file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.sign_lemma | val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1)) | val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1)) | let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL) | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 46,
"end_line": 116,
"start_col": 0,
"start_line": 104
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c0: Hacl.Spec.Bignum.Base.carry t -> c1: Hacl.Spec.Bignum.Base.carry t
-> FStar.Pervasives.Lemma
(ensures
Lib.IntTypes.v (c0 ^. c1) ==
(match Lib.IntTypes.v c0 = Lib.IntTypes.v c1 with
| true -> 0
| _ -> 1)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.Base.carry",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"FStar.UInt32.t",
"FStar.UInt32.logxor",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.UInt64.t",
"FStar.UInt64.logxor",
"FStar.UInt64.__uint_to_t",
"Lib.IntTypes.logxor_spec",
"Lib.IntTypes.SEC"
] | [] | false | false | true | false | false | let sign_lemma #t c0 c1 =
| logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL) | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul | val bn_karatsuba_mul:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
lbignum t (aLen + aLen) | val bn_karatsuba_mul:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
lbignum t (aLen + aLen) | let bn_karatsuba_mul #t #aLen a b =
bn_karatsuba_mul_ aLen a b | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 522,
"start_col": 0,
"start_line": 521
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1)
let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen
val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0))
let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
//assert (v c = (v c2 - v c3) % pow2 pb);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
() end
else begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
//assert (v c = v c2 + v c4);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23);
() end
val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add #t #aLen a b1 i =
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
c, a'
val bn_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
Lemma (let c, res = bn_lshift_add a b1 i in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a + v b1 * pow2 (bits t * i))
let bn_lshift_add_lemma #t #aLen a b1 i =
let pbits = bits t in
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
let p = pow2 (pbits * aLen) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add1_lemma r b1 }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (v b1 - v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + (v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (v b1) (v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + v b1 * pow2 (pbits * i) - (v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * (aLen - i))) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * (aLen - i)) (pbits * i) }
bn_v a + v b1 * pow2 (pbits * i);
}
val bn_lshift_add_early_stop:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add_early_stop #t #aLen #bLen a b i =
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
c, a'
val bn_lshift_add_early_stop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
Lemma (let c, res = bn_lshift_add_early_stop a b i in
bn_v res + v c * pow2 (bits t * (i + bLen)) == bn_v a + bn_v b * pow2 (bits t * i))
let bn_lshift_add_early_stop_lemma #t #aLen #bLen a b i =
let pbits = bits t in
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
let p = pow2 (pbits * (i + bLen)) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add_lemma r b }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (bn_v b - v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + (bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (bn_v b) (v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + bn_v b * pow2 (pbits * i) - (v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * bLen)) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * bLen) (pbits * i) }
bn_v a + bn_v b * pow2 (pbits * i);
}
val bn_karatsuba_res:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t
-> t45:lbignum t aLen ->
tuple2 (carry t) (lbignum t (aLen + aLen))
let bn_karatsuba_res #t #aLen r01 r23 c5 t45 =
let aLen2 = aLen / 2 in
let res = concat r01 r23 in
let c6, res = bn_lshift_add_early_stop res t45 aLen2 in
// let r12 = sub res aLen2 aLen in
// let c6, r12 = bn_add r12 t45 in
// let res = update_sub res aLen2 aLen r12 in
let c7 = c5 +. c6 in
let c8, res = bn_lshift_add res c7 (aLen + aLen2) in
// let r3 = sub res (aLen + aLen2) aLen2 in
// let _, r3 = bn_add r3 (create 1 c7) in
// let res = update_sub res (aLen + aLen2) aLen2 r3 in
c8, res
val bn_karatsuba_res_lemma:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t{v c5 <= 1}
-> t45:lbignum t aLen ->
Lemma
(let c, res = bn_karatsuba_res r01 r23 c5 t45 in
bn_v res + v c * pow2 (bits t * (aLen + aLen)) ==
bn_v r23 * pow2 (bits t * aLen) + (v c5 * pow2 (bits t * aLen) + bn_v t45) * pow2 (aLen / 2 * bits t) + bn_v r01)
let bn_karatsuba_res_lemma #t #aLen r01 r23 c5 t45 =
let pbits = bits t in
let aLen2 = aLen / 2 in
let aLen3 = aLen + aLen2 in
let aLen4 = aLen + aLen in
let res0 = concat r01 r23 in
let c6, res1 = bn_lshift_add_early_stop res0 t45 aLen2 in
let c7 = c5 +. c6 in
