_s.Mktwo (Vale.Def.Words.Two_s.nat_to_two 32 (8 * a_num_bytes)) (Vale.Def.Words.Two_s.nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1 = j0_BE in let ctr_BE_2 = Vale.AES.GCTR_BE_s.inc32 j0_BE 1 in let plain = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append p128 p_bytes | _ -> p128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let cipher = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append c128 c_bytes | _ -> c128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let cipher_bound = FStar.Seq.Base.length p128 + (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> 1 | _ -> 0) in Vale.AES.GCTR_BE.gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = (match a_num_bytes > FStar.Seq.Base.length a128 * 16 with | true -> FStar.Seq.Base.append a128 a_bytes | _ -> a128) <: FStar.Seq.Base.seq (Vale.Def.Words_s.four Vale.Def.Words_s.nat32) in let auth_input_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = Vale.AES.GCTR_BE_s.pad_to_128_bits auth_input_bytes in let auth_quads = Vale.Def.Types_s.be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = FStar.Seq.Base.append auth_quads c128 in let total_bytes = FStar.Seq.Base.length auth_quads * 16 + p_num_bytes in let raw_quads = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> let raw_quads = FStar.Seq.Base.append raw_quads c_bytes in let input_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = Vale.AES.GCTR_BE_s.pad_to_128_bits input_bytes in Vale.Def.Types_s.be_bytes_to_seq_quad32 input_padded_bytes | _ -> raw_quads) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let final_quads = FStar.Seq.Base.append raw_quads (FStar.Seq.Base.create 1 length_quad) in enc_hash == Vale.AES.GCTR_BE_s.gctr_encrypt_block ctr_BE_1 (Vale.AES.GHash_BE_s.ghash_BE h final_quads) alg key 0))) (ensures (let auth_raw_quads = FStar.Seq.Base.append a128 a_bytes in let auth_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = FStar.Seq.Base.append p128 p_bytes in let plain_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append c128 c_bytes in let cipher_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\ FStar.Seq.Base.length plain_bytes < Vale.Def.Words_s.pow2_32 /\ cipher_bytes == FStar.Pervasives.Native.fst (Vale.AES.GCM_BE_s.gcm_encrypt_BE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ Vale.Arch.Types.be_quad32_to_bytes enc_hash == FStar.Pervasives.Native.snd (Vale.AES.GCM_BE_s.gcm_encrypt_BE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat32", "Vale.Def.Types_s.quad32", "Prims.nat", "Vale.AES.GCM_BE_s.supported_iv_BE", "Prims.unit", "Vale.AES.GCM_BE.lemma_length_simplifier", "Prims.op_GreaterThan", "FStar.Mul.op_Star", "FStar.Seq.Base.length", "FStar.Seq.Base.append", "Prims.bool", "Vale.AES.GCM_BE.gcm_blocks_helper", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "Vale.Def.Words_s.pow2_32", "Prims.eq2", "Prims.int", "Vale.AES.AES_BE_s.is_aes_key_word", "Vale.AES.GCM_BE_s.compute_iv_BE", "Prims.op_Equality", "Vale.AES.AES_BE_s.aes_encrypt_word", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.two_two_to_four", "Vale.Def.Words_s.Mktwo", "Vale.Def.Words_s.two", "Vale.Def.Words.Two_s.nat_to_two", "Vale.AES.GCTR_BE.gctr_partial", "Vale.AES.GCTR_BE_s.gctr_encrypt_block", "Vale.AES.GHash_BE_s.ghash_BE", "FStar.Seq.Base.create", "Vale.Def.Types_s.be_bytes_to_seq_quad32", "Vale.Def.Words_s.nat8", "Vale.AES.GCTR_BE_s.pad_to_128_bits", "FStar.Seq.Base.slice", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.AES.GCTR_BE_s.inc32", "Prims.squash", "FStar.Pervasives.Native.fst", "Vale.Def.Types_s.nat8", "Vale.AES.GCM_BE_s.gcm_encrypt_BE", "Vale.Arch.Types.be_quad32_to_bytes", "FStar.Pervasives.Native.snd", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let gcm_blocks_helper_simplified (alg: algorithm) (key: seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes: seq quad32) (p_num_bytes a_num_bytes: nat) (iv: supported_iv_BE) (j0_BE h enc_hash length_quad: quad32) : Lemma (requires length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > length a128 * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0))) (ensures (let auth_raw_quads = append a128 a_bytes in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) =
gcm_blocks_helper alg key a128 a_bytes p128 p_bytes c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad; let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher_raw_quads:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes; lemma_length_simplifier p128 p_bytes plain_raw_quads p_num_bytes; lemma_length_simplifier c128 c_bytes cipher_raw_quads p_num_bytes; ()
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.gcm_blocks_dec_helper_simplified
val gcm_blocks_dec_helper_simplified (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads p128 in let total_bytes = (length auth_quads) * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads p_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures(let auth_raw_quads = append a128 a_bytes in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ be_quad32_to_bytes enc_hash == gcm_decrypt_BE_tag alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))
val gcm_blocks_dec_helper_simplified (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads p128 in let total_bytes = (length auth_quads) * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads p_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures(let auth_raw_quads = append a128 a_bytes in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ be_quad32_to_bytes enc_hash == gcm_decrypt_BE_tag alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))
let gcm_blocks_dec_helper_simplified (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads p128 in let total_bytes = (length auth_quads) * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads p_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures(let auth_raw_quads = append a128 a_bytes in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ be_quad32_to_bytes enc_hash == gcm_decrypt_BE_tag alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)) = gcm_blocks_dec_helper alg key a128 a_bytes p128 p_bytes c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad; let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher_raw_quads:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes; lemma_length_simplifier p128 p_bytes plain_raw_quads p_num_bytes; lemma_length_simplifier c128 c_bytes cipher_raw_quads p_num_bytes; ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 1049, "start_col": 0, "start_line": 956 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; () let lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) = ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); () let gcm_encrypt_BE_fst_helper (iv:supported_iv_BE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key )) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () let gcm_encrypt_BE_snd_helper (iv:supported_iv_BE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key) )) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () #reset-options "--z3rlimit 10" let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 ))) (ensures (let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in //cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key)) cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in gctr_partial_opaque_completed alg plain cipher key ctr_BE_2; if p_num_bytes > length p128 * 16 then ( gctr_partial_reveal (); assert (gctr_partial alg (length p128) plain cipher key ctr_BE_2); assert (equal (slice plain 0 (length p128)) (slice p128 0 (length p128))); assert (equal (slice cipher 0 (length p128)) (slice c128 0 (length p128))); gctr_partial_opaque_ignores_postfix alg (length p128) plain p128 cipher c128 key ctr_BE_2; assert (gctr_partial alg (length p128) p128 c128 key ctr_BE_2); gctr_partial_opaque_completed alg p128 c128 key ctr_BE_2; let num_blocks = p_num_bytes / 16 in assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_word alg key (inc32 ctr_BE_2 num_blocks))); gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks; assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks == gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0); aes_encrypt_word_reveal (); gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes; assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ) else ( gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher; assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt ctr_BE_2 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key); let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in assert (equal plain_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain))); assert (equal cipher_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher))); assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ); gcm_encrypt_BE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key; () let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) = assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x)))); () let append_distributes_be_seq_quad32_to_bytes (x y:seq quad32) : Lemma (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append x y)) == append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE x)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE y))) = append_distributes_be_seq_quad32_to_bytes x y let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) = assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y))) #reset-options "--z3rlimit 100" let gcm_blocks_helper (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in let hash = ghash_BE h final_quads in gcm_blocks_helper_enc alg key p128 p_bytes c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE; calc (==) { enc_hash; == {} gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0; == {} gctr_encrypt_block ctr_BE_1 hash alg key 0; == {} quad32_xor hash (aes_encrypt_word alg key ctr_BE_1); }; calc (==) { gctr_encrypt ctr_BE_1 (be_quad32_to_bytes hash) alg key; == { gctr_encrypt_one_block ctr_BE_1 hash alg key } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor hash (aes_encrypt_word alg key ctr_BE_1)))); == {} seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 enc_hash)); == { be_seq_quad32_to_bytes_of_singleton enc_hash } be_quad32_to_bytes enc_hash; }; if p_num_bytes > length p128 * 16 then ( let c = append c128 c_bytes in calc (==) { append (append auth_quads c128) c_bytes; == { append_assoc auth_quads c128 c_bytes } append auth_quads (append c128 c_bytes); == {} append auth_quads c; }; calc (==) { append (append (append auth_quads c128) c_bytes) (create 1 length_quad); = {} // See previous calc append (append auth_quads (append c128 c_bytes)) (create 1 length_quad); == { append_assoc auth_quads c (create 1 length_quad) } append auth_quads (append c (create 1 length_quad)); }; let raw_quads_old = append auth_quads c in calc (==) { raw_quads; == {} be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes)); == { calc (==) { pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes); == { calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes; == { append_distributes_be_seq_quad32_to_bytes auth_quads c } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) 0 total_bytes; == { slice_append_back (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) total_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes); == {} append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes; } } pad_to_128_bits (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes); == { pad_to_128_bits_multiple_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes); } } be_bytes_to_seq_quad32 (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes)); == { append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes) } append (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads))) (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); == { be_bytes_to_seq_quad32_to_bytes auth_quads } append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); }; let auth_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in let cipher_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in calc (==) { append raw_quads (create 1 length_quad); == {} append (append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad); == { assert (equal auth_quads auth_padded_quads') } append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad); == { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) } append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad)); }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ) else ( calc (==) { append (append auth_quads c128) (create 1 length_quad); == { append_assoc auth_quads c128 (create 1 length_quad) } append auth_quads (append c128 (create 1 length_quad)); }; let c = c128 in calc (==) { be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)); == { assert (equal (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)) } be_bytes_to_seq_quad32 (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))); == { assert (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) } be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)); == { be_bytes_to_seq_quad32_to_bytes c } c; }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ); () let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1 ) (ensures slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE t)) 0 num_bytes == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes) = if num_bytes > (length s) * 16 then ( () ) else ( calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes; == { append_distributes_be_seq_quad32_to_bytes s bytes } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes))) 0 num_bytes; == { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes)) } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s); == { assert (length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == num_bytes) } slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes; }; () ) #reset-options "--z3rlimit 10" let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > length a128 * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = append a128 a_bytes in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)) ) = gcm_blocks_helper alg key a128 a_bytes p128 p_bytes c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad; let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher_raw_quads:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes; lemma_length_simplifier p128 p_bytes plain_raw_quads p_num_bytes; lemma_length_simplifier c128 c_bytes cipher_raw_quads p_num_bytes; () let lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_BE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma (requires is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv) /\ length cipher < pow2_32 /\ length auth < pow2_32 /\ plain == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth) ) (ensures plain == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth alleged_tag)) = gcm_encrypt_BE_reveal (); gcm_decrypt_BE_reveal (); () let gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes alleged_tag:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 )) (ensures (let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes alleged_tag))) = gcm_blocks_helper_enc alg key p128 p_bytes c128 c_bytes auth_bytes p_num_bytes iv j0_BE; let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher_raw_quads:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in lemma_length_simplifier p128 p_bytes plain_raw_quads p_num_bytes; lemma_length_simplifier c128 c_bytes cipher_raw_quads p_num_bytes; let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in assert (cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)); lemma_gcm_encrypt_decrypt_equiv alg key iv j0_BE cipher_bytes plain_bytes auth_bytes alleged_tag; () #reset-options "--z3rlimit 60" let gcm_blocks_dec_helper (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads p128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads p_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes >length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ be_quad32_to_bytes enc_hash == gcm_decrypt_BE_tag alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)) = let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in let auth_raw_quads = if a_num_bytes > length a128 * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads p128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads p_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in let hash = ghash_BE h final_quads in calc (==) { enc_hash; == {} gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0; == {} gctr_encrypt_block ctr_BE_1 hash alg key 0; == {} quad32_xor hash (aes_encrypt_word alg key ctr_BE_1); }; calc (==) { gctr_encrypt ctr_BE_1 (be_quad32_to_bytes hash) alg key; == { gctr_encrypt_one_block ctr_BE_1 hash alg key } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor hash (aes_encrypt_word alg key ctr_BE_1)))); == {} seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 enc_hash)); == { be_seq_quad32_to_bytes_of_singleton enc_hash } be_quad32_to_bytes enc_hash; }; if p_num_bytes > length p128 * 16 then ( let c = append p128 p_bytes in calc (==) { append (append auth_quads p128) p_bytes; == { append_assoc auth_quads p128 p_bytes } append auth_quads (append p128 p_bytes); == {} append auth_quads c; }; calc (==) { append (append (append auth_quads p128) p_bytes) (create 1 length_quad); = {} // See previous calc append (append auth_quads (append p128 p_bytes)) (create 1 length_quad); == { append_assoc auth_quads c (create 1 length_quad) } append auth_quads (append c (create 1 length_quad)); }; let raw_quads_old = append auth_quads c in calc (==) { raw_quads; == {} be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes)); == { calc (==) { pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes); == { calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes; == { append_distributes_be_seq_quad32_to_bytes auth_quads c } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) 0 total_bytes; == { slice_append_back (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) total_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes); == { assert(equal (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes) plain_bytes) } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) plain_bytes; } } pad_to_128_bits (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) plain_bytes); == { pad_to_128_bits_multiple_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) plain_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits plain_bytes); } } be_bytes_to_seq_quad32 (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits plain_bytes)); == { append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits plain_bytes) } append (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads))) (be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes)); == { be_bytes_to_seq_quad32_to_bytes auth_quads } append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes)); }; let auth_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in let cipher_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes) in calc (==) { append raw_quads (create 1 length_quad); == {} append (append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes))) (create 1 length_quad); == { assert (equal auth_quads auth_padded_quads') } append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad); == { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) } append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad)); }; () ) else ( calc (==) { append (append auth_quads p128) (create 1 length_quad); == { append_assoc auth_quads p128 (create 1 length_quad) } append auth_quads (append p128 (create 1 length_quad)); }; let c = p128 in calc (==) { be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)); == { assert (equal (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)) } be_bytes_to_seq_quad32 (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))); == { assert (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) } be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)); == { be_bytes_to_seq_quad32_to_bytes c } c; }; () ); ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 -> a128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> a_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p_num_bytes: Prims.nat -> a_num_bytes: Prims.nat -> iv: Vale.AES.GCM_BE_s.supported_iv_BE -> j0_BE: Vale.Def.Types_s.quad32 -> h: Vale.Def.Types_s.quad32 -> enc_hash: Vale.Def.Types_s.quad32 -> length_quad: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\ p_num_bytes < FStar.Seq.Base.length p128 * 16 + 16 /\ FStar.Seq.Base.length a128 * 16 <= a_num_bytes /\ a_num_bytes < FStar.Seq.Base.length a128 * 16 + 16 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\ FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\ FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\ FStar.Seq.Base.length a_bytes == 1 /\ Vale.AES.AES_BE_s.is_aes_key_word alg key /\ j0_BE == Vale.AES.GCM_BE_s.compute_iv_BE h iv /\ h = Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) /\ p_num_bytes < Vale.Def.Words_s.pow2_32 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\ length_quad == Vale.Def.Words.Four_s.two_two_to_four (Vale.Def.Words_s.Mktwo (Vale.Def.Words.Two_s.nat_to_two 32 (8 * a_num_bytes)) (Vale.Def.Words.Two_s.nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1 = j0_BE in let ctr_BE_2 = Vale.AES.GCTR_BE_s.inc32 j0_BE 1 in let plain = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append p128 p_bytes | _ -> p128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let cipher = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append c128 c_bytes | _ -> c128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let cipher_bound = FStar.Seq.Base.length p128 + (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> 1 | _ -> 0) in Vale.AES.GCTR_BE.gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = (match a_num_bytes > FStar.Seq.Base.length a128 * 16 with | true -> FStar.Seq.Base.append a128 a_bytes | _ -> a128) <: FStar.Seq.Base.seq (Vale.Def.Words_s.four Vale.Def.Words_s.nat32) in let auth_input_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = Vale.AES.GCTR_BE_s.pad_to_128_bits auth_input_bytes in let auth_quads = Vale.Def.Types_s.be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = FStar.Seq.Base.append auth_quads p128 in let total_bytes = FStar.Seq.Base.length auth_quads * 16 + p_num_bytes in let raw_quads = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> let raw_quads = FStar.Seq.Base.append raw_quads p_bytes in let input_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = Vale.AES.GCTR_BE_s.pad_to_128_bits input_bytes in Vale.Def.Types_s.be_bytes_to_seq_quad32 input_padded_bytes | _ -> raw_quads) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let final_quads = FStar.Seq.Base.append raw_quads (FStar.Seq.Base.create 1 length_quad) in enc_hash == Vale.AES.GCTR_BE_s.gctr_encrypt_block ctr_BE_1 (Vale.AES.GHash_BE_s.ghash_BE h final_quads) alg key 0))) (ensures (let auth_raw_quads = FStar.Seq.Base.append a128 a_bytes in let auth_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = FStar.Seq.Base.append p128 p_bytes in let plain_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = FStar.Seq.Base.append c128 c_bytes in let cipher_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\ FStar.Seq.Base.length plain_bytes < Vale.Def.Words_s.pow2_32 /\ Vale.Arch.Types.be_quad32_to_bytes enc_hash == Vale.AES.GCM_BE.gcm_decrypt_BE_tag alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat32", "Vale.Def.Types_s.quad32", "Prims.nat", "Vale.AES.GCM_BE_s.supported_iv_BE", "Prims.unit", "Vale.AES.GCM_BE.lemma_length_simplifier", "Prims.op_GreaterThan", "FStar.Mul.op_Star", "FStar.Seq.Base.length", "FStar.Seq.Base.append", "Prims.bool", "Vale.AES.GCM_BE.gcm_blocks_dec_helper", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "Vale.Def.Words_s.pow2_32", "Prims.eq2", "Prims.int", "Vale.AES.AES_BE_s.is_aes_key_word", "Vale.AES.GCM_BE_s.compute_iv_BE", "Prims.op_Equality", "Vale.AES.AES_BE_s.aes_encrypt_word", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.two_two_to_four", "Vale.Def.Words_s.Mktwo", "Vale.Def.Words_s.two", "Vale.Def.Words.Two_s.nat_to_two", "Vale.AES.GCTR_BE.gctr_partial", "Vale.AES.GCTR_BE_s.gctr_encrypt_block", "Vale.AES.GHash_BE_s.ghash_BE", "FStar.Seq.Base.create", "Vale.Def.Types_s.be_bytes_to_seq_quad32", "Vale.Def.Words_s.nat8", "Vale.AES.GCTR_BE_s.pad_to_128_bits", "FStar.Seq.Base.slice", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.AES.GCTR_BE_s.inc32", "Prims.squash", "Vale.Arch.Types.be_quad32_to_bytes", "Vale.AES.GCM_BE.gcm_decrypt_BE_tag", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let gcm_blocks_dec_helper_simplified (alg: algorithm) (key: seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes: seq quad32) (p_num_bytes a_num_bytes: nat) (iv: supported_iv_BE) (j0_BE h enc_hash length_quad: quad32) : Lemma (requires length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads p128 in let total_bytes = (length auth_quads) * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads p_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0))) (ensures (let auth_raw_quads = append a128 a_bytes in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ be_quad32_to_bytes enc_hash == gcm_decrypt_BE_tag alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)) =
gcm_blocks_dec_helper alg key a128 a_bytes p128 p_bytes c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad; let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher_raw_quads:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes; lemma_length_simplifier p128 p_bytes plain_raw_quads p_num_bytes; lemma_length_simplifier c128 c_bytes cipher_raw_quads p_num_bytes; ()
false
Pruning.fst
Pruning.tau1
val tau1 : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
let tau1 = (fun () -> prune ""; addns "FStar.List"; addns "Prims")
{ "file_name": "examples/native_tactics/Pruning.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 75, "start_col": 0, "start_line": 72 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pruning open FStar.Algebra.Monoid open FStar.Array open FStar.Axiomatic.Array open FStar.BitVector open FStar.Bytes open FStar.Char open FStar.Classical open FStar.Constructive open FStar.Crypto open FStar.DependentMap open FStar.ErasedLogic open FStar.Fin open FStar.Float open FStar.FunctionalExtensionality open FStar.Ghost open FStar.Heap open FStar.IndefiniteDescription open FStar.Int open FStar.Int128 open FStar.Int16 open FStar.Int32 open FStar.Int64 open FStar.Int8 open FStar.Int.Cast open FStar.Integers open FStar.IO open FStar.List open FStar.List.Tot open FStar.List.Tot.Base open FStar.List.Tot.Properties open FStar.Map open FStar.MarkovsPrinciple open FStar.Math.Lemmas open FStar.Math.Lib open FStar.Matrix2 open FStar.MRef open FStar.Mul open FStar.Option open FStar.Order open FStar.OrdMap open FStar.OrdMapProps open FStar.OrdSet open FStar.OrdSetProps open FStar.PredicateExtensionality open FStar.PropositionalExtensionality open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.List // This query will go the SMT, in the default proof namespace let f (x:int) = assert (x + 1 == 1 + x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.PredicateExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSetProps.fst.checked", "FStar.OrdSet.fsti.checked", "FStar.OrdMapProps.fst.checked", "FStar.OrdMap.fsti.checked", "FStar.Order.fst.checked", "FStar.Option.fst.checked", "FStar.Mul.fst.checked", "FStar.MRef.fsti.checked", "FStar.Matrix2.fsti.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.MarkovsPrinciple.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.Integers.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Float.fsti.checked", "FStar.Fin.fsti.checked", "FStar.ErasedLogic.fst.checked", "FStar.DependentMap.fsti.checked", "FStar.Crypto.fst.checked", "FStar.Constructive.fst.checked", "FStar.Classical.fsti.checked", "FStar.Char.fsti.checked", "FStar.Bytes.fsti.checked", "FStar.BitVector.fst.checked", "FStar.Axiomatic.Array.fst.checked", "FStar.Array.fsti.checked", "FStar.Algebra.Monoid.fst.checked" ], "interface_file": false, "source_file": "Pruning.fst" }
[ { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.PropositionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.PredicateExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSetProps", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdMapProps", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Order", "short_module": null }, { "abbrev": false, "full_module": "FStar.Option", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.MRef", "short_module": null }, { "abbrev": false, "full_module": "FStar.Matrix2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.MarkovsPrinciple", "short_module": null }, { "abbrev": false, "full_module": "FStar.Map", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int8", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int16", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int128", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.IndefiniteDescription", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.Float", "short_module": null }, { "abbrev": false, "full_module": "FStar.Fin", "short_module": null }, { "abbrev": false, "full_module": "FStar.ErasedLogic", "short_module": null }, { "abbrev": false, "full_module": "FStar.DependentMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Crypto", "short_module": null }, { "abbrev": false, "full_module": "FStar.Constructive", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "FStar.Bytes", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Axiomatic.Array", "short_module": null }, { "abbrev": false, "full_module": "FStar.Array", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.Monoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Stubs.Tactics.V2.Builtins.addns", "FStar.Stubs.Tactics.V2.Builtins.prune" ]
[]
false
true
false
false
false
let tau1 =
(fun () -> prune ""; addns "FStar.List"; addns "Prims")
false
Pulse.C.Types.Base.fsti
Pulse.C.Types.Base.pts_to_or_null
val pts_to_or_null (#t: Type) (#[@@@ equate_by_smt]td: typedef t) (p: ptr td) ([@@@ equate_by_smt]v: Ghost.erased t) : vprop
val pts_to_or_null (#t: Type) (#[@@@ equate_by_smt]td: typedef t) (p: ptr td) ([@@@ equate_by_smt]v: Ghost.erased t) : vprop
let pts_to_or_null (#t: Type) (#[@@@equate_by_smt]td: typedef t) (p: ptr td) ([@@@equate_by_smt] v: Ghost.erased t) : vprop = if FStar.StrongExcludedMiddle.strong_excluded_middle (p == null _) then emp else pts_to p v
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Base.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 17, "end_line": 107, "start_col": 0, "start_line": 103 }
module Pulse.C.Types.Base open Pulse.Lib.Pervasives /// Helper to compose two permissions into one val prod_perm (p1 p2: perm) : Pure perm (requires True) (ensures (fun p -> ((p1 `lesser_equal_perm` full_perm /\ p2 `lesser_equal_perm` full_perm) ==> p `lesser_equal_perm` full_perm) /\ p.v == (let open FStar.Real in p1.v *. p2.v) )) [@@noextract_to "krml"] // proof-only val typedef (t: Type0) : Type0 inline_for_extraction [@@noextract_to "krml"] let typeof (#t: Type0) (td: typedef t) : Tot Type0 = t val fractionable (#t: Type0) (td: typedef t) (x: t) : GTot prop val mk_fraction (#t: Type0) (td: typedef t) (x: t) (p: perm) : Ghost t (requires (fractionable td x)) (ensures (fun y -> p `lesser_equal_perm` full_perm ==> fractionable td y)) val mk_fraction_full (#t: Type0) (td: typedef t) (x: t) : Lemma (requires (fractionable td x)) (ensures (mk_fraction td x full_perm == x)) [SMTPat (mk_fraction td x full_perm)] val mk_fraction_compose (#t: Type0) (td: typedef t) (x: t) (p1 p2: perm) : Lemma (requires (fractionable td x /\ p1 `lesser_equal_perm` full_perm /\ p2 `lesser_equal_perm` full_perm)) (ensures (mk_fraction td (mk_fraction td x p1) p2 == mk_fraction td x (p1 `prod_perm` p2))) val full (#t: Type0) (td: typedef t) (v: t) : GTot prop val uninitialized (#t: Type0) (td: typedef t) : Ghost t (requires True) (ensures (fun y -> full td y /\ fractionable td y)) val unknown (#t: Type0) (td: typedef t) : Ghost t (requires True) (ensures (fun y -> fractionable td y)) val full_not_unknown (#t: Type) (td: typedef t) (v: t) : Lemma (requires (full td v)) (ensures (~ (v == unknown td))) [SMTPat (full td v)] val mk_fraction_unknown (#t: Type0) (td: typedef t) (p: perm) : Lemma (ensures (mk_fraction td (unknown td) p == unknown td)) val mk_fraction_eq_unknown (#t: Type0) (td: typedef t) (v: t) (p: perm) : Lemma (requires (fractionable td v /\ mk_fraction td v p == unknown td)) (ensures (v == unknown td)) // To be extracted as: void* [@@noextract_to "krml"] // primitive val void_ptr : Type0 // To be extracted as: NULL [@@noextract_to "krml"] // primitive val void_null: void_ptr // To be extracted as: *t [@@noextract_to "krml"] // primitive val ptr_gen ([@@@unused] t: Type) : Type0 [@@noextract_to "krml"] // primitive val null_gen (t: Type) : Tot (ptr_gen t) val ghost_void_ptr_of_ptr_gen (#[@@@unused] t: Type) (x: ptr_gen t) : GTot void_ptr val ghost_ptr_gen_of_void_ptr (x: void_ptr) ([@@@unused] t: Type) : GTot (ptr_gen t) val ghost_void_ptr_of_ptr_gen_of_void_ptr (x: void_ptr) (t: Type) : Lemma (ghost_void_ptr_of_ptr_gen (ghost_ptr_gen_of_void_ptr x t) == x) [SMTPat (ghost_void_ptr_of_ptr_gen (ghost_ptr_gen_of_void_ptr x t))] val ghost_ptr_gen_of_void_ptr_of_ptr_gen (#t: Type) (x: ptr_gen t) : Lemma (ghost_ptr_gen_of_void_ptr (ghost_void_ptr_of_ptr_gen x) t == x) [SMTPat (ghost_ptr_gen_of_void_ptr (ghost_void_ptr_of_ptr_gen x) t)] inline_for_extraction [@@noextract_to "krml"] // primitive let ptr (#t: Type) (td: typedef t) : Tot Type0 = ptr_gen t inline_for_extraction [@@noextract_to "krml"] // primitive let null (#t: Type) (td: typedef t) : Tot (ptr td) = null_gen t inline_for_extraction [@@noextract_to "krml"] let ref (#t: Type) (td: typedef t) : Tot Type0 = (p: ptr td { ~ (p == null td) }) val pts_to (#t: Type) (#[@@@equate_by_smt]td: typedef t) (r: ref td) ([@@@equate_by_smt] v: Ghost.erased t) : vprop
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Base.fsti" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Pulse.C.Types.Base.ptr td -> v: FStar.Ghost.erased t -> Pulse.Lib.Core.vprop
Prims.Tot
[ "total" ]
[]
[ "Pulse.C.Types.Base.typedef", "Pulse.C.Types.Base.ptr", "FStar.Ghost.erased", "FStar.StrongExcludedMiddle.strong_excluded_middle", "Prims.eq2", "Pulse.C.Types.Base.null", "Pulse.Lib.Core.emp", "Prims.bool", "Pulse.C.Types.Base.pts_to", "Pulse.Lib.Core.vprop" ]
[]
false
false
false
false
false
let pts_to_or_null (#t: Type) (#[@@@ equate_by_smt]td: typedef t) (p: ptr td) ([@@@ equate_by_smt]v: Ghost.erased t) : vprop =
if FStar.StrongExcludedMiddle.strong_excluded_middle (p == null _) then emp else pts_to p v
false
Pruning.fst
Pruning.tau2
val tau2 : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
let tau2 = (fun () -> prune ""; FStar.Tactics.split (); (* rev [1;2] == [2;1] *) addns "FStar.List"; addns "Prims"; smt (); (* 1 == 1 *) smt ())
{ "file_name": "examples/native_tactics/Pruning.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 18, "end_line": 91, "start_col": 0, "start_line": 82 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pruning open FStar.Algebra.Monoid open FStar.Array open FStar.Axiomatic.Array open FStar.BitVector open FStar.Bytes open FStar.Char open FStar.Classical open FStar.Constructive open FStar.Crypto open FStar.DependentMap open FStar.ErasedLogic open FStar.Fin open FStar.Float open FStar.FunctionalExtensionality open FStar.Ghost open FStar.Heap open FStar.IndefiniteDescription open FStar.Int open FStar.Int128 open FStar.Int16 open FStar.Int32 open FStar.Int64 open FStar.Int8 open FStar.Int.Cast open FStar.Integers open FStar.IO open FStar.List open FStar.List.Tot open FStar.List.Tot.Base open FStar.List.Tot.Properties open FStar.Map open FStar.MarkovsPrinciple open FStar.Math.Lemmas open FStar.Math.Lib open FStar.Matrix2 open FStar.MRef open FStar.Mul open FStar.Option open FStar.Order open FStar.OrdMap open FStar.OrdMapProps open FStar.OrdSet open FStar.OrdSetProps open FStar.PredicateExtensionality open FStar.PropositionalExtensionality open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.List // This query will go the SMT, in the default proof namespace let f (x:int) = assert (x + 1 == 1 + x) [@@plugin] let tau1 = (fun () -> prune ""; addns "FStar.List"; addns "Prims") // This one should be sent in a pruned context let _ = assert (rev [1;2] == [2;1]) by tau1 ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.PredicateExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSetProps.fst.checked", "FStar.OrdSet.fsti.checked", "FStar.OrdMapProps.fst.checked", "FStar.OrdMap.fsti.checked", "FStar.Order.fst.checked", "FStar.Option.fst.checked", "FStar.Mul.fst.checked", "FStar.MRef.fsti.checked", "FStar.Matrix2.fsti.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.MarkovsPrinciple.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.Integers.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Float.fsti.checked", "FStar.Fin.fsti.checked", "FStar.ErasedLogic.fst.checked", "FStar.DependentMap.fsti.checked", "FStar.Crypto.fst.checked", "FStar.Constructive.fst.checked", "FStar.Classical.fsti.checked", "FStar.Char.fsti.checked", "FStar.Bytes.fsti.checked", "FStar.BitVector.fst.checked", "FStar.Axiomatic.Array.fst.checked", "FStar.Array.fsti.checked", "FStar.Algebra.Monoid.fst.checked" ], "interface_file": false, "source_file": "Pruning.fst" }
[ { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.PropositionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.PredicateExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSetProps", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdMapProps", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Order", "short_module": null }, { "abbrev": false, "full_module": "FStar.Option", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.MRef", "short_module": null }, { "abbrev": false, "full_module": "FStar.Matrix2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.MarkovsPrinciple", "short_module": null }, { "abbrev": false, "full_module": "FStar.Map", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int8", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int16", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int128", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.IndefiniteDescription", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.Float", "short_module": null }, { "abbrev": false, "full_module": "FStar.Fin", "short_module": null }, { "abbrev": false, "full_module": "FStar.ErasedLogic", "short_module": null }, { "abbrev": false, "full_module": "FStar.DependentMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Crypto", "short_module": null }, { "abbrev": false, "full_module": "FStar.Constructive", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "FStar.Bytes", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Axiomatic.Array", "short_module": null }, { "abbrev": false, "full_module": "FStar.Array", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.Monoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.smt", "FStar.Stubs.Tactics.V2.Builtins.addns", "FStar.Tactics.V1.Logic.split", "FStar.Stubs.Tactics.V2.Builtins.prune" ]
[]
false
true
false
false
false
let tau2 =
(fun () -> prune ""; FStar.Tactics.split (); addns "FStar.List"; addns "Prims"; smt (); smt ())
false
Pulse.C.Types.Base.fsti
Pulse.C.Types.Base.freeable_or_null
val freeable_or_null (#t: Type) (#td: typedef t) (r: ptr td) : Tot vprop
val freeable_or_null (#t: Type) (#td: typedef t) (r: ptr td) : Tot vprop
let freeable_or_null (#t: Type) (#td: typedef t) (r: ptr td) : Tot vprop = if FStar.StrongExcludedMiddle.strong_excluded_middle (r == null _) then emp else freeable r
{ "file_name": "share/steel/examples/pulse/lib/c/Pulse.C.Types.Base.fsti", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 17, "end_line": 259, "start_col": 0, "start_line": 252 }
module Pulse.C.Types.Base open Pulse.Lib.Pervasives /// Helper to compose two permissions into one val prod_perm (p1 p2: perm) : Pure perm (requires True) (ensures (fun p -> ((p1 `lesser_equal_perm` full_perm /\ p2 `lesser_equal_perm` full_perm) ==> p `lesser_equal_perm` full_perm) /\ p.v == (let open FStar.Real in p1.v *. p2.v) )) [@@noextract_to "krml"] // proof-only val typedef (t: Type0) : Type0 inline_for_extraction [@@noextract_to "krml"] let typeof (#t: Type0) (td: typedef t) : Tot Type0 = t val fractionable (#t: Type0) (td: typedef t) (x: t) : GTot prop val mk_fraction (#t: Type0) (td: typedef t) (x: t) (p: perm) : Ghost t (requires (fractionable td x)) (ensures (fun y -> p `lesser_equal_perm` full_perm ==> fractionable td y)) val mk_fraction_full (#t: Type0) (td: typedef t) (x: t) : Lemma (requires (fractionable td x)) (ensures (mk_fraction td x full_perm == x)) [SMTPat (mk_fraction td x full_perm)] val mk_fraction_compose (#t: Type0) (td: typedef t) (x: t) (p1 p2: perm) : Lemma (requires (fractionable td x /\ p1 `lesser_equal_perm` full_perm /\ p2 `lesser_equal_perm` full_perm)) (ensures (mk_fraction td (mk_fraction td x p1) p2 == mk_fraction td x (p1 `prod_perm` p2))) val full (#t: Type0) (td: typedef t) (v: t) : GTot prop val uninitialized (#t: Type0) (td: typedef t) : Ghost t (requires True) (ensures (fun y -> full td y /\ fractionable td y)) val unknown (#t: Type0) (td: typedef t) : Ghost t (requires True) (ensures (fun y -> fractionable td y)) val full_not_unknown (#t: Type) (td: typedef t) (v: t) : Lemma (requires (full td v)) (ensures (~ (v == unknown td))) [SMTPat (full td v)] val mk_fraction_unknown (#t: Type0) (td: typedef t) (p: perm) : Lemma (ensures (mk_fraction td (unknown td) p == unknown td)) val mk_fraction_eq_unknown (#t: Type0) (td: typedef t) (v: t) (p: perm) : Lemma (requires (fractionable td v /\ mk_fraction td v p == unknown td)) (ensures (v == unknown td)) // To be extracted as: void* [@@noextract_to "krml"] // primitive val void_ptr : Type0 // To be extracted as: NULL [@@noextract_to "krml"] // primitive val void_null: void_ptr // To be extracted as: *t [@@noextract_to "krml"] // primitive val ptr_gen ([@@@unused] t: Type) : Type0 [@@noextract_to "krml"] // primitive val null_gen (t: Type) : Tot (ptr_gen t) val ghost_void_ptr_of_ptr_gen (#[@@@unused] t: Type) (x: ptr_gen t) : GTot void_ptr val ghost_ptr_gen_of_void_ptr (x: void_ptr) ([@@@unused] t: Type) : GTot (ptr_gen t) val ghost_void_ptr_of_ptr_gen_of_void_ptr (x: void_ptr) (t: Type) : Lemma (ghost_void_ptr_of_ptr_gen (ghost_ptr_gen_of_void_ptr x t) == x) [SMTPat (ghost_void_ptr_of_ptr_gen (ghost_ptr_gen_of_void_ptr x t))] val ghost_ptr_gen_of_void_ptr_of_ptr_gen (#t: Type) (x: ptr_gen t) : Lemma (ghost_ptr_gen_of_void_ptr (ghost_void_ptr_of_ptr_gen x) t == x) [SMTPat (ghost_ptr_gen_of_void_ptr (ghost_void_ptr_of_ptr_gen x) t)] inline_for_extraction [@@noextract_to "krml"] // primitive let ptr (#t: Type) (td: typedef t) : Tot Type0 = ptr_gen t inline_for_extraction [@@noextract_to "krml"] // primitive let null (#t: Type) (td: typedef t) : Tot (ptr td) = null_gen t inline_for_extraction [@@noextract_to "krml"] let ref (#t: Type) (td: typedef t) : Tot Type0 = (p: ptr td { ~ (p == null td) }) val pts_to (#t: Type) (#[@@@equate_by_smt]td: typedef t) (r: ref td) ([@@@equate_by_smt] v: Ghost.erased t) : vprop let pts_to_or_null (#t: Type) (#[@@@equate_by_smt]td: typedef t) (p: ptr td) ([@@@equate_by_smt] v: Ghost.erased t) : vprop = if FStar.StrongExcludedMiddle.strong_excluded_middle (p == null _) then emp else pts_to p v [@@noextract_to "krml"] // primitive val is_null (#t: Type) // (#opened: _) (#td: typedef t) (#v: Ghost.erased t) (p: ptr td) // : STAtomicBase bool false opened Unobservable : stt bool (pts_to_or_null p v) (fun res -> pts_to_or_null p v ** pure ( res == true <==> p == null _ )) ```pulse ghost fn assert_null (#t: Type) (#td: typedef t) (#v: Ghost.erased t) (p: ptr td) requires (pts_to_or_null p v ** pure ( p == null _ )) ensures emp { rewrite (pts_to_or_null p v) as emp } ``` ```pulse ghost fn assert_not_null (#t: Type) (#td: typedef t) (#v: Ghost.erased t) (p: ptr td) requires (pts_to_or_null p v ** pure ( ~ (p == null _) )) returns _:(squash (~ (p == null _))) ensures (pts_to p v) { rewrite (pts_to_or_null p v) as (pts_to p v) } ``` [@@noextract_to "krml"] // primitive // val void_ptr_of_ptr (#t: Type) (#opened: _) (#td: typedef t) (#v: Ghost.erased t) (x: ptr td) : STAtomicBase void_ptr false opened Unobservable val void_ptr_of_ptr (#t: Type) (#td: typedef t) (#v: Ghost.erased t) (x: ptr td) : stt void_ptr (pts_to_or_null x v) (fun y -> pts_to_or_null x v ** pure ( y == ghost_void_ptr_of_ptr_gen x )) [@@noextract_to "krml"] inline_for_extraction // let void_ptr_of_ref (#t: Type) (#opened: _) (#td: typedef t) (#v: Ghost.erased t) (x: ref td) : STAtomicBase void_ptr false opened Unobservable ```pulse fn void_ptr_of_ref (#t: Type) (#td: typedef t) (#v: Ghost.erased t) (x: ref td) requires (pts_to x v) returns y: void_ptr ensures (pts_to x v ** pure ( y == ghost_void_ptr_of_ptr_gen x )) { rewrite (pts_to x v) as (pts_to_or_null x v); let res = void_ptr_of_ptr x; rewrite (pts_to_or_null x v) as (pts_to x v); res } ``` [@@noextract_to "krml"] // primitive // val ptr_of_void_ptr (#t: Type) (#opened: _) (#td: typedef t) (#v: Ghost.erased t) (x: void_ptr) : STAtomicBase (ptr td) false opened Unobservable val ptr_of_void_ptr (#t: Type) (#td: typedef t) (#v: Ghost.erased t) (x: void_ptr) : stt (ptr td) (pts_to_or_null #t #td (ghost_ptr_gen_of_void_ptr x t) v) (fun y -> pts_to_or_null y v ** pure ( y == ghost_ptr_gen_of_void_ptr x t )) [@@noextract_to "krml"] inline_for_extraction // let ref_of_void_ptr (#t: Type) (#opened: _) (#td: typedef t) (#v: Ghost.erased t) (x: void_ptr) (y': Ghost.erased (ref td)) : STAtomicBase (ref td) false opened Unobservable ```pulse fn ref_of_void_ptr (#t: Type) (#td: typedef t) (#v: Ghost.erased t) (x: void_ptr) (y': Ghost.erased (ref td)) requires (pts_to y' v ** pure ( ghost_ptr_gen_of_void_ptr x t == Ghost.reveal y' )) returns y: (ref td) ensures (pts_to y v ** pure ( Ghost.reveal y' == y )) { rewrite (pts_to y' v) as (pts_to_or_null #t #td (ghost_ptr_gen_of_void_ptr x t) v); let y = ptr_of_void_ptr #t #td #v x; rewrite (pts_to_or_null y v) as (pts_to y v); y } ``` val ref_equiv (#t: Type) (#td: typedef t) (r1 r2: ref td) : Tot vprop val pts_to_equiv (#t: Type) (#td: typedef t) (r1 r2: ref td) (v: Ghost.erased t) : stt_ghost unit (ref_equiv r1 r2 ** pts_to r1 v) (fun _ -> ref_equiv r1 r2 ** pts_to r2 v) val freeable (#t: Type) (#td: typedef t) (r: ref td) : Tot vprop val freeable_dup (#t: Type) (#td: typedef t) (r: ref td) : stt_ghost unit (freeable r) (fun _ -> freeable r ** freeable r) val freeable_equiv (#t: Type) (#td: typedef t) (r1 r2: ref td) : stt_ghost unit (ref_equiv r1 r2 ** freeable r1) (fun _ -> ref_equiv r1 r2 ** freeable r2)