let c8, res2 = bn_lshift_add res1 c7 aLen3 in
calc (==) {
bn_v res2 + v c8 * pow2 (pbits * aLen4);
(==) { bn_lshift_add_lemma res1 c7 aLen3 }
bn_v res1 + v c7 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.small_mod (v c5 + v c6) (pow2 pbits) }
bn_v res1 + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { bn_lshift_add_early_stop_lemma res0 t45 aLen2 }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) - v c6 * pow2 (pbits * aLen3) + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { Math.Lemmas.distributivity_add_left (v c5) (v c6) (pow2 (pbits * aLen3)) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * aLen2) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * (pow2 (pbits * aLen) * pow2 (pbits * aLen2));
(==) { Math.Lemmas.paren_mul_right (v c5) (pow2 (pbits * aLen)) (pow2 (pbits * aLen2));
Math.Lemmas.distributivity_add_left (bn_v t45) (v c5 * pow2 (pbits * aLen)) (pow2 (pbits * aLen2)) }
bn_v res0 + (bn_v t45 + v c5 * pow2 (pbits * aLen)) * pow2 (pbits * aLen2);
(==) { bn_concat_lemma r01 r23 }
bn_v r23 * pow2 (pbits * aLen) + (v c5 * pow2 (pbits * aLen) + bn_v t45) * pow2 (pbits * aLen2) + bn_v r01;
}
val bn_middle_karatsuba_carry_bound:
#t:limb_t
-> aLen:size_nat{aLen % 2 = 0}
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c:limb t -> Lemma
(requires bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures v c <= 1)
let bn_middle_karatsuba_carry_bound #t aLen a0 a1 b0 b1 res c =
let pbits = bits t in
let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
bn_eval_bound a0 aLen2;
bn_eval_bound a1 aLen2;
bn_eval_bound b0 aLen2;
bn_eval_bound b1 aLen2;
calc (<) {
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a0) (bn_v b1) p }
p * p + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a1) (bn_v b0) p }
p * p + p * p;
(==) { K.lemma_double_p (bits t) aLen }
pow2 (pbits * aLen) + pow2 (pbits * aLen);
};
bn_eval_bound res aLen;
assert (bn_v res + v c * pow2 (pbits * aLen) < pow2 (pbits * aLen) + pow2 (pbits * aLen));
assert (v c <= 1)
val bn_karatsuba_no_last_carry:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen
-> c:carry t
-> res:lbignum t (aLen + aLen) -> Lemma
(requires bn_v res + v c * pow2 (bits t * (aLen + aLen)) == bn_v a * bn_v b)
(ensures v c == 0)
let bn_karatsuba_no_last_carry #t #aLen a b c res =
bn_eval_bound a aLen;
bn_eval_bound b aLen;
Math.Lemmas.lemma_mult_lt_sqr (bn_v a) (bn_v b) (pow2 (bits t * aLen));
Math.Lemmas.pow2_plus (bits t * aLen) (bits t * aLen);
bn_eval_bound res (aLen + aLen)
val bn_karatsuba_mul_:
#t:limb_t
-> aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Tot (res:lbignum t (aLen + aLen){bn_v res == bn_v a * bn_v b}) (decreases aLen)
let rec bn_karatsuba_mul_ #t aLen a b =
if aLen < bn_mul_threshold || aLen % 2 = 1 then begin
bn_mul_lemma a b;
bn_mul a b end
else begin
let aLen2 = aLen / 2 in
let a0 = bn_mod_pow2 a aLen2 in
(**) bn_mod_pow2_lemma a aLen2;
let a1 = bn_div_pow2 a aLen2 in
(**) bn_div_pow2_lemma a aLen2;
let b0 = bn_mod_pow2 b aLen2 in
(**) bn_mod_pow2_lemma b aLen2;
let b1 = bn_div_pow2 b aLen2 in
(**) bn_div_pow2_lemma b aLen2;
(**) bn_eval_bound a aLen;
(**) bn_eval_bound b aLen;
(**) K.lemma_bn_halves (bits t) aLen (bn_v a);
(**) K.lemma_bn_halves (bits t) aLen (bn_v b);
let c0, t0 = bn_sign_abs a0 a1 in
(**) bn_sign_abs_lemma a0 a1;
let c1, t1 = bn_sign_abs b0 b1 in
(**) bn_sign_abs_lemma b0 b1;
let t23 = bn_karatsuba_mul_ aLen2 t0 t1 in
let r01 = bn_karatsuba_mul_ aLen2 a0 b0 in
let r23 = bn_karatsuba_mul_ aLen2 a1 b1 in
let c2, t01 = bn_add r01 r23 in
(**) bn_add_lemma r01 r23;
let c5, t45 = bn_middle_karatsuba c0 c1 c2 t01 t23 in
(**) bn_middle_karatsuba_eval a0 a1 b0 b1 c2 t01 t23;
(**) bn_middle_karatsuba_carry_bound aLen a0 a1 b0 b1 t45 c5;
let c, res = bn_karatsuba_res r01 r23 c5 t45 in
(**) bn_karatsuba_res_lemma r01 r23 c5 t45;
(**) K.lemma_karatsuba (bits t) aLen (bn_v a0) (bn_v a1) (bn_v b0) (bn_v b1);
(**) bn_karatsuba_no_last_carry a b c res;
assert (v c = 0);
res end
val bn_karatsuba_mul:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
lbignum t (aLen + aLen) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t aLen
-> Hacl.Spec.Bignum.Definitions.lbignum t (aLen + aLen) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_"
] | [] | false | false | false | false | false | let bn_karatsuba_mul #t #aLen a b =
| bn_karatsuba_mul_ aLen a b | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_res | val bn_karatsuba_res:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t
-> t45:lbignum t aLen ->
tuple2 (carry t) (lbignum t (aLen + aLen)) | val bn_karatsuba_res:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t
-> t45:lbignum t aLen ->
tuple2 (carry t) (lbignum t (aLen + aLen)) | let bn_karatsuba_res #t #aLen r01 r23 c5 t45 =
let aLen2 = aLen / 2 in
let res = concat r01 r23 in
let c6, res = bn_lshift_add_early_stop res t45 aLen2 in
// let r12 = sub res aLen2 aLen in
// let c6, r12 = bn_add r12 t45 in
// let res = update_sub res aLen2 aLen r12 in
let c7 = c5 +. c6 in
let c8, res = bn_lshift_add res c7 (aLen + aLen2) in
// let r3 = sub res (aLen + aLen2) aLen2 in
// let _, r3 = bn_add r3 (create 1 c7) in
// let res = update_sub res (aLen + aLen2) aLen2 r3 in
c8, res | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 9,
"end_line": 363,
"start_col": 0,
"start_line": 349
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1)
let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen
val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0))
let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
//assert (v c = (v c2 - v c3) % pow2 pb);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
() end
else begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
//assert (v c = v c2 + v c4);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23);
() end
val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add #t #aLen a b1 i =
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
c, a'
val bn_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
Lemma (let c, res = bn_lshift_add a b1 i in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a + v b1 * pow2 (bits t * i))
let bn_lshift_add_lemma #t #aLen a b1 i =
let pbits = bits t in
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
let p = pow2 (pbits * aLen) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add1_lemma r b1 }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (v b1 - v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + (v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (v b1) (v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + v b1 * pow2 (pbits * i) - (v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * (aLen - i))) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * (aLen - i)) (pbits * i) }
bn_v a + v b1 * pow2 (pbits * i);
}
val bn_lshift_add_early_stop:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add_early_stop #t #aLen #bLen a b i =
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
c, a'
val bn_lshift_add_early_stop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
Lemma (let c, res = bn_lshift_add_early_stop a b i in
bn_v res + v c * pow2 (bits t * (i + bLen)) == bn_v a + bn_v b * pow2 (bits t * i))
let bn_lshift_add_early_stop_lemma #t #aLen #bLen a b i =
let pbits = bits t in
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
let p = pow2 (pbits * (i + bLen)) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add_lemma r b }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (bn_v b - v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + (bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (bn_v b) (v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + bn_v b * pow2 (pbits * i) - (v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * bLen)) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * bLen) (pbits * i) }
bn_v a + bn_v b * pow2 (pbits * i);
}
val bn_karatsuba_res:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t
-> t45:lbignum t aLen ->
tuple2 (carry t) (lbignum t (aLen + aLen)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
r01: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
r23: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
c5: Hacl.Spec.Bignum.Definitions.limb t ->
t45: Hacl.Spec.Bignum.Definitions.lbignum t aLen
-> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.lbignum t (aLen + aLen) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_pos",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.Base.carry",
"Prims.op_Addition",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Karatsuba.bn_lshift_add",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Plus_Dot",
"Hacl.Spec.Bignum.Karatsuba.bn_lshift_add_early_stop",
"Lib.Sequence.lseq",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.append",
"Lib.Sequence.concat",
"Prims.int",
"Prims.op_Division"
] | [] | false | false | false | false | false | let bn_karatsuba_res #t #aLen r01 r23 c5 t45 =
| let aLen2 = aLen / 2 in
let res = concat r01 r23 in
let c6, res = bn_lshift_add_early_stop res t45 aLen2 in
let c7 = c5 +. c6 in
let c8, res = bn_lshift_add res c7 (aLen + aLen2) in
c8, res | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.fail_silently | val fail_silently (#a: Type) (m: string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) | val fail_silently (#a: Type) (m: string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) | let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 57,
"start_col": 0,
"start_line": 54
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Prims.string -> FStar.Tactics.Effect.TAC a | FStar.Tactics.Effect.TAC | [] | [] | [
"Prims.string",
"FStar.Tactics.Effect.raise",
"FStar.Stubs.Tactics.Common.TacticFailure",
"Prims.unit",
"FStar.Stubs.Tactics.V1.Builtins.set_urgency",
"FStar.Stubs.Tactics.Types.proofstate",
"FStar.Stubs.Tactics.Result.__result",
"Prims.l_Forall",
"FStar.Stubs.Tactics.Result.Failed",
"Prims.logical"
] | [] | false | true | false | false | false | let fail_silently (#a: Type) (m: string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps)) =
| set_urgency 0;
raise #a (TacticFailure m) | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_lshift_add | val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen) | val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen) | let bn_lshift_add #t #aLen a b1 i =
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
c, a' | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 7,
"end_line": 256,
"start_col": 0,
"start_line": 252
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1)
let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen
val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0))
let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
//assert (v c = (v c2 - v c3) % pow2 pb);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
() end
else begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
//assert (v c = v c2 + v c4);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23);
() end
val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
b1: Hacl.Spec.Bignum.Definitions.limb t ->
i: Prims.nat{i + 1 <= aLen}
-> Hacl.Spec.Bignum.Base.carry t * Hacl.Spec.Bignum.Definitions.lbignum t aLen | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Hacl.Spec.Bignum.Base.carry",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Sequence.lseq",
"Prims.l_and",
"Prims.eq2",
"Lib.Sequence.sub",
"Prims.l_Forall",
"Prims.l_or",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index",
"Lib.Sequence.update_sub",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Addition.bn_add1",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice"
] | [] | false | false | false | false | false | let bn_lshift_add #t #aLen a b1 i =
| let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
c, a' | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.fail | val fail (#a: Type) (m: string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) | val fail (#a: Type) (m: string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) | let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 52,
"start_col": 0,
"start_line": 50
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Prims.string -> FStar.Tactics.Effect.TAC a | FStar.Tactics.Effect.TAC | [] | [] | [
"Prims.string",
"FStar.Tactics.Effect.raise",
"FStar.Stubs.Tactics.Common.TacticFailure",
"FStar.Stubs.Tactics.Types.proofstate",
"FStar.Stubs.Tactics.Result.__result",
"FStar.Stubs.Tactics.Result.Failed"
] | [] | false | true | false | false | false | let fail (#a: Type) (m: string) : TAC a (fun ps post -> post (Failed (TacticFailure m) ps)) =
| raise #a (TacticFailure m) | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_sqr_lemma | val bn_middle_karatsuba_sqr_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (bn_middle_karatsuba_sqr c2 t01 t23 == bn_middle_karatsuba c0 c0 c2 t01 t23) | val bn_middle_karatsuba_sqr_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (bn_middle_karatsuba_sqr c2 t01 t23 == bn_middle_karatsuba c0 c0 c2 t01 t23) | let bn_middle_karatsuba_sqr_lemma #t #aLen c0 c2 t01 t23 =
let (c, res) = bn_middle_karatsuba c0 c0 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
bn_middle_karatsuba_lemma c0 c0 c2 t01 t23;
assert (v c == v c3' /\ bn_v res == bn_v t45);
bn_eval_inj aLen t45 res | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 26,
"end_line": 570,
"start_col": 0,
"start_line": 565
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1)
let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen
val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0))
let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
//assert (v c = (v c2 - v c3) % pow2 pb);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
() end
else begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
//assert (v c = v c2 + v c4);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23);
() end
val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add #t #aLen a b1 i =
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
c, a'
val bn_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
Lemma (let c, res = bn_lshift_add a b1 i in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a + v b1 * pow2 (bits t * i))
let bn_lshift_add_lemma #t #aLen a b1 i =
let pbits = bits t in
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
let p = pow2 (pbits * aLen) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add1_lemma r b1 }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (v b1 - v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + (v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (v b1) (v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + v b1 * pow2 (pbits * i) - (v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * (aLen - i))) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * (aLen - i)) (pbits * i) }
bn_v a + v b1 * pow2 (pbits * i);
}
val bn_lshift_add_early_stop:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add_early_stop #t #aLen #bLen a b i =
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
c, a'
val bn_lshift_add_early_stop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
Lemma (let c, res = bn_lshift_add_early_stop a b i in
bn_v res + v c * pow2 (bits t * (i + bLen)) == bn_v a + bn_v b * pow2 (bits t * i))
let bn_lshift_add_early_stop_lemma #t #aLen #bLen a b i =
let pbits = bits t in
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
let p = pow2 (pbits * (i + bLen)) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add_lemma r b }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (bn_v b - v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + (bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (bn_v b) (v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + bn_v b * pow2 (pbits * i) - (v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * bLen)) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * bLen) (pbits * i) }