{ "checked_file": "/", "dependencies": [ "Pulse.Lib.Pervasives.fst.checked", "prims.fst.checked", "FStar.StrongExcludedMiddle.fst.checked", "FStar.Real.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Pulse.C.Types.Base.fsti" }
[ { "abbrev": false, "full_module": "Pulse.Lib.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "Pulse.C.Types", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Pulse.C.Types.Base.ptr td -> Pulse.Lib.Core.vprop
Prims.Tot
[ "total" ]
[]
[ "Pulse.C.Types.Base.typedef", "Pulse.C.Types.Base.ptr", "FStar.StrongExcludedMiddle.strong_excluded_middle", "Prims.eq2", "Pulse.C.Types.Base.null", "Pulse.Lib.Core.emp", "Prims.bool", "Pulse.C.Types.Base.freeable", "Pulse.Lib.Core.vprop" ]
[]
false
false
false
false
false
let freeable_or_null (#t: Type) (#td: typedef t) (r: ptr td) : Tot vprop =
if FStar.StrongExcludedMiddle.strong_excluded_middle (r == null _) then emp else freeable r
false
Steel.ST.HigherReference.fst
Steel.ST.HigherReference.with_local
val with_local (#t: Type) (init: t) (#pre: vprop) (#ret_t: Type) (#post: ret_t -> vprop) (body: (r: ref t) -> STT ret_t (pts_to r full_perm init `star` pre) (fun v -> exists_ (pts_to r full_perm) `star` post v) ) : STF ret_t pre post True (fun _ -> True)
val with_local (#t: Type) (init: t) (#pre: vprop) (#ret_t: Type) (#post: ret_t -> vprop) (body: (r: ref t) -> STT ret_t (pts_to r full_perm init `star` pre) (fun v -> exists_ (pts_to r full_perm) `star` post v) ) : STF ret_t pre post True (fun _ -> True)
let with_local (#t: Type) (init: t) (#pre: vprop) (#ret_t: Type) (#post: ret_t -> vprop) (body: (r: ref t) -> STT ret_t (pts_to r full_perm init `star` pre) (fun v -> exists_ (pts_to r full_perm) `star` post v) ) : STF ret_t pre post True (fun _ -> True) = _push_frame (); let r = _alloca init in let v = body r in let _ = elim_exists () in _free_and_pop_frame r; return v
{ "file_name": "lib/steel/Steel.ST.HigherReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 10, "end_line": 145, "start_col": 0, "start_line": 128 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.HigherReference open FStar.Ghost open Steel.ST.Util open Steel.ST.Coercions module R = Steel.HigherReference let ref (a:Type u#1) : Type0 = R.ref a let null (#a:Type) : ref a = R.null #a let is_null (#a:Type) (r:ref a) : b:bool{b <==> r == null} = R.is_null r let pts_to (#a:Type) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop = R.pts_to r p v let pts_to_injective_eq (#a: Type) (#opened:inames) (#p0 #p1:perm) (#v0 #v1:a) (r: ref a) : STGhost unit opened (pts_to r p0 v0 `star` pts_to r p1 v1) (fun _ -> pts_to r p0 v0 `star` pts_to r p1 v0) (requires True) (ensures fun _ -> v0 == v1) = coerce_ghost (fun _ -> R.higher_ref_pts_to_injective_eq #a #opened #p0 #p1 #(hide v0) #(hide v1) r) let pts_to_not_null #a #opened #p #v r = extract_fact #opened (pts_to r p v) (r =!= null) (R.pts_to_not_null r p v); () let alloc (#a:Type) (x:a) : ST (ref a) emp (fun r -> pts_to r full_perm x) (requires True) (ensures fun r -> not (is_null r)) = let r = coerce_steel (fun _ -> R.alloc x) in r let read (#a:Type) (#p:perm) (#v:erased a) (r:ref a) : ST a (pts_to r p v) (fun _ -> pts_to r p v) (requires True) (ensures fun x -> x == Ghost.reveal v) = let u = coerce_steel (fun _ -> R.read r) in return u let write (#a:Type) (#v:erased a) (r:ref a) (x:a) : STT unit (pts_to r full_perm v) (fun _ -> pts_to r full_perm x) = coerce_steel (fun _ -> R.write r x); return () let free (#a:Type) (#v:erased a) (r:ref a) : STT unit (pts_to r full_perm v) (fun _ -> emp) = coerce_steel(fun _ -> R.free r); return () /// Local primitive, to be extracted to Low* EPushFrame. To remember /// that we need to call some pop_frame later, we insert some dummy /// vprop into the context. let _stack_frame : vprop = pure True let _push_frame () : STT unit emp (fun _ -> _stack_frame) = rewrite (pure True) _stack_frame /// Local primitive, to be extracted to Low* EBufCreate let _alloca (#a:Type) (x:a) : ST (ref a) emp (fun r -> pts_to r full_perm x) (requires True) (ensures fun r -> not (is_null r)) = alloc x /// Local primitive, to be extracted to Low* EPopFrame let _free_and_pop_frame (#a:Type) (#v:erased a) (r:ref a) : STT unit (pts_to r full_perm v `star` _stack_frame) (fun _ -> emp) = free r; rewrite _stack_frame (pure True); elim_pure _
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Coercions.fsti.checked", "Steel.HigherReference.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.HigherReference.fst" }
[ { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "R" }, { "abbrev": false, "full_module": "Steel.ST.Coercions", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
init: t -> body: (r: Steel.ST.HigherReference.ref t -> Steel.ST.Effect.STT ret_t) -> Steel.ST.Effect.STF ret_t
Steel.ST.Effect.STF
[]
[]
[ "Steel.Effect.Common.vprop", "Steel.ST.HigherReference.ref", "Steel.Effect.Common.star", "Steel.ST.HigherReference.pts_to", "Steel.FractionalPermission.full_perm", "Steel.ST.Util.exists_", "Steel.ST.Util.return", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Prims.unit", "Steel.ST.HigherReference._free_and_pop_frame", "FStar.Ghost.erased", "Steel.ST.Util.elim_exists", "Steel.ST.HigherReference._alloca", "Steel.ST.HigherReference._push_frame", "Prims.l_True" ]
[]
false
true
false
false
false
let with_local (#t: Type) (init: t) (#pre: vprop) (#ret_t: Type) (#post: (ret_t -> vprop)) (body: (r: ref t -> STT ret_t ((pts_to r full_perm init) `star` pre) (fun v -> (exists_ (pts_to r full_perm)) `star` (post v)))) : STF ret_t pre post True (fun _ -> True) =
_push_frame (); let r = _alloca init in let v = body r in let _ = elim_exists () in _free_and_pop_frame r; return v
false
FStar.Fin.fst
FStar.Fin.is_reflexive
val is_reflexive (#a:Type) (r: binary_relation a) : Type0
val is_reflexive (#a:Type) (r: binary_relation a) : Type0
let is_reflexive #a r = forall (x:a). x `r` x
{ "file_name": "ulib/FStar.Fin.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 58, "start_col": 0, "start_line": 58 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Fin /// This module is supposed to contain various lemmas about /// finiteness. For now, it mainly provides a basic pigeonhole /// principle /// /// TODO: We might generalize this to also support general utilities /// for reasoning about cardinality, relation with injections and /// surjections, etc. /// /// UPD. November 8, 2022 -- added support for custom equivalence relation-aware /// pigeon principle lemma. /// /// For better readability of lemmas, Argument types are kept explicit, /// effectively duplicating the interface file declarations. module S = FStar.Seq (** Find an index of an element in [s] starting from [i] that validates [p] *) let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) = if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None (** Given a sequence [s] all of whose elements are at most [n], if the length of [s] is greater than [n], then there are two distinct indexes in [s] that contain the same element *) let rec pigeonhole (#n: pos) (s: S.seq (under n)) = if n = 1 then (0, 1) else let k0 = S.index s 0 in match find s (fun k -> k = k0) 1 with | Some i -> 0, i | None -> let (i1,i2) = pigeonhole (S.init #(under (n-1)) n (fun i -> let k = S.index s (i+1) in if k<k0 then k else k-1)) in (i1+1, i2+1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Fin.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Fin.binary_relation a -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Fin.binary_relation", "Prims.l_Forall", "Prims.b2t" ]
[]
false
false
false
true
true
let is_reflexive #a r =
forall (x: a). x `r` x
false
FStar.Fin.fst
FStar.Fin.is_symmetric
val is_symmetric (#a:Type) (r: binary_relation a) : Type0
val is_symmetric (#a:Type) (r: binary_relation a) : Type0
let is_symmetric #a r = forall (x y:a). x `r` y == y `r` x
{ "file_name": "ulib/FStar.Fin.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 61, "end_line": 61, "start_col": 0, "start_line": 61 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Fin /// This module is supposed to contain various lemmas about /// finiteness. For now, it mainly provides a basic pigeonhole /// principle /// /// TODO: We might generalize this to also support general utilities /// for reasoning about cardinality, relation with injections and /// surjections, etc. /// /// UPD. November 8, 2022 -- added support for custom equivalence relation-aware /// pigeon principle lemma. /// /// For better readability of lemmas, Argument types are kept explicit, /// effectively duplicating the interface file declarations. module S = FStar.Seq (** Find an index of an element in [s] starting from [i] that validates [p] *) let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) = if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None (** Given a sequence [s] all of whose elements are at most [n], if the length of [s] is greater than [n], then there are two distinct indexes in [s] that contain the same element *) let rec pigeonhole (#n: pos) (s: S.seq (under n)) = if n = 1 then (0, 1) else let k0 = S.index s 0 in match find s (fun k -> k = k0) 1 with | Some i -> 0, i | None -> let (i1,i2) = pigeonhole (S.init #(under (n-1)) n (fun i -> let k = S.index s (i+1) in if k<k0 then k else k-1)) in (i1+1, i2+1) [@@"opaque_to_smt"] let is_reflexive #a r = forall (x:a). x `r` x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Fin.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Fin.binary_relation a -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Fin.binary_relation", "Prims.l_Forall", "Prims.eq2", "Prims.bool" ]
[]
false
false
false
true
true
let is_symmetric #a r =
forall (x: a) (y: a). x `r` y == y `r` x
false
Pruning.fst
Pruning.f
val f : x: FStar.Integers.int -> Prims.unit
let f (x:int) = assert (x + 1 == 1 + x)
{ "file_name": "examples/native_tactics/Pruning.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 69, "start_col": 0, "start_line": 69 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pruning open FStar.Algebra.Monoid open FStar.Array open FStar.Axiomatic.Array open FStar.BitVector open FStar.Bytes open FStar.Char open FStar.Classical open FStar.Constructive open FStar.Crypto open FStar.DependentMap open FStar.ErasedLogic open FStar.Fin open FStar.Float open FStar.FunctionalExtensionality open FStar.Ghost open FStar.Heap open FStar.IndefiniteDescription open FStar.Int open FStar.Int128 open FStar.Int16 open FStar.Int32 open FStar.Int64 open FStar.Int8 open FStar.Int.Cast open FStar.Integers open FStar.IO open FStar.List open FStar.List.Tot open FStar.List.Tot.Base open FStar.List.Tot.Properties open FStar.Map open FStar.MarkovsPrinciple open FStar.Math.Lemmas open FStar.Math.Lib open FStar.Matrix2 open FStar.MRef open FStar.Mul open FStar.Option open FStar.Order open FStar.OrdMap open FStar.OrdMapProps open FStar.OrdSet open FStar.OrdSetProps open FStar.PredicateExtensionality open FStar.PropositionalExtensionality open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.List
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.PropositionalExtensionality.fst.checked", "FStar.PredicateExtensionality.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.OrdSetProps.fst.checked", "FStar.OrdSet.fsti.checked", "FStar.OrdMapProps.fst.checked", "FStar.OrdMap.fsti.checked", "FStar.Order.fst.checked", "FStar.Option.fst.checked", "FStar.Mul.fst.checked", "FStar.MRef.fsti.checked", "FStar.Matrix2.fsti.checked", "FStar.Math.Lib.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.MarkovsPrinciple.fst.checked", "FStar.Map.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.Base.fst.checked", "FStar.List.Tot.fst.checked", "FStar.List.fst.checked", "FStar.IO.fst.checked", "FStar.Integers.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Int128.fsti.checked", "FStar.Int.Cast.fst.checked", "FStar.Int.fsti.checked", "FStar.IndefiniteDescription.fsti.checked", "FStar.Heap.fst.checked", "FStar.Ghost.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Float.fsti.checked", "FStar.Fin.fsti.checked", "FStar.ErasedLogic.fst.checked", "FStar.DependentMap.fsti.checked", "FStar.Crypto.fst.checked", "FStar.Constructive.fst.checked", "FStar.Classical.fsti.checked", "FStar.Char.fsti.checked", "FStar.Bytes.fsti.checked", "FStar.BitVector.fst.checked", "FStar.Axiomatic.Array.fst.checked", "FStar.Array.fsti.checked", "FStar.Algebra.Monoid.fst.checked" ], "interface_file": false, "source_file": "Pruning.fst" }
[ { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.PropositionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.PredicateExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSetProps", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdSet", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdMapProps", "short_module": null }, { "abbrev": false, "full_module": "FStar.OrdMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Order", "short_module": null }, { "abbrev": false, "full_module": "FStar.Option", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.MRef", "short_module": null }, { "abbrev": false, "full_module": "FStar.Matrix2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.MarkovsPrinciple", "short_module": null }, { "abbrev": false, "full_module": "FStar.Map", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Properties", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot.Base", "short_module": null }, { "abbrev": false, "full_module": "FStar.List.Tot", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.IO", "short_module": null }, { "abbrev": false, "full_module": "FStar.Integers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int.Cast", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int8", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int32", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int16", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int128", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar.IndefiniteDescription", "short_module": null }, { "abbrev": false, "full_module": "FStar.Heap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.Float", "short_module": null }, { "abbrev": false, "full_module": "FStar.Fin", "short_module": null }, { "abbrev": false, "full_module": "FStar.ErasedLogic", "short_module": null }, { "abbrev": false, "full_module": "FStar.DependentMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Crypto", "short_module": null }, { "abbrev": false, "full_module": "FStar.Constructive", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "FStar.Bytes", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Axiomatic.Array", "short_module": null }, { "abbrev": false, "full_module": "FStar.Array", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.Monoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.Integers.int -> Prims.unit
Prims.Tot
[ "total" ]
[]
[ "FStar.Integers.int", "Prims._assert", "Prims.eq2", "FStar.Integers.int_t", "FStar.Integers.Signed", "FStar.Integers.Winfinite", "FStar.Integers.op_Plus", "Prims.unit" ]
[]
false
false
false
true
false
let f (x: int) =
assert (x + 1 == 1 + x)
false
FStar.Fin.fst
FStar.Fin.is_transitive
val is_transitive (#a:Type) (r: binary_relation a) : Type0
val is_transitive (#a:Type) (r: binary_relation a) : Type0
let is_transitive #a r = forall (x y z:a). x `r` y /\ y `r` z ==> x `r` z
{ "file_name": "ulib/FStar.Fin.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 73, "end_line": 64, "start_col": 0, "start_line": 64 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Fin /// This module is supposed to contain various lemmas about /// finiteness. For now, it mainly provides a basic pigeonhole /// principle /// /// TODO: We might generalize this to also support general utilities /// for reasoning about cardinality, relation with injections and /// surjections, etc. /// /// UPD. November 8, 2022 -- added support for custom equivalence relation-aware /// pigeon principle lemma. /// /// For better readability of lemmas, Argument types are kept explicit, /// effectively duplicating the interface file declarations. module S = FStar.Seq (** Find an index of an element in [s] starting from [i] that validates [p] *) let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) = if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None (** Given a sequence [s] all of whose elements are at most [n], if the length of [s] is greater than [n], then there are two distinct indexes in [s] that contain the same element *) let rec pigeonhole (#n: pos) (s: S.seq (under n)) = if n = 1 then (0, 1) else let k0 = S.index s 0 in match find s (fun k -> k = k0) 1 with | Some i -> 0, i | None -> let (i1,i2) = pigeonhole (S.init #(under (n-1)) n (fun i -> let k = S.index s (i+1) in if k<k0 then k else k-1)) in (i1+1, i2+1) [@@"opaque_to_smt"] let is_reflexive #a r = forall (x:a). x `r` x [@@"opaque_to_smt"] let is_symmetric #a r = forall (x y:a). x `r` y == y `r` x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Fin.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Fin.binary_relation a -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Fin.binary_relation", "Prims.l_Forall", "Prims.l_imp", "Prims.l_and", "Prims.b2t" ]
[]
false
false
false
true
true
let is_transitive #a r =
forall (x: a) (y: a) (z: a). x `r` y /\ y `r` z ==> x `r` z
false
FStar.Fin.fst
FStar.Fin.find
val find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) : Pure (option (in_ s)) (requires True) (ensures (function | None -> (forall (k: nat{i <= k /\ k < S.length s}). p (S.index s k) == false) | Some j -> i <= j /\ p (S.index s j))) (decreases (S.length s - i))
val find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) : Pure (option (in_ s)) (requires True) (ensures (function | None -> (forall (k: nat{i <= k /\ k < S.length s}). p (S.index s k) == false) | Some j -> i <= j /\ p (S.index s j))) (decreases (S.length s - i))
let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) = if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None
{ "file_name": "ulib/FStar.Fin.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 16, "end_line": 41, "start_col": 0, "start_line": 36 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Fin /// This module is supposed to contain various lemmas about /// finiteness. For now, it mainly provides a basic pigeonhole /// principle /// /// TODO: We might generalize this to also support general utilities /// for reasoning about cardinality, relation with injections and /// surjections, etc. /// /// UPD. November 8, 2022 -- added support for custom equivalence relation-aware /// pigeon principle lemma. /// /// For better readability of lemmas, Argument types are kept explicit, /// effectively duplicating the interface file declarations. module S = FStar.Seq
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Fin.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq a -> p: (_: a -> Prims.bool) -> i: FStar.Fin.under (FStar.Seq.Base.length s) -> Prims.Pure (FStar.Pervasives.Native.option (FStar.Fin.in_ s))
Prims.Pure
[ "" ]
[]
[ "FStar.Seq.Base.seq", "Prims.bool", "FStar.Fin.under", "FStar.Seq.Base.length", "FStar.Seq.Base.index", "FStar.Pervasives.Native.Some", "FStar.Fin.in_", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Fin.find", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option" ]
[ "recursion" ]
false
false
false
false
false
let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) =
if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None
false
Hacl.Impl.Blake2.Generic.fst
Hacl.Impl.Blake2.Generic.blake2_init
val blake2_init: #al:Spec.alg -> #ms:m_spec -> blake2_init_st al ms
val blake2_init: #al:Spec.alg -> #ms:m_spec -> blake2_init_st al ms
let blake2_init #al #ms hash kk nn = push_frame (); let h0 = ST.get() in let tmp = create 8ul (Spec.nat_to_word al 0) in let r0 = rowi hash 0ul in let r1 = rowi hash 1ul in let r2 = rowi hash 2ul in let r3 = rowi hash 3ul in let iv0 = get_iv al 0ul in let iv1 = get_iv al 1ul in let iv2 = get_iv al 2ul in let iv3 = get_iv al 3ul in let iv4 = get_iv al 4ul in let iv5 = get_iv al 5ul in let iv6 = get_iv al 6ul in let iv7 = get_iv al 7ul in create_row #al #ms r2 iv0 iv1 iv2 iv3; create_row #al #ms r3 iv4 iv5 iv6 iv7; let salt = create (salt_len al) (u8 0) in let personal = create (personal_len al) (u8 0) in let p = create_default_params al salt personal in serialize_params al kk nn p tmp; let tmp0 = tmp.(0ul) in let tmp1 = tmp.(1ul) in let tmp2 = tmp.(2ul) in let tmp3 = tmp.(3ul) in let tmp4 = tmp.(4ul) in let tmp5 = tmp.(5ul) in let tmp6 = tmp.(6ul) in let tmp7 = tmp.(7ul) in let iv0' = iv0 ^. tmp0 in let iv1' = iv1 ^. tmp1 in let iv2' = iv2 ^. tmp2 in let iv3' = iv3 ^. tmp3 in let iv4' = iv4 ^. tmp4 in let iv5' = iv5 ^. tmp5 in let iv6' = iv6 ^. tmp6 in let iv7' = iv7 ^. tmp7 in create_row #al #ms r0 iv0' iv1' iv2' iv3'; create_row #al #ms r1 iv4' iv5' iv6' iv7'; let h1 = ST.get() in assert (disjoint hash tmp); assert (modifies (loc hash `union` loc tmp) h0 h1); Lib.Sequence.eq_intro (state_v h1 hash) (Spec.blake2_init_hash al (Spec.blake2_default_params al) (v kk) (v nn)); pop_frame ()
{ "file_name": "code/blake2/Hacl.Impl.Blake2.Generic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 818, "start_col": 0, "start_line": 774 }
module Hacl.Impl.Blake2.Generic open FStar.Mul open FStar.HyperStack open FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Lib.LoopCombinators module ST = FStar.HyperStack.ST module Seq = Lib.Sequence module Loops = Lib.LoopCombinators module Spec = Spec.Blake2 open Hacl.Impl.Blake2.Constants open Hacl.Impl.Blake2.Core #set-options "--z3rlimit 50 --max_ifuel 0 --max_fuel 0" noextract let is_valid_blake2_config (a : Spec.alg) (m : m_spec) = match a, m with | Spec.Blake2S, M32 | Spec.Blake2S, M128 | Spec.Blake2B, M32 | Spec.Blake2B, M256 -> true | _ -> false inline_for_extraction noextract let valid_m_spec (a : Spec.alg) = m:m_spec{is_valid_blake2_config a m} /// Accessors for constants inline_for_extraction noextract val get_iv: a:Spec.alg -> s: size_t{size_v s < 8} -> Stack (word_t a) (requires (fun h -> True)) (ensures (fun h0 z h1 -> h0 == h1 /\ v z == v (Seq.index (Spec.ivTable a) (v s)))) let get_iv a s = recall_contents #(Spec.pub_word_t Spec.Blake2S) #8ul ivTable_S (Spec.ivTable Spec.Blake2S); recall_contents #(Spec.pub_word_t Spec.Blake2B) #8ul ivTable_B (Spec.ivTable Spec.Blake2B); [@inline_let] let ivTable: (x:glbuffer (Spec.pub_word_t a) 8ul{witnessed x (Spec.ivTable a) /\ recallable x}) = match a with | Spec.Blake2S -> ivTable_S | Spec.Blake2B -> ivTable_B in let r = index ivTable s in secret #(Spec.wt a) r inline_for_extraction noextract val get_sigma: s: size_t{v s < 160} -> Stack Spec.sigma_elt_t (requires (fun h -> True)) (ensures (fun h0 z h1 -> h0 == h1 /\ z == Lib.Sequence.(Spec.sigmaTable.[v s]))) let get_sigma s = recall_contents sigmaTable Spec.sigmaTable; index sigmaTable s inline_for_extraction noextract val get_sigma_sub: start: size_t -> i: size_t{v i < 16 /\ v start + v i < 160} -> Stack Spec.sigma_elt_t (requires (fun h -> True)) (ensures (fun h0 z h1 -> h0 == h1 /\ v z == v (Seq.index Spec.sigmaTable (v start + v i)))) let get_sigma_sub start i = get_sigma (start +. i) inline_for_extraction noextract let rounds_t (a:Spec.alg): size_t = size (Spec.rounds a) inline_for_extraction noextract val size_to_word: al:Spec.alg -> s:size_t -> u:word_t al{u == Spec.nat_to_word al (v s)} let size_to_word al s = match al with | Spec.Blake2S -> size_to_uint32 s | Spec.Blake2B -> size_to_uint64 s inline_for_extraction noextract val size_to_limb: al:Spec.alg -> s:size_t -> u:Spec.limb_t al{u == Spec.nat_to_limb al (v s)} let size_to_limb al s = match al with | Spec.Blake2S -> size_to_uint64 s | Spec.Blake2B -> to_u128 (size_to_uint64 s) /// Constants /// Define algorithm functions inline_for_extraction noextract val g1: #al:Spec.alg -> #m:m_spec -> wv:state_p al m -> a:index_t -> b:index_t -> r:rotval (Spec.wt al) -> Stack unit (requires (fun h -> live h wv /\ a <> b)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ (state_v h1 wv) == Spec.g1 al (state_v h0 wv) (v a) (v b) r)) let g1 #al #m wv a b r = let h0 = ST.get() in let wv_a = rowi wv a in let wv_b = rowi wv b in xor_row wv_a wv_b; ror_row wv_a r; let h2 = ST.get() in Lib.Sequence.eq_intro (state_v h2 wv) (Spec.g1 al (state_v h0 wv) (v a) (v b) r) #push-options "--z3rlimit 100 --max_fuel 1 --max_ifuel 1" inline_for_extraction noextract val g2: #al:Spec.alg -> #m:m_spec -> wv:state_p al m -> a:index_t -> b:index_t -> x:row_p al m -> Stack unit (requires (fun h -> live h wv /\ live h x /\ disjoint wv x /\ a <> b)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ state_v h1 wv == Spec.g2 al (state_v h0 wv) (v a) (v b) (row_v h0 x))) let g2 #al #m wv a b x = let h0 = ST.get() in let wv_a = rowi wv a in let wv_b = rowi wv b in add_row wv_a wv_b; add_row wv_a x; let h1 = ST.get() in Lib.Sequence.eq_intro (state_v h1 wv) (Spec.g2 al (state_v h0 wv) (v a) (v b) (row_v h0 x)) #push-options "--z3rlimit 100 --max_fuel 1 --max_ifuel 1" inline_for_extraction noextract val g2z: #al:Spec.alg -> #m:m_spec -> wv:state_p al m -> a:index_t -> b:index_t -> Stack unit (requires (fun h -> live h wv /\ a <> b)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ state_v h1 wv == Spec.g2z al (state_v h0 wv) (v a) (v b))) let g2z #al #m wv a b = let h0 = ST.get() in let wv_a = rowi wv a in let wv_b = rowi wv b in add_row wv_a wv_b; let h1 = ST.get() in Lib.Sequence.eq_intro (state_v h1 wv) (Spec.g2z al (state_v h0 wv) (v a) (v b)) inline_for_extraction noextract val blake2_mixing : #al:Spec.alg -> #m:m_spec -> wv:state_p al m -> x:row_p al m -> y:row_p al m -> Stack unit (requires (fun h -> live h wv /\ live h x /\ live h y /\ disjoint wv x /\ disjoint wv y)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ state_v h1 wv == Spec.blake2_mixing al (state_v h0 wv) (row_v h0 x) (row_v h0 y))) let blake2_mixing #al #m wv x y = let h0 = ST.get() in push_frame (); let a = 0ul in let b = 1ul in let c = 2ul in let d = 3ul in [@inline_let] let r0 = normalize_term (Lib.Sequence.index (Spec.rTable al) 0) in normalize_term_spec (Lib.Sequence.index (Spec.rTable al) 0); [@inline_let] let r1 = normalize_term (Lib.Sequence.index (Spec.rTable al) 1) in normalize_term_spec (Lib.Sequence.index (Spec.rTable al) 1); [@inline_let] let r2 = normalize_term (Lib.Sequence.index (Spec.rTable al) 2) in normalize_term_spec (Lib.Sequence.index (Spec.rTable al) 2); [@inline_let] let r3 = normalize_term (Lib.Sequence.index (Spec.rTable al) 3) in normalize_term_spec (Lib.Sequence.index (Spec.rTable al) 3); let h1 = ST.get() in g2 wv a b x; g1 wv d a r0; g2z wv c d; g1 wv b c r1; g2 wv a b y; g1 wv d a r2; g2z wv c d; g1 wv b c r3; let h2 = ST.get() in pop_frame (); let h3 = ST.get() in assert(modifies (loc wv) h0 h3); Lib.Sequence.eq_intro (state_v h2 wv) (Spec.blake2_mixing al (state_v h1 wv) (row_v h1 x) (row_v h1 y)) #pop-options inline_for_extraction noextract val diag: #a:Spec.alg -> #m:m_spec -> wv:state_p a m -> Stack unit (requires (fun h -> live h wv)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ state_v h1 wv == Spec.diag (state_v h0 wv))) let diag #a #m wv = let r1 = rowi wv 1ul in let r2 = rowi wv 2ul in let r3 = rowi wv 3ul in let h0 = ST.get() in permr_row r1 1ul; permr_row r2 2ul; permr_row r3 3ul inline_for_extraction noextract val undiag: #a:Spec.alg -> #m:m_spec -> wv:state_p a m -> Stack unit (requires (fun h -> live h wv)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ state_v h1 wv == Spec.undiag (state_v h0 wv))) let undiag #a #m wv = let r1 = rowi wv 1ul in let r2 = rowi wv 2ul in let r3 = rowi wv 3ul in let h0 = ST.get() in permr_row r1 3ul; permr_row r2 2ul; permr_row r3 1ul inline_for_extraction noextract val gather_state: #a:Spec.alg -> #ms:m_spec -> st:state_p a ms -> m:block_w a -> start:size_t{v start <= 144} -> Stack unit (requires (fun h -> live h st /\ live h m /\ disjoint st m)) (ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\ state_v h1 st == Spec.gather_state a (as_seq h0 m) (v start))) inline_for_extraction noextract let get_sigma' (start: size_t { v start <= 144 }) (i: size_t { normalize (i <=. 15ul) }): Stack Spec.sigma_elt_t (requires (fun h -> True)) (ensures (fun h0 z h1 -> h0 == h1 /\ z == Lib.Sequence.(Spec.sigmaTable.[v start + v i]))) = get_sigma (start +! i) #push-options "--z3rlimit 500" let gather_state #a #ms st m start = let h0 = ST.get() in let r0 = rowi st 0ul in let r1 = rowi st 1ul in let r2 = rowi st 2ul in let r3 = rowi st 3ul in let s0 = get_sigma' start 0ul in let s1 = get_sigma' start 1ul in let s2 = get_sigma' start 2ul in let s3 = get_sigma' start 3ul in let s4 = get_sigma' start 4ul in let s5 = get_sigma' start 5ul in let s6 = get_sigma' start 6ul in let s7 = get_sigma' start 7ul in let s8 = get_sigma' start 8ul in let s9 = get_sigma' start 9ul in let s10 = get_sigma' start 10ul in let s11 = get_sigma' start 11ul in let s12 = get_sigma' start 12ul in let s13 = get_sigma' start 13ul in let s14 = get_sigma' start 14ul in let s15 = get_sigma' start 15ul in let h1 = ST.get() in gather_row r0 m s0 s2 s4 s6; let h2 = ST.get() in gather_row r1 m s1 s3 s5 s7; let h3 = ST.get() in gather_row r2 m s8 s10 s12 s14; let h4 = ST.get() in gather_row r3 m s9 s11 s13 s15; let h5 = ST.get() in assert(modifies (loc st) h0 h5); Lib.Sequence.eq_intro (state_v h5 st) (Spec.gather_state a (as_seq h0 m) (v start)) inline_for_extraction noextract val blake2_round : #al:Spec.alg -> #ms:m_spec -> wv:state_p al ms -> m:block_w al -> i:size_t -> Stack unit (requires (fun h -> live h wv /\ live h m /\ disjoint wv m)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ state_v h1 wv == Spec.blake2_round al (as_seq h0 m) (v i) (state_v h0 wv))) let blake2_round #al #ms wv m i = push_frame(); let start_idx = (i %. size 10) *. size 16 in assert (v start_idx == (v i % 10) * 16); assert (v start_idx <= 144); let m_st = alloc_state al ms in gather_state m_st m start_idx; let x = rowi m_st 0ul in let y = rowi m_st 1ul in let z = rowi m_st 2ul in let w = rowi m_st 3ul in let h1 = ST.get() in assert (disjoint wv m_st); assert (disjoint m_st wv); assert (disjoint x wv); assert (disjoint wv x); assert (disjoint y wv); assert (disjoint wv y); assert (disjoint z wv); assert (disjoint wv z); assert (disjoint w wv); assert (disjoint wv w); blake2_mixing wv x y; diag wv; blake2_mixing wv z w; undiag wv; pop_frame () inline_for_extraction noextract val blake2_compress0: #al:Spec.alg -> m_s: block_p al -> m_w: block_w al -> Stack unit (requires (fun h -> live h m_s /\ live h m_w /\ disjoint m_s m_w)) (ensures (fun h0 _ h1 -> modifies (loc m_w) h0 h1 /\ as_seq h1 m_w == Spec.blake2_compress0 al (as_seq h0 m_s))) let blake2_compress0 #al m_s m_w = uints_from_bytes_le m_w m_s inline_for_extraction noextract val blake2_compress1: #al:Spec.alg -> #m:m_spec -> wv: state_p al m -> s_iv: state_p al m -> offset: Spec.limb_t al -> flag: bool -> Stack unit (requires (fun h -> live h wv /\ live h s_iv /\ disjoint wv s_iv)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ state_v h1 wv == Spec.blake2_compress1 al (state_v h0 s_iv) offset flag)) let blake2_compress1 #al #m wv s_iv offset flag = let h0 = ST.get() in push_frame(); let mask = alloc_row al m in [@inline_let] let wv_12 = Spec.limb_to_word al offset in [@inline_let] let wv_13 = Spec.limb_to_word al (offset >>. (size (bits (Spec.wt al)))) in // SH: TODO: for some reason, ``ones`` below doesn't get inlined by KaRaMeL, // causing an extraction problem. The 3 lines below are a hack to fix // extraction for the time being: // [> let wv_14 = if flag then (ones (Spec.wt al) SEC) else (Spec.zero al) in // After investigation, it is because ones is [@(strict_on_arguments [0])], // and so isn't unfolded if its first argument is not normalized to a constant. // However, the first argument should always be normalized (I checked the // output generated by KaRaMeL and the definitions). (**) normalize_term_spec (Spec.wt al); [@inline_let] let wt_al = normalize_term (Spec.wt al) in let wv_14 = if flag then ones wt_al SEC else (Spec.zero al) in // end of the TODO let wv_15 = Spec.zero al in create_row mask wv_12 wv_13 wv_14 wv_15; copy_state wv s_iv; let wv3 = rowi wv 3ul in xor_row wv3 mask; pop_frame(); let h1 = ST.get() in assert(modifies (loc wv) h0 h1); Lib.Sequence.eq_intro (state_v h1 wv) (Spec.blake2_compress1 al (state_v h0 s_iv) offset flag) inline_for_extraction noextract val blake2_compress2 : #al:Spec.alg -> #ms:m_spec -> wv: state_p al ms -> m: block_w al -> Stack unit (requires (fun h -> live h wv /\ live h m /\ disjoint wv m)) (ensures (fun h0 _ h1 -> modifies1 wv h0 h1 /\ state_v h1 wv == Spec.blake2_compress2 al (state_v h0 wv) (as_seq h0 m))) #push-options "--z3rlimit 400" let blake2_compress2 #al #ms wv m = let h0 = ST.get () in [@inline_let] let a_spec = Spec.state al in [@inline_let] let refl h = state_v h wv in [@inline_let] let footprint = Ghost.hide(loc wv) in [@inline_let] let spec h = Spec.blake2_round al h.[|m|] in loop_refl h0 (rounds_t al) a_spec refl footprint spec (fun i -> Loops.unfold_repeati (Spec.rounds al) (spec h0) (state_v h0 wv) (v i); blake2_round wv m i) #pop-options inline_for_extraction noextract val blake2_compress3 : #al:Spec.alg -> #ms:m_spec -> s_iv:state_p al ms -> wv:state_p al ms -> Stack unit (requires (fun h -> live h s_iv /\ live h wv /\ disjoint s_iv wv)) (ensures (fun h0 _ h1 -> modifies (loc s_iv) h0 h1 /\ state_v h1 s_iv == Spec.blake2_compress3 al (state_v h0 wv) (state_v h0 s_iv))) let blake2_compress3 #al #ms s_iv wv = let h0 = ST.get() in let s0 = rowi s_iv 0ul in let s1 = rowi s_iv 1ul in let r0 = rowi wv 0ul in let r1 = rowi wv 1ul in let r2 = rowi wv 2ul in let r3 = rowi wv 3ul in assert (disjoint s0 wv); assert (disjoint wv s0); assert (disjoint s1 wv); assert (disjoint wv s1); assert (disjoint r0 s0); assert (disjoint r2 s0); assert (disjoint r1 s1); assert (disjoint r3 s1); xor_row s0 r0; let h1 = ST.get() in xor_row s0 r2; let h2 = ST.get() in xor_row s1 r1; let h3 = ST.get() in xor_row s1 r3; let h4 = ST.get() in assert (modifies (loc s_iv) h0 h4); let open Lib.Sequence in assert (row_v h0 r0 == (state_v h0 wv).[0]); assert (row_v h1 r2 == (state_v h0 wv).[2]); assert (row_v h4 s0 == Spec.(((state_v h0 s_iv).[0] ^| (state_v h0 wv).[0]) ^| (state_v h0 wv).[2])); assert (row_v h4 s1 == Spec.(((state_v h0 s_iv).[1] ^| (state_v h0 wv).[1]) ^| (state_v h0 wv).[3])); eq_intro (state_v h2 s_iv) ((state_v h0 s_iv).[0] <- row_v h4 s0); eq_intro (state_v h4 s_iv) ((state_v h2 s_iv).[1] <- row_v h4 s1); eq_intro (state_v h4 s_iv) (Spec.blake2_compress3 al (state_v h0 wv) (state_v h0 s_iv)) inline_for_extraction noextract let compress_t (al:Spec.alg) (ms:m_spec) = wv:state_p al ms -> s: state_p al ms -> m: block_p al -> offset: Spec.limb_t al -> flag: bool -> Stack unit (requires (fun h -> live h wv /\ live h s /\ live h m /\ disjoint s m /\ disjoint wv s /\ disjoint wv m)) (ensures (fun h0 _ h1 -> modifies (loc s |+| loc wv) h0 h1 /\ state_v h1 s == Spec.blake2_compress al (state_v h0 s) h0.[|m|] offset flag)) inline_for_extraction noextract val blake2_compress: #al:Spec.alg -> #ms:m_spec -> compress_t al ms let blake2_compress #al #ms wv s m offset flag = push_frame(); let m_w = create 16ul (Spec.zero al) in blake2_compress0 #al m m_w; blake2_compress1 wv s offset flag; blake2_compress2 wv m_w; blake2_compress3 s wv; pop_frame() inline_for_extraction noextract let blake2_update_block_st (al:Spec.alg) (ms:m_spec) = wv:state_p al ms -> hash: state_p al ms -> flag: bool -> totlen: Spec.limb_t al{v totlen <= Spec.max_limb al} -> d: block_p al -> Stack unit (requires (fun h -> live h wv /\ live h hash /\ live h d /\ disjoint hash d /\ disjoint wv hash /\ disjoint wv d)) (ensures (fun h0 _ h1 -> modifies (loc hash |+| loc wv) h0 h1 /\ state_v h1 hash == Spec.blake2_update_block al flag (v totlen) h0.[|d|] (state_v h0 hash))) inline_for_extraction noextract val blake2_update_block: #al:Spec.alg -> #ms:m_spec -> blake2_update_block_st al ms let blake2_update_block #al #ms wv hash flag totlen d = blake2_compress wv hash d totlen flag inline_for_extraction noextract let blake2_update1_st (al:Spec.alg) (ms:m_spec) = #len:size_t -> wv: state_p al ms -> hash: state_p al ms -> prev: Spec.limb_t al{v prev + v len <= Spec.max_limb al} -> d: lbuffer uint8 len -> i: size_t{v i < length d / Spec.size_block al} -> Stack unit (requires (fun h -> live h wv /\ live h hash /\ live h d /\ disjoint hash d /\ disjoint wv hash /\ disjoint wv d)) (ensures (fun h0 _ h1 -> modifies (loc hash |+| loc wv) h0 h1 /\ state_v h1 hash == Spec.blake2_update1 al (v prev) h0.[|d|] (v i) (state_v h0 hash))) inline_for_extraction noextract val blake2_update1: #al:Spec.alg -> #ms:m_spec -> blake2_update_block: blake2_update_block_st al ms -> blake2_update1_st al ms let blake2_update1 #al #ms blake2_update_block #len wv hash prev d i = let totlen = prev +. size_to_limb al ((i+!1ul) *! size_block al) in assert (v totlen == v prev + (v i + 1) * Spec.size_block al); let b = sub d (i *. size_block al) (size_block al) in let h = ST.get() in assert (as_seq h b == Spec.get_blocki al (as_seq h d) (v i)); blake2_update_block wv hash false totlen b inline_for_extraction noextract let blake2_update_last_st (al:Spec.alg) (ms:m_spec) = #len:size_t -> wv: state_p al ms -> hash: state_p al ms -> prev: Spec.limb_t al{v prev + v len <= Spec.max_limb al} -> rem: size_t {v rem <= v len /\ v rem <= Spec.size_block al} -> d: lbuffer uint8 len -> Stack unit (requires (fun h -> live h wv /\ live h hash /\ live h d /\ disjoint hash d /\ disjoint wv hash /\ disjoint wv d)) (ensures (fun h0 _ h1 -> modifies (loc hash |+| loc wv) h0 h1 /\ state_v h1 hash == Spec.blake2_update_last al (v prev) (v rem) h0.[|d|] (state_v h0 hash))) inline_for_extraction noextract val blake2_update_last: #al:Spec.alg -> #ms:m_spec -> blake2_update_block: blake2_update_block_st al ms -> blake2_update_last_st al ms let blake2_update_last #al #ms blake2_update_block #len wv hash prev rem d = let h0 = ST.get () in [@inline_let] let spec _ h1 = state_v h1 hash == Spec.blake2_update_last al (v prev) (v rem) h0.[|d|] (state_v h0 hash) in salloc1 h0 (size_block al) (u8 0) (Ghost.hide (loc hash |+| loc wv)) spec (fun last_block -> let last = sub d (len -! rem) rem in let h1 = ST.get() in update_sub last_block 0ul rem last; let h2 = ST.get() in as_seq_gsub h1 d (len -! rem) rem; assert (as_seq h1 last == Seq.sub (as_seq h1 d) (v len - v rem) (v rem)); assert (as_seq h1 last == Seq.slice (as_seq h0 d) (v len - v rem) (v len)); assert (as_seq h2 last_block == Spec.get_last_padded_block al (as_seq h0 d) (v rem)); let totlen = prev +. (size_to_limb al len) in blake2_update_block wv hash true totlen last_block; let h3 = ST.get() in assert (v totlen == v prev + v len); assert (state_v h3 hash == Spec.blake2_update_block al true (v totlen) (as_seq h2 last_block) (state_v h0 hash))) inline_for_extraction noextract let blake2_init_st (al:Spec.alg) (ms:m_spec) = hash: state_p al ms -> kk: size_t{v kk <= Spec.max_key al} -> nn: size_t{1 <= v nn /\ v nn <= Spec.max_output al} -> Stack unit (requires (fun h -> live h hash)) (ensures (fun h0 _ h1 -> modifies (loc hash) h0 h1 /\ state_v h1 hash == Spec.blake2_init_hash al (Spec.blake2_default_params al) (v kk) (v nn))) inline_for_extraction noextract val serialize_params (al:Spec.alg) (kk:size_t{v kk <= Spec.max_key al}) (nn: size_t{1 <= v nn /\ v nn <= Spec.max_output al}) (p: blake2_params al) (b: lbuffer (word_t al) 8ul) : Stack unit (requires fun h -> live h b /\ blake2_params_inv h p /\ LowStar.Buffer.loc_disjoint (loc b) (blake2_params_loc p) /\ as_seq h b == Seq.create 8 (Spec.nat_to_word al 0) ) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == Spec.serialize_blake2_params (Spec.set_key_length (Spec.set_digest_length (blake2_params_v h0 p) (v nn)) (v kk))) #push-options "--z3rlimit 100 --fuel 0" inline_for_extraction noextract let serialize_params_blake2s (kk:size_t{v kk <= Spec.max_key Spec.Blake2S}) (nn: size_t{1 <= v nn /\ v nn <= Spec.max_output Spec.Blake2S}) (p: blake2_params Spec.Blake2S) (b: lbuffer (word_t Spec.Blake2S) 8ul) : Stack unit (requires fun h -> live h b /\ blake2_params_inv h p /\ LowStar.Buffer.loc_disjoint (loc b) (blake2_params_loc p) /\ as_seq h b == Seq.create 8 (u32 0) ) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == Spec.serialize_blake2_params (Spec.set_key_length (Spec.set_digest_length (blake2_params_v h0 p) (v nn)) (v kk))) = let h0 = ST.get () in [@inline_let] let kk_shift_8 = shift_left (to_u32 kk) (size 8) in [@inline_let] let fanout_shift_16 = shift_left (to_u32 p.fanout) (size 16) in [@inline_let] let depth_shift_24 = shift_left (to_u32 p.depth) (size 24) in [@inline_let] let v0 = (to_u32 nn) ^. kk_shift_8 ^. fanout_shift_16 ^. depth_shift_24 in [@inline_let] let v1 = p.leaf_length in [@inline_let] let v2 = p.node_offset in [@inline_let] let node_depth_shift_16 = shift_left (to_u32 p.node_depth) (size 16) in [@inline_let] let inner_length_shift_16 = shift_left (to_u32 p.inner_length) (size 24) in [@inline_let] let v3 = (to_u32 p.xof_length) ^. node_depth_shift_16 ^. inner_length_shift_16 in uints_from_bytes_le (sub b 4ul 2ul) p.salt; uints_from_bytes_le (sub b 6ul 2ul) p.personal; // AF: Putting these writes *after* modifications on a subbuffer of b helps with modifies-reasoning: // By putting them before, F* struggles with proving that b[0..3] is not modified by uints_from_bytes_le b.(0ul) <- v0; b.(1ul) <- v1; b.(2ul) <- v2; b.(3ul) <- v3; let h1 = ST.get () in let aux () : Lemma (as_seq h1 b `Seq.equal` Spec.serialize_blake2s_params (Spec.set_key_length (Spec.set_digest_length (blake2_params_v h0 p) (v nn)) (v kk))) = let open Lib.Sequence in let open Lib.ByteSequence in let s0 = (u32 (v nn)) ^. (u32 (v kk) <<. (size 8)) ^. (u32 (v p.fanout) <<. (size 16)) ^. (u32 (v p.depth) <<. (size 24)) in let s1 = p.leaf_length in let s2 = p.node_offset in let s3 = (u32 (v p.xof_length)) ^. (u32 (v p.node_depth) <<. (size 16)) ^. (u32 (v p.inner_length) <<. (size 24)) in let salt_u32: lseq uint32 2 = uints_from_bytes_le (as_seq h0 (get_salt p)) in let s4 = salt_u32.[0] in let s5 = salt_u32.[1] in let personal_u32: lseq uint32 2 = uints_from_bytes_le (as_seq h0 (get_personal p)) in let s6 = personal_u32.[0] in let s7 = personal_u32.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); // There seems to be something not triggering with createL, requiring the // following lemma calls, and assert_norms to relate List.index to the // actual elements assert_norm (List.Tot.index l 0 == s0); assert_norm (List.Tot.index l 1 == s1); assert_norm (List.Tot.index l 2 == s2); assert_norm (List.Tot.index l 3 == s3); assert_norm (List.Tot.index l 4 == s4); assert_norm (List.Tot.index l 5 == s5); assert_norm (List.Tot.index l 6 == s6); assert_norm (List.Tot.index l 7 == s7); of_list_index l 0; of_list_index l 1; of_list_index l 2; of_list_index l 3; of_list_index l 4; of_list_index l 5; of_list_index l 6; of_list_index l 7 in aux() inline_for_extraction noextract let serialize_params_blake2b (kk:size_t{v kk <= Spec.max_key Spec.Blake2B}) (nn: size_t{1 <= v nn /\ v nn <= Spec.max_output Spec.Blake2B}) (p: blake2_params Spec.Blake2B) (b: lbuffer (word_t Spec.Blake2B) 8ul) : Stack unit (requires fun h -> live h b /\ blake2_params_inv #Spec.Blake2B h p /\ LowStar.Buffer.loc_disjoint (loc b) (blake2_params_loc p) /\ as_seq h b == Seq.create 8 (u64 0) ) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == Spec.serialize_blake2_params (Spec.set_key_length (Spec.set_digest_length (blake2_params_v h0 p) (v nn)) (v kk))) = let h0 = ST.get () in [@inline_let] let kk_shift_8 = shift_left (to_u64 kk) (size 8) in [@inline_let] let fanout_shift_16 = shift_left (to_u64 p.fanout) (size 16) in [@inline_let] let depth_shift_24 = shift_left (to_u64 p.depth) (size 24) in [@inline_let] let leaf_length_shift_32 = shift_left (to_u64 p.leaf_length) (size 32) in [@inline_let] let v0 = (to_u64 nn) ^. kk_shift_8 ^. fanout_shift_16 ^. depth_shift_24 ^. leaf_length_shift_32 in [@inline_let] let xof_length_shift_32 = shift_left (to_u64 p.xof_length) (size 32) in [@inline_let] let v1 = (to_u64 p.node_offset) ^. xof_length_shift_32 in [@inline_let] let inner_length_shift_8 = shift_left (to_u64 p.inner_length) (size 8) in [@inline_let] let v2 = (to_u64 p.node_depth) ^. inner_length_shift_8 in uints_from_bytes_le (sub b 4ul 2ul) p.salt; uints_from_bytes_le (sub b 6ul 2ul) p.personal; b.(0ul) <- v0; b.(1ul) <- v1; b.(2ul) <- v2; b.(3ul) <- (u64 0); let h1 = ST.get () in let aux () : Lemma (as_seq h1 b `Seq.equal` Spec.serialize_blake2b_params (Spec.set_key_length (Spec.set_digest_length (blake2_params_v h0 p) (v nn)) (v kk))) = let open Lib.Sequence in let open Lib.ByteSequence in let s0 = (u64 (v nn)) ^. (u64 (v kk) <<. (size 8)) ^. (u64 (v p.fanout) <<. (size 16)) ^. (u64 (v p.depth) <<. (size 24)) ^. (u64 (v p.leaf_length) <<. (size 32)) in let s1 = (u64 (v p.node_offset)) ^. (u64 (v p.xof_length) <<. (size 32)) in // The serialization corresponding to s2 contains node_depth and inner_length, // followed by the 14 reserved bytes which always seem to be zeros, and can hence // be ignored when building the corresponding uint64 using xor's let s2 = (u64 (v p.node_depth)) ^. (u64 (v p.inner_length) <<. (size 8)) in // s3 corresponds to the remaining of the reserved bytes let s3 = u64 0 in let salt_u64: lseq uint64 2 = uints_from_bytes_le (as_seq h0 (get_salt p)) in let s4 = salt_u64.[0] in let s5 = salt_u64.[1] in let personal_u64: lseq uint64 2 = uints_from_bytes_le (as_seq h0 (get_personal p)) in let s6 = personal_u64.[0] in let s7 = personal_u64.[1] in [@inline_let] let l = [s0; s1; s2; s3; s4; s5; s6; s7] in assert_norm (List.Tot.length l == 8); // There seems to be something not triggering with createL, requiring the // following lemma calls, and assert_norms to relate List.index to the // actual elements assert_norm (List.Tot.index l 0 == s0); assert_norm (List.Tot.index l 1 == s1); assert_norm (List.Tot.index l 2 == s2); assert_norm (List.Tot.index l 3 == s3); assert_norm (List.Tot.index l 4 == s4); assert_norm (List.Tot.index l 5 == s5); assert_norm (List.Tot.index l 6 == s6); assert_norm (List.Tot.index l 7 == s7); of_list_index l 0; of_list_index l 1; of_list_index l 2; of_list_index l 3; of_list_index l 4; of_list_index l 5; of_list_index l 6; of_list_index l 7 in aux() #pop-options let serialize_params al kk nn p b = match al with | Spec.Blake2S -> serialize_params_blake2s kk nn p b | Spec.Blake2B -> serialize_params_blake2b kk nn p b inline_for_extraction noextract val blake2_init: #al:Spec.alg -> #ms:m_spec -> blake2_init_st al ms