bn_v a + bn_v b * pow2 (pbits * i);
}
val bn_karatsuba_res:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t
-> t45:lbignum t aLen ->
tuple2 (carry t) (lbignum t (aLen + aLen))
let bn_karatsuba_res #t #aLen r01 r23 c5 t45 =
let aLen2 = aLen / 2 in
let res = concat r01 r23 in
let c6, res = bn_lshift_add_early_stop res t45 aLen2 in
// let r12 = sub res aLen2 aLen in
// let c6, r12 = bn_add r12 t45 in
// let res = update_sub res aLen2 aLen r12 in
let c7 = c5 +. c6 in
let c8, res = bn_lshift_add res c7 (aLen + aLen2) in
// let r3 = sub res (aLen + aLen2) aLen2 in
// let _, r3 = bn_add r3 (create 1 c7) in
// let res = update_sub res (aLen + aLen2) aLen2 r3 in
c8, res
val bn_karatsuba_res_lemma:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t{v c5 <= 1}
-> t45:lbignum t aLen ->
Lemma
(let c, res = bn_karatsuba_res r01 r23 c5 t45 in
bn_v res + v c * pow2 (bits t * (aLen + aLen)) ==
bn_v r23 * pow2 (bits t * aLen) + (v c5 * pow2 (bits t * aLen) + bn_v t45) * pow2 (aLen / 2 * bits t) + bn_v r01)
let bn_karatsuba_res_lemma #t #aLen r01 r23 c5 t45 =
let pbits = bits t in
let aLen2 = aLen / 2 in
let aLen3 = aLen + aLen2 in
let aLen4 = aLen + aLen in
let res0 = concat r01 r23 in
let c6, res1 = bn_lshift_add_early_stop res0 t45 aLen2 in
let c7 = c5 +. c6 in
let c8, res2 = bn_lshift_add res1 c7 aLen3 in
calc (==) {
bn_v res2 + v c8 * pow2 (pbits * aLen4);
(==) { bn_lshift_add_lemma res1 c7 aLen3 }
bn_v res1 + v c7 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.small_mod (v c5 + v c6) (pow2 pbits) }
bn_v res1 + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { bn_lshift_add_early_stop_lemma res0 t45 aLen2 }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) - v c6 * pow2 (pbits * aLen3) + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { Math.Lemmas.distributivity_add_left (v c5) (v c6) (pow2 (pbits * aLen3)) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * aLen2) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * (pow2 (pbits * aLen) * pow2 (pbits * aLen2));
(==) { Math.Lemmas.paren_mul_right (v c5) (pow2 (pbits * aLen)) (pow2 (pbits * aLen2));
Math.Lemmas.distributivity_add_left (bn_v t45) (v c5 * pow2 (pbits * aLen)) (pow2 (pbits * aLen2)) }
bn_v res0 + (bn_v t45 + v c5 * pow2 (pbits * aLen)) * pow2 (pbits * aLen2);
(==) { bn_concat_lemma r01 r23 }
bn_v r23 * pow2 (pbits * aLen) + (v c5 * pow2 (pbits * aLen) + bn_v t45) * pow2 (pbits * aLen2) + bn_v r01;
}
val bn_middle_karatsuba_carry_bound:
#t:limb_t
-> aLen:size_nat{aLen % 2 = 0}
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c:limb t -> Lemma
(requires bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures v c <= 1)
let bn_middle_karatsuba_carry_bound #t aLen a0 a1 b0 b1 res c =
let pbits = bits t in
let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
bn_eval_bound a0 aLen2;
bn_eval_bound a1 aLen2;
bn_eval_bound b0 aLen2;
bn_eval_bound b1 aLen2;
calc (<) {
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a0) (bn_v b1) p }
p * p + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a1) (bn_v b0) p }
p * p + p * p;
(==) { K.lemma_double_p (bits t) aLen }
pow2 (pbits * aLen) + pow2 (pbits * aLen);
};
bn_eval_bound res aLen;
assert (bn_v res + v c * pow2 (pbits * aLen) < pow2 (pbits * aLen) + pow2 (pbits * aLen));
assert (v c <= 1)
val bn_karatsuba_no_last_carry:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen
-> c:carry t
-> res:lbignum t (aLen + aLen) -> Lemma
(requires bn_v res + v c * pow2 (bits t * (aLen + aLen)) == bn_v a * bn_v b)
(ensures v c == 0)
let bn_karatsuba_no_last_carry #t #aLen a b c res =
bn_eval_bound a aLen;
bn_eval_bound b aLen;
Math.Lemmas.lemma_mult_lt_sqr (bn_v a) (bn_v b) (pow2 (bits t * aLen));
Math.Lemmas.pow2_plus (bits t * aLen) (bits t * aLen);
bn_eval_bound res (aLen + aLen)
val bn_karatsuba_mul_:
#t:limb_t
-> aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Tot (res:lbignum t (aLen + aLen){bn_v res == bn_v a * bn_v b}) (decreases aLen)
let rec bn_karatsuba_mul_ #t aLen a b =
if aLen < bn_mul_threshold || aLen % 2 = 1 then begin
bn_mul_lemma a b;
bn_mul a b end
else begin
let aLen2 = aLen / 2 in
let a0 = bn_mod_pow2 a aLen2 in
(**) bn_mod_pow2_lemma a aLen2;
let a1 = bn_div_pow2 a aLen2 in
(**) bn_div_pow2_lemma a aLen2;
let b0 = bn_mod_pow2 b aLen2 in
(**) bn_mod_pow2_lemma b aLen2;
let b1 = bn_div_pow2 b aLen2 in
(**) bn_div_pow2_lemma b aLen2;
(**) bn_eval_bound a aLen;
(**) bn_eval_bound b aLen;
(**) K.lemma_bn_halves (bits t) aLen (bn_v a);
(**) K.lemma_bn_halves (bits t) aLen (bn_v b);
let c0, t0 = bn_sign_abs a0 a1 in
(**) bn_sign_abs_lemma a0 a1;
let c1, t1 = bn_sign_abs b0 b1 in
(**) bn_sign_abs_lemma b0 b1;
let t23 = bn_karatsuba_mul_ aLen2 t0 t1 in
let r01 = bn_karatsuba_mul_ aLen2 a0 b0 in
let r23 = bn_karatsuba_mul_ aLen2 a1 b1 in
let c2, t01 = bn_add r01 r23 in
(**) bn_add_lemma r01 r23;
let c5, t45 = bn_middle_karatsuba c0 c1 c2 t01 t23 in
(**) bn_middle_karatsuba_eval a0 a1 b0 b1 c2 t01 t23;
(**) bn_middle_karatsuba_carry_bound aLen a0 a1 b0 b1 t45 c5;
let c, res = bn_karatsuba_res r01 r23 c5 t45 in
(**) bn_karatsuba_res_lemma r01 r23 c5 t45;
(**) K.lemma_karatsuba (bits t) aLen (bn_v a0) (bn_v a1) (bn_v b0) (bn_v b1);
(**) bn_karatsuba_no_last_carry a b c res;
assert (v c = 0);
res end
val bn_karatsuba_mul:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
lbignum t (aLen + aLen)
let bn_karatsuba_mul #t #aLen a b =
bn_karatsuba_mul_ aLen a b
val bn_karatsuba_mul_lemma:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (bn_karatsuba_mul a b == bn_mul a b /\
bn_v (bn_karatsuba_mul a b) == bn_v a * bn_v b)
let bn_karatsuba_mul_lemma #t #aLen a b =
let res = bn_karatsuba_mul_ aLen a b in
assert (bn_v res == bn_v a * bn_v b);
let res' = bn_mul a b in
bn_mul_lemma a b;
assert (bn_v res' == bn_v a * bn_v b);
bn_eval_inj (aLen + aLen) res res';
assert (bn_karatsuba_mul_ aLen a b == bn_mul a b)
val bn_middle_karatsuba_sqr:
#t:limb_t
-> #aLen:size_nat
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba_sqr #t #aLen c2 t01 t23 =
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
c3, t45
val bn_middle_karatsuba_sqr_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (bn_middle_karatsuba_sqr c2 t01 t23 == bn_middle_karatsuba c0 c0 c2 t01 t23) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c0: Hacl.Spec.Bignum.Base.carry t ->
c2: Hacl.Spec.Bignum.Base.carry t ->
t01: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
t23: Hacl.Spec.Bignum.Definitions.lbignum t aLen
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_sqr c2 t01 t23 ==
Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba c0 c0 c2 t01 t23) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Base.carry",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.Definitions.bn_eval_inj",
"Prims.unit",
"Prims._assert",
"Prims.l_and",
"Prims.eq2",
"Lib.IntTypes.range_t",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.nat",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_lemma",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Subtraction_Dot",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Addition.bn_sub",
"Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba"
] | [] | false | false | true | false | false | let bn_middle_karatsuba_sqr_lemma #t #aLen c0 c2 t01 t23 =
| let c, res = bn_middle_karatsuba c0 c0 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in
let c3' = c2 -. c3 in
bn_middle_karatsuba_lemma c0 c0 c2 t01 t23;
assert (v c == v c3' /\ bn_v res == bn_v t45);
bn_eval_inj aLen t45 res | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.qed | val qed: Prims.unit -> Tac unit | val qed: Prims.unit -> Tac unit | let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!" | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 137,
"start_col": 0,
"start_line": 134
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.list",
"FStar.Stubs.Tactics.Types.goal",
"FStar.Tactics.V1.Derived.fail",
"FStar.Tactics.V1.Derived.goals"
] | [] | false | true | false | false | false | let qed () : Tac unit =
| match goals () with
| [] -> ()
| _ -> fail "qed: not done!" | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.debug | val debug (m: string) : Tac unit | val debug (m: string) : Tac unit | let debug (m:string) : Tac unit =
if debugging () then print m | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 143,
"start_col": 0,
"start_line": 142
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.string",
"FStar.Stubs.Tactics.V1.Builtins.print",
"Prims.unit",
"Prims.bool",
"FStar.Stubs.Tactics.V1.Builtins.debugging"
] | [] | false | true | false | false | false | let debug (m: string) : Tac unit =
| if debugging () then print m | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived._cur_goal | val _cur_goal: Prims.unit -> Tac goal | val _cur_goal: Prims.unit -> Tac goal | let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 63,
"start_col": 0,
"start_line": 60
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Stubs.Tactics.Types.goal | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.fail",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"FStar.Tactics.V1.Derived.goals"
] | [] | false | true | false | false | false | let _cur_goal () : Tac goal =
| match goals () with
| [] -> fail "no more goals"
| g :: _ -> g | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.later | val later: Prims.unit -> Tac unit | val later: Prims.unit -> Tac unit | let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals" | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 164,
"start_col": 0,
"start_line": 161
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"FStar.Stubs.Tactics.V1.Builtins.set_goals",
"FStar.Tactics.V1.Derived.op_At",
"Prims.Cons",
"Prims.Nil",
"FStar.Tactics.V1.Derived.fail",
"FStar.Tactics.V1.Derived.goals"
] | [] | false | true | false | false | false | let later () : Tac unit =
| match goals () with
| g :: gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals" | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.cur_goal_safe | val cur_goal_safe: Prims.unit
-> TacH goal
(requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0)) | val cur_goal_safe: Prims.unit
-> TacH goal
(requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0)) | let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 16,
"end_line": 80,
"start_col": 0,
"start_line": 77
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.TacH FStar.Stubs.Tactics.Types.goal | FStar.Tactics.Effect.TacH | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"FStar.Stubs.Tactics.Types.goals_of",