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Impl.Blake2.Constants.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Blake2.Generic.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Core", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Constants", "short_module": null }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 500, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Blake2.Generic.blake2_init_st al ms
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Hacl.Impl.Blake2.Core.m_spec", "Hacl.Impl.Blake2.Core.state_p", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Spec.Blake2.Definitions.max_key", "Prims.l_and", "Spec.Blake2.Definitions.max_output", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.Sequence.eq_intro", "Spec.Blake2.Definitions.row", "Hacl.Impl.Blake2.Core.state_v", "Spec.Blake2.blake2_init_hash", "Spec.Blake2.Definitions.blake2_default_params", "Prims._assert", "Lib.Buffer.modifies", "Lib.Buffer.union", "Lib.Buffer.loc", "Lib.Buffer.MUT", "Hacl.Impl.Blake2.Core.element_t", "Hacl.Impl.Blake2.Core.word_t", "Lib.Buffer.disjoint", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.Blake2.Core.create_row", "Lib.IntTypes.int_t", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Hat_Dot", "Lib.Buffer.op_Array_Access", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Blake2.Generic.serialize_params", "Hacl.Impl.Blake2.Core.blake2_params", "Hacl.Impl.Blake2.Core.create_default_params", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.U8", "Hacl.Impl.Blake2.Core.personal_len", "Lib.Buffer.create", "Lib.IntTypes.uint8", "Lib.IntTypes.u8", "Lib.Buffer.lbuffer", "Hacl.Impl.Blake2.Core.salt_len", "Hacl.Impl.Blake2.Generic.get_iv", "Hacl.Impl.Blake2.Core.row_len", "Hacl.Impl.Blake2.Core.rowi", "Hacl.Impl.Blake2.Core.row_p", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Spec.Blake2.Definitions.nat_to_word", "FStar.HyperStack.ST.push_frame" ]
[]
false
false
false
false
false
let blake2_init #al #ms hash kk nn =
push_frame (); let h0 = ST.get () in let tmp = create 8ul (Spec.nat_to_word al 0) in let r0 = rowi hash 0ul in let r1 = rowi hash 1ul in let r2 = rowi hash 2ul in let r3 = rowi hash 3ul in let iv0 = get_iv al 0ul in let iv1 = get_iv al 1ul in let iv2 = get_iv al 2ul in let iv3 = get_iv al 3ul in let iv4 = get_iv al 4ul in let iv5 = get_iv al 5ul in let iv6 = get_iv al 6ul in let iv7 = get_iv al 7ul in create_row #al #ms r2 iv0 iv1 iv2 iv3; create_row #al #ms r3 iv4 iv5 iv6 iv7; let salt = create (salt_len al) (u8 0) in let personal = create (personal_len al) (u8 0) in let p = create_default_params al salt personal in serialize_params al kk nn p tmp; let tmp0 = tmp.(0ul) in let tmp1 = tmp.(1ul) in let tmp2 = tmp.(2ul) in let tmp3 = tmp.(3ul) in let tmp4 = tmp.(4ul) in let tmp5 = tmp.(5ul) in let tmp6 = tmp.(6ul) in let tmp7 = tmp.(7ul) in let iv0' = iv0 ^. tmp0 in let iv1' = iv1 ^. tmp1 in let iv2' = iv2 ^. tmp2 in let iv3' = iv3 ^. tmp3 in let iv4' = iv4 ^. tmp4 in let iv5' = iv5 ^. tmp5 in let iv6' = iv6 ^. tmp6 in let iv7' = iv7 ^. tmp7 in create_row #al #ms r0 iv0' iv1' iv2' iv3'; create_row #al #ms r1 iv4' iv5' iv6' iv7'; let h1 = ST.get () in assert (disjoint hash tmp); assert (modifies ((loc hash) `union` (loc tmp)) h0 h1); Lib.Sequence.eq_intro (state_v h1 hash) (Spec.blake2_init_hash al (Spec.blake2_default_params al) (v kk) (v nn)); pop_frame ()
false
FStar.Fin.fst
FStar.Fin.is_reflexive_intro
val is_reflexive_intro (#a:Type) (r: binary_relation a) : Lemma (requires forall (x:a). r x x) (ensures is_reflexive r)
val is_reflexive_intro (#a:Type) (r: binary_relation a) : Lemma (requires forall (x:a). r x x) (ensures is_reflexive r)
let is_reflexive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a)
{ "file_name": "ulib/FStar.Fin.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 78, "end_line": 66, "start_col": 0, "start_line": 66 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Fin /// This module is supposed to contain various lemmas about /// finiteness. For now, it mainly provides a basic pigeonhole /// principle /// /// TODO: We might generalize this to also support general utilities /// for reasoning about cardinality, relation with injections and /// surjections, etc. /// /// UPD. November 8, 2022 -- added support for custom equivalence relation-aware /// pigeon principle lemma. /// /// For better readability of lemmas, Argument types are kept explicit, /// effectively duplicating the interface file declarations. module S = FStar.Seq (** Find an index of an element in [s] starting from [i] that validates [p] *) let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) = if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None (** Given a sequence [s] all of whose elements are at most [n], if the length of [s] is greater than [n], then there are two distinct indexes in [s] that contain the same element *) let rec pigeonhole (#n: pos) (s: S.seq (under n)) = if n = 1 then (0, 1) else let k0 = S.index s 0 in match find s (fun k -> k = k0) 1 with | Some i -> 0, i | None -> let (i1,i2) = pigeonhole (S.init #(under (n-1)) n (fun i -> let k = S.index s (i+1) in if k<k0 then k else k-1)) in (i1+1, i2+1) [@@"opaque_to_smt"] let is_reflexive #a r = forall (x:a). x `r` x [@@"opaque_to_smt"] let is_symmetric #a r = forall (x y:a). x `r` y == y `r` x [@@"opaque_to_smt"] let is_transitive #a r = forall (x y z:a). x `r` y /\ y `r` z ==> x `r` z
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Fin.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Fin.binary_relation a -> FStar.Pervasives.Lemma (requires forall (x: a). r x x) (ensures FStar.Fin.is_reflexive r)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Fin.binary_relation", "FStar.Pervasives.reveal_opaque", "FStar.Fin.is_reflexive", "Prims.unit" ]
[]
true
false
true
false
false
let is_reflexive_intro #a r =
reveal_opaque (`%is_reflexive) (is_reflexive #a)
false
FStar.Fin.fst
FStar.Fin.is_symmetric_intro
val is_symmetric_intro (#a:Type) (r: binary_relation a) : Lemma (requires forall (x:a). r x x) (ensures is_reflexive r)
val is_symmetric_intro (#a:Type) (r: binary_relation a) : Lemma (requires forall (x:a). r x x) (ensures is_reflexive r)
let is_symmetric_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a)
{ "file_name": "ulib/FStar.Fin.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 78, "end_line": 68, "start_col": 0, "start_line": 68 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Fin /// This module is supposed to contain various lemmas about /// finiteness. For now, it mainly provides a basic pigeonhole /// principle /// /// TODO: We might generalize this to also support general utilities /// for reasoning about cardinality, relation with injections and /// surjections, etc. /// /// UPD. November 8, 2022 -- added support for custom equivalence relation-aware /// pigeon principle lemma. /// /// For better readability of lemmas, Argument types are kept explicit, /// effectively duplicating the interface file declarations. module S = FStar.Seq (** Find an index of an element in [s] starting from [i] that validates [p] *) let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) = if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None (** Given a sequence [s] all of whose elements are at most [n], if the length of [s] is greater than [n], then there are two distinct indexes in [s] that contain the same element *) let rec pigeonhole (#n: pos) (s: S.seq (under n)) = if n = 1 then (0, 1) else let k0 = S.index s 0 in match find s (fun k -> k = k0) 1 with | Some i -> 0, i | None -> let (i1,i2) = pigeonhole (S.init #(under (n-1)) n (fun i -> let k = S.index s (i+1) in if k<k0 then k else k-1)) in (i1+1, i2+1) [@@"opaque_to_smt"] let is_reflexive #a r = forall (x:a). x `r` x [@@"opaque_to_smt"] let is_symmetric #a r = forall (x y:a). x `r` y == y `r` x [@@"opaque_to_smt"] let is_transitive #a r = forall (x y z:a). x `r` y /\ y `r` z ==> x `r` z let is_reflexive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Fin.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Fin.binary_relation a -> FStar.Pervasives.Lemma (requires forall (x: a). r x x) (ensures FStar.Fin.is_reflexive r)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Fin.binary_relation", "FStar.Pervasives.reveal_opaque", "FStar.Fin.is_reflexive", "Prims.unit" ]
[]
true
false
true
false
false
let is_symmetric_intro #a r =
reveal_opaque (`%is_reflexive) (is_reflexive #a)
false
FStar.Fin.fst
FStar.Fin.is_transitive_intro
val is_transitive_intro (#a:Type) (r: binary_relation a) : Lemma (requires forall (x:a). r x x) (ensures is_reflexive r)
val is_transitive_intro (#a:Type) (r: binary_relation a) : Lemma (requires forall (x:a). r x x) (ensures is_reflexive r)
let is_transitive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a)
{ "file_name": "ulib/FStar.Fin.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 79, "end_line": 70, "start_col": 0, "start_line": 70 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Fin /// This module is supposed to contain various lemmas about /// finiteness. For now, it mainly provides a basic pigeonhole /// principle /// /// TODO: We might generalize this to also support general utilities /// for reasoning about cardinality, relation with injections and /// surjections, etc. /// /// UPD. November 8, 2022 -- added support for custom equivalence relation-aware /// pigeon principle lemma. /// /// For better readability of lemmas, Argument types are kept explicit, /// effectively duplicating the interface file declarations. module S = FStar.Seq (** Find an index of an element in [s] starting from [i] that validates [p] *) let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) = if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None (** Given a sequence [s] all of whose elements are at most [n], if the length of [s] is greater than [n], then there are two distinct indexes in [s] that contain the same element *) let rec pigeonhole (#n: pos) (s: S.seq (under n)) = if n = 1 then (0, 1) else let k0 = S.index s 0 in match find s (fun k -> k = k0) 1 with | Some i -> 0, i | None -> let (i1,i2) = pigeonhole (S.init #(under (n-1)) n (fun i -> let k = S.index s (i+1) in if k<k0 then k else k-1)) in (i1+1, i2+1) [@@"opaque_to_smt"] let is_reflexive #a r = forall (x:a). x `r` x [@@"opaque_to_smt"] let is_symmetric #a r = forall (x y:a). x `r` y == y `r` x [@@"opaque_to_smt"] let is_transitive #a r = forall (x y z:a). x `r` y /\ y `r` z ==> x `r` z let is_reflexive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let is_symmetric_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Fin.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Fin.binary_relation a -> FStar.Pervasives.Lemma (requires forall (x: a). r x x) (ensures FStar.Fin.is_reflexive r)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Fin.binary_relation", "FStar.Pervasives.reveal_opaque", "FStar.Fin.is_reflexive", "Prims.unit" ]
[]
true
false
true
false
false
let is_transitive_intro #a r =
reveal_opaque (`%is_reflexive) (is_reflexive #a)
false
FStar.Fin.fst
FStar.Fin.pigeonhole
val pigeonhole (#n: pos) (s: S.seq (under n)) : Pure (in_ s * in_ s) (requires S.length s = n + 1) (ensures (fun (i1, i2) -> i1 < i2 /\ S.index s i1 = S.index s i2)) (decreases n)
val pigeonhole (#n: pos) (s: S.seq (under n)) : Pure (in_ s * in_ s) (requires S.length s = n + 1) (ensures (fun (i1, i2) -> i1 < i2 /\ S.index s i1 = S.index s i2)) (decreases n)
let rec pigeonhole (#n: pos) (s: S.seq (under n)) = if n = 1 then (0, 1) else let k0 = S.index s 0 in match find s (fun k -> k = k0) 1 with | Some i -> 0, i | None -> let (i1,i2) = pigeonhole (S.init #(under (n-1)) n (fun i -> let k = S.index s (i+1) in if k<k0 then k else k-1)) in (i1+1, i2+1)
{ "file_name": "ulib/FStar.Fin.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 29, "end_line": 55, "start_col": 0, "start_line": 46 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Fin /// This module is supposed to contain various lemmas about /// finiteness. For now, it mainly provides a basic pigeonhole /// principle /// /// TODO: We might generalize this to also support general utilities /// for reasoning about cardinality, relation with injections and /// surjections, etc. /// /// UPD. November 8, 2022 -- added support for custom equivalence relation-aware /// pigeon principle lemma. /// /// For better readability of lemmas, Argument types are kept explicit, /// effectively duplicating the interface file declarations. module S = FStar.Seq (** Find an index of an element in [s] starting from [i] that validates [p] *) let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) = if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None (** Given a sequence [s] all of whose elements are at most [n], if the length of [s] is greater than [n], then there are two distinct
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Fin.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq (FStar.Fin.under n) -> Prims.Pure (FStar.Fin.in_ s * FStar.Fin.in_ s)
Prims.Pure
[ "" ]
[]
[ "Prims.pos", "FStar.Seq.Base.seq", "FStar.Fin.under", "Prims.op_Equality", "Prims.int", "FStar.Pervasives.Native.Mktuple2", "FStar.Fin.in_", "Prims.bool", "FStar.Fin.find", "Prims.op_Subtraction", "FStar.Seq.Base.init", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.index", "Prims.op_Addition", "FStar.Pervasives.Native.tuple2", "FStar.Fin.pigeonhole" ]
[ "recursion" ]
false
false
false
false
false
let rec pigeonhole (#n: pos) (s: S.seq (under n)) =
if n = 1 then (0, 1) else let k0 = S.index s 0 in match find s (fun k -> k = k0) 1 with | Some i -> 0, i | None -> let i1, i2 = pigeonhole (S.init #(under (n - 1)) n (fun i -> let k = S.index s (i + 1) in if k < k0 then k else k - 1)) in (i1 + 1, i2 + 1)
false
FStar.Fin.fst
FStar.Fin.symm_lemma
val symm_lemma (#a:Type) (eq:equivalence_relation a) (x y:a) : Lemma (eq x y == eq y x)
val symm_lemma (#a:Type) (eq:equivalence_relation a) (x y:a) : Lemma (eq x y == eq y x)
let symm_lemma #a _ _ _ = reveal_opaque (`%is_symmetric) (is_symmetric #a)
{ "file_name": "ulib/FStar.Fin.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 77, "end_line": 74, "start_col": 0, "start_line": 74 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Fin /// This module is supposed to contain various lemmas about /// finiteness. For now, it mainly provides a basic pigeonhole /// principle /// /// TODO: We might generalize this to also support general utilities /// for reasoning about cardinality, relation with injections and /// surjections, etc. /// /// UPD. November 8, 2022 -- added support for custom equivalence relation-aware /// pigeon principle lemma. /// /// For better readability of lemmas, Argument types are kept explicit, /// effectively duplicating the interface file declarations. module S = FStar.Seq (** Find an index of an element in [s] starting from [i] that validates [p] *) let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) = if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None (** Given a sequence [s] all of whose elements are at most [n], if the length of [s] is greater than [n], then there are two distinct indexes in [s] that contain the same element *) let rec pigeonhole (#n: pos) (s: S.seq (under n)) = if n = 1 then (0, 1) else let k0 = S.index s 0 in match find s (fun k -> k = k0) 1 with | Some i -> 0, i | None -> let (i1,i2) = pigeonhole (S.init #(under (n-1)) n (fun i -> let k = S.index s (i+1) in if k<k0 then k else k-1)) in (i1+1, i2+1) [@@"opaque_to_smt"] let is_reflexive #a r = forall (x:a). x `r` x [@@"opaque_to_smt"] let is_symmetric #a r = forall (x y:a). x `r` y == y `r` x [@@"opaque_to_smt"] let is_transitive #a r = forall (x y z:a). x `r` y /\ y `r` z ==> x `r` z let is_reflexive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let is_symmetric_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let is_transitive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let refl_lemma #a _ _ = reveal_opaque (`%is_reflexive) (is_reflexive #a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Fin.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
eq: FStar.Fin.equivalence_relation a -> x: a -> y: a -> FStar.Pervasives.Lemma (ensures eq x y == eq y x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Fin.equivalence_relation", "FStar.Pervasives.reveal_opaque", "FStar.Fin.binary_relation", "FStar.Fin.is_symmetric", "Prims.unit" ]
[]
true
false
true
false
false
let symm_lemma #a _ _ _ =
reveal_opaque (`%is_symmetric) (is_symmetric #a)
false
FStar.Fin.fst
FStar.Fin.refl_lemma
val refl_lemma (#a:Type) (eq: equivalence_relation a) (x:a) : Lemma (eq x x)
val refl_lemma (#a:Type) (eq: equivalence_relation a) (x:a) : Lemma (eq x x)
let refl_lemma #a _ _ = reveal_opaque (`%is_reflexive) (is_reflexive #a)
{ "file_name": "ulib/FStar.Fin.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 77, "end_line": 72, "start_col": 0, "start_line": 72 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Fin /// This module is supposed to contain various lemmas about /// finiteness. For now, it mainly provides a basic pigeonhole /// principle /// /// TODO: We might generalize this to also support general utilities /// for reasoning about cardinality, relation with injections and /// surjections, etc. /// /// UPD. November 8, 2022 -- added support for custom equivalence relation-aware /// pigeon principle lemma. /// /// For better readability of lemmas, Argument types are kept explicit, /// effectively duplicating the interface file declarations. module S = FStar.Seq (** Find an index of an element in [s] starting from [i] that validates [p] *) let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) = if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None (** Given a sequence [s] all of whose elements are at most [n], if the length of [s] is greater than [n], then there are two distinct indexes in [s] that contain the same element *) let rec pigeonhole (#n: pos) (s: S.seq (under n)) = if n = 1 then (0, 1) else let k0 = S.index s 0 in match find s (fun k -> k = k0) 1 with | Some i -> 0, i | None -> let (i1,i2) = pigeonhole (S.init #(under (n-1)) n (fun i -> let k = S.index s (i+1) in if k<k0 then k else k-1)) in (i1+1, i2+1) [@@"opaque_to_smt"] let is_reflexive #a r = forall (x:a). x `r` x [@@"opaque_to_smt"] let is_symmetric #a r = forall (x y:a). x `r` y == y `r` x [@@"opaque_to_smt"] let is_transitive #a r = forall (x y z:a). x `r` y /\ y `r` z ==> x `r` z let is_reflexive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let is_symmetric_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let is_transitive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Fin.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
eq: FStar.Fin.equivalence_relation a -> x: a -> FStar.Pervasives.Lemma (ensures eq x x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Fin.equivalence_relation", "FStar.Pervasives.reveal_opaque", "FStar.Fin.binary_relation", "FStar.Fin.is_reflexive", "Prims.unit" ]
[]
true
false
true
false
false
let refl_lemma #a _ _ =
reveal_opaque (`%is_reflexive) (is_reflexive #a)
false
FStar.Fin.fst
FStar.Fin.trans_lemma
val trans_lemma (#a:Type) (eq: equivalence_relation a) (x y z:a) : Lemma (requires (eq x y \/ eq y x) /\ (eq y z \/ eq z y)) (ensures (x `eq` z) && (z `eq` x))
val trans_lemma (#a:Type) (eq: equivalence_relation a) (x y z:a) : Lemma (requires (eq x y \/ eq y x) /\ (eq y z \/ eq z y)) (ensures (x `eq` z) && (z `eq` x))
let trans_lemma #a _ _ _ _ = reveal_opaque (`%is_transitive) (is_transitive #a); reveal_opaque (`%is_symmetric) (is_symmetric #a)
{ "file_name": "ulib/FStar.Fin.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 77, "end_line": 77, "start_col": 0, "start_line": 76 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Fin /// This module is supposed to contain various lemmas about /// finiteness. For now, it mainly provides a basic pigeonhole /// principle /// /// TODO: We might generalize this to also support general utilities /// for reasoning about cardinality, relation with injections and /// surjections, etc. /// /// UPD. November 8, 2022 -- added support for custom equivalence relation-aware /// pigeon principle lemma. /// /// For better readability of lemmas, Argument types are kept explicit, /// effectively duplicating the interface file declarations. module S = FStar.Seq (** Find an index of an element in [s] starting from [i] that validates [p] *) let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) = if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None (** Given a sequence [s] all of whose elements are at most [n], if the length of [s] is greater than [n], then there are two distinct indexes in [s] that contain the same element *) let rec pigeonhole (#n: pos) (s: S.seq (under n)) = if n = 1 then (0, 1) else let k0 = S.index s 0 in match find s (fun k -> k = k0) 1 with | Some i -> 0, i | None -> let (i1,i2) = pigeonhole (S.init #(under (n-1)) n (fun i -> let k = S.index s (i+1) in if k<k0 then k else k-1)) in (i1+1, i2+1) [@@"opaque_to_smt"] let is_reflexive #a r = forall (x:a). x `r` x [@@"opaque_to_smt"] let is_symmetric #a r = forall (x y:a). x `r` y == y `r` x [@@"opaque_to_smt"] let is_transitive #a r = forall (x y z:a). x `r` y /\ y `r` z ==> x `r` z let is_reflexive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let is_symmetric_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let is_transitive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let refl_lemma #a _ _ = reveal_opaque (`%is_reflexive) (is_reflexive #a) let symm_lemma #a _ _ _ = reveal_opaque (`%is_symmetric) (is_symmetric #a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Fin.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
eq: FStar.Fin.equivalence_relation a -> x: a -> y: a -> z: a -> FStar.Pervasives.Lemma (requires (eq x y \/ eq y x) /\ (eq y z \/ eq z y)) (ensures eq x z && eq z x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Fin.equivalence_relation", "FStar.Pervasives.reveal_opaque", "FStar.Fin.binary_relation", "FStar.Fin.is_symmetric", "Prims.unit", "FStar.Fin.is_transitive" ]
[]
true
false
true
false
false
let trans_lemma #a _ _ _ _ =
reveal_opaque (`%is_transitive) (is_transitive #a); reveal_opaque (`%is_symmetric) (is_symmetric #a)
false
Steel.ST.Array.Util.fst
Steel.ST.Array.Util.array_literal
val array_literal (#a:Type0) (n:US.t) (f:(i:US.t{US.v i < US.v n} -> a)) : ST (A.array a) emp (fun arr -> A.pts_to arr full_perm (Seq.init (US.v n) (fun i -> f (US.uint_to_t i)))) (requires US.v n > 0) (ensures fun arr -> A.length arr == US.v n)
val array_literal (#a:Type0) (n:US.t) (f:(i:US.t{US.v i < US.v n} -> a)) : ST (A.array a) emp (fun arr -> A.pts_to arr full_perm (Seq.init (US.v n) (fun i -> f (US.uint_to_t i)))) (requires US.v n > 0) (ensures fun arr -> A.length arr == US.v n)
let array_literal #a n f = let arr = A.alloc (f 0sz) n in intro_pure (array_literal_inv_pure n f 1 (Seq.create (US.v n) (f 0sz))); intro_exists (Seq.create (US.v n) (f 0sz)) (array_literal_inv n arr f 1); Loops.for_loop 1sz n (fun i -> exists_ (array_literal_inv n arr f i)) (array_literal_loop_body n arr f); let s = elim_exists () in A.pts_to_length arr s; elim_pure (array_literal_inv_pure n f (US.v n) s); assert (Seq.equal s (Seq.init (US.v n) (fun i -> f (US.uint_to_t i)))); rewrite (A.pts_to arr full_perm s) _; return arr
{ "file_name": "lib/steel/Steel.ST.Array.Util.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 12, "end_line": 100, "start_col": 0, "start_line": 80 }
(* Copyright 2021 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Array.Util module G = FStar.Ghost module US = FStar.SizeT module R = Steel.ST.Reference module A = Steel.ST.Array module Loops = Steel.ST.Loops open Steel.FractionalPermission open Steel.ST.Effect open Steel.ST.Util /// Implementation of array_literal using a for loop let array_literal_inv_pure (#a:Type0) (n:US.t) (f:(i:US.t{US.v i < US.v n} -> a)) (i:Loops.nat_at_most n) (s:Seq.seq a) : prop = forall (j:nat). (j < i /\ j < Seq.length s) ==> Seq.index s j == f (US.uint_to_t j) [@@ __reduce__] let array_literal_inv (#a:Type0) (n:US.t) (arr:A.array a) (f:(i:US.t{US.v i < US.v n} -> a)) (i:Loops.nat_at_most n) : Seq.seq a -> vprop = fun s -> A.pts_to arr full_perm s `star` pure (array_literal_inv_pure n f i s) inline_for_extraction let array_literal_loop_body (#a:Type0) (n:US.t) (arr:A.array a{A.length arr == US.v n}) (f:(i:US.t{US.v i < US.v n} -> a)) : i:Loops.u32_between 0sz n -> STT unit (exists_ (array_literal_inv n arr f (US.v i))) (fun _ -> exists_ (array_literal_inv n arr f (US.v i + 1))) = fun i -> let s = elim_exists () in (); A.pts_to_length arr s; elim_pure (array_literal_inv_pure n f (US.v i) s); A.write arr i (f i); intro_pure (array_literal_inv_pure n f (US.v i + 1) (Seq.upd s (US.v i) (f i))); intro_exists (Seq.upd s (US.v i) (f i)) (array_literal_inv n arr f (US.v i + 1))
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Reference.fsti.checked", "Steel.ST.Loops.fsti.checked", "Steel.ST.Effect.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.FractionalPermission.fst.checked", "prims.fst.checked", "FStar.SizeT.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.Array.Util.fst" }
[ { "abbrev": true, "full_module": "Steel.ST.Loops", "short_module": "Loops" }, { "abbrev": true, "full_module": "Steel.ST.Reference", "short_module": "R" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST.Array", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: FStar.SizeT.t -> f: (i: FStar.SizeT.t{FStar.SizeT.v i < FStar.SizeT.v n} -> a) -> Steel.ST.Effect.ST (Steel.ST.Array.array a)
Steel.ST.Effect.ST
[]
[]
[ "FStar.SizeT.t", "Prims.b2t", "Prims.op_LessThan", "FStar.SizeT.v", "Steel.ST.Util.return", "Steel.ST.Array.array", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.ST.Array.pts_to", "Steel.FractionalPermission.full_perm", "FStar.Seq.Base.init", "Prims.nat", "FStar.SizeT.uint_to_t", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.ST.Util.rewrite", "FStar.Ghost.reveal", "FStar.Seq.Base.seq", "Prims._assert", "FStar.Seq.Base.equal", "Steel.ST.Util.elim_pure", "Steel.ST.Array.Util.array_literal_inv_pure", "Steel.ST.Array.pts_to_length", "FStar.Ghost.erased", "Steel.ST.Util.elim_exists", "Steel.Effect.Common.VStar", "Steel.ST.Util.pure", "Steel.ST.Loops.for_loop", "FStar.SizeT.__uint_to_t", "Steel.ST.Loops.nat_at_most", "Steel.ST.Util.exists_", "Steel.ST.Array.Util.array_literal_inv", "Steel.ST.Array.Util.array_literal_loop_body", "Steel.ST.Util.intro_exists", "FStar.Seq.Base.create", "Steel.ST.Util.intro_pure", "Steel.ST.Array.alloc" ]
[]
false
true
false
false
false
let array_literal #a n f =
let arr = A.alloc (f 0sz) n in intro_pure (array_literal_inv_pure n f 1 (Seq.create (US.v n) (f 0sz))); intro_exists (Seq.create (US.v n) (f 0sz)) (array_literal_inv n arr f 1); Loops.for_loop 1sz n (fun i -> exists_ (array_literal_inv n arr f i)) (array_literal_loop_body n arr f); let s = elim_exists () in A.pts_to_length arr s; elim_pure (array_literal_inv_pure n f (US.v n) s); assert (Seq.equal s (Seq.init (US.v n) (fun i -> f (US.uint_to_t i)))); rewrite (A.pts_to arr full_perm s) _; return arr
false
FStar.Fin.fst
FStar.Fin.contains_eq_means_nonempty
val contains_eq_means_nonempty (#a:Type) (eq:equivalence_relation a) (s: S.seq a) (x:a) : Lemma (requires contains_eq eq s x) (ensures S.length s > 0) [SMTPat(contains_eq eq s x)]
val contains_eq_means_nonempty (#a:Type) (eq:equivalence_relation a) (s: S.seq a) (x:a) : Lemma (requires contains_eq eq s x) (ensures S.length s > 0) [SMTPat(contains_eq eq s x)]
let contains_eq_means_nonempty #a (eq:equivalence_relation a) (s: S.seq a) (x:a) : Lemma (requires contains_eq eq s x) (ensures S.length s > 0) [SMTPat(contains_eq eq s x)] = reveal_opaque (`%contains_eq) (contains_eq eq)
{ "file_name": "ulib/FStar.Fin.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 84, "start_col": 0, "start_line": 80 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Fin /// This module is supposed to contain various lemmas about /// finiteness. For now, it mainly provides a basic pigeonhole /// principle /// /// TODO: We might generalize this to also support general utilities /// for reasoning about cardinality, relation with injections and /// surjections, etc. /// /// UPD. November 8, 2022 -- added support for custom equivalence relation-aware /// pigeon principle lemma. /// /// For better readability of lemmas, Argument types are kept explicit, /// effectively duplicating the interface file declarations. module S = FStar.Seq (** Find an index of an element in [s] starting from [i] that validates [p] *) let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) = if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None (** Given a sequence [s] all of whose elements are at most [n], if the length of [s] is greater than [n], then there are two distinct indexes in [s] that contain the same element *) let rec pigeonhole (#n: pos) (s: S.seq (under n)) = if n = 1 then (0, 1) else let k0 = S.index s 0 in match find s (fun k -> k = k0) 1 with | Some i -> 0, i | None -> let (i1,i2) = pigeonhole (S.init #(under (n-1)) n (fun i -> let k = S.index s (i+1) in if k<k0 then k else k-1)) in (i1+1, i2+1) [@@"opaque_to_smt"] let is_reflexive #a r = forall (x:a). x `r` x [@@"opaque_to_smt"] let is_symmetric #a r = forall (x y:a). x `r` y == y `r` x [@@"opaque_to_smt"] let is_transitive #a r = forall (x y z:a). x `r` y /\ y `r` z ==> x `r` z let is_reflexive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let is_symmetric_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let is_transitive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let refl_lemma #a _ _ = reveal_opaque (`%is_reflexive) (is_reflexive #a) let symm_lemma #a _ _ _ = reveal_opaque (`%is_symmetric) (is_symmetric #a) let trans_lemma #a _ _ _ _ = reveal_opaque (`%is_transitive) (is_transitive #a); reveal_opaque (`%is_symmetric) (is_symmetric #a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Fin.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
eq: FStar.Fin.equivalence_relation a -> s: FStar.Seq.Base.seq a -> x: a -> FStar.Pervasives.Lemma (requires FStar.Fin.contains_eq eq s x) (ensures FStar.Seq.Base.length s > 0) [SMTPat (FStar.Fin.contains_eq eq s x)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Fin.equivalence_relation", "FStar.Seq.Base.seq", "FStar.Pervasives.reveal_opaque", "Prims.logical", "FStar.Fin.contains_eq", "Prims.unit", "Prims.squash", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
true
false
true
false
false
let contains_eq_means_nonempty #a (eq: equivalence_relation a) (s: S.seq a) (x: a) : Lemma (requires contains_eq eq s x) (ensures S.length s > 0) [SMTPat (contains_eq eq s x)] =
reveal_opaque (`%contains_eq) (contains_eq eq)
false
FStar.Fin.fst
FStar.Fin.find_eq
val find_eq (#a:Type) (eq:equivalence_relation a) (s: S.seq a) (x:a { contains_eq eq s x }) : (i: nat { (i < S.length s) /\ (x `eq` S.index s i) /\ (forall (j: under i). not (x `eq` S.index s j)) })
val find_eq (#a:Type) (eq:equivalence_relation a) (s: S.seq a) (x:a { contains_eq eq s x }) : (i: nat { (i < S.length s) /\ (x `eq` S.index s i) /\ (forall (j: under i). not (x `eq` S.index s j)) })
let rec find_eq #a (eq:equivalence_relation a) (s: S.seq a) (x:a { contains_eq eq s x }) : Tot (i: nat { (i < S.length s) /\ (x `eq` S.index s i) /\ (forall (j: under i). not (x `eq` S.index s j)) }) (decreases S.length s) = reveal_opaque (`%contains_eq) (contains_eq eq); if S.length s = 1 then 0 else if x `eq` S.index s 0 then 0 else begin tail_contains_eq eq s x; let ieq = find_eq eq (S.tail s) x in let aux (i: under (1 + ieq)) : Lemma (not (x `eq` S.index s i)) = if i > 0 then assert (S.index (S.tail s) (i-1) == S.index s i) in Classical.forall_intro aux; 1 + ieq end
{ "file_name": "ulib/FStar.Fin.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 12, "end_line": 116, "start_col": 0, "start_line": 98 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Fin /// This module is supposed to contain various lemmas about /// finiteness. For now, it mainly provides a basic pigeonhole /// principle /// /// TODO: We might generalize this to also support general utilities /// for reasoning about cardinality, relation with injections and /// surjections, etc. /// /// UPD. November 8, 2022 -- added support for custom equivalence relation-aware /// pigeon principle lemma. /// /// For better readability of lemmas, Argument types are kept explicit, /// effectively duplicating the interface file declarations. module S = FStar.Seq (** Find an index of an element in [s] starting from [i] that validates [p] *) let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) = if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None (** Given a sequence [s] all of whose elements are at most [n], if the length of [s] is greater than [n], then there are two distinct indexes in [s] that contain the same element *) let rec pigeonhole (#n: pos) (s: S.seq (under n)) = if n = 1 then (0, 1) else let k0 = S.index s 0 in match find s (fun k -> k = k0) 1 with | Some i -> 0, i | None -> let (i1,i2) = pigeonhole (S.init #(under (n-1)) n (fun i -> let k = S.index s (i+1) in if k<k0 then k else k-1)) in (i1+1, i2+1) [@@"opaque_to_smt"] let is_reflexive #a r = forall (x:a). x `r` x [@@"opaque_to_smt"] let is_symmetric #a r = forall (x y:a). x `r` y == y `r` x [@@"opaque_to_smt"] let is_transitive #a r = forall (x y z:a). x `r` y /\ y `r` z ==> x `r` z let is_reflexive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let is_symmetric_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let is_transitive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let refl_lemma #a _ _ = reveal_opaque (`%is_reflexive) (is_reflexive #a) let symm_lemma #a _ _ _ = reveal_opaque (`%is_symmetric) (is_symmetric #a) let trans_lemma #a _ _ _ _ = reveal_opaque (`%is_transitive) (is_transitive #a); reveal_opaque (`%is_symmetric) (is_symmetric #a) let contains_eq_means_nonempty #a (eq:equivalence_relation a) (s: S.seq a) (x:a) : Lemma (requires contains_eq eq s x) (ensures S.length s > 0) [SMTPat(contains_eq eq s x)] = reveal_opaque (`%contains_eq) (contains_eq eq) let tail_contains_eq #a (eq: equivalence_relation a) (s:S.seq a) (x:a { contains_eq eq s x /\ ~(eq x (S.head s)) }) : Lemma (contains_eq eq (S.tail s) x) = let t = S.tail s in reveal_opaque (`%contains_eq) (contains_eq eq); eliminate exists (i: under (S.length s)). eq x (S.index s i) returns exists (k: under (S.length t)). eq x (S.index t k) with _. assert (S.index s i == S.index t (i-1)) (** retrieves the index of an element given prior knowledge of its presense unlike find function above, that returns option, this one guarantees
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Fin.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
eq: FStar.Fin.equivalence_relation a -> s: FStar.Seq.Base.seq a -> x: a{FStar.Fin.contains_eq eq s x} -> Prims.Tot (i: Prims.nat { i < FStar.Seq.Base.length s /\ eq x (FStar.Seq.Base.index s i) /\ (forall (j: FStar.Fin.under i). Prims.op_Negation (eq x (FStar.Seq.Base.index s j))) })
Prims.Tot
[ "", "total" ]
[]
[ "FStar.Fin.equivalence_relation", "FStar.Seq.Base.seq", "FStar.Fin.contains_eq", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.bool", "FStar.Seq.Base.index", "Prims.op_Addition", "Prims.unit", "FStar.Classical.forall_intro", "FStar.Fin.under", "Prims.b2t", "Prims.op_Negation", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Prims.op_GreaterThan", "Prims._assert", "Prims.eq2", "FStar.Seq.Properties.tail", "Prims.op_Subtraction", "Prims.nat", "Prims.l_and", "Prims.op_LessThan", "Prims.l_Forall", "FStar.Fin.find_eq", "FStar.Fin.tail_contains_eq", "FStar.Pervasives.reveal_opaque", "Prims.logical" ]
[ "recursion" ]
false
false
false
false
false
let rec find_eq #a (eq: equivalence_relation a) (s: S.seq a) (x: a{contains_eq eq s x}) : Tot (i: nat { (i < S.length s) /\ (x `eq` (S.index s i)) /\ (forall (j: under i). not (x `eq` (S.index s j))) }) (decreases S.length s) =
reveal_opaque (`%contains_eq) (contains_eq eq); if S.length s = 1 then 0 else if x `eq` (S.index s 0) then 0 else (tail_contains_eq eq s x; let ieq = find_eq eq (S.tail s) x in let aux (i: under (1 + ieq)) : Lemma (not (x `eq` (S.index s i))) = if i > 0 then assert (S.index (S.tail s) (i - 1) == S.index s i) in Classical.forall_intro aux; 1 + ieq)
false
FStar.Fin.fst
FStar.Fin.tail_contains_eq
val tail_contains_eq (#a: _) (eq: equivalence_relation a) (s: S.seq a) (x: a{contains_eq eq s x /\ ~(eq x (S.head s))}) : Lemma (contains_eq eq (S.tail s) x)
val tail_contains_eq (#a: _) (eq: equivalence_relation a) (s: S.seq a) (x: a{contains_eq eq s x /\ ~(eq x (S.head s))}) : Lemma (contains_eq eq (S.tail s) x)
let tail_contains_eq #a (eq: equivalence_relation a) (s:S.seq a) (x:a { contains_eq eq s x /\ ~(eq x (S.head s)) }) : Lemma (contains_eq eq (S.tail s) x) = let t = S.tail s in reveal_opaque (`%contains_eq) (contains_eq eq); eliminate exists (i: under (S.length s)). eq x (S.index s i) returns exists (k: under (S.length t)). eq x (S.index t k) with _. assert (S.index s i == S.index t (i-1))
{ "file_name": "ulib/FStar.Fin.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 51, "end_line": 93, "start_col": 0, "start_line": 86 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Fin /// This module is supposed to contain various lemmas about /// finiteness. For now, it mainly provides a basic pigeonhole /// principle /// /// TODO: We might generalize this to also support general utilities /// for reasoning about cardinality, relation with injections and /// surjections, etc. /// /// UPD. November 8, 2022 -- added support for custom equivalence relation-aware /// pigeon principle lemma. /// /// For better readability of lemmas, Argument types are kept explicit, /// effectively duplicating the interface file declarations. module S = FStar.Seq (** Find an index of an element in [s] starting from [i] that validates [p] *) let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) = if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None (** Given a sequence [s] all of whose elements are at most [n], if the length of [s] is greater than [n], then there are two distinct indexes in [s] that contain the same element *) let rec pigeonhole (#n: pos) (s: S.seq (under n)) = if n = 1 then (0, 1) else let k0 = S.index s 0 in match find s (fun k -> k = k0) 1 with | Some i -> 0, i | None -> let (i1,i2) = pigeonhole (S.init #(under (n-1)) n (fun i -> let k = S.index s (i+1) in if k<k0 then k else k-1)) in (i1+1, i2+1) [@@"opaque_to_smt"] let is_reflexive #a r = forall (x:a). x `r` x [@@"opaque_to_smt"] let is_symmetric #a r = forall (x y:a). x `r` y == y `r` x [@@"opaque_to_smt"] let is_transitive #a r = forall (x y z:a). x `r` y /\ y `r` z ==> x `r` z let is_reflexive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let is_symmetric_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let is_transitive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let refl_lemma #a _ _ = reveal_opaque (`%is_reflexive) (is_reflexive #a) let symm_lemma #a _ _ _ = reveal_opaque (`%is_symmetric) (is_symmetric #a) let trans_lemma #a _ _ _ _ = reveal_opaque (`%is_transitive) (is_transitive #a); reveal_opaque (`%is_symmetric) (is_symmetric #a) let contains_eq_means_nonempty #a (eq:equivalence_relation a) (s: S.seq a) (x:a) : Lemma (requires contains_eq eq s x) (ensures S.length s > 0) [SMTPat(contains_eq eq s x)] = reveal_opaque (`%contains_eq) (contains_eq eq)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Fin.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
eq: FStar.Fin.equivalence_relation a -> s: FStar.Seq.Base.seq a -> x: a{FStar.Fin.contains_eq eq s x /\ ~(eq x (FStar.Seq.Properties.head s))} -> FStar.Pervasives.Lemma (ensures FStar.Fin.contains_eq eq (FStar.Seq.Properties.tail s) x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Fin.equivalence_relation", "FStar.Seq.Base.seq", "Prims.l_and", "FStar.Fin.contains_eq", "Prims.l_not", "Prims.b2t", "FStar.Seq.Properties.head", "FStar.Classical.Sugar.exists_elim", "FStar.Fin.under", "FStar.Seq.Base.length", "FStar.Seq.Base.index", "Prims.l_Exists", "Prims.squash", "Prims._assert", "Prims.eq2", "Prims.op_Subtraction", "Prims.unit", "FStar.Pervasives.reveal_opaque", "Prims.logical", "FStar.Seq.Properties.tail", "Prims.l_True", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let tail_contains_eq #a (eq: equivalence_relation a) (s: S.seq a) (x: a{contains_eq eq s x /\ ~(eq x (S.head s))}) : Lemma (contains_eq eq (S.tail s) x) =