"FStar.Stubs.Tactics.Types.proofstate",
"FStar.Tactics.Effect.get",
"Prims.l_not",
"Prims.eq2",
"Prims.Nil",
"FStar.Stubs.Tactics.Result.__result",
"Prims.l_Exists",
"FStar.Stubs.Tactics.Result.Success"
] | [] | false | true | false | false | false | let cur_goal_safe ()
: TacH goal
(requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0)) =
| match goals_of (get ()) with | g :: _ -> g | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.apply_noinst | val apply_noinst (t: term) : Tac unit | val apply_noinst (t: term) : Tac unit | let apply_noinst (t : term) : Tac unit =
t_apply true true false t | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 174,
"start_col": 0,
"start_line": 173
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V1.Builtins.t_apply",
"Prims.unit"
] | [] | false | true | false | false | false | let apply_noinst (t: term) : Tac unit =
| t_apply true true false t | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr | val bn_karatsuba_sqr:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen ->
lbignum t (aLen + aLen) | val bn_karatsuba_sqr:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen ->
lbignum t (aLen + aLen) | let bn_karatsuba_sqr #t #aLen a =
bn_karatsuba_sqr_ aLen a | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 26,
"end_line": 618,
"start_col": 0,
"start_line": 617
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1)
let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen
val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0))
let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
//assert (v c = (v c2 - v c3) % pow2 pb);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
() end
else begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
//assert (v c = v c2 + v c4);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23);
() end
val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add #t #aLen a b1 i =
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
c, a'
val bn_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
Lemma (let c, res = bn_lshift_add a b1 i in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a + v b1 * pow2 (bits t * i))
let bn_lshift_add_lemma #t #aLen a b1 i =
let pbits = bits t in
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
let p = pow2 (pbits * aLen) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add1_lemma r b1 }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (v b1 - v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + (v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (v b1) (v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + v b1 * pow2 (pbits * i) - (v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * (aLen - i))) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * (aLen - i)) (pbits * i) }
bn_v a + v b1 * pow2 (pbits * i);
}
val bn_lshift_add_early_stop:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add_early_stop #t #aLen #bLen a b i =
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
c, a'
val bn_lshift_add_early_stop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
Lemma (let c, res = bn_lshift_add_early_stop a b i in
bn_v res + v c * pow2 (bits t * (i + bLen)) == bn_v a + bn_v b * pow2 (bits t * i))
let bn_lshift_add_early_stop_lemma #t #aLen #bLen a b i =
let pbits = bits t in
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
let p = pow2 (pbits * (i + bLen)) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add_lemma r b }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (bn_v b - v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + (bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (bn_v b) (v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + bn_v b * pow2 (pbits * i) - (v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * bLen)) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * bLen) (pbits * i) }
bn_v a + bn_v b * pow2 (pbits * i);
}
val bn_karatsuba_res:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t
-> t45:lbignum t aLen ->
tuple2 (carry t) (lbignum t (aLen + aLen))
let bn_karatsuba_res #t #aLen r01 r23 c5 t45 =
let aLen2 = aLen / 2 in
let res = concat r01 r23 in
let c6, res = bn_lshift_add_early_stop res t45 aLen2 in
// let r12 = sub res aLen2 aLen in
// let c6, r12 = bn_add r12 t45 in
// let res = update_sub res aLen2 aLen r12 in
let c7 = c5 +. c6 in
let c8, res = bn_lshift_add res c7 (aLen + aLen2) in
// let r3 = sub res (aLen + aLen2) aLen2 in
// let _, r3 = bn_add r3 (create 1 c7) in
// let res = update_sub res (aLen + aLen2) aLen2 r3 in
c8, res
val bn_karatsuba_res_lemma:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t{v c5 <= 1}
-> t45:lbignum t aLen ->
Lemma
(let c, res = bn_karatsuba_res r01 r23 c5 t45 in
bn_v res + v c * pow2 (bits t * (aLen + aLen)) ==
bn_v r23 * pow2 (bits t * aLen) + (v c5 * pow2 (bits t * aLen) + bn_v t45) * pow2 (aLen / 2 * bits t) + bn_v r01)
let bn_karatsuba_res_lemma #t #aLen r01 r23 c5 t45 =
let pbits = bits t in
let aLen2 = aLen / 2 in
let aLen3 = aLen + aLen2 in
let aLen4 = aLen + aLen in
let res0 = concat r01 r23 in
let c6, res1 = bn_lshift_add_early_stop res0 t45 aLen2 in
let c7 = c5 +. c6 in
let c8, res2 = bn_lshift_add res1 c7 aLen3 in
calc (==) {
bn_v res2 + v c8 * pow2 (pbits * aLen4);
(==) { bn_lshift_add_lemma res1 c7 aLen3 }