let t = S.tail s in reveal_opaque (`%contains_eq) (contains_eq eq); eliminate exists (i: under (S.length s)). eq x (S.index s i) returns exists (k: under (S.length t)). eq x (S.index t k) with _. assert (S.index s i == S.index t (i - 1))
false
Clear.fst
Clear.l1
val l1 : x: Prims.bool -> y: Prims.int -> z: Prims.unit -> Prims.unit
let l1 (x : bool) (y : int) (z : unit) = assert (phi ==> (psi ==> xi)) by tau1 ()
{ "file_name": "examples/native_tactics/Clear.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 44, "end_line": 35, "start_col": 0, "start_line": 34 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Clear open FStar.Tactics.V2 assume val phi : Type assume val psi : Type assume val xi : Type assume val p : squash xi [@@plugin] let tau1 = fun () -> let _ = implies_intro () in clear_top (); let _ = implies_intro () in clear_top (); exact (`p)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked" ], "interface_file": false, "source_file": "Clear.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.bool -> y: Prims.int -> z: Prims.unit -> Prims.unit
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Prims.int", "Prims.unit", "FStar.Tactics.Effect.assert_by_tactic", "Prims.l_imp", "Clear.phi", "Clear.psi", "Clear.xi", "Clear.tau1" ]
[]
false
false
false
true
false
let l1 (x: bool) (y: int) (z: unit) =
FStar.Tactics.Effect.assert_by_tactic (phi ==> (psi ==> xi)) (fun _ -> (); tau1 ())
false
Clear.fst
Clear.tau1
val tau1 : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
let tau1 = fun () -> let _ = implies_intro () in clear_top (); let _ = implies_intro () in clear_top (); exact (`p)
{ "file_name": "examples/native_tactics/Clear.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 32, "start_col": 0, "start_line": 27 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Clear open FStar.Tactics.V2 assume val phi : Type assume val psi : Type assume val xi : Type assume val p : squash xi
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked" ], "interface_file": false, "source_file": "Clear.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.exact", "FStar.Stubs.Tactics.V2.Builtins.clear_top", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.implies_intro" ]
[]
false
true
false
false
false
let tau1 =
fun () -> let _ = implies_intro () in clear_top (); let _ = implies_intro () in clear_top (); exact (`p)
false
Clear.fst
Clear.tau2
val tau2 : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
let tau2 = fun () -> let e = cur_env () in let n = List.length (vars_of_env e) in let u = `int in clear_all_of_type u; let e = cur_env () in // We're removing two binders guard (List.length (vars_of_env e) = n - 2)
{ "file_name": "examples/native_tactics/Clear.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 66, "end_line": 57, "start_col": 0, "start_line": 51 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Clear open FStar.Tactics.V2 assume val phi : Type assume val psi : Type assume val xi : Type assume val p : squash xi [@@plugin] let tau1 = fun () -> let _ = implies_intro () in clear_top (); let _ = implies_intro () in clear_top (); exact (`p) let l1 (x : bool) (y : int) (z : unit) = assert (phi ==> (psi ==> xi)) by tau1 () let clear_all_of_type (t : typ) : Tac unit = let e = cur_env () in let bs = vars_of_env e in let _ = map (fun b -> if term_eq (type_of_binding b) t then clear b else ()) // We need to traverse the list backwards, to clear rightmost // binders first. Otherwise, if we go left-first, we will revert/intro // over a binder we want to clear and cause it to be refreshed. (List.rev bs) in ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked" ], "interface_file": false, "source_file": "Clear.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.unit", "FStar.Tactics.V2.Derived.guard", "Prims.op_Equality", "Prims.int", "FStar.List.Tot.Base.length", "FStar.Stubs.Reflection.V2.Data.binding", "FStar.Stubs.Reflection.V2.Builtins.vars_of_env", "Prims.op_Subtraction", "FStar.Stubs.Reflection.Types.env", "FStar.Tactics.V2.Derived.cur_env", "Clear.clear_all_of_type", "FStar.Stubs.Reflection.Types.term", "Prims.nat" ]
[]
false
true
false
false
false
let tau2 =
fun () -> let e = cur_env () in let n = List.length (vars_of_env e) in let u = `int in clear_all_of_type u; let e = cur_env () in guard (List.length (vars_of_env e) = n - 2)
false
Clear.fst
Clear.clear_all_of_type
val clear_all_of_type (t: typ) : Tac unit
val clear_all_of_type (t: typ) : Tac unit
let clear_all_of_type (t : typ) : Tac unit = let e = cur_env () in let bs = vars_of_env e in let _ = map (fun b -> if term_eq (type_of_binding b) t then clear b else ()) // We need to traverse the list backwards, to clear rightmost // binders first. Otherwise, if we go left-first, we will revert/intro // over a binder we want to clear and cause it to be refreshed. (List.rev bs) in ()
{ "file_name": "examples/native_tactics/Clear.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 6, "end_line": 48, "start_col": 0, "start_line": 38 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Clear open FStar.Tactics.V2 assume val phi : Type assume val psi : Type assume val xi : Type assume val p : squash xi [@@plugin] let tau1 = fun () -> let _ = implies_intro () in clear_top (); let _ = implies_intro () in clear_top (); exact (`p) let l1 (x : bool) (y : int) (z : unit) = assert (phi ==> (psi ==> xi)) by tau1 ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked" ], "interface_file": false, "source_file": "Clear.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Stubs.Reflection.Types.typ -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Stubs.Reflection.Types.typ", "Prims.unit", "Prims.list", "FStar.Tactics.Util.map", "FStar.Stubs.Reflection.V2.Data.binding", "FStar.Stubs.Reflection.V2.Builtins.term_eq", "FStar.Tactics.V2.Derived.type_of_binding", "FStar.Stubs.Tactics.V2.Builtins.clear", "Prims.bool", "FStar.List.Tot.Base.rev", "FStar.Stubs.Reflection.V2.Builtins.vars_of_env", "FStar.Stubs.Reflection.Types.env", "FStar.Tactics.V2.Derived.cur_env" ]
[]
false
true
false
false
false
let clear_all_of_type (t: typ) : Tac unit =
let e = cur_env () in let bs = vars_of_env e in let _ = map (fun b -> if term_eq (type_of_binding b) t then clear b) (List.rev bs) in ()
false
FStar.Fin.fst
FStar.Fin.pigeonhole_eq
val pigeonhole_eq (#a:Type) (eq: equivalence_relation a) (holes: S.seq a{S.length holes > 0}) (pigeons: S.seq (items_of eq holes)) : Pure (under (S.length pigeons) * under (S.length pigeons)) (requires S.length pigeons > S.length holes) (ensures (fun (i1, i2) -> i1 < i2 /\ (S.index pigeons i1 `eq` S.index pigeons i2))) (decreases S.length holes)
val pigeonhole_eq (#a:Type) (eq: equivalence_relation a) (holes: S.seq a{S.length holes > 0}) (pigeons: S.seq (items_of eq holes)) : Pure (under (S.length pigeons) * under (S.length pigeons)) (requires S.length pigeons > S.length holes) (ensures (fun (i1, i2) -> i1 < i2 /\ (S.index pigeons i1 `eq` S.index pigeons i2))) (decreases S.length holes)
let rec pigeonhole_eq (#a:Type) (eq: equivalence_relation a) (holes: S.seq a{S.length holes > 0}) (pigeons: S.seq (items_of eq holes)) = if S.length holes = 1 then begin reveal_opaque (`%contains_eq) (contains_eq eq); trans_lemma eq (S.index pigeons 0) (S.index holes 0) (S.index pigeons 1); (0,1) end else let first_pigeon = S.index pigeons 0 in match find pigeons (fun k -> eq k first_pigeon) 1 with | Some i -> (symm_lemma eq (S.index pigeons 0) (S.index pigeons i); (0,i)) | None -> let index_of_first_pigeon = find_eq eq holes first_pigeon in //we carefully carve first_pigeon from (holes) let holes_except_first_pigeon = S.append (S.slice holes 0 (index_of_first_pigeon)) (S.slice holes (index_of_first_pigeon+1) (S.length holes)) in let all_but_first_pigeon_remain_in_reduced (x: items_of eq holes { not (eq x first_pigeon) }) : Lemma (contains_eq eq holes_except_first_pigeon x) = let index_of_x_in_holes = find_eq eq holes x in reveal_opaque (`%contains_eq) (contains_eq eq); if index_of_x_in_holes < index_of_first_pigeon then assert (S.index holes index_of_x_in_holes == S.index holes_except_first_pigeon index_of_x_in_holes) else begin // this serves to prove index_of_x_in_holes > index_of_first_pigeon (no equality!) Classical.move_requires (trans_lemma eq x (S.index holes index_of_x_in_holes)) first_pigeon; // append/slice smtpat hint assert (S.index holes index_of_x_in_holes == S.index holes_except_first_pigeon (index_of_x_in_holes-1)) end in Classical.forall_intro all_but_first_pigeon_remain_in_reduced; let i1, i2 = pigeonhole_eq (eq) (holes_except_first_pigeon) (S.init #(items_of eq holes_except_first_pigeon) (S.length pigeons - 1) (fun i -> S.index pigeons (i+1))) in (i1+1, i2+1)
{ "file_name": "ulib/FStar.Fin.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 161, "start_col": 0, "start_line": 128 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Fin /// This module is supposed to contain various lemmas about /// finiteness. For now, it mainly provides a basic pigeonhole /// principle /// /// TODO: We might generalize this to also support general utilities /// for reasoning about cardinality, relation with injections and /// surjections, etc. /// /// UPD. November 8, 2022 -- added support for custom equivalence relation-aware /// pigeon principle lemma. /// /// For better readability of lemmas, Argument types are kept explicit, /// effectively duplicating the interface file declarations. module S = FStar.Seq (** Find an index of an element in [s] starting from [i] that validates [p] *) let rec find (#a: Type) (s: S.seq a) (p: (a -> bool)) (i: under (S.length s)) = if p (S.index s i) then Some i else if i + 1 < S.length s then find #a s p (i + 1) else None (** Given a sequence [s] all of whose elements are at most [n], if the length of [s] is greater than [n], then there are two distinct indexes in [s] that contain the same element *) let rec pigeonhole (#n: pos) (s: S.seq (under n)) = if n = 1 then (0, 1) else let k0 = S.index s 0 in match find s (fun k -> k = k0) 1 with | Some i -> 0, i | None -> let (i1,i2) = pigeonhole (S.init #(under (n-1)) n (fun i -> let k = S.index s (i+1) in if k<k0 then k else k-1)) in (i1+1, i2+1) [@@"opaque_to_smt"] let is_reflexive #a r = forall (x:a). x `r` x [@@"opaque_to_smt"] let is_symmetric #a r = forall (x y:a). x `r` y == y `r` x [@@"opaque_to_smt"] let is_transitive #a r = forall (x y z:a). x `r` y /\ y `r` z ==> x `r` z let is_reflexive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let is_symmetric_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let is_transitive_intro #a r = reveal_opaque (`%is_reflexive) (is_reflexive #a) let refl_lemma #a _ _ = reveal_opaque (`%is_reflexive) (is_reflexive #a) let symm_lemma #a _ _ _ = reveal_opaque (`%is_symmetric) (is_symmetric #a) let trans_lemma #a _ _ _ _ = reveal_opaque (`%is_transitive) (is_transitive #a); reveal_opaque (`%is_symmetric) (is_symmetric #a) let contains_eq_means_nonempty #a (eq:equivalence_relation a) (s: S.seq a) (x:a) : Lemma (requires contains_eq eq s x) (ensures S.length s > 0) [SMTPat(contains_eq eq s x)] = reveal_opaque (`%contains_eq) (contains_eq eq) let tail_contains_eq #a (eq: equivalence_relation a) (s:S.seq a) (x:a { contains_eq eq s x /\ ~(eq x (S.head s)) }) : Lemma (contains_eq eq (S.tail s) x) = let t = S.tail s in reveal_opaque (`%contains_eq) (contains_eq eq); eliminate exists (i: under (S.length s)). eq x (S.index s i) returns exists (k: under (S.length t)). eq x (S.index t k) with _. assert (S.index s i == S.index t (i-1)) (** retrieves the index of an element given prior knowledge of its presense unlike find function above, that returns option, this one guarantees success, thus returning bare index instead. *) let rec find_eq #a (eq:equivalence_relation a) (s: S.seq a) (x:a { contains_eq eq s x }) : Tot (i: nat { (i < S.length s) /\ (x `eq` S.index s i) /\ (forall (j: under i). not (x `eq` S.index s j)) }) (decreases S.length s) = reveal_opaque (`%contains_eq) (contains_eq eq); if S.length s = 1 then 0 else if x `eq` S.index s 0 then 0 else begin tail_contains_eq eq s x; let ieq = find_eq eq (S.tail s) x in let aux (i: under (1 + ieq)) : Lemma (not (x `eq` S.index s i)) = if i > 0 then assert (S.index (S.tail s) (i-1) == S.index s i) in Classical.forall_intro aux; 1 + ieq end (** pigeonhole principle for setoids: If we have a nonempty sequence (all), and a sequence (s), and we know in advance that each item of (s) equals some item in (all), equals meaning (eq), not (==), then we automatically know that there are at least 2 equivalent elements in (s). This procedure returns the first such pair. *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "FStar.Fin.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "S" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
eq: FStar.Fin.equivalence_relation a -> holes: FStar.Seq.Base.seq a {FStar.Seq.Base.length holes > 0} -> pigeons: FStar.Seq.Base.seq (FStar.Fin.items_of eq holes) -> Prims.Pure (FStar.Fin.under (FStar.Seq.Base.length pigeons) * FStar.Fin.under (FStar.Seq.Base.length pigeons))
Prims.Pure
[ "" ]
[]
[ "FStar.Fin.equivalence_relation", "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Fin.items_of", "Prims.op_Equality", "Prims.int", "FStar.Pervasives.Native.Mktuple2", "FStar.Fin.under", "Prims.unit", "FStar.Fin.trans_lemma", "FStar.Seq.Base.index", "FStar.Pervasives.reveal_opaque", "Prims.logical", "FStar.Fin.contains_eq", "Prims.bool", "FStar.Fin.find", "FStar.Fin.in_", "FStar.Fin.symm_lemma", "FStar.Seq.Base.init", "Prims.op_Subtraction", "Prims.nat", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Pervasives.Native.tuple2", "FStar.Fin.pigeonhole_eq", "FStar.Classical.forall_intro", "Prims.op_Negation", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Prims._assert", "Prims.eq2", "FStar.Classical.move_requires", "Prims.l_and", "Prims.l_or", "Prims.op_AmpAmp", "Prims.l_Forall", "FStar.Fin.find_eq", "FStar.Seq.Base.append", "FStar.Seq.Base.slice" ]
[ "recursion" ]
false
false
false
false
false
let rec pigeonhole_eq (#a: Type) (eq: equivalence_relation a) (holes: S.seq a {S.length holes > 0}) (pigeons: S.seq (items_of eq holes)) =
if S.length holes = 1 then (reveal_opaque (`%contains_eq) (contains_eq eq); trans_lemma eq (S.index pigeons 0) (S.index holes 0) (S.index pigeons 1); (0, 1)) else let first_pigeon = S.index pigeons 0 in match find pigeons (fun k -> eq k first_pigeon) 1 with | Some i -> (symm_lemma eq (S.index pigeons 0) (S.index pigeons i); (0, i)) | None -> let index_of_first_pigeon = find_eq eq holes first_pigeon in let holes_except_first_pigeon = S.append (S.slice holes 0 (index_of_first_pigeon)) (S.slice holes (index_of_first_pigeon + 1) (S.length holes)) in let all_but_first_pigeon_remain_in_reduced (x: items_of eq holes {not (eq x first_pigeon)}) : Lemma (contains_eq eq holes_except_first_pigeon x) = let index_of_x_in_holes = find_eq eq holes x in reveal_opaque (`%contains_eq) (contains_eq eq); if index_of_x_in_holes < index_of_first_pigeon then assert (S.index holes index_of_x_in_holes == S.index holes_except_first_pigeon index_of_x_in_holes) else (Classical.move_requires (trans_lemma eq x (S.index holes index_of_x_in_holes)) first_pigeon; assert (S.index holes index_of_x_in_holes == S.index holes_except_first_pigeon (index_of_x_in_holes - 1))) in Classical.forall_intro all_but_first_pigeon_remain_in_reduced; let i1, i2 = pigeonhole_eq (eq) (holes_except_first_pigeon) (S.init #(items_of eq holes_except_first_pigeon) (S.length pigeons - 1) (fun i -> S.index pigeons (i + 1))) in (i1 + 1, i2 + 1)
false
Pulse.Checker.Prover.Match.fst
Pulse.Checker.Prover.Match.equational
val equational (t: term) : bool
val equational (t: term) : bool
let equational (t:term) : bool = match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false
{ "file_name": "lib/steel/pulse/Pulse.Checker.Prover.Match.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 14, "end_line": 45, "start_col": 0, "start_line": 39 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Prover.Match open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Typing.Metatheory open Pulse.Typing.Util open Pulse.Checker.VPropEquiv open Pulse.Checker.Prover.Base open Pulse.Checker.Prover.Util module RU = Pulse.RuntimeUtils module L = FStar.List.Tot module R = FStar.Reflection.V2 module TermEq = FStar.Reflection.V2.TermEq module T = FStar.Tactics.V2 module RUtil = Pulse.Reflection.Util module P = Pulse.Syntax.Printer module PS = Pulse.Checker.Prover.Substs module Metatheory = Pulse.Typing.Metatheory
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Util.fsti.checked", "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Readback.fsti.checked", "Pulse.Checker.VPropEquiv.fsti.checked", "Pulse.Checker.Prover.Util.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Prover.Match.fst" }
[ { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Reflection.Util", "short_module": "RUtil" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2.TermEq", "short_module": "TermEq" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.VPropEquiv", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Pulse.Syntax.Base.term -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Pulse.Syntax.Base.term", "Pulse.Syntax.Base.__proj__Mkterm__item__t", "Pulse.Syntax.Base.host_term", "FStar.Stubs.Reflection.V2.Builtins.inspect_ln", "FStar.Stubs.Reflection.Types.term", "FStar.Pervasives.Native.option", "FStar.Stubs.Reflection.Types.match_returns_ascription", "Prims.list", "FStar.Stubs.Reflection.V2.Data.branch", "FStar.Stubs.Reflection.V2.Data.term_view", "Prims.bool", "Pulse.Syntax.Base.term'" ]
[]
false
false
false
true
false
let equational (t: term) : bool =
match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false
false
Pulse.Checker.Prover.Match.fst
Pulse.Checker.Prover.Match.refl_uvar
val refl_uvar (t: R.term) (uvs: env) : option var
val refl_uvar (t: R.term) (uvs: env) : option var
let refl_uvar (t:R.term) (uvs:env) : option var = let open R in match inspect_ln t with | Tv_Var v -> let {uniq=n} = inspect_namedv v in if contains uvs n then Some n else None | _ -> None
{ "file_name": "lib/steel/pulse/Pulse.Checker.Prover.Match.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 13, "end_line": 178, "start_col": 0, "start_line": 172 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Prover.Match open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Typing.Metatheory open Pulse.Typing.Util open Pulse.Checker.VPropEquiv open Pulse.Checker.Prover.Base open Pulse.Checker.Prover.Util module RU = Pulse.RuntimeUtils module L = FStar.List.Tot module R = FStar.Reflection.V2 module TermEq = FStar.Reflection.V2.TermEq module T = FStar.Tactics.V2 module RUtil = Pulse.Reflection.Util module P = Pulse.Syntax.Printer module PS = Pulse.Checker.Prover.Substs module Metatheory = Pulse.Typing.Metatheory let equational (t:term) : bool = match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false let type_of_fv (g:env) (fv:R.fv) : T.Tac (option R.term) = let n = R.inspect_fv fv in match R.lookup_typ (fstar_env g) n with | None -> None | Some se -> match R.inspect_sigelt se with | R.Unk -> None | R.Sg_Let _ lbs -> ( L.tryPick (fun lb -> let lbv = R.inspect_lb lb in if R.inspect_fv lbv.lb_fv = n then Some lbv.lb_typ else None) lbs ) | R.Sg_Val _ _ t -> Some t | R.Sg_Inductive _nm _univs params typ _ -> None let is_smt_fallback (t:R.term) : bool = match R.inspect_ln t with | R.Tv_FVar fv -> let name = R.inspect_fv fv in name = ["Steel";"Effect";"Common";"smt_fallback"] || name = ["Pulse"; "Lib"; "Core"; "equate_by_smt"] | _ -> false (* When comparing t0 =?= t1, if they are not syntactically equal, we have to decide whether or not we should fire an SMT query to compare them for provable equality. The criterion is as follows: 1. We allow an SMT query if either t0 or t1 is "equational". For now, that means that either is a match expression. 2. Otherwise, if they are both applications of `f v0...vn` and `f u0...un` of the same head symbol `f`, a top-level constant, then we check if the type of `f` decorates any of its binders with the `smt_fallback` attribute. - If none of them are marked as such, then we check if `f v0...` is syntactically equal to `f u0...` and allow an SMT query to check if vn = vm. That is, the default behavior for predicates is that they *last* argument is eligible for SMT equality. - Otherwise, for each binder that is NOT marked as `smt_fallback`, we check if the corresponding argument is syntactically equal. If so, we allow t0 and t1 to be compared for SMT equality. For example, Steel.ST.Reference.pts_to is defined like so: /// For instance, [pts_to r (sum_perm (half_perm p) (half_perm p)) (v + 1)] /// is unifiable with [pts_to r p (1 + v)] val pts_to (#a:Type0) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop *) let eligible_for_smt_equality (g:env) (t0 t1:term) : T.Tac bool = let either_equational () = equational t0 || equational t1 in let head_eq (t0 t1:R.term) = match R.inspect_ln t0, R.inspect_ln t1 with | R.Tv_App h0 _, R.Tv_App h1 _ -> TermEq.term_eq h0 h1 | _ -> false in match t0.t, t1.t with | Tm_FStar t0, Tm_FStar t1 -> ( let h0, args0 = R.collect_app_ln t0 in let h1, args1 = R.collect_app_ln t1 in if TermEq.term_eq h0 h1 && L.length args0 = L.length args1 then ( match R.inspect_ln h0 with | R.Tv_FVar fv | R.Tv_UInst fv _ -> ( match type_of_fv g fv with | None -> either_equational() | Some t -> let bs, _ = R.collect_arr_ln_bs t in let is_smt_fallback (b:R.binder) = let bview = R.inspect_binder b in L.existsb is_smt_fallback bview.attrs in let some_fallbacks, fallbacks = L.fold_right (fun b (some_fallbacks, bs) -> if is_smt_fallback b then true, true::bs else some_fallbacks, false::bs) bs (false, []) in if not some_fallbacks then ( //if none of the binders are marked fallback //then, by default, consider only the last argument as //fallback head_eq t0 t1 ) else ( let rec aux args0 args1 fallbacks = match args0, args1, fallbacks with | (a0, _)::args0, (a1, _)::args1, b::fallbacks -> if b then aux args0 args1 fallbacks else if not (TermEq.term_eq a0 a1) then false else aux args0 args1 fallbacks | [], [], [] -> true | _ -> either_equational() //unequal lengths in aux args0 args1 fallbacks ) ) | _ -> either_equational () ) else either_equational () ) | Tm_ForallSL _ _ _, Tm_ForallSL _ _ _ -> true | _ -> either_equational ()
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Util.fsti.checked", "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Readback.fsti.checked", "Pulse.Checker.VPropEquiv.fsti.checked", "Pulse.Checker.Prover.Util.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Prover.Match.fst" }
[ { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Reflection.Util", "short_module": "RUtil" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2.TermEq", "short_module": "TermEq" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.VPropEquiv", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Stubs.Reflection.Types.term -> uvs: Pulse.Typing.Env.env -> FStar.Pervasives.Native.option Pulse.Syntax.Base.var
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.term", "Pulse.Typing.Env.env", "FStar.Stubs.Reflection.V2.Builtins.inspect_ln", "FStar.Stubs.Reflection.Types.namedv", "Prims.nat", "FStar.Sealed.sealed", "FStar.Stubs.Reflection.Types.typ", "FStar.Stubs.Reflection.V2.Data.ppname_t", "Pulse.Typing.Env.contains", "FStar.Pervasives.Native.Some", "Pulse.Syntax.Base.var", "Prims.bool", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "FStar.Stubs.Reflection.V2.Data.namedv_view", "Prims.precedes", "FStar.Stubs.Reflection.V2.Builtins.inspect_namedv", "FStar.Stubs.Reflection.V2.Data.term_view" ]
[]
false
false
false
true
false
let refl_uvar (t: R.term) (uvs: env) : option var =
let open R in match inspect_ln t with | Tv_Var v -> let { uniq = n } = inspect_namedv v in if contains uvs n then Some n else None | _ -> None
false
Clear.fst
Clear.l2
val l2 : x: Prims.int -> y: Prims.bool -> z: Prims.int -> Prims.unit
let l2 (x : int) (y : bool) (z : int) = assert (phi ==> (psi ==> xi)) by tau2 ()
{ "file_name": "examples/native_tactics/Clear.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 44, "end_line": 60, "start_col": 0, "start_line": 59 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Clear open FStar.Tactics.V2 assume val phi : Type assume val psi : Type assume val xi : Type assume val p : squash xi [@@plugin] let tau1 = fun () -> let _ = implies_intro () in clear_top (); let _ = implies_intro () in clear_top (); exact (`p) let l1 (x : bool) (y : int) (z : unit) = assert (phi ==> (psi ==> xi)) by tau1 () let clear_all_of_type (t : typ) : Tac unit = let e = cur_env () in let bs = vars_of_env e in let _ = map (fun b -> if term_eq (type_of_binding b) t then clear b else ()) // We need to traverse the list backwards, to clear rightmost // binders first. Otherwise, if we go left-first, we will revert/intro // over a binder we want to clear and cause it to be refreshed. (List.rev bs) in () [@@plugin] let tau2 = fun () -> let e = cur_env () in let n = List.length (vars_of_env e) in let u = `int in clear_all_of_type u; let e = cur_env () in // We're removing two binders guard (List.length (vars_of_env e) = n - 2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked" ], "interface_file": false, "source_file": "Clear.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.int -> y: Prims.bool -> z: Prims.int -> Prims.unit
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Prims.bool", "FStar.Tactics.Effect.assert_by_tactic", "Prims.l_imp", "Clear.phi", "Clear.psi", "Clear.xi", "Prims.unit", "Clear.tau2" ]
[]
false
false
false
true
false
let l2 (x: int) (y: bool) (z: int) =
FStar.Tactics.Effect.assert_by_tactic (phi ==> (psi ==> xi)) (fun _ -> (); tau2 ())
false
Pulse.Checker.Prover.Match.fst
Pulse.Checker.Prover.Match.is_uvar
val is_uvar (t: term) (uvs: env) : option var
val is_uvar (t: term) (uvs: env) : option var
let is_uvar (t:term) (uvs:env) : option var = match t.t with | Tm_FStar t -> refl_uvar t uvs | _ -> None
{ "file_name": "lib/steel/pulse/Pulse.Checker.Prover.Match.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 13, "end_line": 183, "start_col": 0, "start_line": 180 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Prover.Match open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Typing.Metatheory open Pulse.Typing.Util open Pulse.Checker.VPropEquiv open Pulse.Checker.Prover.Base open Pulse.Checker.Prover.Util module RU = Pulse.RuntimeUtils module L = FStar.List.Tot module R = FStar.Reflection.V2 module TermEq = FStar.Reflection.V2.TermEq module T = FStar.Tactics.V2 module RUtil = Pulse.Reflection.Util module P = Pulse.Syntax.Printer module PS = Pulse.Checker.Prover.Substs module Metatheory = Pulse.Typing.Metatheory let equational (t:term) : bool = match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false let type_of_fv (g:env) (fv:R.fv) : T.Tac (option R.term) = let n = R.inspect_fv fv in match R.lookup_typ (fstar_env g) n with | None -> None | Some se -> match R.inspect_sigelt se with | R.Unk -> None | R.Sg_Let _ lbs -> ( L.tryPick (fun lb -> let lbv = R.inspect_lb lb in if R.inspect_fv lbv.lb_fv = n then Some lbv.lb_typ else None) lbs ) | R.Sg_Val _ _ t -> Some t | R.Sg_Inductive _nm _univs params typ _ -> None let is_smt_fallback (t:R.term) : bool = match R.inspect_ln t with | R.Tv_FVar fv -> let name = R.inspect_fv fv in name = ["Steel";"Effect";"Common";"smt_fallback"] || name = ["Pulse"; "Lib"; "Core"; "equate_by_smt"] | _ -> false (* When comparing t0 =?= t1, if they are not syntactically equal, we have to decide whether or not we should fire an SMT query to compare them for provable equality. The criterion is as follows: 1. We allow an SMT query if either t0 or t1 is "equational". For now, that means that either is a match expression. 2. Otherwise, if they are both applications of `f v0...vn` and `f u0...un` of the same head symbol `f`, a top-level constant, then we check if the type of `f` decorates any of its binders with the `smt_fallback` attribute. - If none of them are marked as such, then we check if `f v0...` is syntactically equal to `f u0...` and allow an SMT query to check if vn = vm. That is, the default behavior for predicates is that they *last* argument is eligible for SMT equality. - Otherwise, for each binder that is NOT marked as `smt_fallback`, we check if the corresponding argument is syntactically equal. If so, we allow t0 and t1 to be compared for SMT equality. For example, Steel.ST.Reference.pts_to is defined like so: /// For instance, [pts_to r (sum_perm (half_perm p) (half_perm p)) (v + 1)] /// is unifiable with [pts_to r p (1 + v)] val pts_to (#a:Type0) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop *) let eligible_for_smt_equality (g:env) (t0 t1:term) : T.Tac bool = let either_equational () = equational t0 || equational t1 in let head_eq (t0 t1:R.term) = match R.inspect_ln t0, R.inspect_ln t1 with | R.Tv_App h0 _, R.Tv_App h1 _ -> TermEq.term_eq h0 h1 | _ -> false in match t0.t, t1.t with | Tm_FStar t0, Tm_FStar t1 -> ( let h0, args0 = R.collect_app_ln t0 in let h1, args1 = R.collect_app_ln t1 in if TermEq.term_eq h0 h1 && L.length args0 = L.length args1 then ( match R.inspect_ln h0 with | R.Tv_FVar fv | R.Tv_UInst fv _ -> ( match type_of_fv g fv with | None -> either_equational() | Some t -> let bs, _ = R.collect_arr_ln_bs t in let is_smt_fallback (b:R.binder) = let bview = R.inspect_binder b in L.existsb is_smt_fallback bview.attrs in let some_fallbacks, fallbacks = L.fold_right (fun b (some_fallbacks, bs) -> if is_smt_fallback b then true, true::bs else some_fallbacks, false::bs) bs (false, []) in if not some_fallbacks then ( //if none of the binders are marked fallback //then, by default, consider only the last argument as //fallback head_eq t0 t1 ) else ( let rec aux args0 args1 fallbacks = match args0, args1, fallbacks with | (a0, _)::args0, (a1, _)::args1, b::fallbacks -> if b then aux args0 args1 fallbacks else if not (TermEq.term_eq a0 a1) then false else aux args0 args1 fallbacks | [], [], [] -> true | _ -> either_equational() //unequal lengths in aux args0 args1 fallbacks ) ) | _ -> either_equational () ) else either_equational () ) | Tm_ForallSL _ _ _, Tm_ForallSL _ _ _ -> true | _ -> either_equational () let refl_uvar (t:R.term) (uvs:env) : option var = let open R in match inspect_ln t with | Tv_Var v -> let {uniq=n} = inspect_namedv v in if contains uvs n then Some n else None | _ -> None
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Util.fsti.checked", "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Readback.fsti.checked", "Pulse.Checker.VPropEquiv.fsti.checked", "Pulse.Checker.Prover.Util.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Prover.Match.fst" }
[ { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Reflection.Util", "short_module": "RUtil" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2.TermEq", "short_module": "TermEq" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.VPropEquiv", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Pulse.Syntax.Base.term -> uvs: Pulse.Typing.Env.env -> FStar.Pervasives.Native.option Pulse.Syntax.Base.var
Prims.Tot
[ "total" ]
[]
[ "Pulse.Syntax.Base.term", "Pulse.Typing.Env.env", "Pulse.Syntax.Base.__proj__Mkterm__item__t", "Pulse.Syntax.Base.host_term", "Pulse.Checker.Prover.Match.refl_uvar", "Pulse.Syntax.Base.term'", "FStar.Pervasives.Native.None", "Pulse.Syntax.Base.var", "FStar.Pervasives.Native.option" ]
[]
false
false
false
true
false
let is_uvar (t: term) (uvs: env) : option var =
match t.t with | Tm_FStar t -> refl_uvar t uvs | _ -> None
false
Pulse.Checker.Prover.Match.fst
Pulse.Checker.Prover.Match.contains_uvar
val contains_uvar (t: term) (uvs g: env) : T.Tac bool
val contains_uvar (t: term) (uvs g: env) : T.Tac bool
let contains_uvar (t:term) (uvs:env) (g:env) : T.Tac bool = not (check_disjoint uvs (freevars t))
{ "file_name": "lib/steel/pulse/Pulse.Checker.Prover.Match.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 39, "end_line": 186, "start_col": 0, "start_line": 185 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Prover.Match open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Typing.Metatheory open Pulse.Typing.Util open Pulse.Checker.VPropEquiv open Pulse.Checker.Prover.Base open Pulse.Checker.Prover.Util module RU = Pulse.RuntimeUtils module L = FStar.List.Tot module R = FStar.Reflection.V2 module TermEq = FStar.Reflection.V2.TermEq module T = FStar.Tactics.V2 module RUtil = Pulse.Reflection.Util module P = Pulse.Syntax.Printer module PS = Pulse.Checker.Prover.Substs module Metatheory = Pulse.Typing.Metatheory let equational (t:term) : bool = match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false let type_of_fv (g:env) (fv:R.fv) : T.Tac (option R.term) = let n = R.inspect_fv fv in match R.lookup_typ (fstar_env g) n with | None -> None | Some se -> match R.inspect_sigelt se with | R.Unk -> None | R.Sg_Let _ lbs -> ( L.tryPick (fun lb -> let lbv = R.inspect_lb lb in if R.inspect_fv lbv.lb_fv = n then Some lbv.lb_typ else None) lbs ) | R.Sg_Val _ _ t -> Some t | R.Sg_Inductive _nm _univs params typ _ -> None let is_smt_fallback (t:R.term) : bool = match R.inspect_ln t with | R.Tv_FVar fv -> let name = R.inspect_fv fv in name = ["Steel";"Effect";"Common";"smt_fallback"] || name = ["Pulse"; "Lib"; "Core"; "equate_by_smt"] | _ -> false (* When comparing t0 =?= t1, if they are not syntactically equal, we have to decide whether or not we should fire an SMT query to compare them for provable equality. The criterion is as follows: 1. We allow an SMT query if either t0 or t1 is "equational". For now, that means that either is a match expression. 2. Otherwise, if they are both applications of `f v0...vn` and `f u0...un` of the same head symbol `f`, a top-level constant, then we check if the type of `f` decorates any of its binders with the `smt_fallback` attribute. - If none of them are marked as such, then we check if `f v0...` is syntactically equal to `f u0...` and allow an SMT query to check if vn = vm. That is, the default behavior for predicates is that they *last* argument is eligible for SMT equality. - Otherwise, for each binder that is NOT marked as `smt_fallback`, we check if the corresponding argument is syntactically equal. If so, we allow t0 and t1 to be compared for SMT equality. For example, Steel.ST.Reference.pts_to is defined like so: /// For instance, [pts_to r (sum_perm (half_perm p) (half_perm p)) (v + 1)] /// is unifiable with [pts_to r p (1 + v)] val pts_to (#a:Type0) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop *) let eligible_for_smt_equality (g:env) (t0 t1:term) : T.Tac bool = let either_equational () = equational t0 || equational t1 in let head_eq (t0 t1:R.term) = match R.inspect_ln t0, R.inspect_ln t1 with | R.Tv_App h0 _, R.Tv_App h1 _ -> TermEq.term_eq h0 h1 | _ -> false in match t0.t, t1.t with | Tm_FStar t0, Tm_FStar t1 -> ( let h0, args0 = R.collect_app_ln t0 in let h1, args1 = R.collect_app_ln t1 in if TermEq.term_eq h0 h1 && L.length args0 = L.length args1 then ( match R.inspect_ln h0 with | R.Tv_FVar fv | R.Tv_UInst fv _ -> ( match type_of_fv g fv with | None -> either_equational() | Some t -> let bs, _ = R.collect_arr_ln_bs t in let is_smt_fallback (b:R.binder) = let bview = R.inspect_binder b in L.existsb is_smt_fallback bview.attrs in let some_fallbacks, fallbacks = L.fold_right (fun b (some_fallbacks, bs) -> if is_smt_fallback b then true, true::bs else some_fallbacks, false::bs) bs (false, []) in if not some_fallbacks then ( //if none of the binders are marked fallback //then, by default, consider only the last argument as //fallback head_eq t0 t1 ) else ( let rec aux args0 args1 fallbacks = match args0, args1, fallbacks with | (a0, _)::args0, (a1, _)::args1, b::fallbacks -> if b then aux args0 args1 fallbacks else if not (TermEq.term_eq a0 a1) then false else aux args0 args1 fallbacks | [], [], [] -> true | _ -> either_equational() //unequal lengths in aux args0 args1 fallbacks ) ) | _ -> either_equational () ) else either_equational () ) | Tm_ForallSL _ _ _, Tm_ForallSL _ _ _ -> true | _ -> either_equational () let refl_uvar (t:R.term) (uvs:env) : option var = let open R in match inspect_ln t with | Tv_Var v -> let {uniq=n} = inspect_namedv v in if contains uvs n then Some n else None | _ -> None let is_uvar (t:term) (uvs:env) : option var = match t.t with | Tm_FStar t -> refl_uvar t uvs | _ -> None
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Util.fsti.checked", "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Readback.fsti.checked", "Pulse.Checker.VPropEquiv.fsti.checked", "Pulse.Checker.Prover.Util.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Prover.Match.fst" }
[ { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Reflection.Util", "short_module": "RUtil" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2.TermEq", "short_module": "TermEq" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.VPropEquiv", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Pulse.Syntax.Base.term -> uvs: Pulse.Typing.Env.env -> g: Pulse.Typing.Env.env -> FStar.Tactics.Effect.Tac Prims.bool
FStar.Tactics.Effect.Tac
[]
[]
[ "Pulse.Syntax.Base.term", "Pulse.Typing.Env.env", "Prims.op_Negation", "Pulse.Typing.Env.check_disjoint", "Pulse.Syntax.Naming.freevars", "Prims.bool" ]
[]
false
true
false
false
false
let contains_uvar (t: term) (uvs g: env) : T.Tac bool =
not (check_disjoint uvs (freevars t))
false
Pulse.Checker.Prover.Match.fst
Pulse.Checker.Prover.Match.move_hd_end
val move_hd_end (g: env) (l: list vprop {Cons? l}) : vprop_equiv g (list_as_vprop l) (list_as_vprop (L.tl l @ [L.hd l]))
val move_hd_end (g: env) (l: list vprop {Cons? l}) : vprop_equiv g (list_as_vprop l) (list_as_vprop (L.tl l @ [L.hd l]))
let move_hd_end (g:env) (l:list vprop { Cons? l }) : vprop_equiv g (list_as_vprop l) (list_as_vprop (L.tl l @ [L.hd l])) = RU.magic ()
{ "file_name": "lib/steel/pulse/Pulse.Checker.Prover.Match.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 85, "end_line": 374, "start_col": 0, "start_line": 373 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Prover.Match open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Typing.Metatheory open Pulse.Typing.Util open Pulse.Checker.VPropEquiv open Pulse.Checker.Prover.Base open Pulse.Checker.Prover.Util module RU = Pulse.RuntimeUtils module L = FStar.List.Tot module R = FStar.Reflection.V2 module TermEq = FStar.Reflection.V2.TermEq module T = FStar.Tactics.V2 module RUtil = Pulse.Reflection.Util module P = Pulse.Syntax.Printer module PS = Pulse.Checker.Prover.Substs module Metatheory = Pulse.Typing.Metatheory let equational (t:term) : bool = match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false let type_of_fv (g:env) (fv:R.fv) : T.Tac (option R.term) = let n = R.inspect_fv fv in match R.lookup_typ (fstar_env g) n with | None -> None | Some se -> match R.inspect_sigelt se with | R.Unk -> None | R.Sg_Let _ lbs -> ( L.tryPick (fun lb -> let lbv = R.inspect_lb lb in if R.inspect_fv lbv.lb_fv = n then Some lbv.lb_typ else None) lbs ) | R.Sg_Val _ _ t -> Some t | R.Sg_Inductive _nm _univs params typ _ -> None let is_smt_fallback (t:R.term) : bool = match R.inspect_ln t with | R.Tv_FVar fv -> let name = R.inspect_fv fv in name = ["Steel";"Effect";"Common";"smt_fallback"] || name = ["Pulse"; "Lib"; "Core"; "equate_by_smt"] | _ -> false (* When comparing t0 =?= t1, if they are not syntactically equal, we have to decide whether or not we should fire an SMT query to compare them for provable equality. The criterion is as follows: 1. We allow an SMT query if either t0 or t1 is "equational". For now, that means that either is a match expression. 2. Otherwise, if they are both applications of `f v0...vn` and `f u0...un` of the same head symbol `f`, a top-level constant, then we check if the type of `f` decorates any of its binders with the `smt_fallback` attribute. - If none of them are marked as such, then we check if `f v0...` is syntactically equal to `f u0...` and allow an SMT query to check if vn = vm. That is, the default behavior for predicates is that they *last* argument is eligible for SMT equality. - Otherwise, for each binder that is NOT marked as `smt_fallback`, we check if the corresponding argument is syntactically equal. If so, we allow t0 and t1 to be compared for SMT equality. For example, Steel.ST.Reference.pts_to is defined like so: /// For instance, [pts_to r (sum_perm (half_perm p) (half_perm p)) (v + 1)] /// is unifiable with [pts_to r p (1 + v)] val pts_to (#a:Type0) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop *) let eligible_for_smt_equality (g:env) (t0 t1:term) : T.Tac bool = let either_equational () = equational t0 || equational t1 in let head_eq (t0 t1:R.term) = match R.inspect_ln t0, R.inspect_ln t1 with | R.Tv_App h0 _, R.Tv_App h1 _ -> TermEq.term_eq h0 h1 | _ -> false in match t0.t, t1.t with | Tm_FStar t0, Tm_FStar t1 -> ( let h0, args0 = R.collect_app_ln t0 in let h1, args1 = R.collect_app_ln t1 in if TermEq.term_eq h0 h1 && L.length args0 = L.length args1 then ( match R.inspect_ln h0 with | R.Tv_FVar fv | R.Tv_UInst fv _ -> ( match type_of_fv g fv with | None -> either_equational() | Some t -> let bs, _ = R.collect_arr_ln_bs t in let is_smt_fallback (b:R.binder) = let bview = R.inspect_binder b in L.existsb is_smt_fallback bview.attrs in let some_fallbacks, fallbacks = L.fold_right (fun b (some_fallbacks, bs) -> if is_smt_fallback b then true, true::bs else some_fallbacks, false::bs) bs (false, []) in if not some_fallbacks then ( //if none of the binders are marked fallback //then, by default, consider only the last argument as //fallback head_eq t0 t1 ) else ( let rec aux args0 args1 fallbacks = match args0, args1, fallbacks with | (a0, _)::args0, (a1, _)::args1, b::fallbacks -> if b then aux args0 args1 fallbacks else if not (TermEq.term_eq a0 a1) then false else aux args0 args1 fallbacks | [], [], [] -> true | _ -> either_equational() //unequal lengths in aux args0 args1 fallbacks ) ) | _ -> either_equational () ) else either_equational () ) | Tm_ForallSL _ _ _, Tm_ForallSL _ _ _ -> true | _ -> either_equational () let refl_uvar (t:R.term) (uvs:env) : option var = let open R in match inspect_ln t with | Tv_Var v -> let {uniq=n} = inspect_namedv v in if contains uvs n then Some n else None | _ -> None let is_uvar (t:term) (uvs:env) : option var = match t.t with | Tm_FStar t -> refl_uvar t uvs | _ -> None let contains_uvar (t:term) (uvs:env) (g:env) : T.Tac bool = not (check_disjoint uvs (freevars t)) let is_reveal_uvar (t:term) (uvs:env) : option (universe & term & var) = match is_pure_app t with | Some (hd, None, arg) -> (match is_pure_app hd with | Some (hd, Some Implicit, ty) -> let arg_uvar_index_opt = is_uvar arg uvs in (match arg_uvar_index_opt with | Some n -> (match is_fvar hd with | Some (l, [u]) -> if l = RUtil.reveal_lid then Some (u, ty, n) else None | _ -> None) | _ -> None) | _ -> None) | _ -> None let is_reveal (t:term) : bool = match leftmost_head t with | Some hd -> (match is_fvar hd with | Some (l, [_]) -> l = RUtil.reveal_lid | _ -> false) | _ -> false module RT = FStar.Reflection.Typing // // Call into the F* unifier to solve for uvs by unifying p and q // let try_solve_uvars (g:env) (uvs:env { disjoint uvs g }) (p q:term) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q }) = let uvs = uvs |> bindings_with_ppname |> L.rev |> L.map (fun (({name}, x, t):(ppname & _ & _)) -> let nv_view = { R.uniq = x; R.sort = elab_term t; R.ppname = name; } in let nv = R.pack_namedv nv_view in nv, elab_term t ) in let l, issues = RU.with_context (get_context g) (fun _ -> T.try_unify (elab_env g) uvs (elab_term p) (elab_term q)) in T.log_issues issues; // build ss let ss = PS.empty in assume (PS.dom ss `Set.subset` freevars q); match l with | None -> ss | Some l -> let q_names = freevars q in L.fold_left (fun (ss:(ss:PS.ss_t { PS.dom ss `Set.subset` freevars q })) (x, t) -> let nv_view = R.inspect_namedv x in let topt = readback_ty t in match topt with | Some t -> if Set.mem nv_view.uniq q_names && not (Set.mem nv_view.uniq (PS.dom ss)) then begin let ss_new = PS.push ss nv_view.uniq t in assert (nv_view.uniq `Set.mem` freevars q); assert (PS.dom ss `Set.subset` freevars q); assume (PS.dom ss_new `Set.subset` freevars q); ss_new end else ss | None -> ss ) ss l let unify (g:env) (uvs:env { disjoint uvs g}) (p q:term) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q } & option (RT.equiv (elab_env g) (elab_term p) (elab_term ss.(q)))) = let ss = try_solve_uvars g uvs p q in let q_ss = readback_ty (elab_term ss.(q)) in match q_ss with | None -> (| ss, None |) | Some q -> if eq_tm p q then (| ss, Some (RT.Rel_refl _ _ _) |) else if contains_uvar q uvs g then (| ss, None |) else if eligible_for_smt_equality g p q then let v0 = elab_term p in let v1 = elab_term q in match check_equiv_now (elab_env g) v0 v1 with | Some token, _ -> (| ss, Some (RT.Rel_eq_token _ _ _ (FStar.Squash.return_squash token)) |) | None, _ -> (| ss, None |) else (| ss, None |) let try_match_pq (g:env) (uvs:env { disjoint uvs g}) (p q:vprop) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q } & option (vprop_equiv g p ss.(q))) = let r = unify g uvs p q in match r with | (| ss, None |) -> (| ss, None |) | (| ss, Some _ |) -> (| ss, Some (RU.magic #(vprop_equiv _ _ _) ()) |) let coerce_eq (#a #b:Type) (x:a) (_:squash (a == b)) : y:b{y == x} = x let match_step (#preamble:preamble) (pst:prover_state preamble) (p:vprop) (remaining_ctxt':list vprop) (q:vprop) (unsolved':list vprop) (_:squash (pst.remaining_ctxt == p::remaining_ctxt' /\ pst.unsolved == q::unsolved')) : T.Tac (option (pst':prover_state preamble { pst' `pst_extends` pst })) = let q_ss = pst.ss.(q) in assume (freevars q_ss `Set.disjoint` PS.dom pst.ss); let (| ss_q, ropt |) = try_match_pq pst.pg pst.uvs p q_ss in debug_prover pst.pg (fun _ -> Printf.sprintf "prover matcher: tried to match p %s and q (partially substituted) %s, result: %s" (P.term_to_string p) (P.term_to_string (ss_q.(q_ss))) (if None? ropt then "fail" else "success")); match ropt with | None -> None | Some veq -> assert (PS.dom ss_q `Set.disjoint` PS.dom pst.ss); let ss_new = PS.push_ss pst.ss ss_q in let veq : vprop_equiv pst.pg p (ss_q.(pst.ss.(q))) = veq in assume (ss_q.(pst.ss.(q)) == ss_new.(q)); let veq : vprop_equiv pst.pg p ss_new.(q) = coerce_eq veq () in let remaining_ctxt_new = remaining_ctxt' in let solved_new = q * pst.solved in let unsolved_new = unsolved' in let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop pst.remaining_ctxt * preamble.frame) * pst.ss.(pst.solved)) = pst.k in assume (pst.ss.(pst.solved) == ss_new.(pst.solved)); let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop (p::remaining_ctxt_new) * preamble.frame) * ss_new.(pst.solved)) = coerce_eq k () in let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop remaining_ctxt_new * preamble.frame) * (ss_new.(q) * ss_new.(pst.solved))) = k_elab_equiv k (VE_Refl _ _) (RU.magic ()) in assume (ss_new.(q) * ss_new.(pst.solved) == ss_new.(q * pst.solved)); let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop remaining_ctxt_new * preamble.frame) * (ss_new.(solved_new))) = coerce_eq k () in assume (freevars ss_new.(solved_new) `Set.subset` dom pst.pg); let pst' : prover_state preamble = { pst with remaining_ctxt=remaining_ctxt_new; remaining_ctxt_frame_typing=RU.magic (); ss=ss_new; nts=None; solved=solved_new; unsolved=unsolved_new; k; goals_inv=RU.magic (); solved_inv=() } in assume (ss_new `ss_extends` pst.ss); Some pst'
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Util.fsti.checked", "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Readback.fsti.checked", "Pulse.Checker.VPropEquiv.fsti.checked", "Pulse.Checker.Prover.Util.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Prover.Match.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Reflection.Util", "short_module": "RUtil" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2.TermEq", "short_module": "TermEq" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.VPropEquiv", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: Pulse.Typing.Env.env -> l: Prims.list Pulse.Syntax.Base.vprop {Cons? l} -> Pulse.Typing.vprop_equiv g (Pulse.Typing.Combinators.list_as_vprop l) (Pulse.Typing.Combinators.list_as_vprop (FStar.List.Tot.Base.tl l @ [FStar.List.Tot.Base.hd l] ))
Prims.Tot
[ "total" ]
[]
[ "Pulse.Typing.Env.env", "Prims.list", "Pulse.Syntax.Base.vprop", "Prims.b2t", "Prims.uu___is_Cons", "Pulse.RuntimeUtils.magic", "Pulse.Typing.vprop_equiv", "Pulse.Typing.Combinators.list_as_vprop", "FStar.List.Tot.Base.append", "FStar.List.Tot.Base.tl", "Prims.Cons", "FStar.List.Tot.Base.hd", "Prims.Nil" ]
[]
false
false
false
false
false
let move_hd_end (g: env) (l: list vprop {Cons? l}) : vprop_equiv g (list_as_vprop l) (list_as_vprop (L.tl l @ [L.hd l])) =
RU.magic ()
false
Pulse.Checker.Prover.Match.fst
Pulse.Checker.Prover.Match.remaining_ctxt_equiv_pst
val remaining_ctxt_equiv_pst (#preamble: _) (pst: prover_state preamble) (remaining_ctxt': list vprop) (d: vprop_equiv pst.pg (list_as_vprop pst.remaining_ctxt) (list_as_vprop remaining_ctxt')) : prover_state preamble
val remaining_ctxt_equiv_pst (#preamble: _) (pst: prover_state preamble) (remaining_ctxt': list vprop) (d: vprop_equiv pst.pg (list_as_vprop pst.remaining_ctxt) (list_as_vprop remaining_ctxt')) : prover_state preamble
let remaining_ctxt_equiv_pst (#preamble:_) (pst:prover_state preamble) (remaining_ctxt':list vprop) (d:vprop_equiv pst.pg (list_as_vprop pst.remaining_ctxt) (list_as_vprop remaining_ctxt')) : prover_state preamble = { pst with remaining_ctxt = remaining_ctxt'; remaining_ctxt_frame_typing = RU.magic (); k = k_elab_equiv pst.k (VE_Refl _ _) (RU.magic ()) }
{ "file_name": "lib/steel/pulse/Pulse.Checker.Prover.Match.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 65, "end_line": 381, "start_col": 0, "start_line": 376 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Prover.Match open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Typing.Metatheory open Pulse.Typing.Util open Pulse.Checker.VPropEquiv open Pulse.Checker.Prover.Base open Pulse.Checker.Prover.Util module RU = Pulse.RuntimeUtils module L = FStar.List.Tot module R = FStar.Reflection.V2 module TermEq = FStar.Reflection.V2.TermEq module T = FStar.Tactics.V2 module RUtil = Pulse.Reflection.Util module P = Pulse.Syntax.Printer module PS = Pulse.Checker.Prover.Substs module Metatheory = Pulse.Typing.Metatheory let equational (t:term) : bool = match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false let type_of_fv (g:env) (fv:R.fv) : T.Tac (option R.term) = let n = R.inspect_fv fv in match R.lookup_typ (fstar_env g) n with | None -> None | Some se -> match R.inspect_sigelt se with | R.Unk -> None | R.Sg_Let _ lbs -> ( L.tryPick (fun lb -> let lbv = R.inspect_lb lb in if R.inspect_fv lbv.lb_fv = n then Some lbv.lb_typ else None) lbs ) | R.Sg_Val _ _ t -> Some t | R.Sg_Inductive _nm _univs params typ _ -> None let is_smt_fallback (t:R.term) : bool = match R.inspect_ln t with | R.Tv_FVar fv -> let name = R.inspect_fv fv in name = ["Steel";"Effect";"Common";"smt_fallback"] || name = ["Pulse"; "Lib"; "Core"; "equate_by_smt"] | _ -> false (* When comparing t0 =?= t1, if they are not syntactically equal, we have to decide whether or not we should fire an SMT query to compare them for provable equality. The criterion is as follows: 1. We allow an SMT query if either t0 or t1 is "equational". For now, that means that either is a match expression. 2. Otherwise, if they are both applications of `f v0...vn` and `f u0...un` of the same head symbol `f`, a top-level constant, then we check if the type of `f` decorates any of its binders with the `smt_fallback` attribute. - If none of them are marked as such, then we check if `f v0...` is syntactically equal to `f u0...` and allow an SMT query to check if vn = vm. That is, the default behavior for predicates is that they *last* argument is eligible for SMT equality. - Otherwise, for each binder that is NOT marked as `smt_fallback`, we check if the corresponding argument is syntactically equal. If so, we allow t0 and t1 to be compared for SMT equality. For example, Steel.ST.Reference.pts_to is defined like so: /// For instance, [pts_to r (sum_perm (half_perm p) (half_perm p)) (v + 1)] /// is unifiable with [pts_to r p (1 + v)] val pts_to (#a:Type0) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop *) let eligible_for_smt_equality (g:env) (t0 t1:term) : T.Tac bool = let either_equational () = equational t0 || equational t1 in let head_eq (t0 t1:R.term) = match R.inspect_ln t0, R.inspect_ln t1 with | R.Tv_App h0 _, R.Tv_App h1 _ -> TermEq.term_eq h0 h1 | _ -> false in match t0.t, t1.t with | Tm_FStar t0, Tm_FStar t1 -> ( let h0, args0 = R.collect_app_ln t0 in let h1, args1 = R.collect_app_ln t1 in if TermEq.term_eq h0 h1 && L.length args0 = L.length args1 then ( match R.inspect_ln h0 with | R.Tv_FVar fv | R.Tv_UInst fv _ -> ( match type_of_fv g fv with | None -> either_equational() | Some t -> let bs, _ = R.collect_arr_ln_bs t in let is_smt_fallback (b:R.binder) = let bview = R.inspect_binder b in L.existsb is_smt_fallback bview.attrs in let some_fallbacks, fallbacks = L.fold_right (fun b (some_fallbacks, bs) -> if is_smt_fallback b then true, true::bs else some_fallbacks, false::bs) bs (false, []) in if not some_fallbacks then ( //if none of the binders are marked fallback //then, by default, consider only the last argument as //fallback head_eq t0 t1 ) else ( let rec aux args0 args1 fallbacks = match args0, args1, fallbacks with | (a0, _)::args0, (a1, _)::args1, b::fallbacks -> if b then aux args0 args1 fallbacks else if not (TermEq.term_eq a0 a1) then false else aux args0 args1 fallbacks | [], [], [] -> true | _ -> either_equational() //unequal lengths in aux args0 args1 fallbacks ) ) | _ -> either_equational () ) else either_equational () ) | Tm_ForallSL _ _ _, Tm_ForallSL _ _ _ -> true | _ -> either_equational () let refl_uvar (t:R.term) (uvs:env) : option var = let open R in match inspect_ln t with | Tv_Var v -> let {uniq=n} = inspect_namedv v in if contains uvs n then Some n else None | _ -> None let is_uvar (t:term) (uvs:env) : option var = match t.t with | Tm_FStar t -> refl_uvar t uvs | _ -> None let contains_uvar (t:term) (uvs:env) (g:env) : T.Tac bool = not (check_disjoint uvs (freevars t)) let is_reveal_uvar (t:term) (uvs:env) : option (universe & term & var) = match is_pure_app t with | Some (hd, None, arg) -> (match is_pure_app hd with | Some (hd, Some Implicit, ty) -> let arg_uvar_index_opt = is_uvar arg uvs in (match arg_uvar_index_opt with | Some n -> (match is_fvar hd with | Some (l, [u]) -> if l = RUtil.reveal_lid then Some (u, ty, n) else None | _ -> None) | _ -> None) | _ -> None) | _ -> None let is_reveal (t:term) : bool = match leftmost_head t with | Some hd -> (match is_fvar hd with | Some (l, [_]) -> l = RUtil.reveal_lid | _ -> false) | _ -> false module RT = FStar.Reflection.Typing // // Call into the F* unifier to solve for uvs by unifying p and q // let try_solve_uvars (g:env) (uvs:env { disjoint uvs g }) (p q:term) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q }) = let uvs = uvs |> bindings_with_ppname |> L.rev |> L.map (fun (({name}, x, t):(ppname & _ & _)) -> let nv_view = { R.uniq = x; R.sort = elab_term t; R.ppname = name; } in let nv = R.pack_namedv nv_view in nv, elab_term t ) in let l, issues = RU.with_context (get_context g) (fun _ -> T.try_unify (elab_env g) uvs (elab_term p) (elab_term q)) in T.log_issues issues; // build ss let ss = PS.empty in assume (PS.dom ss `Set.subset` freevars q); match l with | None -> ss | Some l -> let q_names = freevars q in L.fold_left (fun (ss:(ss:PS.ss_t { PS.dom ss `Set.subset` freevars q })) (x, t) -> let nv_view = R.inspect_namedv x in let topt = readback_ty t in match topt with | Some t -> if Set.mem nv_view.uniq q_names && not (Set.mem nv_view.uniq (PS.dom ss)) then begin let ss_new = PS.push ss nv_view.uniq t in assert (nv_view.uniq `Set.mem` freevars q); assert (PS.dom ss `Set.subset` freevars q); assume (PS.dom ss_new `Set.subset` freevars q); ss_new end else ss | None -> ss ) ss l let unify (g:env) (uvs:env { disjoint uvs g}) (p q:term) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q } & option (RT.equiv (elab_env g) (elab_term p) (elab_term ss.(q)))) = let ss = try_solve_uvars g uvs p q in let q_ss = readback_ty (elab_term ss.(q)) in match q_ss with | None -> (| ss, None |) | Some q -> if eq_tm p q then (| ss, Some (RT.Rel_refl _ _ _) |) else if contains_uvar q uvs g then (| ss, None |) else if eligible_for_smt_equality g p q then let v0 = elab_term p in let v1 = elab_term q in match check_equiv_now (elab_env g) v0 v1 with | Some token, _ -> (| ss, Some (RT.Rel_eq_token _ _ _ (FStar.Squash.return_squash token)) |) | None, _ -> (| ss, None |) else (| ss, None |) let try_match_pq (g:env) (uvs:env { disjoint uvs g}) (p q:vprop) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q } & option (vprop_equiv g p ss.(q))) = let r = unify g uvs p q in match r with | (| ss, None |) -> (| ss, None |) | (| ss, Some _ |) -> (| ss, Some (RU.magic #(vprop_equiv _ _ _) ()) |) let coerce_eq (#a #b:Type) (x:a) (_:squash (a == b)) : y:b{y == x} = x let match_step (#preamble:preamble) (pst:prover_state preamble) (p:vprop) (remaining_ctxt':list vprop) (q:vprop) (unsolved':list vprop) (_:squash (pst.remaining_ctxt == p::remaining_ctxt' /\ pst.unsolved == q::unsolved')) : T.Tac (option (pst':prover_state preamble { pst' `pst_extends` pst })) = let q_ss = pst.ss.(q) in assume (freevars q_ss `Set.disjoint` PS.dom pst.ss); let (| ss_q, ropt |) = try_match_pq pst.pg pst.uvs p q_ss in debug_prover pst.pg (fun _ -> Printf.sprintf "prover matcher: tried to match p %s and q (partially substituted) %s, result: %s" (P.term_to_string p) (P.term_to_string (ss_q.(q_ss))) (if None? ropt then "fail" else "success")); match ropt with | None -> None | Some veq -> assert (PS.dom ss_q `Set.disjoint` PS.dom pst.ss); let ss_new = PS.push_ss pst.ss ss_q in let veq : vprop_equiv pst.pg p (ss_q.(pst.ss.(q))) = veq in assume (ss_q.(pst.ss.(q)) == ss_new.(q)); let veq : vprop_equiv pst.pg p ss_new.(q) = coerce_eq veq () in let remaining_ctxt_new = remaining_ctxt' in let solved_new = q * pst.solved in let unsolved_new = unsolved' in let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop pst.remaining_ctxt * preamble.frame) * pst.ss.(pst.solved)) = pst.k in assume (pst.ss.(pst.solved) == ss_new.(pst.solved)); let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop (p::remaining_ctxt_new) * preamble.frame) * ss_new.(pst.solved)) = coerce_eq k () in let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop remaining_ctxt_new * preamble.frame) * (ss_new.(q) * ss_new.(pst.solved))) = k_elab_equiv k (VE_Refl _ _) (RU.magic ()) in assume (ss_new.(q) * ss_new.(pst.solved) == ss_new.(q * pst.solved)); let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop remaining_ctxt_new * preamble.frame) * (ss_new.(solved_new))) = coerce_eq k () in assume (freevars ss_new.(solved_new) `Set.subset` dom pst.pg); let pst' : prover_state preamble = { pst with remaining_ctxt=remaining_ctxt_new; remaining_ctxt_frame_typing=RU.magic (); ss=ss_new; nts=None; solved=solved_new; unsolved=unsolved_new; k; goals_inv=RU.magic (); solved_inv=() } in assume (ss_new `ss_extends` pst.ss); Some pst' let move_hd_end (g:env) (l:list vprop { Cons? l }) : vprop_equiv g (list_as_vprop l) (list_as_vprop (L.tl l @ [L.hd l])) = RU.magic ()
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Util.fsti.checked", "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Readback.fsti.checked", "Pulse.Checker.VPropEquiv.fsti.checked", "Pulse.Checker.Prover.Util.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Prover.Match.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Reflection.Util", "short_module": "RUtil" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2.TermEq", "short_module": "TermEq" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.VPropEquiv", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
pst: Pulse.Checker.Prover.Base.prover_state preamble -> remaining_ctxt': Prims.list Pulse.Syntax.Base.vprop -> d: Pulse.Typing.vprop_equiv (Mkprover_state?.pg pst) (Pulse.Typing.Combinators.list_as_vprop (Mkprover_state?.remaining_ctxt pst)) (Pulse.Typing.Combinators.list_as_vprop remaining_ctxt') -> Pulse.Checker.Prover.Base.prover_state preamble
Prims.Tot
[ "total" ]
[]
[ "Pulse.Checker.Prover.Base.preamble", "Pulse.Checker.Prover.Base.prover_state", "Prims.list", "Pulse.Syntax.Base.vprop", "Pulse.Typing.vprop_equiv", "Pulse.Checker.Prover.Base.__proj__Mkprover_state__item__pg", "Pulse.Typing.Combinators.list_as_vprop", "Pulse.Checker.Prover.Base.__proj__Mkprover_state__item__remaining_ctxt", "Pulse.Checker.Prover.Base.Mkprover_state", "Pulse.RuntimeUtils.magic", "Pulse.Checker.Prover.Base.vprop_typing", "Pulse.Checker.Prover.Base.op_Star", "Pulse.Checker.Prover.Base.__proj__Mkpreamble__item__frame", "Pulse.Checker.Prover.Base.__proj__Mkprover_state__item__uvs", "Pulse.Checker.Prover.Base.__proj__Mkprover_state__item__ss", "Pulse.Checker.Prover.Base.__proj__Mkprover_state__item__nts", "Pulse.Checker.Prover.Base.__proj__Mkprover_state__item__solved", "Pulse.Checker.Prover.Base.__proj__Mkprover_state__item__unsolved", "Pulse.Checker.Base.k_elab_equiv", "Pulse.Checker.Prover.Base.__proj__Mkpreamble__item__g0", "Pulse.Checker.Prover.Base.__proj__Mkpreamble__item__ctxt", "Pulse.Checker.Prover.Base.op_Array_Access", "Pulse.Checker.Prover.Base.__proj__Mkprover_state__item__k", "Pulse.Typing.VE_Refl", "Pulse.Checker.Prover.Base.__proj__Mkprover_state__item__goals_inv", "Pulse.Checker.Prover.Base.__proj__Mkprover_state__item__solved_inv" ]
[]
false
false
false
false
false
let remaining_ctxt_equiv_pst (#preamble: _) (pst: prover_state preamble) (remaining_ctxt': list vprop) (d: vprop_equiv pst.pg (list_as_vprop pst.remaining_ctxt) (list_as_vprop remaining_ctxt')) : prover_state preamble =
{ pst with remaining_ctxt = remaining_ctxt'; remaining_ctxt_frame_typing = RU.magic (); k = k_elab_equiv pst.k (VE_Refl _ _) (RU.magic ()) }
false
Pulse.Checker.Prover.Match.fst
Pulse.Checker.Prover.Match.has_structure
val has_structure (q: vprop) : bool
val has_structure (q: vprop) : bool
let has_structure (q:vprop) : bool = match q.t with | Tm_Star _ _ -> true | _ -> false
{ "file_name": "lib/steel/pulse/Pulse.Checker.Prover.Match.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 14, "end_line": 417, "start_col": 0, "start_line": 414 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Prover.Match open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Typing.Metatheory open Pulse.Typing.Util open Pulse.Checker.VPropEquiv open Pulse.Checker.Prover.Base open Pulse.Checker.Prover.Util module RU = Pulse.RuntimeUtils module L = FStar.List.Tot module R = FStar.Reflection.V2 module TermEq = FStar.Reflection.V2.TermEq module T = FStar.Tactics.V2 module RUtil = Pulse.Reflection.Util module P = Pulse.Syntax.Printer module PS = Pulse.Checker.Prover.Substs module Metatheory = Pulse.Typing.Metatheory let equational (t:term) : bool = match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false let type_of_fv (g:env) (fv:R.fv) : T.Tac (option R.term) = let n = R.inspect_fv fv in match R.lookup_typ (fstar_env g) n with | None -> None | Some se -> match R.inspect_sigelt se with | R.Unk -> None | R.Sg_Let _ lbs -> ( L.tryPick (fun lb -> let lbv = R.inspect_lb lb in if R.inspect_fv lbv.lb_fv = n then Some lbv.lb_typ else None) lbs ) | R.Sg_Val _ _ t -> Some t | R.Sg_Inductive _nm _univs params typ _ -> None let is_smt_fallback (t:R.term) : bool = match R.inspect_ln t with | R.Tv_FVar fv -> let name = R.inspect_fv fv in name = ["Steel";"Effect";"Common";"smt_fallback"] || name = ["Pulse"; "Lib"; "Core"; "equate_by_smt"] | _ -> false (* When comparing t0 =?= t1, if they are not syntactically equal, we have to decide whether or not we should fire an SMT query to compare them for provable equality. The criterion is as follows: 1. We allow an SMT query if either t0 or t1 is "equational". For now, that means that either is a match expression. 2. Otherwise, if they are both applications of `f v0...vn` and `f u0...un` of the same head symbol `f`, a top-level constant, then we check if the type of `f` decorates any of its binders with the `smt_fallback` attribute. - If none of them are marked as such, then we check if `f v0...` is syntactically equal to `f u0...` and allow an SMT query to check if vn = vm. That is, the default behavior for predicates is that they *last* argument is eligible for SMT equality. - Otherwise, for each binder that is NOT marked as `smt_fallback`, we check if the corresponding argument is syntactically equal. If so, we allow t0 and t1 to be compared for SMT equality. For example, Steel.ST.Reference.pts_to is defined like so: /// For instance, [pts_to r (sum_perm (half_perm p) (half_perm p)) (v + 1)] /// is unifiable with [pts_to r p (1 + v)] val pts_to (#a:Type0) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop *) let eligible_for_smt_equality (g:env) (t0 t1:term) : T.Tac bool = let either_equational () = equational t0 || equational t1 in let head_eq (t0 t1:R.term) = match R.inspect_ln t0, R.inspect_ln t1 with | R.Tv_App h0 _, R.Tv_App h1 _ -> TermEq.term_eq h0 h1 | _ -> false in match t0.t, t1.t with | Tm_FStar t0, Tm_FStar t1 -> ( let h0, args0 = R.collect_app_ln t0 in let h1, args1 = R.collect_app_ln t1 in if TermEq.term_eq h0 h1 && L.length args0 = L.length args1 then ( match R.inspect_ln h0 with | R.Tv_FVar fv | R.Tv_UInst fv _ -> ( match type_of_fv g fv with | None -> either_equational() | Some t -> let bs, _ = R.collect_arr_ln_bs t in let is_smt_fallback (b:R.binder) = let bview = R.inspect_binder b in L.existsb is_smt_fallback bview.attrs in let some_fallbacks, fallbacks = L.fold_right (fun b (some_fallbacks, bs) -> if is_smt_fallback b then true, true::bs else some_fallbacks, false::bs) bs (false, []) in if not some_fallbacks then ( //if none of the binders are marked fallback //then, by default, consider only the last argument as //fallback head_eq t0 t1 ) else ( let rec aux args0 args1 fallbacks = match args0, args1, fallbacks with | (a0, _)::args0, (a1, _)::args1, b::fallbacks -> if b then aux args0 args1 fallbacks else if not (TermEq.term_eq a0 a1) then false else aux args0 args1 fallbacks | [], [], [] -> true | _ -> either_equational() //unequal lengths in aux args0 args1 fallbacks ) ) | _ -> either_equational () ) else either_equational () ) | Tm_ForallSL _ _ _, Tm_ForallSL _ _ _ -> true | _ -> either_equational () let refl_uvar (t:R.term) (uvs:env) : option var = let open R in match inspect_ln t with | Tv_Var v -> let {uniq=n} = inspect_namedv v in if contains uvs n then Some n else None | _ -> None let is_uvar (t:term) (uvs:env) : option var = match t.t with | Tm_FStar t -> refl_uvar t uvs | _ -> None let contains_uvar (t:term) (uvs:env) (g:env) : T.Tac bool = not (check_disjoint uvs (freevars t)) let is_reveal_uvar (t:term) (uvs:env) : option (universe & term & var) = match is_pure_app t with | Some (hd, None, arg) -> (match is_pure_app hd with | Some (hd, Some Implicit, ty) -> let arg_uvar_index_opt = is_uvar arg uvs in (match arg_uvar_index_opt with | Some n -> (match is_fvar hd with | Some (l, [u]) -> if l = RUtil.reveal_lid then Some (u, ty, n) else None | _ -> None) | _ -> None) | _ -> None) | _ -> None let is_reveal (t:term) : bool = match leftmost_head t with | Some hd -> (match is_fvar hd with | Some (l, [_]) -> l = RUtil.reveal_lid | _ -> false) | _ -> false module RT = FStar.Reflection.Typing // // Call into the F* unifier to solve for uvs by unifying p and q // let try_solve_uvars (g:env) (uvs:env { disjoint uvs g }) (p q:term) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q }) = let uvs = uvs |> bindings_with_ppname |> L.rev |> L.map (fun (({name}, x, t):(ppname & _ & _)) -> let nv_view = { R.uniq = x; R.sort = elab_term t; R.ppname = name; } in let nv = R.pack_namedv nv_view in nv, elab_term t ) in let l, issues = RU.with_context (get_context g) (fun _ -> T.try_unify (elab_env g) uvs (elab_term p) (elab_term q)) in T.log_issues issues; // build ss let ss = PS.empty in assume (PS.dom ss `Set.subset` freevars q); match l with | None -> ss | Some l -> let q_names = freevars q in L.fold_left (fun (ss:(ss:PS.ss_t { PS.dom ss `Set.subset` freevars q })) (x, t) -> let nv_view = R.inspect_namedv x in let topt = readback_ty t in match topt with | Some t -> if Set.mem nv_view.uniq q_names && not (Set.mem nv_view.uniq (PS.dom ss)) then begin let ss_new = PS.push ss nv_view.uniq t in assert (nv_view.uniq `Set.mem` freevars q); assert (PS.dom ss `Set.subset` freevars q); assume (PS.dom ss_new `Set.subset` freevars q); ss_new end else ss | None -> ss ) ss l let unify (g:env) (uvs:env { disjoint uvs g}) (p q:term) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q } & option (RT.equiv (elab_env g) (elab_term p) (elab_term ss.(q)))) = let ss = try_solve_uvars g uvs p q in let q_ss = readback_ty (elab_term ss.(q)) in match q_ss with | None -> (| ss, None |) | Some q -> if eq_tm p q then (| ss, Some (RT.Rel_refl _ _ _) |) else if contains_uvar q uvs g then (| ss, None |) else if eligible_for_smt_equality g p q then let v0 = elab_term p in let v1 = elab_term q in match check_equiv_now (elab_env g) v0 v1 with | Some token, _ -> (| ss, Some (RT.Rel_eq_token _ _ _ (FStar.Squash.return_squash token)) |) | None, _ -> (| ss, None |) else (| ss, None |) let try_match_pq (g:env) (uvs:env { disjoint uvs g}) (p q:vprop) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q } & option (vprop_equiv g p ss.(q))) = let r = unify g uvs p q in match r with | (| ss, None |) -> (| ss, None |) | (| ss, Some _ |) -> (| ss, Some (RU.magic #(vprop_equiv _ _ _) ()) |) let coerce_eq (#a #b:Type) (x:a) (_:squash (a == b)) : y:b{y == x} = x let match_step (#preamble:preamble) (pst:prover_state preamble) (p:vprop) (remaining_ctxt':list vprop) (q:vprop) (unsolved':list vprop) (_:squash (pst.remaining_ctxt == p::remaining_ctxt' /\ pst.unsolved == q::unsolved')) : T.Tac (option (pst':prover_state preamble { pst' `pst_extends` pst })) = let q_ss = pst.ss.(q) in assume (freevars q_ss `Set.disjoint` PS.dom pst.ss); let (| ss_q, ropt |) = try_match_pq pst.pg pst.uvs p q_ss in debug_prover pst.pg (fun _ -> Printf.sprintf "prover matcher: tried to match p %s and q (partially substituted) %s, result: %s" (P.term_to_string p) (P.term_to_string (ss_q.(q_ss))) (if None? ropt then "fail" else "success")); match ropt with | None -> None | Some veq -> assert (PS.dom ss_q `Set.disjoint` PS.dom pst.ss); let ss_new = PS.push_ss pst.ss ss_q in let veq : vprop_equiv pst.pg p (ss_q.(pst.ss.(q))) = veq in assume (ss_q.(pst.ss.(q)) == ss_new.(q)); let veq : vprop_equiv pst.pg p ss_new.(q) = coerce_eq veq () in let remaining_ctxt_new = remaining_ctxt' in let solved_new = q * pst.solved in let unsolved_new = unsolved' in let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop pst.remaining_ctxt * preamble.frame) * pst.ss.(pst.solved)) = pst.k in assume (pst.ss.(pst.solved) == ss_new.(pst.solved)); let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop (p::remaining_ctxt_new) * preamble.frame) * ss_new.(pst.solved)) = coerce_eq k () in let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop remaining_ctxt_new * preamble.frame) * (ss_new.(q) * ss_new.(pst.solved))) = k_elab_equiv k (VE_Refl _ _) (RU.magic ()) in assume (ss_new.(q) * ss_new.(pst.solved) == ss_new.(q * pst.solved)); let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop remaining_ctxt_new * preamble.frame) * (ss_new.(solved_new))) = coerce_eq k () in assume (freevars ss_new.(solved_new) `Set.subset` dom pst.pg); let pst' : prover_state preamble = { pst with remaining_ctxt=remaining_ctxt_new; remaining_ctxt_frame_typing=RU.magic (); ss=ss_new; nts=None; solved=solved_new; unsolved=unsolved_new; k; goals_inv=RU.magic (); solved_inv=() } in assume (ss_new `ss_extends` pst.ss); Some pst' let move_hd_end (g:env) (l:list vprop { Cons? l }) : vprop_equiv g (list_as_vprop l) (list_as_vprop (L.tl l @ [L.hd l])) = RU.magic () let remaining_ctxt_equiv_pst (#preamble:_) (pst:prover_state preamble) (remaining_ctxt':list vprop) (d:vprop_equiv pst.pg (list_as_vprop pst.remaining_ctxt) (list_as_vprop remaining_ctxt')) : prover_state preamble = { pst with remaining_ctxt = remaining_ctxt'; remaining_ctxt_frame_typing = RU.magic (); k = k_elab_equiv pst.k (VE_Refl _ _) (RU.magic ()) } let rec match_q_aux (#preamble:_) (pst:prover_state preamble) (q:vprop) (unsolved':list vprop) (_:squash (pst.unsolved == q::unsolved')) (i:nat) : T.Tac (option (pst':prover_state preamble { pst' `pst_extends` pst })) = if L.length pst.remaining_ctxt = 0 then None else if i = L.length pst.remaining_ctxt then None else let p = L.hd pst.remaining_ctxt in let pst_opt = match_step pst p (L.tl pst.remaining_ctxt) q unsolved' () in match pst_opt with | Some pst -> Some pst | None -> let pst = remaining_ctxt_equiv_pst pst (L.tl pst.remaining_ctxt @ [L.hd pst.remaining_ctxt]) (move_hd_end pst.pg pst.remaining_ctxt) in match_q_aux pst q unsolved' () (i+1) // // THIS SHOULD GO AWAY SOON // let ___canon___ (q:vprop) : Dv (r:vprop { r == q }) = assume False; match Pulse.Readback.readback_ty (elab_term q) with | None -> q | Some q -> q
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Util.fsti.checked", "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Readback.fsti.checked", "Pulse.Checker.VPropEquiv.fsti.checked", "Pulse.Checker.Prover.Util.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Prover.Match.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Reflection.Util", "short_module": "RUtil" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2.TermEq", "short_module": "TermEq" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.VPropEquiv", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
q: Pulse.Syntax.Base.vprop -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Pulse.Syntax.Base.vprop", "Pulse.Syntax.Base.__proj__Mkterm__item__t", "Pulse.Syntax.Base.term", "Pulse.Syntax.Base.term'", "Prims.bool" ]
[]
false
false
false
true
false
let has_structure (q: vprop) : bool =
match q.t with | Tm_Star _ _ -> true | _ -> false
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.gcm_blocks_helper
val gcm_blocks_helper (alg: algorithm) (key: seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes: seq quad32) (p_num_bytes a_num_bytes: nat) (iv: supported_iv_BE) (j0_BE h enc_hash length_quad: quad32) : Lemma (requires length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)))
val gcm_blocks_helper (alg: algorithm) (key: seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes: seq quad32) (p_num_bytes a_num_bytes: nat) (iv: supported_iv_BE) (j0_BE h enc_hash length_quad: quad32) : Lemma (requires length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)))
let gcm_blocks_helper (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in let hash = ghash_BE h final_quads in gcm_blocks_helper_enc alg key p128 p_bytes c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE; calc (==) { enc_hash; == {} gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0; == {} gctr_encrypt_block ctr_BE_1 hash alg key 0; == {} quad32_xor hash (aes_encrypt_word alg key ctr_BE_1); }; calc (==) { gctr_encrypt ctr_BE_1 (be_quad32_to_bytes hash) alg key; == { gctr_encrypt_one_block ctr_BE_1 hash alg key } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor hash (aes_encrypt_word alg key ctr_BE_1)))); == {} seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 enc_hash)); == { be_seq_quad32_to_bytes_of_singleton enc_hash } be_quad32_to_bytes enc_hash; }; if p_num_bytes > length p128 * 16 then ( let c = append c128 c_bytes in calc (==) { append (append auth_quads c128) c_bytes; == { append_assoc auth_quads c128 c_bytes } append auth_quads (append c128 c_bytes); == {} append auth_quads c; }; calc (==) { append (append (append auth_quads c128) c_bytes) (create 1 length_quad); = {} // See previous calc append (append auth_quads (append c128 c_bytes)) (create 1 length_quad); == { append_assoc auth_quads c (create 1 length_quad) } append auth_quads (append c (create 1 length_quad)); }; let raw_quads_old = append auth_quads c in calc (==) { raw_quads; == {} be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes)); == { calc (==) { pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes); == { calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes; == { append_distributes_be_seq_quad32_to_bytes auth_quads c } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) 0 total_bytes; == { slice_append_back (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) total_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes); == {} append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes; } } pad_to_128_bits (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes); == { pad_to_128_bits_multiple_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes); } } be_bytes_to_seq_quad32 (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes)); == { append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes) } append (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads))) (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); == { be_bytes_to_seq_quad32_to_bytes auth_quads } append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); }; let auth_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in let cipher_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in calc (==) { append raw_quads (create 1 length_quad); == {} append (append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad); == { assert (equal auth_quads auth_padded_quads') } append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad); == { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) } append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad)); }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ) else ( calc (==) { append (append auth_quads c128) (create 1 length_quad); == { append_assoc auth_quads c128 (create 1 length_quad) } append auth_quads (append c128 (create 1 length_quad)); }; let c = c128 in calc (==) { be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)); == { assert (equal (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)) } be_bytes_to_seq_quad32 (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))); == { assert (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) } be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)); == { be_bytes_to_seq_quad32_to_bytes c } c; }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ); ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 511, "start_col": 0, "start_line": 272 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; () let lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) = ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); () let gcm_encrypt_BE_fst_helper (iv:supported_iv_BE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key )) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () let gcm_encrypt_BE_snd_helper (iv:supported_iv_BE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key) )) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () #reset-options "--z3rlimit 10" let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 ))) (ensures (let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in //cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key)) cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in gctr_partial_opaque_completed alg plain cipher key ctr_BE_2; if p_num_bytes > length p128 * 16 then ( gctr_partial_reveal (); assert (gctr_partial alg (length p128) plain cipher key ctr_BE_2); assert (equal (slice plain 0 (length p128)) (slice p128 0 (length p128))); assert (equal (slice cipher 0 (length p128)) (slice c128 0 (length p128))); gctr_partial_opaque_ignores_postfix alg (length p128) plain p128 cipher c128 key ctr_BE_2; assert (gctr_partial alg (length p128) p128 c128 key ctr_BE_2); gctr_partial_opaque_completed alg p128 c128 key ctr_BE_2; let num_blocks = p_num_bytes / 16 in assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_word alg key (inc32 ctr_BE_2 num_blocks))); gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks; assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks == gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0); aes_encrypt_word_reveal (); gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes; assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ) else ( gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher; assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt ctr_BE_2 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key); let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in assert (equal plain_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain))); assert (equal cipher_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher))); assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ); gcm_encrypt_BE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key; () let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) = assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x)))); () let append_distributes_be_seq_quad32_to_bytes (x y:seq quad32) : Lemma (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append x y)) == append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE x)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE y))) = append_distributes_be_seq_quad32_to_bytes x y let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) = assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y)))
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 -> a128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> a_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p_num_bytes: Prims.nat -> a_num_bytes: Prims.nat -> iv: Vale.AES.GCM_BE_s.supported_iv_BE -> j0_BE: Vale.Def.Types_s.quad32 -> h: Vale.Def.Types_s.quad32 -> enc_hash: Vale.Def.Types_s.quad32 -> length_quad: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\ p_num_bytes < FStar.Seq.Base.length p128 * 16 + 16 /\ FStar.Seq.Base.length a128 * 16 <= a_num_bytes /\ a_num_bytes < FStar.Seq.Base.length a128 * 16 + 16 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\ FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\ FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\ FStar.Seq.Base.length a_bytes == 1 /\ Vale.AES.AES_BE_s.is_aes_key_word alg key /\ j0_BE = Vale.AES.GCM_BE_s.compute_iv_BE h iv /\ h = Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) /\ p_num_bytes < Vale.Def.Words_s.pow2_32 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\ length_quad == Vale.Def.Words.Four_s.two_two_to_four (Vale.Def.Words_s.Mktwo (Vale.Def.Words.Two_s.nat_to_two 32 (8 * a_num_bytes)) (Vale.Def.Words.Two_s.nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1 = j0_BE in let ctr_BE_2 = Vale.AES.GCTR_BE_s.inc32 j0_BE 1 in let plain = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append p128 p_bytes | _ -> p128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let cipher = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append c128 c_bytes | _ -> c128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let cipher_bound = FStar.Seq.Base.length p128 + (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> 1 | _ -> 0) in Vale.AES.GCTR_BE.gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = (match a_num_bytes > FStar.Seq.Base.length a128 * 16 with | true -> FStar.Seq.Base.append a128 a_bytes | _ -> a128) <: FStar.Seq.Base.seq (Vale.Def.Words_s.four Vale.Def.Words_s.nat32) in let auth_input_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = Vale.AES.GCTR_BE_s.pad_to_128_bits auth_input_bytes in let auth_quads = Vale.Def.Types_s.be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = FStar.Seq.Base.append auth_quads c128 in let total_bytes = FStar.Seq.Base.length auth_quads * 16 + p_num_bytes in let raw_quads = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> let raw_quads = FStar.Seq.Base.append raw_quads c_bytes in let input_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = Vale.AES.GCTR_BE_s.pad_to_128_bits input_bytes in Vale.Def.Types_s.be_bytes_to_seq_quad32 input_padded_bytes | _ -> raw_quads) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let final_quads = FStar.Seq.Base.append raw_quads (FStar.Seq.Base.create 1 length_quad) in enc_hash == Vale.AES.GCTR_BE_s.gctr_encrypt_block ctr_BE_1 (Vale.AES.GHash_BE_s.ghash_BE h final_quads) alg key 0))) (ensures (let auth_raw_quads = (match a_num_bytes > FStar.Seq.Base.length a128 * 16 with | true -> FStar.Seq.Base.append a128 a_bytes | _ -> a128) <: FStar.Seq.Base.seq (Vale.Def.Words_s.four Vale.Def.Words_s.nat32) in let auth_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append p128 p_bytes | _ -> p128) <: FStar.Seq.Base.seq (Vale.Def.Words_s.four Vale.Def.Words_s.nat32) in let plain_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append c128 c_bytes | _ -> c128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let cipher_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE cipher)) 0 p_num_bytes in FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\ FStar.Seq.Base.length plain_bytes < Vale.Def.Words_s.pow2_32 /\ cipher_bytes == FStar.Pervasives.Native.fst (Vale.AES.GCM_BE_s.gcm_encrypt_BE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ Vale.Arch.Types.be_quad32_to_bytes enc_hash == FStar.Pervasives.Native.snd (Vale.AES.GCM_BE_s.gcm_encrypt_BE alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat32", "Vale.Def.Types_s.quad32", "Prims.nat", "Vale.AES.GCM_BE_s.supported_iv_BE", "Prims.unit", "Prims.op_GreaterThan", "FStar.Mul.op_Star", "FStar.Seq.Base.length", "Vale.AES.GCM_BE.gcm_encrypt_BE_snd_helper", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Seq.Base.append", "FStar.Seq.Base.create", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Vale.Def.Types_s.be_bytes_to_seq_quad32", "Vale.AES.GCTR_BE_s.pad_to_128_bits", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.append_assoc", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.nat8", "FStar.Seq.Base.slice", "Vale.Def.Types_s.nat8", "Vale.AES.GCM_BE.append_distributes_be_seq_quad32_to_bytes", "Vale.AES.GCM_BE.slice_append_back", "Vale.AES.GCM_BE.pad_to_128_bits_multiple_append", "Vale.Arch.Types.append_distributes_be_bytes_to_seq_quad32", "Vale.Arch.Types.be_bytes_to_seq_quad32_to_bytes", "Prims.b2t", "Prims.op_Equality", "Prims.bool", "Vale.AES.GCTR_BE_s.gctr_encrypt", "Vale.Arch.Types.be_quad32_to_bytes", "Vale.Def.Words_s.four", "Vale.Def.Types_s.quad32_xor", "Vale.AES.AES_BE_s.aes_encrypt_word", "Vale.AES.GCTR_BE.gctr_encrypt_one_block", "Vale.Arch.Types.be_seq_quad32_to_bytes_of_singleton", "Vale.AES.GCTR_BE_s.gctr_encrypt_block", "Vale.AES.GHash_BE_s.ghash_BE", "Vale.AES.GCM_BE.gcm_blocks_helper_enc", "Prims.int", "Prims.op_Addition", "Vale.AES.GCTR_BE_s.inc32", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Vale.Def.Words_s.pow2_32", "Vale.AES.AES_BE_s.is_aes_key_word", "Vale.AES.GCM_BE_s.compute_iv_BE", "Vale.Def.Words_s.Mkfour", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.two_two_to_four", "Vale.Def.Words_s.Mktwo", "Vale.Def.Words_s.two", "Vale.Def.Words.Two_s.nat_to_two", "Vale.AES.GCTR_BE.gctr_partial", "FStar.Pervasives.Native.fst", "Vale.AES.GCM_BE_s.gcm_encrypt_BE", "FStar.Pervasives.Native.snd", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let gcm_blocks_helper (alg: algorithm) (key: seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes: seq quad32) (p_num_bytes a_num_bytes: nat) (iv: supported_iv_BE) (j0_BE h enc_hash length_quad: quad32) : Lemma (requires length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) =
let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in let hash = ghash_BE h final_quads in gcm_blocks_helper_enc alg key p128 p_bytes c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE; calc ( == ) { enc_hash; ( == ) { () } gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0; ( == ) { () } gctr_encrypt_block ctr_BE_1 hash alg key 0; ( == ) { () } quad32_xor hash (aes_encrypt_word alg key ctr_BE_1); }; calc ( == ) { gctr_encrypt ctr_BE_1 (be_quad32_to_bytes hash) alg key; ( == ) { gctr_encrypt_one_block ctr_BE_1 hash alg key } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor hash (aes_encrypt_word alg key ctr_BE_1)))); ( == ) { () } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 enc_hash)); ( == ) { be_seq_quad32_to_bytes_of_singleton enc_hash } be_quad32_to_bytes enc_hash; }; if p_num_bytes > length p128 * 16 then (let c = append c128 c_bytes in calc ( == ) { append (append auth_quads c128) c_bytes; ( == ) { append_assoc auth_quads c128 c_bytes } append auth_quads (append c128 c_bytes); ( == ) { () } append auth_quads c; }; calc ( == ) { append (append (append auth_quads c128) c_bytes) (create 1 length_quad); ( = ) { () } append (append auth_quads (append c128 c_bytes)) (create 1 length_quad); ( == ) { append_assoc auth_quads c (create 1 length_quad) } append auth_quads (append c (create 1 length_quad)); }; let raw_quads_old = append auth_quads c in calc ( == ) { raw_quads; ( == ) { () } be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old )) 0 total_bytes)); ( == ) { calc ( == ) { pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes); ( == ) { calc ( == ) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes; ( == ) { append_distributes_be_seq_quad32_to_bytes auth_quads c } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) 0 total_bytes; ( == ) { slice_append_back (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) total_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes); ( == ) { () } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes; } } pad_to_128_bits (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes); ( == ) { pad_to_128_bits_multiple_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads )) cipher_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes); } } be_bytes_to_seq_quad32 (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes)); ( == ) { append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes) } append (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads))) (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); ( == ) { be_bytes_to_seq_quad32_to_bytes auth_quads } append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); }; let auth_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in let cipher_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in calc ( == ) { append raw_quads (create 1 length_quad); ( == ) { () } append (append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad); ( == ) { assert (equal auth_quads auth_padded_quads') } append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad); ( == ) { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) } append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad)); }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; ()) else (calc ( == ) { append (append auth_quads c128) (create 1 length_quad); ( == ) { append_assoc auth_quads c128 (create 1 length_quad) } append auth_quads (append c128 (create 1 length_quad)); }; let c = c128 in calc ( == ) { be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c )) 0 p_num_bytes)); ( == ) { assert (equal (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)) } be_bytes_to_seq_quad32 (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))); ( == ) { assert (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) } be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)); ( == ) { be_bytes_to_seq_quad32_to_bytes c } c; }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; ()); ()
false
Hacl.Impl.Ed25519.Group.fst
Hacl.Impl.Ed25519.Group.a_spec
val a_spec : Type0
let a_spec = S.aff_point_c
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Group.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 21, "start_col": 0, "start_line": 21 }
module Hacl.Impl.Ed25519.Group module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum25519 open Hacl.Impl.Ed25519.PointConstants module LSeq = Lib.Sequence module F51 = Hacl.Impl.Ed25519.Field51 module BE = Hacl.Impl.Exponentiation.Definitions module S = Spec.Ed25519 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Exponentiation.Definitions.fst.checked", "Hacl.Impl.Ed25519.PointDouble.fst.checked", "Hacl.Impl.Ed25519.PointConstants.fst.checked", "Hacl.Impl.Ed25519.PointAdd.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Group.fst" }
[ { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519.PointConstants", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Spec.Ed25519.aff_point_c" ]
[]
false
false
false
true
true
let a_spec =
S.aff_point_c
false
Hacl.Impl.Blake2.Generic.fst
Hacl.Impl.Blake2.Generic.blake2_round
val blake2_round : #al:Spec.alg -> #ms:m_spec -> wv:state_p al ms -> m:block_w al -> i:size_t -> Stack unit (requires (fun h -> live h wv /\ live h m /\ disjoint wv m)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ state_v h1 wv == Spec.blake2_round al (as_seq h0 m) (v i) (state_v h0 wv)))
val blake2_round : #al:Spec.alg -> #ms:m_spec -> wv:state_p al ms -> m:block_w al -> i:size_t -> Stack unit (requires (fun h -> live h wv /\ live h m /\ disjoint wv m)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ state_v h1 wv == Spec.blake2_round al (as_seq h0 m) (v i) (state_v h0 wv)))
let blake2_round #al #ms wv m i = push_frame(); let start_idx = (i %. size 10) *. size 16 in assert (v start_idx == (v i % 10) * 16); assert (v start_idx <= 144); let m_st = alloc_state al ms in gather_state m_st m start_idx; let x = rowi m_st 0ul in let y = rowi m_st 1ul in let z = rowi m_st 2ul in let w = rowi m_st 3ul in let h1 = ST.get() in assert (disjoint wv m_st); assert (disjoint m_st wv); assert (disjoint x wv); assert (disjoint wv x); assert (disjoint y wv); assert (disjoint wv y); assert (disjoint z wv); assert (disjoint wv z); assert (disjoint w wv); assert (disjoint wv w); blake2_mixing wv x y; diag wv; blake2_mixing wv z w; undiag wv; pop_frame ()
{ "file_name": "code/blake2/Hacl.Impl.Blake2.Generic.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 304, "start_col": 0, "start_line": 278 }
module Hacl.Impl.Blake2.Generic open FStar.Mul open FStar.HyperStack open FStar.HyperStack.ST open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Lib.LoopCombinators module ST = FStar.HyperStack.ST module Seq = Lib.Sequence module Loops = Lib.LoopCombinators module Spec = Spec.Blake2 open Hacl.Impl.Blake2.Constants open Hacl.Impl.Blake2.Core #set-options "--z3rlimit 50 --max_ifuel 0 --max_fuel 0" noextract let is_valid_blake2_config (a : Spec.alg) (m : m_spec) = match a, m with | Spec.Blake2S, M32 | Spec.Blake2S, M128 | Spec.Blake2B, M32 | Spec.Blake2B, M256 -> true | _ -> false inline_for_extraction noextract let valid_m_spec (a : Spec.alg) = m:m_spec{is_valid_blake2_config a m} /// Accessors for constants inline_for_extraction noextract val get_iv: a:Spec.alg -> s: size_t{size_v s < 8} -> Stack (word_t a) (requires (fun h -> True)) (ensures (fun h0 z h1 -> h0 == h1 /\ v z == v (Seq.index (Spec.ivTable a) (v s)))) let get_iv a s = recall_contents #(Spec.pub_word_t Spec.Blake2S) #8ul ivTable_S (Spec.ivTable Spec.Blake2S); recall_contents #(Spec.pub_word_t Spec.Blake2B) #8ul ivTable_B (Spec.ivTable Spec.Blake2B); [@inline_let] let ivTable: (x:glbuffer (Spec.pub_word_t a) 8ul{witnessed x (Spec.ivTable a) /\ recallable x}) = match a with | Spec.Blake2S -> ivTable_S | Spec.Blake2B -> ivTable_B in let r = index ivTable s in secret #(Spec.wt a) r inline_for_extraction noextract val get_sigma: s: size_t{v s < 160} -> Stack Spec.sigma_elt_t (requires (fun h -> True)) (ensures (fun h0 z h1 -> h0 == h1 /\ z == Lib.Sequence.(Spec.sigmaTable.[v s]))) let get_sigma s = recall_contents sigmaTable Spec.sigmaTable; index sigmaTable s inline_for_extraction noextract val get_sigma_sub: start: size_t -> i: size_t{v i < 16 /\ v start + v i < 160} -> Stack Spec.sigma_elt_t (requires (fun h -> True)) (ensures (fun h0 z h1 -> h0 == h1 /\ v z == v (Seq.index Spec.sigmaTable (v start + v i)))) let get_sigma_sub start i = get_sigma (start +. i) inline_for_extraction noextract let rounds_t (a:Spec.alg): size_t = size (Spec.rounds a) inline_for_extraction noextract val size_to_word: al:Spec.alg -> s:size_t -> u:word_t al{u == Spec.nat_to_word al (v s)} let size_to_word al s = match al with | Spec.Blake2S -> size_to_uint32 s | Spec.Blake2B -> size_to_uint64 s inline_for_extraction noextract val size_to_limb: al:Spec.alg -> s:size_t -> u:Spec.limb_t al{u == Spec.nat_to_limb al (v s)} let size_to_limb al s = match al with | Spec.Blake2S -> size_to_uint64 s | Spec.Blake2B -> to_u128 (size_to_uint64 s) /// Constants /// Define algorithm functions inline_for_extraction noextract val g1: #al:Spec.alg -> #m:m_spec -> wv:state_p al m -> a:index_t -> b:index_t -> r:rotval (Spec.wt al) -> Stack unit (requires (fun h -> live h wv /\ a <> b)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ (state_v h1 wv) == Spec.g1 al (state_v h0 wv) (v a) (v b) r)) let g1 #al #m wv a b r = let h0 = ST.get() in let wv_a = rowi wv a in let wv_b = rowi wv b in xor_row wv_a wv_b; ror_row wv_a r; let h2 = ST.get() in Lib.Sequence.eq_intro (state_v h2 wv) (Spec.g1 al (state_v h0 wv) (v a) (v b) r) #push-options "--z3rlimit 100 --max_fuel 1 --max_ifuel 1" inline_for_extraction noextract val g2: #al:Spec.alg -> #m:m_spec -> wv:state_p al m -> a:index_t -> b:index_t -> x:row_p al m -> Stack unit (requires (fun h -> live h wv /\ live h x /\ disjoint wv x /\ a <> b)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ state_v h1 wv == Spec.g2 al (state_v h0 wv) (v a) (v b) (row_v h0 x))) let g2 #al #m wv a b x = let h0 = ST.get() in let wv_a = rowi wv a in let wv_b = rowi wv b in add_row wv_a wv_b; add_row wv_a x; let h1 = ST.get() in Lib.Sequence.eq_intro (state_v h1 wv) (Spec.g2 al (state_v h0 wv) (v a) (v b) (row_v h0 x)) #push-options "--z3rlimit 100 --max_fuel 1 --max_ifuel 1" inline_for_extraction noextract val g2z: #al:Spec.alg -> #m:m_spec -> wv:state_p al m -> a:index_t -> b:index_t -> Stack unit (requires (fun h -> live h wv /\ a <> b)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ state_v h1 wv == Spec.g2z al (state_v h0 wv) (v a) (v b))) let g2z #al #m wv a b = let h0 = ST.get() in let wv_a = rowi wv a in let wv_b = rowi wv b in add_row wv_a wv_b; let h1 = ST.get() in Lib.Sequence.eq_intro (state_v h1 wv) (Spec.g2z al (state_v h0 wv) (v a) (v b)) inline_for_extraction noextract val blake2_mixing : #al:Spec.alg -> #m:m_spec -> wv:state_p al m -> x:row_p al m -> y:row_p al m -> Stack unit (requires (fun h -> live h wv /\ live h x /\ live h y /\ disjoint wv x /\ disjoint wv y)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ state_v h1 wv == Spec.blake2_mixing al (state_v h0 wv) (row_v h0 x) (row_v h0 y))) let blake2_mixing #al #m wv x y = let h0 = ST.get() in push_frame (); let a = 0ul in let b = 1ul in let c = 2ul in let d = 3ul in [@inline_let] let r0 = normalize_term (Lib.Sequence.index (Spec.rTable al) 0) in normalize_term_spec (Lib.Sequence.index (Spec.rTable al) 0); [@inline_let] let r1 = normalize_term (Lib.Sequence.index (Spec.rTable al) 1) in normalize_term_spec (Lib.Sequence.index (Spec.rTable al) 1); [@inline_let] let r2 = normalize_term (Lib.Sequence.index (Spec.rTable al) 2) in normalize_term_spec (Lib.Sequence.index (Spec.rTable al) 2); [@inline_let] let r3 = normalize_term (Lib.Sequence.index (Spec.rTable al) 3) in normalize_term_spec (Lib.Sequence.index (Spec.rTable al) 3); let h1 = ST.get() in g2 wv a b x; g1 wv d a r0; g2z wv c d; g1 wv b c r1; g2 wv a b y; g1 wv d a r2; g2z wv c d; g1 wv b c r3; let h2 = ST.get() in pop_frame (); let h3 = ST.get() in assert(modifies (loc wv) h0 h3); Lib.Sequence.eq_intro (state_v h2 wv) (Spec.blake2_mixing al (state_v h1 wv) (row_v h1 x) (row_v h1 y)) #pop-options inline_for_extraction noextract val diag: #a:Spec.alg -> #m:m_spec -> wv:state_p a m -> Stack unit (requires (fun h -> live h wv)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ state_v h1 wv == Spec.diag (state_v h0 wv))) let diag #a #m wv = let r1 = rowi wv 1ul in let r2 = rowi wv 2ul in let r3 = rowi wv 3ul in let h0 = ST.get() in permr_row r1 1ul; permr_row r2 2ul; permr_row r3 3ul inline_for_extraction noextract val undiag: #a:Spec.alg -> #m:m_spec -> wv:state_p a m -> Stack unit (requires (fun h -> live h wv)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ state_v h1 wv == Spec.undiag (state_v h0 wv))) let undiag #a #m wv = let r1 = rowi wv 1ul in let r2 = rowi wv 2ul in let r3 = rowi wv 3ul in let h0 = ST.get() in permr_row r1 3ul; permr_row r2 2ul; permr_row r3 1ul inline_for_extraction noextract val gather_state: #a:Spec.alg -> #ms:m_spec -> st:state_p a ms -> m:block_w a -> start:size_t{v start <= 144} -> Stack unit (requires (fun h -> live h st /\ live h m /\ disjoint st m)) (ensures (fun h0 _ h1 -> modifies (loc st) h0 h1 /\ state_v h1 st == Spec.gather_state a (as_seq h0 m) (v start))) inline_for_extraction noextract let get_sigma' (start: size_t { v start <= 144 }) (i: size_t { normalize (i <=. 15ul) }): Stack Spec.sigma_elt_t (requires (fun h -> True)) (ensures (fun h0 z h1 -> h0 == h1 /\ z == Lib.Sequence.(Spec.sigmaTable.[v start + v i]))) = get_sigma (start +! i) #push-options "--z3rlimit 500" let gather_state #a #ms st m start = let h0 = ST.get() in let r0 = rowi st 0ul in let r1 = rowi st 1ul in let r2 = rowi st 2ul in let r3 = rowi st 3ul in let s0 = get_sigma' start 0ul in let s1 = get_sigma' start 1ul in let s2 = get_sigma' start 2ul in let s3 = get_sigma' start 3ul in let s4 = get_sigma' start 4ul in let s5 = get_sigma' start 5ul in let s6 = get_sigma' start 6ul in let s7 = get_sigma' start 7ul in let s8 = get_sigma' start 8ul in let s9 = get_sigma' start 9ul in let s10 = get_sigma' start 10ul in let s11 = get_sigma' start 11ul in let s12 = get_sigma' start 12ul in let s13 = get_sigma' start 13ul in let s14 = get_sigma' start 14ul in let s15 = get_sigma' start 15ul in let h1 = ST.get() in gather_row r0 m s0 s2 s4 s6; let h2 = ST.get() in gather_row r1 m s1 s3 s5 s7; let h3 = ST.get() in gather_row r2 m s8 s10 s12 s14; let h4 = ST.get() in gather_row r3 m s9 s11 s13 s15; let h5 = ST.get() in assert(modifies (loc st) h0 h5); Lib.Sequence.eq_intro (state_v h5 st) (Spec.gather_state a (as_seq h0 m) (v start)) inline_for_extraction noextract val blake2_round : #al:Spec.alg -> #ms:m_spec -> wv:state_p al ms -> m:block_w al -> i:size_t -> Stack unit (requires (fun h -> live h wv /\ live h m /\ disjoint wv m)) (ensures (fun h0 _ h1 -> modifies (loc wv) h0 h1 /\ state_v h1 wv == Spec.blake2_round al (as_seq h0 m) (v i) (state_v h0 wv)))
{ "checked_file": "/", "dependencies": [ "Spec.Blake2.fst.checked", "prims.fst.checked", "LowStar.Modifies.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Blake2.Core.fsti.checked", "Hacl.Impl.Blake2.Constants.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Blake2.Generic.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Core", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2.Constants", "short_module": null }, { "abbrev": true, "full_module": "Spec.Blake2", "short_module": "Spec" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 500, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
wv: Hacl.Impl.Blake2.Core.state_p al ms -> m: Hacl.Impl.Blake2.Core.block_w al -> i: Lib.IntTypes.size_t -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Spec.Blake2.Definitions.alg", "Hacl.Impl.Blake2.Core.m_spec", "Hacl.Impl.Blake2.Core.state_p", "Hacl.Impl.Blake2.Core.block_w", "Lib.IntTypes.size_t", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Blake2.Generic.undiag", "Hacl.Impl.Blake2.Generic.blake2_mixing", "Hacl.Impl.Blake2.Generic.diag", "Prims._assert", "Lib.Buffer.disjoint", "Lib.Buffer.MUT", "Hacl.Impl.Blake2.Core.element_t", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.Buffer.lbuffer_t", "Hacl.Impl.Blake2.Core.row_len", "Hacl.Impl.Blake2.Core.rowi", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Blake2.Core.row_p", "Hacl.Impl.Blake2.Generic.gather_state", "Lib.IntTypes.mul_mod", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Hacl.Impl.Blake2.Core.alloc_state", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.v", "Prims.eq2", "Prims.int", "FStar.Mul.op_Star", "Prims.op_Modulus", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.op_Percent_Dot", "Lib.IntTypes.size", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let blake2_round #al #ms wv m i =
push_frame (); let start_idx = (i %. size 10) *. size 16 in assert (v start_idx == (v i % 10) * 16); assert (v start_idx <= 144); let m_st = alloc_state al ms in gather_state m_st m start_idx; let x = rowi m_st 0ul in let y = rowi m_st 1ul in let z = rowi m_st 2ul in let w = rowi m_st 3ul in let h1 = ST.get () in assert (disjoint wv m_st); assert (disjoint m_st wv); assert (disjoint x wv); assert (disjoint wv x); assert (disjoint y wv); assert (disjoint wv y); assert (disjoint z wv); assert (disjoint wv z); assert (disjoint w wv); assert (disjoint wv w); blake2_mixing wv x y; diag wv; blake2_mixing wv z w; undiag wv; pop_frame ()
false
Hacl.HMAC_DRBG.fst
Hacl.HMAC_DRBG.mk_generate
val mk_generate: #a:supported_alg -> HMAC.compute_st a -> generate_st a
val mk_generate: #a:supported_alg -> HMAC.compute_st a -> generate_st a
let mk_generate #a hmac output st n additional_input_len additional_input = if st.reseed_counter.(0ul) >. reseed_interval then false else begin S.hmac_input_bound a; Math.Lemmas.lemma_div_mod (v n) (hash_length a); let State k v ctr = st in if additional_input_len >. 0ul then update hmac additional_input_len additional_input k v; let output:lbuffer uint8 n = output in let max = n /. hash_len a in let out = sub output 0ul (max *! hash_len a) in [@inline_let] let a_spec = S.a_spec a in [@inline_let] let refl h i = as_seq h v in [@inline_let] let spec h0 = S.generate_loop a (as_seq h0 k) (uint_v max) in let h0 = ST.get () in fill_blocks h0 (hash_len a) max out a_spec refl (fun i -> loc v) spec (fun i -> LSeq.unfold_generate_blocks (hash_length a) (uint_v max) a_spec (spec h0) (as_seq h0 v) (uint_v i); hmac v k (hash_len a) v (hash_len a); copy (sub out (i *! hash_len a) (hash_len a)) v ); if max *! hash_len a <. n then begin let h1 = ST.get () in let block = sub output (max *! hash_len a) (n -! (max *! hash_len a)) in hmac v k (hash_len a) v (hash_len a); copy block (sub v 0ul (n -! (max *! hash_len a))); let h2 = ST.get () in LSeq.eq_intro (as_seq h2 output) (as_seq h1 out `LSeq.op_At_Bar` as_seq h2 block) end; update hmac additional_input_len additional_input k v; let old_ctr = ctr.(0ul) in ctr.(0ul) <- old_ctr +! 1ul; true end
{ "file_name": "code/drbg/Hacl.HMAC_DRBG.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 7, "end_line": 302, "start_col": 0, "start_line": 261 }
module Hacl.HMAC_DRBG open FStar.HyperStack.ST module ST = FStar.HyperStack.ST open Spec.Hash.Definitions open Lib.IntTypes open Lib.Buffer module HS = FStar.HyperStack module B = LowStar.Buffer module LSeq = Lib.Sequence module HMAC = Hacl.HMAC module S = Spec.HMAC_DRBG friend Spec.HMAC_DRBG unfold let hash_len (a:supported_alg) = Hacl.Hash.Definitions.hash_len a #set-options "--fuel 0 --ifuel 0 --z3rlimit 50" inline_for_extraction noextract val update_round: #a:supported_alg -> hmac:HMAC.compute_st a -> len:size_t -> data:lbuffer uint8 len -> n:uint8 -> k:lbuffer uint8 (hash_len a) -> v:lbuffer uint8 (hash_len a) -> Stack unit (requires fun h0 -> live h0 k /\ live h0 v /\ live h0 data /\ disjoint k v /\ // HMAC input length must fit in size_t hash_length a + 1 + uint_v len + block_length a < pow2 32) (ensures fun h0 _ h1 -> S.hmac_input_bound a; as_seq h1 k == Spec.Agile.HMAC.hmac a (as_seq h0 k) (Seq.append (as_seq h0 v) (Seq.cons n (as_seq h0 data))) /\ as_seq h1 v == Spec.Agile.HMAC.hmac a (as_seq h1 k) (as_seq h0 v) /\ modifies2 k v h0 h1) let update_round #a hmac len data n k v = let h0 = ST.get() in push_frame(); let input_len = hash_len a +! 1ul +! len in let input = create input_len (u8 0) in let k' = sub input 0ul (hash_len a) in copy k' v; if len <> 0ul then copy (sub input (hash_len a +! 1ul) len) data; input.(hash_len a) <- n; let h1 = ST.get() in assert (Seq.equal (as_seq h1 input) (Seq.append (as_seq h0 v) (Seq.cons n (as_seq h0 data)))); S.hmac_input_bound a; hmac k' k (hash_len a) input input_len; hmac v k' (hash_len a) v (hash_len a); copy k k'; pop_frame() inline_for_extraction noextract val update: #a:supported_alg -> hmac:HMAC.compute_st a -> len:size_t -> data:lbuffer uint8 len -> k:lbuffer uint8 (hash_len a) -> v:lbuffer uint8 (hash_len a) -> Stack unit (requires fun h0 -> live h0 data /\ live h0 k /\ live h0 v /\ disjoint k v /\ disjoint k data /\ disjoint v data /\ hash_length a + 1 + uint_v len + block_length a < pow2 32) (ensures fun h0 _ h1 -> S.hmac_input_bound a; let k', v' = S.update #a (as_seq h0 data) (as_seq h0 k) (as_seq h0 v) in modifies2 k v h0 h1 /\ as_seq h1 k == k' /\ as_seq h1 v == v') let update #a hmac len data k v = update_round hmac len data (u8 0) k v; if len <> 0ul then update_round hmac len data (u8 1) k v noeq type state (a:supported_alg) = | State: k:lbuffer uint8 (hash_len a) -> v:lbuffer uint8 (hash_len a) -> reseed_counter:lbuffer size_t 1ul {disjoint k v /\ disjoint k reseed_counter /\ disjoint v reseed_counter} -> state a let freeable #a st = let k:B.buffer uint8 = st.k in let v:B.buffer uint8 = st.v in let ctr:B.buffer size_t = st.reseed_counter in B.freeable k /\ B.freeable v /\ B.freeable ctr let footprint #a st = let k:B.buffer uint8 = st.k in let v:B.buffer uint8 = st.v in let ctr:B.buffer size_t = st.reseed_counter in B.loc_addr_of_buffer k |+| B.loc_addr_of_buffer v |+| B.loc_addr_of_buffer ctr let invariant #a st h = live h st.k /\ live h st.v /\ live h st.reseed_counter /\ ( // JP: the disjoint predicate from lib hardcodes loc_buffer instead of // loc_addr_of_buffer, which prevents us from writing a proper free function // (probably why it wasn't written here in the first place)... we add on top // of the lib-style predicate a non-lib-style predicate which allows writing // an actual free function let k = st.k <: B.buffer uint8 in let v = st.v <: B.buffer uint8 in let ctr = st.reseed_counter <: B.buffer size_t in B.(all_disjoint [ loc_addr_of_buffer k; loc_addr_of_buffer v; loc_addr_of_buffer ctr ])) let repr #a st h = S.State (as_seq h st.k) (as_seq h st.v) (v (bget h st.reseed_counter 0)) let alloca a = let k = match a with | SHA1 -> create (hash_len SHA1) (u8 0) | SHA2_256 -> create (hash_len SHA2_256) (u8 0) | SHA2_384 -> create (hash_len SHA2_384) (u8 0) | SHA2_512 -> create (hash_len SHA2_512) (u8 0) in let v = match a with | SHA1 -> create (hash_len SHA1) (u8 0) | SHA2_256 -> create (hash_len SHA2_256) (u8 0) | SHA2_384 -> create (hash_len SHA2_384) (u8 0) | SHA2_512 -> create (hash_len SHA2_512) (u8 0) in let ctr = create 1ul 1ul in State k v ctr let create_in a r = let k:B.buffer uint8 = match a with | SHA1 -> B.malloc r (u8 0) (hash_len SHA1) | SHA2_256 -> B.malloc r (u8 0) (hash_len SHA2_256) | SHA2_384 -> B.malloc r (u8 0) (hash_len SHA2_384) | SHA2_512 -> B.malloc r (u8 0) (hash_len SHA2_512) in let v:B.buffer uint8 = match a with | SHA1 -> B.malloc r (u8 0) (hash_len SHA1) | SHA2_256 -> B.malloc r (u8 0) (hash_len SHA2_256) | SHA2_384 -> B.malloc r (u8 0) (hash_len SHA2_384) | SHA2_512 -> B.malloc r (u8 0) (hash_len SHA2_512) in let ctr:B.buffer size_t = B.malloc r 1ul 1ul in State k v ctr #push-options "--z3rlimit 200" let mk_instantiate #a hmac st entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string = let h0 = ST.get () in push_frame(); let seed_material = create (entropy_input_len +! nonce_len +! personalization_string_len) (u8 0) in copy (sub seed_material 0ul entropy_input_len) entropy_input; copy (sub seed_material entropy_input_len nonce_len) nonce; copy (sub seed_material (entropy_input_len +! nonce_len) personalization_string_len) personalization_string; let State k v ctr = st in memset k (u8 0) (hash_len a); memset v (u8 1) (hash_len a); let h1 = ST.get () in assert (Seq.equal (as_seq h1 seed_material) (Seq.append (as_seq h0 entropy_input) (Seq.append (as_seq h0 nonce) (as_seq h0 personalization_string)))); assert (LSeq.equal (as_seq h1 k) (LSeq.create (hash_length a) (u8 0))); assert (LSeq.equal (as_seq h1 v) (LSeq.create (hash_length a) (u8 1))); ctr.(0ul) <- 1ul; update hmac (entropy_input_len +! nonce_len +! personalization_string_len) seed_material k v; pop_frame() #pop-options let instantiate a st entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string = match a with | SHA1 -> mk_instantiate Hacl.HMAC.compute_sha1 st entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string | SHA2_256 -> mk_instantiate Hacl.HMAC.compute_sha2_256 st entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string | SHA2_384 -> mk_instantiate Hacl.HMAC.compute_sha2_384 st entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string | SHA2_512 -> mk_instantiate Hacl.HMAC.compute_sha2_512 st entropy_input_len entropy_input nonce_len nonce personalization_string_len personalization_string let mk_reseed #a hmac st entropy_input_len entropy_input additional_input_len additional_input = let h0 = ST.get () in push_frame(); let seed_material = create (entropy_input_len +! additional_input_len) (u8 0) in copy (sub seed_material 0ul entropy_input_len) entropy_input; copy (sub seed_material entropy_input_len additional_input_len) additional_input; let h1 = ST.get () in LSeq.eq_intro (as_seq h1 seed_material) LSeq.(as_seq h0 entropy_input @| as_seq h0 additional_input); let State k v ctr: state a = st in update hmac (entropy_input_len +! additional_input_len) seed_material k v; ctr.(0ul) <- 1ul; pop_frame() let reseed a st entropy_input_len entropy_input additional_input_input_len additional_input_input = match a with | SHA1 -> mk_reseed Hacl.HMAC.compute_sha1 st entropy_input_len entropy_input additional_input_input_len additional_input_input | SHA2_256 -> mk_reseed Hacl.HMAC.compute_sha2_256 st entropy_input_len entropy_input additional_input_input_len additional_input_input | SHA2_384 -> mk_reseed Hacl.HMAC.compute_sha2_384 st entropy_input_len entropy_input additional_input_input_len additional_input_input | SHA2_512 -> mk_reseed Hacl.HMAC.compute_sha2_512 st entropy_input_len entropy_input additional_input_input_len additional_input_input #push-options "--z3rlimit 300"
{ "checked_file": "/", "dependencies": [ "Spec.HMAC_DRBG.fst.checked", "Spec.HMAC_DRBG.fst.checked", "Spec.Hash.Definitions.fst.checked", "Spec.Agile.HMAC.fsti.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.HMAC.fsti.checked", "Hacl.Hash.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.HMAC_DRBG.fst" }
[ { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.HMAC", "short_module": "HMAC" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": true, "full_module": "Spec.HMAC_DRBG", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.HMAC", "short_module": "HMAC" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Spec.Hash.Definitions", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "Hacl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 300, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
hmac: Hacl.HMAC.compute_st a -> Hacl.HMAC_DRBG.generate_st a
Prims.Tot
[ "total" ]
[]
[ "Hacl.HMAC_DRBG.supported_alg", "Hacl.HMAC.compute_st", "Lib.Buffer.buffer", "Lib.IntTypes.uint8", "Hacl.HMAC_DRBG.state", "Lib.IntTypes.size_t", "Lib.Buffer.lbuffer", "Prims.bool", "Hacl.HMAC_DRBG.hash_len", "FStar.UInt32.__uint_to_t", "Prims.l_and", "Lib.Buffer.disjoint", "Lib.Buffer.MUT", "Prims.unit", "Lib.Buffer.op_Array_Assignment", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.int_t", "Lib.Buffer.op_Array_Access", "Hacl.HMAC_DRBG.update", "Lib.IntTypes.op_Less_Dot", "Lib.IntTypes.op_Star_Bang", "Lib.Sequence.eq_intro", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.v", "Lib.Buffer.as_seq", "Lib.Sequence.op_At_Bar", "Lib.IntTypes.op_Subtraction_Bang", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.Buffer.copy", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.sub", "Lib.IntTypes.mul", "Hacl.Hash.Definitions.hash_len", "Lib.Buffer.sub", "Lib.Buffer.fill_blocks", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Buffer.loc", "LowStar.Monotonic.Buffer.loc", "LowStar.Monotonic.Buffer.loc_disjoint", "LowStar.Monotonic.Buffer.loc_includes", "LowStar.Monotonic.Buffer.address_liveness_insensitive_locs", "Prims.op_LessThan", "Lib.Sequence.unfold_generate_blocks", "Spec.Hash.Definitions.hash_length", "Lib.IntTypes.uint_v", "Prims.nat", "Spec.HMAC_DRBG.a_spec", "FStar.Pervasives.Native.tuple2", "Prims.op_Addition", "Lib.Sequence.lseq", "Prims.l_True", "Spec.HMAC_DRBG.generate_loop", "Prims.op_Subtraction", "Prims.pow2", "Lib.IntTypes.op_Slash_Dot", "Lib.IntTypes.op_Greater_Dot", "FStar.Math.Lemmas.lemma_div_mod", "Spec.HMAC_DRBG.hmac_input_bound", "Hacl.HMAC_DRBG.reseed_interval", "Hacl.HMAC_DRBG.__proj__State__item__reseed_counter" ]
[]
false
false
false
false
false
let mk_generate #a hmac output st n additional_input_len additional_input =
if st.reseed_counter.(0ul) >. reseed_interval then false else (S.hmac_input_bound a; Math.Lemmas.lemma_div_mod (v n) (hash_length a); let State k v ctr = st in if additional_input_len >. 0ul then update hmac additional_input_len additional_input k v; let output:lbuffer uint8 n = output in let max = n /. hash_len a in let out = sub output 0ul (max *! hash_len a) in [@@ inline_let ]let a_spec = S.a_spec a in [@@ inline_let ]let refl h i = as_seq h v in [@@ inline_let ]let spec h0 = S.generate_loop a (as_seq h0 k) (uint_v max) in let h0 = ST.get () in fill_blocks h0 (hash_len a) max out a_spec refl (fun i -> loc v) spec (fun i -> LSeq.unfold_generate_blocks (hash_length a) (uint_v max) a_spec (spec h0) (as_seq h0 v) (uint_v i); hmac v k (hash_len a) v (hash_len a); copy (sub out (i *! hash_len a) (hash_len a)) v); if max *! hash_len a <. n then (let h1 = ST.get () in let block = sub output (max *! hash_len a) (n -! (max *! hash_len a)) in hmac v k (hash_len a) v (hash_len a); copy block (sub v 0ul (n -! (max *! hash_len a))); let h2 = ST.get () in LSeq.eq_intro (as_seq h2 output) ((as_seq h1 out) `LSeq.op_At_Bar` (as_seq h2 block))); update hmac additional_input_len additional_input k v; let old_ctr = ctr.(0ul) in ctr.(0ul) <- old_ctr +! 1ul; true)
false
Pulse.Checker.Prover.Match.fst
Pulse.Checker.Prover.Match.is_smt_fallback
val is_smt_fallback (t: R.term) : bool
val is_smt_fallback (t: R.term) : bool
let is_smt_fallback (t:R.term) : bool = match R.inspect_ln t with | R.Tv_FVar fv -> let name = R.inspect_fv fv in name = ["Steel";"Effect";"Common";"smt_fallback"] || name = ["Pulse"; "Lib"; "Core"; "equate_by_smt"] | _ -> false
{ "file_name": "lib/steel/pulse/Pulse.Checker.Prover.Match.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 14, "end_line": 73, "start_col": 0, "start_line": 67 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Prover.Match open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Typing.Metatheory open Pulse.Typing.Util open Pulse.Checker.VPropEquiv open Pulse.Checker.Prover.Base open Pulse.Checker.Prover.Util module RU = Pulse.RuntimeUtils module L = FStar.List.Tot module R = FStar.Reflection.V2 module TermEq = FStar.Reflection.V2.TermEq module T = FStar.Tactics.V2 module RUtil = Pulse.Reflection.Util module P = Pulse.Syntax.Printer module PS = Pulse.Checker.Prover.Substs module Metatheory = Pulse.Typing.Metatheory let equational (t:term) : bool = match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false let type_of_fv (g:env) (fv:R.fv) : T.Tac (option R.term) = let n = R.inspect_fv fv in match R.lookup_typ (fstar_env g) n with | None -> None | Some se -> match R.inspect_sigelt se with | R.Unk -> None | R.Sg_Let _ lbs -> ( L.tryPick (fun lb -> let lbv = R.inspect_lb lb in if R.inspect_fv lbv.lb_fv = n then Some lbv.lb_typ else None) lbs ) | R.Sg_Val _ _ t -> Some t | R.Sg_Inductive _nm _univs params typ _ -> None
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Util.fsti.checked", "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Readback.fsti.checked", "Pulse.Checker.VPropEquiv.fsti.checked", "Pulse.Checker.Prover.Util.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Prover.Match.fst" }
[ { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Reflection.Util", "short_module": "RUtil" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2.TermEq", "short_module": "TermEq" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.VPropEquiv", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: FStar.Stubs.Reflection.Types.term -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.V2.Builtins.inspect_ln", "FStar.Stubs.Reflection.Types.fv", "Prims.op_BarBar", "Prims.op_Equality", "Prims.list", "Prims.string", "Prims.Cons", "Prims.Nil", "FStar.Stubs.Reflection.Types.name", "FStar.Stubs.Reflection.V2.Builtins.inspect_fv", "FStar.Stubs.Reflection.V2.Data.term_view", "Prims.bool" ]
[]
false
false
false
true
false
let is_smt_fallback (t: R.term) : bool =
match R.inspect_ln t with | R.Tv_FVar fv -> let name = R.inspect_fv fv in name = ["Steel"; "Effect"; "Common"; "smt_fallback"] || name = ["Pulse"; "Lib"; "Core"; "equate_by_smt"] | _ -> false
false
Pulse.Checker.Prover.Match.fst
Pulse.Checker.Prover.Match.type_of_fv
val type_of_fv (g: env) (fv: R.fv) : T.Tac (option R.term)
val type_of_fv (g: env) (fv: R.fv) : T.Tac (option R.term)
let type_of_fv (g:env) (fv:R.fv) : T.Tac (option R.term) = let n = R.inspect_fv fv in match R.lookup_typ (fstar_env g) n with | None -> None | Some se -> match R.inspect_sigelt se with | R.Unk -> None | R.Sg_Let _ lbs -> ( L.tryPick (fun lb -> let lbv = R.inspect_lb lb in if R.inspect_fv lbv.lb_fv = n then Some lbv.lb_typ else None) lbs ) | R.Sg_Val _ _ t -> Some t | R.Sg_Inductive _nm _univs params typ _ -> None
{ "file_name": "lib/steel/pulse/Pulse.Checker.Prover.Match.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 54, "end_line": 65, "start_col": 0, "start_line": 47 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Prover.Match open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Typing.Metatheory open Pulse.Typing.Util open Pulse.Checker.VPropEquiv open Pulse.Checker.Prover.Base open Pulse.Checker.Prover.Util module RU = Pulse.RuntimeUtils module L = FStar.List.Tot module R = FStar.Reflection.V2 module TermEq = FStar.Reflection.V2.TermEq module T = FStar.Tactics.V2 module RUtil = Pulse.Reflection.Util module P = Pulse.Syntax.Printer module PS = Pulse.Checker.Prover.Substs module Metatheory = Pulse.Typing.Metatheory let equational (t:term) : bool = match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Util.fsti.checked", "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Readback.fsti.checked", "Pulse.Checker.VPropEquiv.fsti.checked", "Pulse.Checker.Prover.Util.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Prover.Match.fst" }
[ { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Reflection.Util", "short_module": "RUtil" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2.TermEq", "short_module": "TermEq" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.VPropEquiv", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: Pulse.Typing.Env.env -> fv: FStar.Stubs.Reflection.Types.fv -> FStar.Tactics.Effect.Tac (FStar.Pervasives.Native.option FStar.Stubs.Reflection.Types.term)
FStar.Tactics.Effect.Tac
[]
[]
[ "Pulse.Typing.Env.env", "FStar.Stubs.Reflection.Types.fv", "FStar.Stubs.Reflection.V2.Builtins.lookup_typ", "Pulse.Typing.Env.fstar_env", "FStar.Pervasives.Native.None", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Reflection.Types.sigelt", "FStar.Stubs.Reflection.V2.Builtins.inspect_sigelt", "Prims.bool", "Prims.list", "FStar.Stubs.Reflection.Types.letbinding", "FStar.List.Tot.Base.tryPick", "FStar.Stubs.Reflection.Types.typ", "Prims.op_Equality", "FStar.Stubs.Reflection.Types.name", "FStar.Stubs.Reflection.V2.Builtins.inspect_fv", "FStar.Stubs.Reflection.V2.Data.__proj__Mklb_view__item__lb_fv", "FStar.Pervasives.Native.Some", "FStar.Stubs.Reflection.V2.Data.__proj__Mklb_view__item__lb_typ", "FStar.Pervasives.Native.option", "FStar.Stubs.Reflection.V2.Data.lb_view", "Prims.precedes", "FStar.Stubs.Reflection.V2.Builtins.inspect_lb", "FStar.Stubs.Reflection.Types.univ_name", "FStar.Stubs.Reflection.Types.binders", "FStar.Stubs.Reflection.V2.Data.ctor" ]
[]
false
true
false
false
false
let type_of_fv (g: env) (fv: R.fv) : T.Tac (option R.term) =
let n = R.inspect_fv fv in match R.lookup_typ (fstar_env g) n with | None -> None | Some se -> match R.inspect_sigelt se with | R.Unk -> None | R.Sg_Let _ lbs -> (L.tryPick (fun lb -> let lbv = R.inspect_lb lb in if R.inspect_fv lbv.lb_fv = n then Some lbv.lb_typ else None) lbs) | R.Sg_Val _ _ t -> Some t | R.Sg_Inductive _nm _univs params typ _ -> None
false
Pulse.Checker.Prover.Match.fst
Pulse.Checker.Prover.Match.is_reveal
val is_reveal (t: term) : bool
val is_reveal (t: term) : bool
let is_reveal (t:term) : bool = match leftmost_head t with | Some hd -> (match is_fvar hd with | Some (l, [_]) -> l = RUtil.reveal_lid | _ -> false) | _ -> false
{ "file_name": "lib/steel/pulse/Pulse.Checker.Prover.Match.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 14, "end_line": 212, "start_col": 0, "start_line": 206 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Prover.Match open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Typing.Metatheory open Pulse.Typing.Util open Pulse.Checker.VPropEquiv open Pulse.Checker.Prover.Base open Pulse.Checker.Prover.Util module RU = Pulse.RuntimeUtils module L = FStar.List.Tot module R = FStar.Reflection.V2 module TermEq = FStar.Reflection.V2.TermEq module T = FStar.Tactics.V2 module RUtil = Pulse.Reflection.Util module P = Pulse.Syntax.Printer module PS = Pulse.Checker.Prover.Substs module Metatheory = Pulse.Typing.Metatheory let equational (t:term) : bool = match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false let type_of_fv (g:env) (fv:R.fv) : T.Tac (option R.term) = let n = R.inspect_fv fv in match R.lookup_typ (fstar_env g) n with | None -> None | Some se -> match R.inspect_sigelt se with | R.Unk -> None | R.Sg_Let _ lbs -> ( L.tryPick (fun lb -> let lbv = R.inspect_lb lb in if R.inspect_fv lbv.lb_fv = n then Some lbv.lb_typ else None) lbs ) | R.Sg_Val _ _ t -> Some t | R.Sg_Inductive _nm _univs params typ _ -> None let is_smt_fallback (t:R.term) : bool = match R.inspect_ln t with | R.Tv_FVar fv -> let name = R.inspect_fv fv in name = ["Steel";"Effect";"Common";"smt_fallback"] || name = ["Pulse"; "Lib"; "Core"; "equate_by_smt"] | _ -> false (* When comparing t0 =?= t1, if they are not syntactically equal, we have to decide whether or not we should fire an SMT query to compare them for provable equality. The criterion is as follows: 1. We allow an SMT query if either t0 or t1 is "equational". For now, that means that either is a match expression. 2. Otherwise, if they are both applications of `f v0...vn` and `f u0...un` of the same head symbol `f`, a top-level constant, then we check if the type of `f` decorates any of its binders with the `smt_fallback` attribute. - If none of them are marked as such, then we check if `f v0...` is syntactically equal to `f u0...` and allow an SMT query to check if vn = vm. That is, the default behavior for predicates is that they *last* argument is eligible for SMT equality. - Otherwise, for each binder that is NOT marked as `smt_fallback`, we check if the corresponding argument is syntactically equal. If so, we allow t0 and t1 to be compared for SMT equality. For example, Steel.ST.Reference.pts_to is defined like so: /// For instance, [pts_to r (sum_perm (half_perm p) (half_perm p)) (v + 1)] /// is unifiable with [pts_to r p (1 + v)] val pts_to (#a:Type0) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop *) let eligible_for_smt_equality (g:env) (t0 t1:term) : T.Tac bool = let either_equational () = equational t0 || equational t1 in let head_eq (t0 t1:R.term) = match R.inspect_ln t0, R.inspect_ln t1 with | R.Tv_App h0 _, R.Tv_App h1 _ -> TermEq.term_eq h0 h1 | _ -> false in match t0.t, t1.t with | Tm_FStar t0, Tm_FStar t1 -> ( let h0, args0 = R.collect_app_ln t0 in let h1, args1 = R.collect_app_ln t1 in if TermEq.term_eq h0 h1 && L.length args0 = L.length args1 then ( match R.inspect_ln h0 with | R.Tv_FVar fv | R.Tv_UInst fv _ -> ( match type_of_fv g fv with | None -> either_equational() | Some t -> let bs, _ = R.collect_arr_ln_bs t in let is_smt_fallback (b:R.binder) = let bview = R.inspect_binder b in L.existsb is_smt_fallback bview.attrs in let some_fallbacks, fallbacks = L.fold_right (fun b (some_fallbacks, bs) -> if is_smt_fallback b then true, true::bs else some_fallbacks, false::bs) bs (false, []) in if not some_fallbacks then ( //if none of the binders are marked fallback //then, by default, consider only the last argument as //fallback head_eq t0 t1 ) else ( let rec aux args0 args1 fallbacks = match args0, args1, fallbacks with | (a0, _)::args0, (a1, _)::args1, b::fallbacks -> if b then aux args0 args1 fallbacks else if not (TermEq.term_eq a0 a1) then false else aux args0 args1 fallbacks | [], [], [] -> true | _ -> either_equational() //unequal lengths in aux args0 args1 fallbacks ) ) | _ -> either_equational () ) else either_equational () ) | Tm_ForallSL _ _ _, Tm_ForallSL _ _ _ -> true | _ -> either_equational () let refl_uvar (t:R.term) (uvs:env) : option var = let open R in match inspect_ln t with | Tv_Var v -> let {uniq=n} = inspect_namedv v in if contains uvs n then Some n else None | _ -> None let is_uvar (t:term) (uvs:env) : option var = match t.t with | Tm_FStar t -> refl_uvar t uvs | _ -> None let contains_uvar (t:term) (uvs:env) (g:env) : T.Tac bool = not (check_disjoint uvs (freevars t)) let is_reveal_uvar (t:term) (uvs:env) : option (universe & term & var) = match is_pure_app t with | Some (hd, None, arg) -> (match is_pure_app hd with | Some (hd, Some Implicit, ty) -> let arg_uvar_index_opt = is_uvar arg uvs in (match arg_uvar_index_opt with | Some n -> (match is_fvar hd with | Some (l, [u]) -> if l = RUtil.reveal_lid then Some (u, ty, n) else None | _ -> None) | _ -> None) | _ -> None) | _ -> None
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Util.fsti.checked", "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Readback.fsti.checked", "Pulse.Checker.VPropEquiv.fsti.checked", "Pulse.Checker.Prover.Util.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Prover.Match.fst" }
[ { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Reflection.Util", "short_module": "RUtil" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2.TermEq", "short_module": "TermEq" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.VPropEquiv", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Pulse.Syntax.Base.term -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Pulse.Syntax.Base.term", "Pulse.Syntax.Pure.leftmost_head", "Pulse.Syntax.Pure.is_fvar", "FStar.Stubs.Reflection.Types.name", "Pulse.Syntax.Base.universe", "Prims.op_Equality", "Prims.list", "Prims.string", "Pulse.Reflection.Util.reveal_lid", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "Prims.bool" ]
[]
false
false
false
true
false
let is_reveal (t: term) : bool =
match leftmost_head t with | Some hd -> (match is_fvar hd with | Some (l, [_]) -> l = RUtil.reveal_lid | _ -> false) | _ -> false
false
FStar.HyperStack.fst
FStar.HyperStack.stackref
val stackref : a: Type0 -> Type0
let stackref (a:Type) = mstackref a (Heap.trivial_preorder a)
{ "file_name": "ulib/FStar.HyperStack.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 61, "end_line": 22, "start_col": 0, "start_line": 22 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack include FStar.Monotonic.HyperStack type reference (a:Type) = mreference a (Heap.trivial_preorder a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.HyperStack.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.fst" }
[ { "abbrev": false, "full_module": "FStar.Monotonic.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type0 -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperStack.mstackref", "FStar.Heap.trivial_preorder" ]
[]
false
false
false
true
true
let stackref (a: Type) =
mstackref a (Heap.trivial_preorder a)
false
FStar.HyperStack.fst
FStar.HyperStack.mmstackref
val mmstackref : a: Type0 -> Type0
let mmstackref (a:Type) = mmmstackref a (Heap.trivial_preorder a)
{ "file_name": "ulib/FStar.HyperStack.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 65, "end_line": 25, "start_col": 0, "start_line": 25 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack include FStar.Monotonic.HyperStack type reference (a:Type) = mreference a (Heap.trivial_preorder a) let stackref (a:Type) = mstackref a (Heap.trivial_preorder a) let ref (a:Type) = mref a (Heap.trivial_preorder a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.HyperStack.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.fst" }
[ { "abbrev": false, "full_module": "FStar.Monotonic.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type0 -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperStack.mmmstackref", "FStar.Heap.trivial_preorder" ]
[]
false
false
false
true
true
let mmstackref (a: Type) =
mmmstackref a (Heap.trivial_preorder a)
false
Pulse.Checker.Prover.Match.fst
Pulse.Checker.Prover.Match.eligible_for_smt_equality
val eligible_for_smt_equality (g: env) (t0 t1: term) : T.Tac bool
val eligible_for_smt_equality (g: env) (t0 t1: term) : T.Tac bool
let eligible_for_smt_equality (g:env) (t0 t1:term) : T.Tac bool = let either_equational () = equational t0 || equational t1 in let head_eq (t0 t1:R.term) = match R.inspect_ln t0, R.inspect_ln t1 with | R.Tv_App h0 _, R.Tv_App h1 _ -> TermEq.term_eq h0 h1 | _ -> false in match t0.t, t1.t with | Tm_FStar t0, Tm_FStar t1 -> ( let h0, args0 = R.collect_app_ln t0 in let h1, args1 = R.collect_app_ln t1 in if TermEq.term_eq h0 h1 && L.length args0 = L.length args1 then ( match R.inspect_ln h0 with | R.Tv_FVar fv | R.Tv_UInst fv _ -> ( match type_of_fv g fv with | None -> either_equational() | Some t -> let bs, _ = R.collect_arr_ln_bs t in let is_smt_fallback (b:R.binder) = let bview = R.inspect_binder b in L.existsb is_smt_fallback bview.attrs in let some_fallbacks, fallbacks = L.fold_right (fun b (some_fallbacks, bs) -> if is_smt_fallback b then true, true::bs else some_fallbacks, false::bs) bs (false, []) in if not some_fallbacks then ( //if none of the binders are marked fallback //then, by default, consider only the last argument as //fallback head_eq t0 t1 ) else ( let rec aux args0 args1 fallbacks = match args0, args1, fallbacks with | (a0, _)::args0, (a1, _)::args1, b::fallbacks -> if b then aux args0 args1 fallbacks else if not (TermEq.term_eq a0 a1) then false else aux args0 args1 fallbacks | [], [], [] -> true | _ -> either_equational() //unequal lengths in aux args0 args1 fallbacks ) ) | _ -> either_equational () ) else either_equational () ) | Tm_ForallSL _ _ _, Tm_ForallSL _ _ _ -> true | _ -> either_equational ()
{ "file_name": "lib/steel/pulse/Pulse.Checker.Prover.Match.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 31, "end_line": 169, "start_col": 0, "start_line": 108 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Prover.Match open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Typing.Metatheory open Pulse.Typing.Util open Pulse.Checker.VPropEquiv open Pulse.Checker.Prover.Base open Pulse.Checker.Prover.Util module RU = Pulse.RuntimeUtils module L = FStar.List.Tot module R = FStar.Reflection.V2 module TermEq = FStar.Reflection.V2.TermEq module T = FStar.Tactics.V2 module RUtil = Pulse.Reflection.Util module P = Pulse.Syntax.Printer module PS = Pulse.Checker.Prover.Substs module Metatheory = Pulse.Typing.Metatheory let equational (t:term) : bool = match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false let type_of_fv (g:env) (fv:R.fv) : T.Tac (option R.term) = let n = R.inspect_fv fv in match R.lookup_typ (fstar_env g) n with | None -> None | Some se -> match R.inspect_sigelt se with | R.Unk -> None | R.Sg_Let _ lbs -> ( L.tryPick (fun lb -> let lbv = R.inspect_lb lb in if R.inspect_fv lbv.lb_fv = n then Some lbv.lb_typ else None) lbs ) | R.Sg_Val _ _ t -> Some t | R.Sg_Inductive _nm _univs params typ _ -> None let is_smt_fallback (t:R.term) : bool = match R.inspect_ln t with | R.Tv_FVar fv -> let name = R.inspect_fv fv in name = ["Steel";"Effect";"Common";"smt_fallback"] || name = ["Pulse"; "Lib"; "Core"; "equate_by_smt"] | _ -> false (* When comparing t0 =?= t1, if they are not syntactically equal, we have to decide whether or not we should fire an SMT query to compare them for provable equality. The criterion is as follows: 1. We allow an SMT query if either t0 or t1 is "equational". For now, that means that either is a match expression. 2. Otherwise, if they are both applications of `f v0...vn` and `f u0...un` of the same head symbol `f`, a top-level constant, then we check if the type of `f` decorates any of its binders with the `smt_fallback` attribute. - If none of them are marked as such, then we check if `f v0...` is syntactically equal to `f u0...` and allow an SMT query to check if vn = vm. That is, the default behavior for predicates is that they *last* argument is eligible for SMT equality. - Otherwise, for each binder that is NOT marked as `smt_fallback`, we check if the corresponding argument is syntactically equal. If so, we allow t0 and t1 to be compared for SMT equality. For example, Steel.ST.Reference.pts_to is defined like so: /// For instance, [pts_to r (sum_perm (half_perm p) (half_perm p)) (v + 1)] /// is unifiable with [pts_to r p (1 + v)] val pts_to (#a:Type0) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Util.fsti.checked", "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Readback.fsti.checked", "Pulse.Checker.VPropEquiv.fsti.checked", "Pulse.Checker.Prover.Util.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Prover.Match.fst" }
[ { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Reflection.Util", "short_module": "RUtil" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2.TermEq", "short_module": "TermEq" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.VPropEquiv", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: Pulse.Typing.Env.env -> t0: Pulse.Syntax.Base.term -> t1: Pulse.Syntax.Base.term -> FStar.Tactics.Effect.Tac Prims.bool
FStar.Tactics.Effect.Tac
[]
[]
[ "Pulse.Typing.Env.env", "Pulse.Syntax.Base.term", "FStar.Pervasives.Native.Mktuple2", "Pulse.Syntax.Base.term'", "Pulse.Syntax.Base.__proj__Mkterm__item__t", "Pulse.Syntax.Base.host_term", "FStar.Stubs.Reflection.Types.term", "Prims.list", "FStar.Stubs.Reflection.V2.Data.argv", "Prims.op_AmpAmp", "FStar.Reflection.V2.TermEq.term_eq", "Prims.op_Equality", "Prims.nat", "FStar.List.Tot.Base.length", "FStar.Stubs.Reflection.V2.Builtins.inspect_ln", "FStar.Stubs.Reflection.Types.fv", "FStar.Stubs.Reflection.Types.binder", "FStar.Stubs.Reflection.Types.comp", "Prims.bool", "Prims.op_Negation", "FStar.Pervasives.Native.tuple2", "FStar.Stubs.Reflection.V2.Data.aqualv", "FStar.Pervasives.Native.Mktuple3", "FStar.Pervasives.Native.tuple3", "FStar.List.Tot.Base.fold_right", "Prims.Cons", "Prims.Nil", "FStar.List.Tot.Base.existsb", "Pulse.Checker.Prover.Match.is_smt_fallback", "FStar.Stubs.Reflection.V2.Data.__proj__Mkbinder_view__item__attrs", "FStar.Stubs.Reflection.V2.Data.binder_view", "Prims.precedes", "FStar.Stubs.Reflection.V2.Builtins.inspect_binder", "FStar.Reflection.V2.Derived.collect_arr_ln_bs", "FStar.Pervasives.Native.option", "Pulse.Checker.Prover.Match.type_of_fv", "FStar.Stubs.Reflection.V2.Data.universes", "FStar.Stubs.Reflection.V2.Data.term_view", "FStar.Reflection.V2.Derived.collect_app_ln", "Pulse.Syntax.Base.universe", "Pulse.Syntax.Base.binder", "Prims.unit", "Prims.op_BarBar", "Pulse.Checker.Prover.Match.equational" ]
[]
false
true
false
false
false
let eligible_for_smt_equality (g: env) (t0 t1: term) : T.Tac bool =
let either_equational () = equational t0 || equational t1 in let head_eq (t0 t1: R.term) = match R.inspect_ln t0, R.inspect_ln t1 with | R.Tv_App h0 _, R.Tv_App h1 _ -> TermEq.term_eq h0 h1 | _ -> false in match t0.t, t1.t with | Tm_FStar t0, Tm_FStar t1 -> (let h0, args0 = R.collect_app_ln t0 in let h1, args1 = R.collect_app_ln t1 in if TermEq.term_eq h0 h1 && L.length args0 = L.length args1 then (match R.inspect_ln h0 with | R.Tv_FVar fv | R.Tv_UInst fv _ -> (match type_of_fv g fv with | None -> either_equational () | Some t -> let bs, _ = R.collect_arr_ln_bs t in let is_smt_fallback (b: R.binder) = let bview = R.inspect_binder b in L.existsb is_smt_fallback bview.attrs in let some_fallbacks, fallbacks = L.fold_right (fun b (some_fallbacks, bs) -> if is_smt_fallback b then true, true :: bs else some_fallbacks, false :: bs) bs (false, []) in if not some_fallbacks then (head_eq t0 t1) else (let rec aux args0 args1 fallbacks = match args0, args1, fallbacks with | (a0, _) :: args0, (a1, _) :: args1, b :: fallbacks -> if b then aux args0 args1 fallbacks else if not (TermEq.term_eq a0 a1) then false else aux args0 args1 fallbacks | [], [], [] -> true | _ -> either_equational () in aux args0 args1 fallbacks)) | _ -> either_equational ()) else either_equational ()) | Tm_ForallSL _ _ _, Tm_ForallSL _ _ _ -> true | _ -> either_equational ()
false
FStar.HyperStack.fst
FStar.HyperStack.ref
val ref : a: Type0 -> Type0
let ref (a:Type) = mref a (Heap.trivial_preorder a)
{ "file_name": "ulib/FStar.HyperStack.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 51, "end_line": 23, "start_col": 0, "start_line": 23 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack include FStar.Monotonic.HyperStack type reference (a:Type) = mreference a (Heap.trivial_preorder a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.HyperStack.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.fst" }
[ { "abbrev": false, "full_module": "FStar.Monotonic.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type0 -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperStack.mref", "FStar.Heap.trivial_preorder" ]
[]
false
false
false
true
true
let ref (a: Type) =
mref a (Heap.trivial_preorder a)
false
FStar.HyperStack.fst
FStar.HyperStack.mmref
val mmref : a: Type0 -> Type0
let mmref (a:Type) = mmmref a (Heap.trivial_preorder a)
{ "file_name": "ulib/FStar.HyperStack.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 26, "start_col": 0, "start_line": 26 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack include FStar.Monotonic.HyperStack type reference (a:Type) = mreference a (Heap.trivial_preorder a) let stackref (a:Type) = mstackref a (Heap.trivial_preorder a) let ref (a:Type) = mref a (Heap.trivial_preorder a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.HyperStack.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.fst" }
[ { "abbrev": false, "full_module": "FStar.Monotonic.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type0 -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperStack.mmmref", "FStar.Heap.trivial_preorder" ]
[]
false
false
false
true
true
let mmref (a: Type) =
mmmref a (Heap.trivial_preorder a)
false
FStar.HyperStack.fst
FStar.HyperStack.reference_distinct_sel_disjoint
val reference_distinct_sel_disjoint (#a: Type0) (h: mem) (r1 r2: reference a) : Lemma (requires (h `contains` r1 /\ h `contains` r2 /\ frameOf r1 == frameOf r2 /\ as_addr r1 == as_addr r2) ) (ensures (sel h r1 == sel h r2))
val reference_distinct_sel_disjoint (#a: Type0) (h: mem) (r1 r2: reference a) : Lemma (requires (h `contains` r1 /\ h `contains` r2 /\ frameOf r1 == frameOf r2 /\ as_addr r1 == as_addr r2) ) (ensures (sel h r1 == sel h r2))
let reference_distinct_sel_disjoint (#a:Type0) (h: mem) (r1: reference a) (r2: reference a) : Lemma (requires ( h `contains` r1 /\ h `contains` r2 /\ frameOf r1 == frameOf r2 /\ as_addr r1 == as_addr r2 )) (ensures ( sel h r1 == sel h r2 )) = mreference_distinct_sel_disjoint h r1 r2
{ "file_name": "ulib/FStar.HyperStack.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 43, "start_col": 0, "start_line": 31 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack include FStar.Monotonic.HyperStack type reference (a:Type) = mreference a (Heap.trivial_preorder a) let stackref (a:Type) = mstackref a (Heap.trivial_preorder a) let ref (a:Type) = mref a (Heap.trivial_preorder a) let mmstackref (a:Type) = mmmstackref a (Heap.trivial_preorder a) let mmref (a:Type) = mmmref a (Heap.trivial_preorder a) type s_ref (i:rid) (a:Type) = s_mref i a (Heap.trivial_preorder a) (* Two references with different reads are disjoint. *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Monotonic.HyperStack.fsti.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.fst" }
[ { "abbrev": false, "full_module": "FStar.Monotonic.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> r1: FStar.HyperStack.reference a -> r2: FStar.HyperStack.reference a -> FStar.Pervasives.Lemma (requires FStar.Monotonic.HyperStack.contains h r1 /\ FStar.Monotonic.HyperStack.contains h r2 /\ FStar.Monotonic.HyperStack.frameOf r1 == FStar.Monotonic.HyperStack.frameOf r2 /\ FStar.Monotonic.HyperStack.as_addr r1 == FStar.Monotonic.HyperStack.as_addr r2) (ensures FStar.Monotonic.HyperStack.sel h r1 == FStar.Monotonic.HyperStack.sel h r2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.reference", "FStar.Monotonic.HyperStack.mreference_distinct_sel_disjoint", "FStar.Heap.trivial_preorder", "Prims.unit", "Prims.l_and", "FStar.Monotonic.HyperStack.contains", "Prims.eq2", "FStar.Monotonic.HyperHeap.rid", "FStar.Monotonic.HyperStack.frameOf", "Prims.pos", "FStar.Monotonic.HyperStack.as_addr", "Prims.squash", "FStar.Monotonic.HyperStack.sel", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let reference_distinct_sel_disjoint (#a: Type0) (h: mem) (r1 r2: reference a) : Lemma (requires (h `contains` r1 /\ h `contains` r2 /\ frameOf r1 == frameOf r2 /\ as_addr r1 == as_addr r2) ) (ensures (sel h r1 == sel h r2)) =
mreference_distinct_sel_disjoint h r1 r2
false
Pulse.Checker.Prover.Match.fst
Pulse.Checker.Prover.Match.is_reveal_uvar
val is_reveal_uvar (t: term) (uvs: env) : option (universe & term & var)
val is_reveal_uvar (t: term) (uvs: env) : option (universe & term & var)
let is_reveal_uvar (t:term) (uvs:env) : option (universe & term & var) = match is_pure_app t with | Some (hd, None, arg) -> (match is_pure_app hd with | Some (hd, Some Implicit, ty) -> let arg_uvar_index_opt = is_uvar arg uvs in (match arg_uvar_index_opt with | Some n -> (match is_fvar hd with | Some (l, [u]) -> if l = RUtil.reveal_lid then Some (u, ty, n) else None | _ -> None) | _ -> None) | _ -> None) | _ -> None
{ "file_name": "lib/steel/pulse/Pulse.Checker.Prover.Match.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 13, "end_line": 204, "start_col": 0, "start_line": 188 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Prover.Match open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Typing.Metatheory open Pulse.Typing.Util open Pulse.Checker.VPropEquiv open Pulse.Checker.Prover.Base open Pulse.Checker.Prover.Util module RU = Pulse.RuntimeUtils module L = FStar.List.Tot module R = FStar.Reflection.V2 module TermEq = FStar.Reflection.V2.TermEq module T = FStar.Tactics.V2 module RUtil = Pulse.Reflection.Util module P = Pulse.Syntax.Printer module PS = Pulse.Checker.Prover.Substs module Metatheory = Pulse.Typing.Metatheory let equational (t:term) : bool = match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false let type_of_fv (g:env) (fv:R.fv) : T.Tac (option R.term) = let n = R.inspect_fv fv in match R.lookup_typ (fstar_env g) n with | None -> None | Some se -> match R.inspect_sigelt se with | R.Unk -> None | R.Sg_Let _ lbs -> ( L.tryPick (fun lb -> let lbv = R.inspect_lb lb in if R.inspect_fv lbv.lb_fv = n then Some lbv.lb_typ else None) lbs ) | R.Sg_Val _ _ t -> Some t | R.Sg_Inductive _nm _univs params typ _ -> None let is_smt_fallback (t:R.term) : bool = match R.inspect_ln t with | R.Tv_FVar fv -> let name = R.inspect_fv fv in name = ["Steel";"Effect";"Common";"smt_fallback"] || name = ["Pulse"; "Lib"; "Core"; "equate_by_smt"] | _ -> false (* When comparing t0 =?= t1, if they are not syntactically equal, we have to decide whether or not we should fire an SMT query to compare them for provable equality. The criterion is as follows: 1. We allow an SMT query if either t0 or t1 is "equational". For now, that means that either is a match expression. 2. Otherwise, if they are both applications of `f v0...vn` and `f u0...un` of the same head symbol `f`, a top-level constant, then we check if the type of `f` decorates any of its binders with the `smt_fallback` attribute. - If none of them are marked as such, then we check if `f v0...` is syntactically equal to `f u0...` and allow an SMT query to check if vn = vm. That is, the default behavior for predicates is that they *last* argument is eligible for SMT equality. - Otherwise, for each binder that is NOT marked as `smt_fallback`, we check if the corresponding argument is syntactically equal. If so, we allow t0 and t1 to be compared for SMT equality. For example, Steel.ST.Reference.pts_to is defined like so: /// For instance, [pts_to r (sum_perm (half_perm p) (half_perm p)) (v + 1)] /// is unifiable with [pts_to r p (1 + v)] val pts_to (#a:Type0) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop *) let eligible_for_smt_equality (g:env) (t0 t1:term) : T.Tac bool = let either_equational () = equational t0 || equational t1 in let head_eq (t0 t1:R.term) = match R.inspect_ln t0, R.inspect_ln t1 with | R.Tv_App h0 _, R.Tv_App h1 _ -> TermEq.term_eq h0 h1 | _ -> false in match t0.t, t1.t with | Tm_FStar t0, Tm_FStar t1 -> ( let h0, args0 = R.collect_app_ln t0 in let h1, args1 = R.collect_app_ln t1 in if TermEq.term_eq h0 h1 && L.length args0 = L.length args1 then ( match R.inspect_ln h0 with | R.Tv_FVar fv | R.Tv_UInst fv _ -> ( match type_of_fv g fv with | None -> either_equational() | Some t -> let bs, _ = R.collect_arr_ln_bs t in let is_smt_fallback (b:R.binder) = let bview = R.inspect_binder b in L.existsb is_smt_fallback bview.attrs in let some_fallbacks, fallbacks = L.fold_right (fun b (some_fallbacks, bs) -> if is_smt_fallback b then true, true::bs else some_fallbacks, false::bs) bs (false, []) in if not some_fallbacks then ( //if none of the binders are marked fallback //then, by default, consider only the last argument as //fallback head_eq t0 t1 ) else ( let rec aux args0 args1 fallbacks = match args0, args1, fallbacks with | (a0, _)::args0, (a1, _)::args1, b::fallbacks -> if b then aux args0 args1 fallbacks else if not (TermEq.term_eq a0 a1) then false else aux args0 args1 fallbacks | [], [], [] -> true | _ -> either_equational() //unequal lengths in aux args0 args1 fallbacks ) ) | _ -> either_equational () ) else either_equational () ) | Tm_ForallSL _ _ _, Tm_ForallSL _ _ _ -> true | _ -> either_equational () let refl_uvar (t:R.term) (uvs:env) : option var = let open R in match inspect_ln t with | Tv_Var v -> let {uniq=n} = inspect_namedv v in if contains uvs n then Some n else None | _ -> None let is_uvar (t:term) (uvs:env) : option var = match t.t with | Tm_FStar t -> refl_uvar t uvs | _ -> None let contains_uvar (t:term) (uvs:env) (g:env) : T.Tac bool = not (check_disjoint uvs (freevars t))
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Util.fsti.checked", "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Readback.fsti.checked", "Pulse.Checker.VPropEquiv.fsti.checked", "Pulse.Checker.Prover.Util.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Prover.Match.fst" }
[ { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Reflection.Util", "short_module": "RUtil" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2.TermEq", "short_module": "TermEq" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.VPropEquiv", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Pulse.Syntax.Base.term -> uvs: Pulse.Typing.Env.env -> FStar.Pervasives.Native.option ((Pulse.Syntax.Base.universe * Pulse.Syntax.Base.term) * Pulse.Syntax.Base.var)
Prims.Tot
[ "total" ]
[]
[ "Pulse.Syntax.Base.term", "Pulse.Typing.Env.env", "Pulse.Syntax.Pure.is_pure_app", "Pulse.Syntax.Base.var", "Pulse.Syntax.Pure.is_fvar", "FStar.Stubs.Reflection.Types.name", "Pulse.Syntax.Base.universe", "Prims.op_Equality", "Prims.list", "Prims.string", "Pulse.Reflection.Util.reveal_lid", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple3", "FStar.Pervasives.Native.Mktuple3", "Prims.bool", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "Pulse.Checker.Prover.Match.is_uvar", "Pulse.Syntax.Base.qualifier" ]
[]
false
false
false
true
false
let is_reveal_uvar (t: term) (uvs: env) : option (universe & term & var) =
match is_pure_app t with | Some (hd, None, arg) -> (match is_pure_app hd with | Some (hd, Some Implicit, ty) -> let arg_uvar_index_opt = is_uvar arg uvs in (match arg_uvar_index_opt with | Some n -> (match is_fvar hd with | Some (l, [u]) -> if l = RUtil.reveal_lid then Some (u, ty, n) else None | _ -> None) | _ -> None) | _ -> None) | _ -> None
false
Vale.AES.GCM_BE.fst
Vale.AES.GCM_BE.gcm_blocks_dec_helper
val gcm_blocks_dec_helper (alg: algorithm) (key: seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes: seq quad32) (p_num_bytes a_num_bytes: nat) (iv: supported_iv_BE) (j0_BE h enc_hash length_quad: quad32) : Lemma (requires length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads p128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads p_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ be_quad32_to_bytes enc_hash == gcm_decrypt_BE_tag alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))
val gcm_blocks_dec_helper (alg: algorithm) (key: seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes: seq quad32) (p_num_bytes a_num_bytes: nat) (iv: supported_iv_BE) (j0_BE h enc_hash length_quad: quad32) : Lemma (requires length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads p128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads p_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ be_quad32_to_bytes enc_hash == gcm_decrypt_BE_tag alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))
let gcm_blocks_dec_helper (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads p128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads p_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes >length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ be_quad32_to_bytes enc_hash == gcm_decrypt_BE_tag alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)) = let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in let auth_raw_quads = if a_num_bytes > length a128 * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads p128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads p_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in let hash = ghash_BE h final_quads in calc (==) { enc_hash; == {} gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0; == {} gctr_encrypt_block ctr_BE_1 hash alg key 0; == {} quad32_xor hash (aes_encrypt_word alg key ctr_BE_1); }; calc (==) { gctr_encrypt ctr_BE_1 (be_quad32_to_bytes hash) alg key; == { gctr_encrypt_one_block ctr_BE_1 hash alg key } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor hash (aes_encrypt_word alg key ctr_BE_1)))); == {} seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 enc_hash)); == { be_seq_quad32_to_bytes_of_singleton enc_hash } be_quad32_to_bytes enc_hash; }; if p_num_bytes > length p128 * 16 then ( let c = append p128 p_bytes in calc (==) { append (append auth_quads p128) p_bytes; == { append_assoc auth_quads p128 p_bytes } append auth_quads (append p128 p_bytes); == {} append auth_quads c; }; calc (==) { append (append (append auth_quads p128) p_bytes) (create 1 length_quad); = {} // See previous calc append (append auth_quads (append p128 p_bytes)) (create 1 length_quad); == { append_assoc auth_quads c (create 1 length_quad) } append auth_quads (append c (create 1 length_quad)); }; let raw_quads_old = append auth_quads c in calc (==) { raw_quads; == {} be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes)); == { calc (==) { pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes); == { calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes; == { append_distributes_be_seq_quad32_to_bytes auth_quads c } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) 0 total_bytes; == { slice_append_back (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) total_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes); == { assert(equal (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes) plain_bytes) } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) plain_bytes; } } pad_to_128_bits (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) plain_bytes); == { pad_to_128_bits_multiple_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) plain_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits plain_bytes); } } be_bytes_to_seq_quad32 (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits plain_bytes)); == { append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits plain_bytes) } append (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads))) (be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes)); == { be_bytes_to_seq_quad32_to_bytes auth_quads } append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes)); }; let auth_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in let cipher_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes) in calc (==) { append raw_quads (create 1 length_quad); == {} append (append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes))) (create 1 length_quad); == { assert (equal auth_quads auth_padded_quads') } append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad); == { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) } append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad)); }; () ) else ( calc (==) { append (append auth_quads p128) (create 1 length_quad); == { append_assoc auth_quads p128 (create 1 length_quad) } append auth_quads (append p128 (create 1 length_quad)); }; let c = p128 in calc (==) { be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)); == { assert (equal (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)) } be_bytes_to_seq_quad32 (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))); == { assert (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) } be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)); == { be_bytes_to_seq_quad32_to_bytes c } c; }; () ); ()
{ "file_name": "vale/code/crypto/aes/Vale.AES.GCM_BE.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 953, "start_col": 0, "start_line": 721 }
module Vale.AES.GCM_BE open Vale.Def.Opaque_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.AES.GCM_BE_s open Vale.AES.AES_BE_s open Vale.AES.GCM_helpers_BE open Vale.AES.GCTR_BE_s open Vale.AES.GCTR_BE open Vale.AES.GHash_BE_s open FStar.Mul open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open FStar.Calc let upper3_equal (q0 q1:quad32) : bool = q0.lo1 = q1.lo1 && q0.hi2 = q1.hi2 && q0.hi3 = q1.hi3 let lemma_be_bytes_to_quad32_prefix_equality (b0:seq nat8 {length b0 == 16}) (b1:seq nat8 {length b1 == 16}) : Lemma (requires slice b0 0 12 == slice b1 0 12) (ensures upper3_equal (be_bytes_to_quad32 b0) (be_bytes_to_quad32 b1)) = let q0 = be_bytes_to_quad32 b0 in let q1 = be_bytes_to_quad32 b1 in be_bytes_to_quad32_reveal (); reveal_opaque (`%seq_to_seq_four_BE) (seq_to_seq_four_BE #nat8); assert (forall (i:int). (0 <= i /\ i < 12) ==> (index b0 i == index (slice b0 0 12) i /\ index b1 i == index (slice b1 0 12) i)) let lemma_be_seq_quad32_to_bytes_prefix_equality (q:quad32) : Lemma (slice (be_quad32_to_bytes q) 0 12 == slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) = assert (equal (slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12) (slice (be_quad32_to_bytes q) 0 12)); () let lemma_compute_iv_easy (iv_b iv_extra_b:seq quad32) (iv:supported_iv_BE) (num_bytes:nat64) (h_BE j0:quad32) : Lemma (requires length iv_extra_b == 1 /\ length iv_b * (128/8) <= num_bytes /\ num_bytes < length iv_b * (128/8) + 128/8 /\ num_bytes == 96/8 /\ (let iv_BE = index iv_extra_b 0 in j0 == Mkfour 1 iv_BE.lo1 iv_BE.hi2 iv_BE.hi3) /\ (let raw_quads = append iv_b iv_extra_b in let iv_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 num_bytes in iv_bytes == iv)) (ensures j0 == compute_iv_BE h_BE iv) = assert (length iv == 12); assert (length iv_b == 0); lemma_empty iv_b; append_empty_l iv_extra_b; assert (append iv_b iv_extra_b == iv_extra_b); let q = index iv_extra_b 0 in be_seq_quad32_to_bytes_of_singleton q; assert (equal iv_extra_b (create 1 q)); assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b) == be_quad32_to_bytes q); calc (==) { slice (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) 0 12; == {} slice (pad_to_128_bits iv) 0 12; }; calc (==) { be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE iv_extra_b)) 0 num_bytes)); == {} be_bytes_to_quad32 (pad_to_128_bits iv); }; calc (==) { j0; == {} set_to_one q; == { be_bytes_to_quad32_to_bytes q } set_to_one (be_bytes_to_quad32 (be_quad32_to_bytes q)); == { lemma_be_seq_quad32_to_bytes_prefix_equality q; lemma_be_bytes_to_quad32_prefix_equality (be_quad32_to_bytes q) (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12))); == { lemma_be_bytes_to_quad32_prefix_equality (pad_to_128_bits (slice (be_quad32_to_bytes q) 0 12)) (pad_to_128_bits iv) } set_to_one (be_bytes_to_quad32 (pad_to_128_bits iv)); == {compute_iv_BE_reveal ()} compute_iv_BE h_BE iv; }; () let lemma_compute_iv_hard (iv:supported_iv_BE) (quads:seq quad32) (length_quad h_BE j0:quad32) : Lemma (requires ~(length iv == 96/8) /\ quads == be_bytes_to_seq_quad32 (pad_to_128_bits iv) /\ j0 == ghash_incremental h_BE (Mkfour 0 0 0 0) (append quads (create 1 length_quad)) /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 0) (nat_to_two 32 (8 * length iv)))) (ensures j0 == compute_iv_BE h_BE iv) = ghash_incremental_to_ghash h_BE (append quads (create 1 length_quad)); compute_iv_BE_reveal (); () let gcm_encrypt_BE_fst_helper (iv:supported_iv_BE) (iv_enc iv_BE:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in iv_enc == inc32 (compute_iv_BE h_BE iv) 1 /\ cipher == gctr_encrypt iv_enc plain alg key )) (ensures cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () let gcm_encrypt_BE_snd_helper (iv:supported_iv_BE) (j0_BE length_quad32 hash mac:quad32) (plain auth cipher:seq nat8) (alg:algorithm) (key:seq nat32) : Lemma (requires is_aes_key_word alg key /\ length plain < pow2_32 /\ length auth < pow2_32 /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ cipher == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth) /\ length_quad32 == two_two_to_four (Mktwo (nat_to_two 32 (8 * length auth)) (nat_to_two 32 (8 * length plain))) /\ (let auth_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits auth) in let cipher_padded_quads = be_bytes_to_seq_quad32 (pad_to_128_bits cipher) in hash == ghash_BE h_BE (append auth_padded_quads (append cipher_padded_quads (create 1 length_quad32))) /\ be_quad32_to_bytes mac == gctr_encrypt j0_BE (be_quad32_to_bytes hash) alg key) )) (ensures be_quad32_to_bytes mac == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain auth)) = gcm_encrypt_BE_reveal () #reset-options "--z3rlimit 10" let gcm_blocks_helper_enc (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 ))) (ensures (let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in //cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key)) cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in gctr_partial_opaque_completed alg plain cipher key ctr_BE_2; if p_num_bytes > length p128 * 16 then ( gctr_partial_reveal (); assert (gctr_partial alg (length p128) plain cipher key ctr_BE_2); assert (equal (slice plain 0 (length p128)) (slice p128 0 (length p128))); assert (equal (slice cipher 0 (length p128)) (slice c128 0 (length p128))); gctr_partial_opaque_ignores_postfix alg (length p128) plain p128 cipher c128 key ctr_BE_2; assert (gctr_partial alg (length p128) p128 c128 key ctr_BE_2); gctr_partial_opaque_completed alg p128 c128 key ctr_BE_2; let num_blocks = p_num_bytes / 16 in assert(index cipher num_blocks == quad32_xor (index plain num_blocks) (aes_encrypt_word alg key (inc32 ctr_BE_2 num_blocks))); gctr_encrypt_block_offset ctr_BE_2 (index plain num_blocks) alg key num_blocks; assert( gctr_encrypt_block ctr_BE_2 (index plain num_blocks) alg key num_blocks == gctr_encrypt_block (inc32 ctr_BE_2 num_blocks) (index plain num_blocks) alg key 0); aes_encrypt_word_reveal (); gctr_partial_to_full_advanced ctr_BE_2 plain cipher alg key p_num_bytes; assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ) else ( gctr_partial_to_full_basic ctr_BE_2 plain alg key cipher; assert (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher) == gctr_encrypt ctr_BE_2 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) alg key); let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in assert (equal plain_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain))); assert (equal cipher_bytes (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher))); assert (cipher_bytes == gctr_encrypt ctr_BE_2 plain_bytes alg key) ); gcm_encrypt_BE_fst_helper iv ctr_BE_2 j0_BE plain_bytes auth_bytes cipher_bytes alg key; () let slice_append_back (#a:Type) (x y:seq a) (i:nat) : Lemma (requires length x <= i /\ i <= length x + length y) (ensures slice (append x y) 0 i == append x (slice y 0 (i - length x))) = assert (equal (slice (append x y) 0 i) (append x (slice y 0 (i - length x)))); () let append_distributes_be_seq_quad32_to_bytes (x y:seq quad32) : Lemma (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append x y)) == append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE x)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE y))) = append_distributes_be_seq_quad32_to_bytes x y let pad_to_128_bits_multiple_append (x y:seq nat8) : Lemma (requires length x % 16 == 0) (ensures pad_to_128_bits (append x y) == append x (pad_to_128_bits y)) = assert (equal (pad_to_128_bits (append x y)) (append x (pad_to_128_bits y))) #reset-options "--z3rlimit 100" let gcm_blocks_helper (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))) = let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in let hash = ghash_BE h final_quads in gcm_blocks_helper_enc alg key p128 p_bytes c128 c_bytes auth_input_bytes p_num_bytes iv j0_BE; calc (==) { enc_hash; == {} gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0; == {} gctr_encrypt_block ctr_BE_1 hash alg key 0; == {} quad32_xor hash (aes_encrypt_word alg key ctr_BE_1); }; calc (==) { gctr_encrypt ctr_BE_1 (be_quad32_to_bytes hash) alg key; == { gctr_encrypt_one_block ctr_BE_1 hash alg key } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor hash (aes_encrypt_word alg key ctr_BE_1)))); == {} seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 enc_hash)); == { be_seq_quad32_to_bytes_of_singleton enc_hash } be_quad32_to_bytes enc_hash; }; if p_num_bytes > length p128 * 16 then ( let c = append c128 c_bytes in calc (==) { append (append auth_quads c128) c_bytes; == { append_assoc auth_quads c128 c_bytes } append auth_quads (append c128 c_bytes); == {} append auth_quads c; }; calc (==) { append (append (append auth_quads c128) c_bytes) (create 1 length_quad); = {} // See previous calc append (append auth_quads (append c128 c_bytes)) (create 1 length_quad); == { append_assoc auth_quads c (create 1 length_quad) } append auth_quads (append c (create 1 length_quad)); }; let raw_quads_old = append auth_quads c in calc (==) { raw_quads; == {} be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes)); == { calc (==) { pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes); == { calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes; == { append_distributes_be_seq_quad32_to_bytes auth_quads c } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) 0 total_bytes; == { slice_append_back (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) total_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes); == {} append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes; } } pad_to_128_bits (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes); == { pad_to_128_bits_multiple_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) cipher_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes); } } be_bytes_to_seq_quad32 (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes)); == { append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits cipher_bytes) } append (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads))) (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); == { be_bytes_to_seq_quad32_to_bytes auth_quads } append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes)); }; let auth_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in let cipher_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes) in calc (==) { append raw_quads (create 1 length_quad); == {} append (append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits cipher_bytes))) (create 1 length_quad); == { assert (equal auth_quads auth_padded_quads') } append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad); == { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) } append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad)); }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ) else ( calc (==) { append (append auth_quads c128) (create 1 length_quad); == { append_assoc auth_quads c128 (create 1 length_quad) } append auth_quads (append c128 (create 1 length_quad)); }; let c = c128 in calc (==) { be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)); == { assert (equal (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)) } be_bytes_to_seq_quad32 (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))); == { assert (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) } be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)); == { be_bytes_to_seq_quad32_to_bytes c } c; }; gcm_encrypt_BE_snd_helper iv j0_BE length_quad hash enc_hash plain_bytes auth_input_bytes cipher_bytes alg key; () ); () let lemma_length_simplifier (s bytes t:seq quad32) (num_bytes:nat) : Lemma (requires t == (if num_bytes > (length s) * 16 then append s bytes else s) /\ (num_bytes <= (length s) * 16 ==> num_bytes == (length s * 16)) /\ length s * 16 <= num_bytes /\ num_bytes < length s * 16 + 16 /\ length bytes == 1 ) (ensures slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE t)) 0 num_bytes == slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes) = if num_bytes > (length s) * 16 then ( () ) else ( calc (==) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (append s bytes))) 0 num_bytes; == { append_distributes_be_seq_quad32_to_bytes s bytes } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes))) 0 num_bytes; == { Vale.Lib.Seqs.lemma_slice_first_exactly_in_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE bytes)) } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s); == { assert (length (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) == num_bytes) } slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE s)) 0 num_bytes; }; () ) #reset-options "--z3rlimit 10" let gcm_blocks_helper_simplified (alg:algorithm) (key:seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes:seq quad32) (p_num_bytes a_num_bytes:nat) (iv:supported_iv_BE) (j0_BE h enc_hash length_quad:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE == compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > length a128 * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads c128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads c_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0 ))) (ensures (let auth_raw_quads = append a128 a_bytes in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes) /\ be_quad32_to_bytes enc_hash == snd (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)) ) = gcm_blocks_helper alg key a128 a_bytes p128 p_bytes c128 c_bytes p_num_bytes a_num_bytes iv j0_BE h enc_hash length_quad; let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher_raw_quads:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in lemma_length_simplifier a128 a_bytes auth_raw_quads a_num_bytes; lemma_length_simplifier p128 p_bytes plain_raw_quads p_num_bytes; lemma_length_simplifier c128 c_bytes cipher_raw_quads p_num_bytes; () let lemma_gcm_encrypt_decrypt_equiv (alg:algorithm) (key:seq nat32) (iv:supported_iv_BE) (j0_BE:quad32) (plain cipher auth alleged_tag:seq nat8) : Lemma (requires is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv) /\ length cipher < pow2_32 /\ length auth < pow2_32 /\ plain == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth) ) (ensures plain == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv cipher auth alleged_tag)) = gcm_encrypt_BE_reveal (); gcm_decrypt_BE_reveal (); () let gcm_blocks_helper_dec_simplified (alg:algorithm) (key:seq nat32) (p128 p_bytes c128 c_bytes:seq quad32) (auth_bytes alleged_tag:seq nat8) (p_num_bytes:nat) (iv:supported_iv_BE) (j0_BE:quad32) : Lemma (requires // Required by gcm_blocks length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ (length auth_bytes) < pow2_32 /\ is_aes_key_word alg key /\ (let h_BE = aes_encrypt_word alg key (Mkfour 0 0 0 0) in j0_BE = compute_iv_BE h_BE iv) /\ // Ensured by gcm_blocks p_num_bytes < pow2_32 /\ (let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 )) (ensures (let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ cipher_bytes == fst (gcm_decrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes alleged_tag))) = gcm_blocks_helper_enc alg key p128 p_bytes c128 c_bytes auth_bytes p_num_bytes iv j0_BE; let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher_raw_quads:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in lemma_length_simplifier p128 p_bytes plain_raw_quads p_num_bytes; lemma_length_simplifier c128 c_bytes cipher_raw_quads p_num_bytes; let plain_raw_quads = append p128 p_bytes in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher_raw_quads = append c128 c_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher_raw_quads)) 0 p_num_bytes in assert (cipher_bytes == fst (gcm_encrypt_BE alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)); lemma_gcm_encrypt_decrypt_equiv alg key iv j0_BE cipher_bytes plain_bytes auth_bytes alleged_tag; ()
{ "checked_file": "/", "dependencies": [ "Vale.Lib.Seqs.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.AES.GHash_BE_s.fst.checked", "Vale.AES.GCTR_BE_s.fst.checked", "Vale.AES.GCTR_BE.fsti.checked", "Vale.AES.GCM_helpers_BE.fsti.checked", "Vale.AES.GCM_BE_s.fst.checked", "Vale.AES.AES_BE_s.fst.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "Vale.AES.GCM_BE.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Four_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Two_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers_BE", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_BE_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 60, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.Def.Words_s.nat32 -> a128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> a_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c128: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> c_bytes: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 -> p_num_bytes: Prims.nat -> a_num_bytes: Prims.nat -> iv: Vale.AES.GCM_BE_s.supported_iv_BE -> j0_BE: Vale.Def.Types_s.quad32 -> h: Vale.Def.Types_s.quad32 -> enc_hash: Vale.Def.Types_s.quad32 -> length_quad: Vale.Def.Types_s.quad32 -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length p128 * 16 <= p_num_bytes /\ p_num_bytes < FStar.Seq.Base.length p128 * 16 + 16 /\ FStar.Seq.Base.length a128 * 16 <= a_num_bytes /\ a_num_bytes < FStar.Seq.Base.length a128 * 16 + 16 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\ FStar.Seq.Base.length p128 == FStar.Seq.Base.length c128 /\ FStar.Seq.Base.length p_bytes == 1 /\ FStar.Seq.Base.length c_bytes == 1 /\ FStar.Seq.Base.length a_bytes == 1 /\ Vale.AES.AES_BE_s.is_aes_key_word alg key /\ j0_BE = Vale.AES.GCM_BE_s.compute_iv_BE h iv /\ h = Vale.AES.AES_BE_s.aes_encrypt_word alg key (Vale.Def.Words_s.Mkfour 0 0 0 0) /\ p_num_bytes < Vale.Def.Words_s.pow2_32 /\ a_num_bytes < Vale.Def.Words_s.pow2_32 /\ length_quad == Vale.Def.Words.Four_s.two_two_to_four (Vale.Def.Words_s.Mktwo (Vale.Def.Words.Two_s.nat_to_two 32 (8 * a_num_bytes)) (Vale.Def.Words.Two_s.nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1 = j0_BE in let ctr_BE_2 = Vale.AES.GCTR_BE_s.inc32 j0_BE 1 in let plain = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append p128 p_bytes | _ -> p128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let cipher = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append c128 c_bytes | _ -> c128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let cipher_bound = FStar.Seq.Base.length p128 + (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> 1 | _ -> 0) in Vale.AES.GCTR_BE.gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = (match a_num_bytes > FStar.Seq.Base.length a128 * 16 with | true -> FStar.Seq.Base.append a128 a_bytes | _ -> a128) <: FStar.Seq.Base.seq (Vale.Def.Words_s.four Vale.Def.Words_s.nat32) in let auth_input_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = Vale.AES.GCTR_BE_s.pad_to_128_bits auth_input_bytes in let auth_quads = Vale.Def.Types_s.be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = FStar.Seq.Base.append auth_quads p128 in let total_bytes = FStar.Seq.Base.length auth_quads * 16 + p_num_bytes in let raw_quads = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> let raw_quads = FStar.Seq.Base.append raw_quads p_bytes in let input_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = Vale.AES.GCTR_BE_s.pad_to_128_bits input_bytes in Vale.Def.Types_s.be_bytes_to_seq_quad32 input_padded_bytes | _ -> raw_quads) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let final_quads = FStar.Seq.Base.append raw_quads (FStar.Seq.Base.create 1 length_quad) in enc_hash == Vale.AES.GCTR_BE_s.gctr_encrypt_block ctr_BE_1 (Vale.AES.GHash_BE_s.ghash_BE h final_quads) alg key 0))) (ensures (let auth_raw_quads = (match a_num_bytes > FStar.Seq.Base.length a128 * 16 with | true -> FStar.Seq.Base.append a128 a_bytes | _ -> a128) <: FStar.Seq.Base.seq (Vale.Def.Words_s.four Vale.Def.Words_s.nat32) in let auth_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append p128 p_bytes | _ -> p128) <: FStar.Seq.Base.seq (Vale.Def.Words_s.four Vale.Def.Words_s.nat32) in let plain_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher = (match p_num_bytes > FStar.Seq.Base.length p128 * 16 with | true -> FStar.Seq.Base.append c128 c_bytes | _ -> c128) <: FStar.Seq.Base.seq Vale.Def.Types_s.quad32 in let cipher_bytes = FStar.Seq.Base.slice (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE (Vale.Def.Words.Seq_s.seq_four_to_seq_BE cipher)) 0 p_num_bytes in FStar.Seq.Base.length auth_bytes < Vale.Def.Words_s.pow2_32 /\ FStar.Seq.Base.length plain_bytes < Vale.Def.Words_s.pow2_32 /\ Vale.Arch.Types.be_quad32_to_bytes enc_hash == Vale.AES.GCM_BE.gcm_decrypt_BE_tag alg (Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.Def.Words_s.nat32", "Vale.Def.Types_s.quad32", "Prims.nat", "Vale.AES.GCM_BE_s.supported_iv_BE", "Prims.unit", "Prims.op_GreaterThan", "FStar.Mul.op_Star", "FStar.Seq.Base.length", "FStar.Calc.calc_finish", "Prims.eq2", "FStar.Seq.Base.append", "FStar.Seq.Base.create", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Vale.Def.Types_s.be_bytes_to_seq_quad32", "Vale.AES.GCTR_BE_s.pad_to_128_bits", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.append_assoc", "Vale.Def.Words.Seq_s.seq_nat32_to_seq_nat8_BE", "Vale.Def.Words.Seq_s.seq_four_to_seq_BE", "Vale.Def.Types_s.nat32", "Vale.Def.Words_s.nat8", "FStar.Seq.Base.slice", "Vale.Def.Types_s.nat8", "Vale.AES.GCM_BE.append_distributes_be_seq_quad32_to_bytes", "Vale.AES.GCM_BE.slice_append_back", "Vale.AES.GCM_BE.pad_to_128_bits_multiple_append", "Vale.Arch.Types.append_distributes_be_bytes_to_seq_quad32", "Vale.Arch.Types.be_bytes_to_seq_quad32_to_bytes", "Prims.b2t", "Prims.op_Equality", "Prims.bool", "Vale.AES.GCTR_BE_s.gctr_encrypt", "Vale.Arch.Types.be_quad32_to_bytes", "Vale.Def.Words_s.four", "Vale.Def.Types_s.quad32_xor", "Vale.AES.AES_BE_s.aes_encrypt_word", "Vale.AES.GCTR_BE.gctr_encrypt_one_block", "Vale.Arch.Types.be_seq_quad32_to_bytes_of_singleton", "Vale.AES.GCTR_BE_s.gctr_encrypt_block", "Vale.AES.GHash_BE_s.ghash_BE", "Prims.int", "Prims.op_Addition", "Vale.AES.GCTR_BE_s.inc32", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Vale.Def.Words_s.pow2_32", "Vale.AES.AES_BE_s.is_aes_key_word", "Vale.AES.GCM_BE_s.compute_iv_BE", "Vale.Def.Words_s.Mkfour", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.two_two_to_four", "Vale.Def.Words_s.Mktwo", "Vale.Def.Words_s.two", "Vale.Def.Words.Two_s.nat_to_two", "Vale.AES.GCTR_BE.gctr_partial", "Vale.AES.GCM_BE.gcm_decrypt_BE_tag", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let gcm_blocks_dec_helper (alg: algorithm) (key: seq nat32) (a128 a_bytes p128 p_bytes c128 c_bytes: seq quad32) (p_num_bytes a_num_bytes: nat) (iv: supported_iv_BE) (j0_BE h enc_hash length_quad: quad32) : Lemma (requires length p128 * 16 <= p_num_bytes /\ p_num_bytes < length p128 * 16 + 16 /\ length a128 * 16 <= a_num_bytes /\ a_num_bytes < length a128 * 16 + 16 /\ a_num_bytes < pow2_32 /\ length p128 == length c128 /\ length p_bytes == 1 /\ length c_bytes == 1 /\ length a_bytes == 1 /\ is_aes_key_word alg key /\ j0_BE = compute_iv_BE h iv /\ h = aes_encrypt_word alg key (Mkfour 0 0 0 0) /\ p_num_bytes < pow2_32 /\ a_num_bytes < pow2_32 /\ length_quad == two_two_to_four (Mktwo (nat_to_two 32 (8 * a_num_bytes)) (nat_to_two 32 (8 * p_num_bytes))) /\ (let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in gctr_partial alg cipher_bound plain cipher key ctr_BE_2 /\ (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads p128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads p_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in enc_hash == gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0))) (ensures (let auth_raw_quads = if a_num_bytes > (length a128) * 16 then append a128 a_bytes else a128 in let auth_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let plain_raw_quads = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain_raw_quads)) 0 p_num_bytes in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in length auth_bytes < pow2_32 /\ length plain_bytes < pow2_32 /\ be_quad32_to_bytes enc_hash == gcm_decrypt_BE_tag alg (seq_nat32_to_seq_nat8_BE key) iv plain_bytes auth_bytes)) =
let ctr_BE_1:quad32 = j0_BE in let ctr_BE_2:quad32 = inc32 j0_BE 1 in let plain:seq quad32 = if p_num_bytes > length p128 * 16 then append p128 p_bytes else p128 in let cipher:seq quad32 = if p_num_bytes > length p128 * 16 then append c128 c_bytes else c128 in let cipher_bound:nat = length p128 + (if p_num_bytes > length p128 * 16 then 1 else 0) in let plain_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE plain)) 0 p_num_bytes in let cipher_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE cipher)) 0 p_num_bytes in let auth_raw_quads = if a_num_bytes > length a128 * 16 then append a128 a_bytes else a128 in let auth_input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_raw_quads)) 0 a_num_bytes in let auth_padded_bytes = pad_to_128_bits auth_input_bytes in let auth_quads = be_bytes_to_seq_quad32 auth_padded_bytes in let raw_quads = append auth_quads p128 in let total_bytes = length auth_quads * 16 + p_num_bytes in let raw_quads = if p_num_bytes > length p128 * 16 then let raw_quads = append raw_quads p_bytes in let input_bytes = slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads)) 0 total_bytes in let input_padded_bytes = pad_to_128_bits input_bytes in be_bytes_to_seq_quad32 input_padded_bytes else raw_quads in let final_quads = append raw_quads (create 1 length_quad) in let hash = ghash_BE h final_quads in calc ( == ) { enc_hash; ( == ) { () } gctr_encrypt_block ctr_BE_1 (ghash_BE h final_quads) alg key 0; ( == ) { () } gctr_encrypt_block ctr_BE_1 hash alg key 0; ( == ) { () } quad32_xor hash (aes_encrypt_word alg key ctr_BE_1); }; calc ( == ) { gctr_encrypt ctr_BE_1 (be_quad32_to_bytes hash) alg key; ( == ) { gctr_encrypt_one_block ctr_BE_1 hash alg key } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 (quad32_xor hash (aes_encrypt_word alg key ctr_BE_1)))); ( == ) { () } seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE (create 1 enc_hash)); ( == ) { be_seq_quad32_to_bytes_of_singleton enc_hash } be_quad32_to_bytes enc_hash; }; if p_num_bytes > length p128 * 16 then (let c = append p128 p_bytes in calc ( == ) { append (append auth_quads p128) p_bytes; ( == ) { append_assoc auth_quads p128 p_bytes } append auth_quads (append p128 p_bytes); ( == ) { () } append auth_quads c; }; calc ( == ) { append (append (append auth_quads p128) p_bytes) (create 1 length_quad); ( = ) { () } append (append auth_quads (append p128 p_bytes)) (create 1 length_quad); ( == ) { append_assoc auth_quads c (create 1 length_quad) } append auth_quads (append c (create 1 length_quad)); }; let raw_quads_old = append auth_quads c in calc ( == ) { raw_quads; ( == ) { () } be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old )) 0 total_bytes)); ( == ) { calc ( == ) { pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes); ( == ) { calc ( == ) { slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE raw_quads_old)) 0 total_bytes; ( == ) { append_distributes_be_seq_quad32_to_bytes auth_quads c } slice (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) 0 total_bytes; ( == ) { slice_append_back (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) total_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes); ( == ) { assert (equal (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes) plain_bytes) } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) plain_bytes; } } pad_to_128_bits (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) plain_bytes); ( == ) { pad_to_128_bits_multiple_append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads )) plain_bytes } append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits plain_bytes); } } be_bytes_to_seq_quad32 (append (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits plain_bytes)); ( == ) { append_distributes_be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads)) (pad_to_128_bits plain_bytes) } append (be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE auth_quads))) (be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes)); ( == ) { be_bytes_to_seq_quad32_to_bytes auth_quads } append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes)); }; let auth_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits auth_input_bytes) in let cipher_padded_quads' = be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes) in calc ( == ) { append raw_quads (create 1 length_quad); ( == ) { () } append (append auth_quads (be_bytes_to_seq_quad32 (pad_to_128_bits plain_bytes))) (create 1 length_quad); ( == ) { assert (equal auth_quads auth_padded_quads') } append (append auth_padded_quads' cipher_padded_quads') (create 1 length_quad); ( == ) { append_assoc auth_padded_quads' cipher_padded_quads' (create 1 length_quad) } append auth_padded_quads' (append cipher_padded_quads' (create 1 length_quad)); }; ()) else (calc ( == ) { append (append auth_quads p128) (create 1 length_quad); ( == ) { append_assoc auth_quads p128 (create 1 length_quad) } append auth_quads (append p128 (create 1 length_quad)); }; let c = p128 in calc ( == ) { be_bytes_to_seq_quad32 (pad_to_128_bits (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c )) 0 p_num_bytes)); ( == ) { assert (equal (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) (slice (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) 0 p_num_bytes)) } be_bytes_to_seq_quad32 (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))); ( == ) { assert (pad_to_128_bits (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)) == (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c))) } be_bytes_to_seq_quad32 (seq_nat32_to_seq_nat8_BE (seq_four_to_seq_BE c)); ( == ) { be_bytes_to_seq_quad32_to_bytes c } c; }; ()); ()
false
Pulse.Checker.Prover.Match.fst
Pulse.Checker.Prover.Match.coerce_eq
val coerce_eq: #a: Type -> #b: Type -> x: a -> squash (a == b) -> y: b{y == x}
val coerce_eq: #a: Type -> #b: Type -> x: a -> squash (a == b) -> y: b{y == x}
let coerce_eq (#a #b:Type) (x:a) (_:squash (a == b)) : y:b{y == x} = x
{ "file_name": "lib/steel/pulse/Pulse.Checker.Prover.Match.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 70, "end_line": 297, "start_col": 0, "start_line": 297 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Prover.Match open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Typing.Metatheory open Pulse.Typing.Util open Pulse.Checker.VPropEquiv open Pulse.Checker.Prover.Base open Pulse.Checker.Prover.Util module RU = Pulse.RuntimeUtils module L = FStar.List.Tot module R = FStar.Reflection.V2 module TermEq = FStar.Reflection.V2.TermEq module T = FStar.Tactics.V2 module RUtil = Pulse.Reflection.Util module P = Pulse.Syntax.Printer module PS = Pulse.Checker.Prover.Substs module Metatheory = Pulse.Typing.Metatheory let equational (t:term) : bool = match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false let type_of_fv (g:env) (fv:R.fv) : T.Tac (option R.term) = let n = R.inspect_fv fv in match R.lookup_typ (fstar_env g) n with | None -> None | Some se -> match R.inspect_sigelt se with | R.Unk -> None | R.Sg_Let _ lbs -> ( L.tryPick (fun lb -> let lbv = R.inspect_lb lb in if R.inspect_fv lbv.lb_fv = n then Some lbv.lb_typ else None) lbs ) | R.Sg_Val _ _ t -> Some t | R.Sg_Inductive _nm _univs params typ _ -> None let is_smt_fallback (t:R.term) : bool = match R.inspect_ln t with | R.Tv_FVar fv -> let name = R.inspect_fv fv in name = ["Steel";"Effect";"Common";"smt_fallback"] || name = ["Pulse"; "Lib"; "Core"; "equate_by_smt"] | _ -> false (* When comparing t0 =?= t1, if they are not syntactically equal, we have to decide whether or not we should fire an SMT query to compare them for provable equality. The criterion is as follows: 1. We allow an SMT query if either t0 or t1 is "equational". For now, that means that either is a match expression. 2. Otherwise, if they are both applications of `f v0...vn` and `f u0...un` of the same head symbol `f`, a top-level constant, then we check if the type of `f` decorates any of its binders with the `smt_fallback` attribute. - If none of them are marked as such, then we check if `f v0...` is syntactically equal to `f u0...` and allow an SMT query to check if vn = vm. That is, the default behavior for predicates is that they *last* argument is eligible for SMT equality. - Otherwise, for each binder that is NOT marked as `smt_fallback`, we check if the corresponding argument is syntactically equal. If so, we allow t0 and t1 to be compared for SMT equality. For example, Steel.ST.Reference.pts_to is defined like so: /// For instance, [pts_to r (sum_perm (half_perm p) (half_perm p)) (v + 1)] /// is unifiable with [pts_to r p (1 + v)] val pts_to (#a:Type0) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop *) let eligible_for_smt_equality (g:env) (t0 t1:term) : T.Tac bool = let either_equational () = equational t0 || equational t1 in let head_eq (t0 t1:R.term) = match R.inspect_ln t0, R.inspect_ln t1 with | R.Tv_App h0 _, R.Tv_App h1 _ -> TermEq.term_eq h0 h1 | _ -> false in match t0.t, t1.t with | Tm_FStar t0, Tm_FStar t1 -> ( let h0, args0 = R.collect_app_ln t0 in let h1, args1 = R.collect_app_ln t1 in if TermEq.term_eq h0 h1 && L.length args0 = L.length args1 then ( match R.inspect_ln h0 with | R.Tv_FVar fv | R.Tv_UInst fv _ -> ( match type_of_fv g fv with | None -> either_equational() | Some t -> let bs, _ = R.collect_arr_ln_bs t in let is_smt_fallback (b:R.binder) = let bview = R.inspect_binder b in L.existsb is_smt_fallback bview.attrs in let some_fallbacks, fallbacks = L.fold_right (fun b (some_fallbacks, bs) -> if is_smt_fallback b then true, true::bs else some_fallbacks, false::bs) bs (false, []) in if not some_fallbacks then ( //if none of the binders are marked fallback //then, by default, consider only the last argument as //fallback head_eq t0 t1 ) else ( let rec aux args0 args1 fallbacks = match args0, args1, fallbacks with | (a0, _)::args0, (a1, _)::args1, b::fallbacks -> if b then aux args0 args1 fallbacks else if not (TermEq.term_eq a0 a1) then false else aux args0 args1 fallbacks | [], [], [] -> true | _ -> either_equational() //unequal lengths in aux args0 args1 fallbacks ) ) | _ -> either_equational () ) else either_equational () ) | Tm_ForallSL _ _ _, Tm_ForallSL _ _ _ -> true | _ -> either_equational () let refl_uvar (t:R.term) (uvs:env) : option var = let open R in match inspect_ln t with | Tv_Var v -> let {uniq=n} = inspect_namedv v in if contains uvs n then Some n else None | _ -> None let is_uvar (t:term) (uvs:env) : option var = match t.t with | Tm_FStar t -> refl_uvar t uvs | _ -> None let contains_uvar (t:term) (uvs:env) (g:env) : T.Tac bool = not (check_disjoint uvs (freevars t)) let is_reveal_uvar (t:term) (uvs:env) : option (universe & term & var) = match is_pure_app t with | Some (hd, None, arg) -> (match is_pure_app hd with | Some (hd, Some Implicit, ty) -> let arg_uvar_index_opt = is_uvar arg uvs in (match arg_uvar_index_opt with | Some n -> (match is_fvar hd with | Some (l, [u]) -> if l = RUtil.reveal_lid then Some (u, ty, n) else None | _ -> None) | _ -> None) | _ -> None) | _ -> None let is_reveal (t:term) : bool = match leftmost_head t with | Some hd -> (match is_fvar hd with | Some (l, [_]) -> l = RUtil.reveal_lid | _ -> false) | _ -> false module RT = FStar.Reflection.Typing // // Call into the F* unifier to solve for uvs by unifying p and q // let try_solve_uvars (g:env) (uvs:env { disjoint uvs g }) (p q:term) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q }) = let uvs = uvs |> bindings_with_ppname |> L.rev |> L.map (fun (({name}, x, t):(ppname & _ & _)) -> let nv_view = { R.uniq = x; R.sort = elab_term t; R.ppname = name; } in let nv = R.pack_namedv nv_view in nv, elab_term t ) in let l, issues = RU.with_context (get_context g) (fun _ -> T.try_unify (elab_env g) uvs (elab_term p) (elab_term q)) in T.log_issues issues; // build ss let ss = PS.empty in assume (PS.dom ss `Set.subset` freevars q); match l with | None -> ss | Some l -> let q_names = freevars q in L.fold_left (fun (ss:(ss:PS.ss_t { PS.dom ss `Set.subset` freevars q })) (x, t) -> let nv_view = R.inspect_namedv x in let topt = readback_ty t in match topt with | Some t -> if Set.mem nv_view.uniq q_names && not (Set.mem nv_view.uniq (PS.dom ss)) then begin let ss_new = PS.push ss nv_view.uniq t in assert (nv_view.uniq `Set.mem` freevars q); assert (PS.dom ss `Set.subset` freevars q); assume (PS.dom ss_new `Set.subset` freevars q); ss_new end else ss | None -> ss ) ss l let unify (g:env) (uvs:env { disjoint uvs g}) (p q:term) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q } & option (RT.equiv (elab_env g) (elab_term p) (elab_term ss.(q)))) = let ss = try_solve_uvars g uvs p q in let q_ss = readback_ty (elab_term ss.(q)) in match q_ss with | None -> (| ss, None |) | Some q -> if eq_tm p q then (| ss, Some (RT.Rel_refl _ _ _) |) else if contains_uvar q uvs g then (| ss, None |) else if eligible_for_smt_equality g p q then let v0 = elab_term p in let v1 = elab_term q in match check_equiv_now (elab_env g) v0 v1 with | Some token, _ -> (| ss, Some (RT.Rel_eq_token _ _ _ (FStar.Squash.return_squash token)) |) | None, _ -> (| ss, None |) else (| ss, None |) let try_match_pq (g:env) (uvs:env { disjoint uvs g}) (p q:vprop) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q } & option (vprop_equiv g p ss.(q))) = let r = unify g uvs p q in match r with | (| ss, None |) -> (| ss, None |) | (| ss, Some _ |) -> (| ss, Some (RU.magic #(vprop_equiv _ _ _) ()) |)
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Util.fsti.checked", "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Readback.fsti.checked", "Pulse.Checker.VPropEquiv.fsti.checked", "Pulse.Checker.Prover.Util.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Prover.Match.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Reflection.Util", "short_module": "RUtil" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2.TermEq", "short_module": "TermEq" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.VPropEquiv", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> _: Prims.squash (a == b) -> y: b{y == x}
Prims.Tot
[ "total" ]
[]
[ "Prims.squash", "Prims.eq2" ]
[]
false
false
false
false
false
let coerce_eq (#a: Type) (#b: Type) (x: a) (_: squash (a == b)) : y: b{y == x} =
x
false
Pulse.Checker.Prover.Match.fst
Pulse.Checker.Prover.Match.try_match_pq
val try_match_pq (g: env) (uvs: env{disjoint uvs g}) (p q: vprop) : T.Tac (ss: PS.ss_t{(PS.dom ss) `Set.subset` (freevars q)} & option (vprop_equiv g p ss.(q)))
val try_match_pq (g: env) (uvs: env{disjoint uvs g}) (p q: vprop) : T.Tac (ss: PS.ss_t{(PS.dom ss) `Set.subset` (freevars q)} & option (vprop_equiv g p ss.(q)))
let try_match_pq (g:env) (uvs:env { disjoint uvs g}) (p q:vprop) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q } & option (vprop_equiv g p ss.(q))) = let r = unify g uvs p q in match r with | (| ss, None |) -> (| ss, None |) | (| ss, Some _ |) -> (| ss, Some (RU.magic #(vprop_equiv _ _ _) ()) |)
{ "file_name": "lib/steel/pulse/Pulse.Checker.Prover.Match.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 73, "end_line": 295, "start_col": 0, "start_line": 288 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Prover.Match open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Typing.Metatheory open Pulse.Typing.Util open Pulse.Checker.VPropEquiv open Pulse.Checker.Prover.Base open Pulse.Checker.Prover.Util module RU = Pulse.RuntimeUtils module L = FStar.List.Tot module R = FStar.Reflection.V2 module TermEq = FStar.Reflection.V2.TermEq module T = FStar.Tactics.V2 module RUtil = Pulse.Reflection.Util module P = Pulse.Syntax.Printer module PS = Pulse.Checker.Prover.Substs module Metatheory = Pulse.Typing.Metatheory let equational (t:term) : bool = match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false let type_of_fv (g:env) (fv:R.fv) : T.Tac (option R.term) = let n = R.inspect_fv fv in match R.lookup_typ (fstar_env g) n with | None -> None | Some se -> match R.inspect_sigelt se with | R.Unk -> None | R.Sg_Let _ lbs -> ( L.tryPick (fun lb -> let lbv = R.inspect_lb lb in if R.inspect_fv lbv.lb_fv = n then Some lbv.lb_typ else None) lbs ) | R.Sg_Val _ _ t -> Some t | R.Sg_Inductive _nm _univs params typ _ -> None let is_smt_fallback (t:R.term) : bool = match R.inspect_ln t with | R.Tv_FVar fv -> let name = R.inspect_fv fv in name = ["Steel";"Effect";"Common";"smt_fallback"] || name = ["Pulse"; "Lib"; "Core"; "equate_by_smt"] | _ -> false (* When comparing t0 =?= t1, if they are not syntactically equal, we have to decide whether or not we should fire an SMT query to compare them for provable equality. The criterion is as follows: 1. We allow an SMT query if either t0 or t1 is "equational". For now, that means that either is a match expression. 2. Otherwise, if they are both applications of `f v0...vn` and `f u0...un` of the same head symbol `f`, a top-level constant, then we check if the type of `f` decorates any of its binders with the `smt_fallback` attribute. - If none of them are marked as such, then we check if `f v0...` is syntactically equal to `f u0...` and allow an SMT query to check if vn = vm. That is, the default behavior for predicates is that they *last* argument is eligible for SMT equality. - Otherwise, for each binder that is NOT marked as `smt_fallback`, we check if the corresponding argument is syntactically equal. If so, we allow t0 and t1 to be compared for SMT equality. For example, Steel.ST.Reference.pts_to is defined like so: /// For instance, [pts_to r (sum_perm (half_perm p) (half_perm p)) (v + 1)] /// is unifiable with [pts_to r p (1 + v)] val pts_to (#a:Type0) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop *) let eligible_for_smt_equality (g:env) (t0 t1:term) : T.Tac bool = let either_equational () = equational t0 || equational t1 in let head_eq (t0 t1:R.term) = match R.inspect_ln t0, R.inspect_ln t1 with | R.Tv_App h0 _, R.Tv_App h1 _ -> TermEq.term_eq h0 h1 | _ -> false in match t0.t, t1.t with | Tm_FStar t0, Tm_FStar t1 -> ( let h0, args0 = R.collect_app_ln t0 in let h1, args1 = R.collect_app_ln t1 in if TermEq.term_eq h0 h1 && L.length args0 = L.length args1 then ( match R.inspect_ln h0 with | R.Tv_FVar fv | R.Tv_UInst fv _ -> ( match type_of_fv g fv with | None -> either_equational() | Some t -> let bs, _ = R.collect_arr_ln_bs t in let is_smt_fallback (b:R.binder) = let bview = R.inspect_binder b in L.existsb is_smt_fallback bview.attrs in let some_fallbacks, fallbacks = L.fold_right (fun b (some_fallbacks, bs) -> if is_smt_fallback b then true, true::bs else some_fallbacks, false::bs) bs (false, []) in if not some_fallbacks then ( //if none of the binders are marked fallback //then, by default, consider only the last argument as //fallback head_eq t0 t1 ) else ( let rec aux args0 args1 fallbacks = match args0, args1, fallbacks with | (a0, _)::args0, (a1, _)::args1, b::fallbacks -> if b then aux args0 args1 fallbacks else if not (TermEq.term_eq a0 a1) then false else aux args0 args1 fallbacks | [], [], [] -> true | _ -> either_equational() //unequal lengths in aux args0 args1 fallbacks ) ) | _ -> either_equational () ) else either_equational () ) | Tm_ForallSL _ _ _, Tm_ForallSL _ _ _ -> true | _ -> either_equational () let refl_uvar (t:R.term) (uvs:env) : option var = let open R in match inspect_ln t with | Tv_Var v -> let {uniq=n} = inspect_namedv v in if contains uvs n then Some n else None | _ -> None let is_uvar (t:term) (uvs:env) : option var = match t.t with | Tm_FStar t -> refl_uvar t uvs | _ -> None let contains_uvar (t:term) (uvs:env) (g:env) : T.Tac bool = not (check_disjoint uvs (freevars t)) let is_reveal_uvar (t:term) (uvs:env) : option (universe & term & var) = match is_pure_app t with | Some (hd, None, arg) -> (match is_pure_app hd with | Some (hd, Some Implicit, ty) -> let arg_uvar_index_opt = is_uvar arg uvs in (match arg_uvar_index_opt with | Some n -> (match is_fvar hd with | Some (l, [u]) -> if l = RUtil.reveal_lid then Some (u, ty, n) else None | _ -> None) | _ -> None) | _ -> None) | _ -> None let is_reveal (t:term) : bool = match leftmost_head t with | Some hd -> (match is_fvar hd with | Some (l, [_]) -> l = RUtil.reveal_lid | _ -> false) | _ -> false module RT = FStar.Reflection.Typing // // Call into the F* unifier to solve for uvs by unifying p and q // let try_solve_uvars (g:env) (uvs:env { disjoint uvs g }) (p q:term) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q }) = let uvs = uvs |> bindings_with_ppname |> L.rev |> L.map (fun (({name}, x, t):(ppname & _ & _)) -> let nv_view = { R.uniq = x; R.sort = elab_term t; R.ppname = name; } in let nv = R.pack_namedv nv_view in nv, elab_term t ) in let l, issues = RU.with_context (get_context g) (fun _ -> T.try_unify (elab_env g) uvs (elab_term p) (elab_term q)) in T.log_issues issues; // build ss let ss = PS.empty in assume (PS.dom ss `Set.subset` freevars q); match l with | None -> ss | Some l -> let q_names = freevars q in L.fold_left (fun (ss:(ss:PS.ss_t { PS.dom ss `Set.subset` freevars q })) (x, t) -> let nv_view = R.inspect_namedv x in let topt = readback_ty t in match topt with | Some t -> if Set.mem nv_view.uniq q_names && not (Set.mem nv_view.uniq (PS.dom ss)) then begin let ss_new = PS.push ss nv_view.uniq t in assert (nv_view.uniq `Set.mem` freevars q); assert (PS.dom ss `Set.subset` freevars q); assume (PS.dom ss_new `Set.subset` freevars q); ss_new end else ss | None -> ss ) ss l let unify (g:env) (uvs:env { disjoint uvs g}) (p q:term) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q } & option (RT.equiv (elab_env g) (elab_term p) (elab_term ss.(q)))) = let ss = try_solve_uvars g uvs p q in let q_ss = readback_ty (elab_term ss.(q)) in match q_ss with | None -> (| ss, None |) | Some q -> if eq_tm p q then (| ss, Some (RT.Rel_refl _ _ _) |) else if contains_uvar q uvs g then (| ss, None |) else if eligible_for_smt_equality g p q then let v0 = elab_term p in let v1 = elab_term q in match check_equiv_now (elab_env g) v0 v1 with | Some token, _ -> (| ss, Some (RT.Rel_eq_token _ _ _ (FStar.Squash.return_squash token)) |) | None, _ -> (| ss, None |) else (| ss, None |)
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Util.fsti.checked", "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Readback.fsti.checked", "Pulse.Checker.VPropEquiv.fsti.checked", "Pulse.Checker.Prover.Util.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Prover.Match.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Reflection.Util", "short_module": "RUtil" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2.TermEq", "short_module": "TermEq" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.VPropEquiv", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: Pulse.Typing.Env.env -> uvs: Pulse.Typing.Env.env{Pulse.Typing.Env.disjoint uvs g} -> p: Pulse.Syntax.Base.vprop -> q: Pulse.Syntax.Base.vprop -> FStar.Tactics.Effect.Tac (Prims.dtuple2 (ss: Pulse.Checker.Prover.Substs.ss_t {FStar.Set.subset (Pulse.Checker.Prover.Substs.dom ss) (Pulse.Syntax.Naming.freevars q)} ) (fun ss -> FStar.Pervasives.Native.option (Pulse.Typing.vprop_equiv g p ss.(q))))
FStar.Tactics.Effect.Tac
[]
[]
[ "Pulse.Typing.Env.env", "Pulse.Typing.Env.disjoint", "Pulse.Syntax.Base.vprop", "Pulse.Checker.Prover.Substs.ss_t", "FStar.Set.subset", "Pulse.Syntax.Base.var", "Pulse.Checker.Prover.Substs.dom", "Pulse.Syntax.Naming.freevars", "Prims.Mkdtuple2", "FStar.Pervasives.Native.option", "Pulse.Typing.vprop_equiv", "Pulse.Checker.Prover.Base.op_Array_Access", "FStar.Pervasives.Native.None", "FStar.Reflection.Typing.equiv", "Pulse.Typing.elab_env", "Pulse.Elaborate.Pure.elab_term", "FStar.Pervasives.Native.Some", "Pulse.RuntimeUtils.magic", "Prims.dtuple2", "Pulse.Checker.Prover.Match.unify" ]
[]
false
true
false
false
false
let try_match_pq (g: env) (uvs: env{disjoint uvs g}) (p q: vprop) : T.Tac (ss: PS.ss_t{(PS.dom ss) `Set.subset` (freevars q)} & option (vprop_equiv g p ss.(q))) =
let r = unify g uvs p q in match r with | (| ss , None |) -> (| ss, None |) | (| ss , Some _ |) -> (| ss, Some (RU.magic #(vprop_equiv _ _ _) ()) |)
false
Hacl.Impl.Ed25519.Group.fst
Hacl.Impl.Ed25519.Group.linv_ctx
val linv_ctx (a: LSeq.lseq uint64 0) : Type0
val linv_ctx (a: LSeq.lseq uint64 0) : Type0
let linv_ctx (a:LSeq.lseq uint64 0) : Type0 = True
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Group.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 28, "start_col": 0, "start_line": 28 }
module Hacl.Impl.Ed25519.Group module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum25519 open Hacl.Impl.Ed25519.PointConstants module LSeq = Lib.Sequence module F51 = Hacl.Impl.Ed25519.Field51 module BE = Hacl.Impl.Exponentiation.Definitions module S = Spec.Ed25519 #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let a_spec = S.aff_point_c unfold let refl (a:LSeq.lseq uint64 20{F51.linv a}) : GTot a_spec = S.to_aff_point (F51.refl_ext_point a)
{ "checked_file": "/", "dependencies": [ "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Exponentiation.Definitions.fst.checked", "Hacl.Impl.Ed25519.PointDouble.fst.checked", "Hacl.Impl.Ed25519.PointConstants.fst.checked", "Hacl.Impl.Ed25519.PointAdd.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Bignum25519.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Ed25519.Group.fst" }
[ { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519.PointConstants", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Lib.Sequence.lseq Lib.IntTypes.uint64 0 -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.lseq", "Lib.IntTypes.uint64", "Prims.l_True" ]
[]
false
false
false
false
true
let linv_ctx (a: LSeq.lseq uint64 0) : Type0 =
True
false
Pulse.Checker.Prover.Match.fst
Pulse.Checker.Prover.Match.match_q_aux
val match_q_aux: #preamble: _ -> pst: prover_state preamble -> q: vprop -> unsolved': list vprop -> squash (pst.unsolved == q :: unsolved') -> i: nat -> T.Tac (option (pst': prover_state preamble {pst' `pst_extends` pst}))
val match_q_aux: #preamble: _ -> pst: prover_state preamble -> q: vprop -> unsolved': list vprop -> squash (pst.unsolved == q :: unsolved') -> i: nat -> T.Tac (option (pst': prover_state preamble {pst' `pst_extends` pst}))
let rec match_q_aux (#preamble:_) (pst:prover_state preamble) (q:vprop) (unsolved':list vprop) (_:squash (pst.unsolved == q::unsolved')) (i:nat) : T.Tac (option (pst':prover_state preamble { pst' `pst_extends` pst })) = if L.length pst.remaining_ctxt = 0 then None else if i = L.length pst.remaining_ctxt then None else let p = L.hd pst.remaining_ctxt in let pst_opt = match_step pst p (L.tl pst.remaining_ctxt) q unsolved' () in match pst_opt with | Some pst -> Some pst | None -> let pst = remaining_ctxt_equiv_pst pst (L.tl pst.remaining_ctxt @ [L.hd pst.remaining_ctxt]) (move_hd_end pst.pg pst.remaining_ctxt) in match_q_aux pst q unsolved' () (i+1)
{ "file_name": "lib/steel/pulse/Pulse.Checker.Prover.Match.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 42, "end_line": 403, "start_col": 0, "start_line": 383 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.Checker.Prover.Match open Pulse.Syntax open Pulse.Typing open Pulse.Typing.Combinators open Pulse.Typing.Metatheory open Pulse.Typing.Util open Pulse.Checker.VPropEquiv open Pulse.Checker.Prover.Base open Pulse.Checker.Prover.Util module RU = Pulse.RuntimeUtils module L = FStar.List.Tot module R = FStar.Reflection.V2 module TermEq = FStar.Reflection.V2.TermEq module T = FStar.Tactics.V2 module RUtil = Pulse.Reflection.Util module P = Pulse.Syntax.Printer module PS = Pulse.Checker.Prover.Substs module Metatheory = Pulse.Typing.Metatheory let equational (t:term) : bool = match t.t with | Tm_FStar host_term -> (match R.inspect_ln host_term with | R.Tv_Match _ _ _ -> true | _ -> false) | _ -> false let type_of_fv (g:env) (fv:R.fv) : T.Tac (option R.term) = let n = R.inspect_fv fv in match R.lookup_typ (fstar_env g) n with | None -> None | Some se -> match R.inspect_sigelt se with | R.Unk -> None | R.Sg_Let _ lbs -> ( L.tryPick (fun lb -> let lbv = R.inspect_lb lb in if R.inspect_fv lbv.lb_fv = n then Some lbv.lb_typ else None) lbs ) | R.Sg_Val _ _ t -> Some t | R.Sg_Inductive _nm _univs params typ _ -> None let is_smt_fallback (t:R.term) : bool = match R.inspect_ln t with | R.Tv_FVar fv -> let name = R.inspect_fv fv in name = ["Steel";"Effect";"Common";"smt_fallback"] || name = ["Pulse"; "Lib"; "Core"; "equate_by_smt"] | _ -> false (* When comparing t0 =?= t1, if they are not syntactically equal, we have to decide whether or not we should fire an SMT query to compare them for provable equality. The criterion is as follows: 1. We allow an SMT query if either t0 or t1 is "equational". For now, that means that either is a match expression. 2. Otherwise, if they are both applications of `f v0...vn` and `f u0...un` of the same head symbol `f`, a top-level constant, then we check if the type of `f` decorates any of its binders with the `smt_fallback` attribute. - If none of them are marked as such, then we check if `f v0...` is syntactically equal to `f u0...` and allow an SMT query to check if vn = vm. That is, the default behavior for predicates is that they *last* argument is eligible for SMT equality. - Otherwise, for each binder that is NOT marked as `smt_fallback`, we check if the corresponding argument is syntactically equal. If so, we allow t0 and t1 to be compared for SMT equality. For example, Steel.ST.Reference.pts_to is defined like so: /// For instance, [pts_to r (sum_perm (half_perm p) (half_perm p)) (v + 1)] /// is unifiable with [pts_to r p (1 + v)] val pts_to (#a:Type0) (r:ref a) ([@@@smt_fallback] p:perm) ([@@@smt_fallback] v:a) : vprop *) let eligible_for_smt_equality (g:env) (t0 t1:term) : T.Tac bool = let either_equational () = equational t0 || equational t1 in let head_eq (t0 t1:R.term) = match R.inspect_ln t0, R.inspect_ln t1 with | R.Tv_App h0 _, R.Tv_App h1 _ -> TermEq.term_eq h0 h1 | _ -> false in match t0.t, t1.t with | Tm_FStar t0, Tm_FStar t1 -> ( let h0, args0 = R.collect_app_ln t0 in let h1, args1 = R.collect_app_ln t1 in if TermEq.term_eq h0 h1 && L.length args0 = L.length args1 then ( match R.inspect_ln h0 with | R.Tv_FVar fv | R.Tv_UInst fv _ -> ( match type_of_fv g fv with | None -> either_equational() | Some t -> let bs, _ = R.collect_arr_ln_bs t in let is_smt_fallback (b:R.binder) = let bview = R.inspect_binder b in L.existsb is_smt_fallback bview.attrs in let some_fallbacks, fallbacks = L.fold_right (fun b (some_fallbacks, bs) -> if is_smt_fallback b then true, true::bs else some_fallbacks, false::bs) bs (false, []) in if not some_fallbacks then ( //if none of the binders are marked fallback //then, by default, consider only the last argument as //fallback head_eq t0 t1 ) else ( let rec aux args0 args1 fallbacks = match args0, args1, fallbacks with | (a0, _)::args0, (a1, _)::args1, b::fallbacks -> if b then aux args0 args1 fallbacks else if not (TermEq.term_eq a0 a1) then false else aux args0 args1 fallbacks | [], [], [] -> true | _ -> either_equational() //unequal lengths in aux args0 args1 fallbacks ) ) | _ -> either_equational () ) else either_equational () ) | Tm_ForallSL _ _ _, Tm_ForallSL _ _ _ -> true | _ -> either_equational () let refl_uvar (t:R.term) (uvs:env) : option var = let open R in match inspect_ln t with | Tv_Var v -> let {uniq=n} = inspect_namedv v in if contains uvs n then Some n else None | _ -> None let is_uvar (t:term) (uvs:env) : option var = match t.t with | Tm_FStar t -> refl_uvar t uvs | _ -> None let contains_uvar (t:term) (uvs:env) (g:env) : T.Tac bool = not (check_disjoint uvs (freevars t)) let is_reveal_uvar (t:term) (uvs:env) : option (universe & term & var) = match is_pure_app t with | Some (hd, None, arg) -> (match is_pure_app hd with | Some (hd, Some Implicit, ty) -> let arg_uvar_index_opt = is_uvar arg uvs in (match arg_uvar_index_opt with | Some n -> (match is_fvar hd with | Some (l, [u]) -> if l = RUtil.reveal_lid then Some (u, ty, n) else None | _ -> None) | _ -> None) | _ -> None) | _ -> None let is_reveal (t:term) : bool = match leftmost_head t with | Some hd -> (match is_fvar hd with | Some (l, [_]) -> l = RUtil.reveal_lid | _ -> false) | _ -> false module RT = FStar.Reflection.Typing // // Call into the F* unifier to solve for uvs by unifying p and q // let try_solve_uvars (g:env) (uvs:env { disjoint uvs g }) (p q:term) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q }) = let uvs = uvs |> bindings_with_ppname |> L.rev |> L.map (fun (({name}, x, t):(ppname & _ & _)) -> let nv_view = { R.uniq = x; R.sort = elab_term t; R.ppname = name; } in let nv = R.pack_namedv nv_view in nv, elab_term t ) in let l, issues = RU.with_context (get_context g) (fun _ -> T.try_unify (elab_env g) uvs (elab_term p) (elab_term q)) in T.log_issues issues; // build ss let ss = PS.empty in assume (PS.dom ss `Set.subset` freevars q); match l with | None -> ss | Some l -> let q_names = freevars q in L.fold_left (fun (ss:(ss:PS.ss_t { PS.dom ss `Set.subset` freevars q })) (x, t) -> let nv_view = R.inspect_namedv x in let topt = readback_ty t in match topt with | Some t -> if Set.mem nv_view.uniq q_names && not (Set.mem nv_view.uniq (PS.dom ss)) then begin let ss_new = PS.push ss nv_view.uniq t in assert (nv_view.uniq `Set.mem` freevars q); assert (PS.dom ss `Set.subset` freevars q); assume (PS.dom ss_new `Set.subset` freevars q); ss_new end else ss | None -> ss ) ss l let unify (g:env) (uvs:env { disjoint uvs g}) (p q:term) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q } & option (RT.equiv (elab_env g) (elab_term p) (elab_term ss.(q)))) = let ss = try_solve_uvars g uvs p q in let q_ss = readback_ty (elab_term ss.(q)) in match q_ss with | None -> (| ss, None |) | Some q -> if eq_tm p q then (| ss, Some (RT.Rel_refl _ _ _) |) else if contains_uvar q uvs g then (| ss, None |) else if eligible_for_smt_equality g p q then let v0 = elab_term p in let v1 = elab_term q in match check_equiv_now (elab_env g) v0 v1 with | Some token, _ -> (| ss, Some (RT.Rel_eq_token _ _ _ (FStar.Squash.return_squash token)) |) | None, _ -> (| ss, None |) else (| ss, None |) let try_match_pq (g:env) (uvs:env { disjoint uvs g}) (p q:vprop) : T.Tac (ss:PS.ss_t { PS.dom ss `Set.subset` freevars q } & option (vprop_equiv g p ss.(q))) = let r = unify g uvs p q in match r with | (| ss, None |) -> (| ss, None |) | (| ss, Some _ |) -> (| ss, Some (RU.magic #(vprop_equiv _ _ _) ()) |) let coerce_eq (#a #b:Type) (x:a) (_:squash (a == b)) : y:b{y == x} = x let match_step (#preamble:preamble) (pst:prover_state preamble) (p:vprop) (remaining_ctxt':list vprop) (q:vprop) (unsolved':list vprop) (_:squash (pst.remaining_ctxt == p::remaining_ctxt' /\ pst.unsolved == q::unsolved')) : T.Tac (option (pst':prover_state preamble { pst' `pst_extends` pst })) = let q_ss = pst.ss.(q) in assume (freevars q_ss `Set.disjoint` PS.dom pst.ss); let (| ss_q, ropt |) = try_match_pq pst.pg pst.uvs p q_ss in debug_prover pst.pg (fun _ -> Printf.sprintf "prover matcher: tried to match p %s and q (partially substituted) %s, result: %s" (P.term_to_string p) (P.term_to_string (ss_q.(q_ss))) (if None? ropt then "fail" else "success")); match ropt with | None -> None | Some veq -> assert (PS.dom ss_q `Set.disjoint` PS.dom pst.ss); let ss_new = PS.push_ss pst.ss ss_q in let veq : vprop_equiv pst.pg p (ss_q.(pst.ss.(q))) = veq in assume (ss_q.(pst.ss.(q)) == ss_new.(q)); let veq : vprop_equiv pst.pg p ss_new.(q) = coerce_eq veq () in let remaining_ctxt_new = remaining_ctxt' in let solved_new = q * pst.solved in let unsolved_new = unsolved' in let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop pst.remaining_ctxt * preamble.frame) * pst.ss.(pst.solved)) = pst.k in assume (pst.ss.(pst.solved) == ss_new.(pst.solved)); let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop (p::remaining_ctxt_new) * preamble.frame) * ss_new.(pst.solved)) = coerce_eq k () in let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop remaining_ctxt_new * preamble.frame) * (ss_new.(q) * ss_new.(pst.solved))) = k_elab_equiv k (VE_Refl _ _) (RU.magic ()) in assume (ss_new.(q) * ss_new.(pst.solved) == ss_new.(q * pst.solved)); let k : continuation_elaborator preamble.g0 (preamble.ctxt * preamble.frame) pst.pg ((list_as_vprop remaining_ctxt_new * preamble.frame) * (ss_new.(solved_new))) = coerce_eq k () in assume (freevars ss_new.(solved_new) `Set.subset` dom pst.pg); let pst' : prover_state preamble = { pst with remaining_ctxt=remaining_ctxt_new; remaining_ctxt_frame_typing=RU.magic (); ss=ss_new; nts=None; solved=solved_new; unsolved=unsolved_new; k; goals_inv=RU.magic (); solved_inv=() } in assume (ss_new `ss_extends` pst.ss); Some pst' let move_hd_end (g:env) (l:list vprop { Cons? l }) : vprop_equiv g (list_as_vprop l) (list_as_vprop (L.tl l @ [L.hd l])) = RU.magic () let remaining_ctxt_equiv_pst (#preamble:_) (pst:prover_state preamble) (remaining_ctxt':list vprop) (d:vprop_equiv pst.pg (list_as_vprop pst.remaining_ctxt) (list_as_vprop remaining_ctxt')) : prover_state preamble = { pst with remaining_ctxt = remaining_ctxt'; remaining_ctxt_frame_typing = RU.magic (); k = k_elab_equiv pst.k (VE_Refl _ _) (RU.magic ()) }
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Util.fsti.checked", "Pulse.Typing.Metatheory.fsti.checked", "Pulse.Typing.Combinators.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.fst.checked", "Pulse.RuntimeUtils.fsti.checked", "Pulse.Reflection.Util.fst.checked", "Pulse.Readback.fsti.checked", "Pulse.Checker.VPropEquiv.fsti.checked", "Pulse.Checker.Prover.Util.fsti.checked", "Pulse.Checker.Prover.Substs.fsti.checked", "Pulse.Checker.Prover.Base.fsti.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.TermEq.fst.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked" ], "interface_file": true, "source_file": "Pulse.Checker.Prover.Match.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "Pulse.Typing.Metatheory", "short_module": "Metatheory" }, { "abbrev": true, "full_module": "Pulse.Checker.Prover.Substs", "short_module": "PS" }, { "abbrev": true, "full_module": "Pulse.Syntax.Printer", "short_module": "P" }, { "abbrev": true, "full_module": "Pulse.Reflection.Util", "short_module": "RUtil" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": true, "full_module": "FStar.Reflection.V2.TermEq", "short_module": "TermEq" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "Pulse.RuntimeUtils", "short_module": "RU" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.VPropEquiv", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Util", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Metatheory", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing.Combinators", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Checker.Prover", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
pst: Pulse.Checker.Prover.Base.prover_state preamble -> q: Pulse.Syntax.Base.vprop -> unsolved': Prims.list Pulse.Syntax.Base.vprop -> _: Prims.squash (Mkprover_state?.unsolved pst == q :: unsolved') -> i: Prims.nat -> FStar.Tactics.Effect.Tac (FStar.Pervasives.Native.option (pst': Pulse.Checker.Prover.Base.prover_state preamble {Pulse.Checker.Prover.Base.pst_extends pst' pst}))
FStar.Tactics.Effect.Tac
[]
[]
[ "Pulse.Checker.Prover.Base.preamble", "Pulse.Checker.Prover.Base.prover_state", "Pulse.Syntax.Base.vprop", "Prims.list", "Prims.squash", "Prims.eq2", "Pulse.Checker.Prover.Base.__proj__Mkprover_state__item__unsolved", "Prims.Cons", "Prims.nat", "Prims.op_Equality", "Prims.int", "FStar.List.Tot.Base.length", "Pulse.Checker.Prover.Base.__proj__Mkprover_state__item__remaining_ctxt", "FStar.Pervasives.Native.None", "Pulse.Checker.Prover.Base.pst_extends", "FStar.Pervasives.Native.option", "Prims.bool", "FStar.Pervasives.Native.Some", "Pulse.Checker.Prover.Match.match_q_aux", "Prims.op_Addition", "Pulse.Checker.Prover.Match.remaining_ctxt_equiv_pst", "FStar.List.Tot.Base.append", "FStar.List.Tot.Base.tl", "FStar.List.Tot.Base.hd", "Prims.Nil", "Pulse.Checker.Prover.Match.move_hd_end", "Pulse.Checker.Prover.Base.__proj__Mkprover_state__item__pg", "Pulse.Checker.Prover.Match.match_step" ]
[ "recursion" ]
false
true
false
false
false
let rec match_q_aux (#preamble: _) (pst: prover_state preamble) (q: vprop) (unsolved': list vprop) (_: squash (pst.unsolved == q :: unsolved')) (i: nat) : T.Tac (option (pst': prover_state preamble {pst' `pst_extends` pst})) =
if L.length pst.remaining_ctxt = 0 then None else if i = L.length pst.remaining_ctxt then None else let p = L.hd pst.remaining_ctxt in let pst_opt = match_step pst p (L.tl pst.remaining_ctxt) q unsolved' () in match pst_opt with | Some pst -> Some pst | None -> let pst = remaining_ctxt_equiv_pst pst (L.tl pst.remaining_ctxt @ [L.hd pst.remaining_ctxt]) (move_hd_end pst.pg pst.remaining_ctxt) in match_q_aux pst q unsolved' () (i + 1)
false