bn_v res1 + v c7 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.small_mod (v c5 + v c6) (pow2 pbits) }
bn_v res1 + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { bn_lshift_add_early_stop_lemma res0 t45 aLen2 }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) - v c6 * pow2 (pbits * aLen3) + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { Math.Lemmas.distributivity_add_left (v c5) (v c6) (pow2 (pbits * aLen3)) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * aLen2) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * (pow2 (pbits * aLen) * pow2 (pbits * aLen2));
(==) { Math.Lemmas.paren_mul_right (v c5) (pow2 (pbits * aLen)) (pow2 (pbits * aLen2));
Math.Lemmas.distributivity_add_left (bn_v t45) (v c5 * pow2 (pbits * aLen)) (pow2 (pbits * aLen2)) }
bn_v res0 + (bn_v t45 + v c5 * pow2 (pbits * aLen)) * pow2 (pbits * aLen2);
(==) { bn_concat_lemma r01 r23 }
bn_v r23 * pow2 (pbits * aLen) + (v c5 * pow2 (pbits * aLen) + bn_v t45) * pow2 (pbits * aLen2) + bn_v r01;
}
val bn_middle_karatsuba_carry_bound:
#t:limb_t
-> aLen:size_nat{aLen % 2 = 0}
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c:limb t -> Lemma
(requires bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures v c <= 1)
let bn_middle_karatsuba_carry_bound #t aLen a0 a1 b0 b1 res c =
let pbits = bits t in
let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
bn_eval_bound a0 aLen2;
bn_eval_bound a1 aLen2;
bn_eval_bound b0 aLen2;
bn_eval_bound b1 aLen2;
calc (<) {
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a0) (bn_v b1) p }
p * p + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a1) (bn_v b0) p }
p * p + p * p;
(==) { K.lemma_double_p (bits t) aLen }
pow2 (pbits * aLen) + pow2 (pbits * aLen);
};
bn_eval_bound res aLen;
assert (bn_v res + v c * pow2 (pbits * aLen) < pow2 (pbits * aLen) + pow2 (pbits * aLen));
assert (v c <= 1)
val bn_karatsuba_no_last_carry:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen
-> c:carry t
-> res:lbignum t (aLen + aLen) -> Lemma
(requires bn_v res + v c * pow2 (bits t * (aLen + aLen)) == bn_v a * bn_v b)
(ensures v c == 0)
let bn_karatsuba_no_last_carry #t #aLen a b c res =
bn_eval_bound a aLen;
bn_eval_bound b aLen;
Math.Lemmas.lemma_mult_lt_sqr (bn_v a) (bn_v b) (pow2 (bits t * aLen));
Math.Lemmas.pow2_plus (bits t * aLen) (bits t * aLen);
bn_eval_bound res (aLen + aLen)
val bn_karatsuba_mul_:
#t:limb_t
-> aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Tot (res:lbignum t (aLen + aLen){bn_v res == bn_v a * bn_v b}) (decreases aLen)
let rec bn_karatsuba_mul_ #t aLen a b =
if aLen < bn_mul_threshold || aLen % 2 = 1 then begin
bn_mul_lemma a b;
bn_mul a b end
else begin
let aLen2 = aLen / 2 in
let a0 = bn_mod_pow2 a aLen2 in
(**) bn_mod_pow2_lemma a aLen2;
let a1 = bn_div_pow2 a aLen2 in
(**) bn_div_pow2_lemma a aLen2;
let b0 = bn_mod_pow2 b aLen2 in
(**) bn_mod_pow2_lemma b aLen2;
let b1 = bn_div_pow2 b aLen2 in
(**) bn_div_pow2_lemma b aLen2;
(**) bn_eval_bound a aLen;
(**) bn_eval_bound b aLen;
(**) K.lemma_bn_halves (bits t) aLen (bn_v a);
(**) K.lemma_bn_halves (bits t) aLen (bn_v b);
let c0, t0 = bn_sign_abs a0 a1 in
(**) bn_sign_abs_lemma a0 a1;
let c1, t1 = bn_sign_abs b0 b1 in
(**) bn_sign_abs_lemma b0 b1;
let t23 = bn_karatsuba_mul_ aLen2 t0 t1 in
let r01 = bn_karatsuba_mul_ aLen2 a0 b0 in
let r23 = bn_karatsuba_mul_ aLen2 a1 b1 in
let c2, t01 = bn_add r01 r23 in
(**) bn_add_lemma r01 r23;
let c5, t45 = bn_middle_karatsuba c0 c1 c2 t01 t23 in
(**) bn_middle_karatsuba_eval a0 a1 b0 b1 c2 t01 t23;
(**) bn_middle_karatsuba_carry_bound aLen a0 a1 b0 b1 t45 c5;
let c, res = bn_karatsuba_res r01 r23 c5 t45 in
(**) bn_karatsuba_res_lemma r01 r23 c5 t45;
(**) K.lemma_karatsuba (bits t) aLen (bn_v a0) (bn_v a1) (bn_v b0) (bn_v b1);
(**) bn_karatsuba_no_last_carry a b c res;
assert (v c = 0);
res end
val bn_karatsuba_mul:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
lbignum t (aLen + aLen)
let bn_karatsuba_mul #t #aLen a b =
bn_karatsuba_mul_ aLen a b
val bn_karatsuba_mul_lemma:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (bn_karatsuba_mul a b == bn_mul a b /\
bn_v (bn_karatsuba_mul a b) == bn_v a * bn_v b)
let bn_karatsuba_mul_lemma #t #aLen a b =
let res = bn_karatsuba_mul_ aLen a b in
assert (bn_v res == bn_v a * bn_v b);
let res' = bn_mul a b in
bn_mul_lemma a b;
assert (bn_v res' == bn_v a * bn_v b);
bn_eval_inj (aLen + aLen) res res';
assert (bn_karatsuba_mul_ aLen a b == bn_mul a b)
val bn_middle_karatsuba_sqr:
#t:limb_t
-> #aLen:size_nat
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba_sqr #t #aLen c2 t01 t23 =
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
c3, t45
val bn_middle_karatsuba_sqr_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (bn_middle_karatsuba_sqr c2 t01 t23 == bn_middle_karatsuba c0 c0 c2 t01 t23)
let bn_middle_karatsuba_sqr_lemma #t #aLen c0 c2 t01 t23 =
let (c, res) = bn_middle_karatsuba c0 c0 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
bn_middle_karatsuba_lemma c0 c0 c2 t01 t23;
assert (v c == v c3' /\ bn_v res == bn_v t45);
bn_eval_inj aLen t45 res
val bn_karatsuba_sqr_: #t:limb_t -> aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen ->
Tot (res:lbignum t (aLen + aLen){bn_v res == bn_v a * bn_v a}) (decreases aLen)
let rec bn_karatsuba_sqr_ #t aLen a =
if aLen < bn_mul_threshold || aLen % 2 = 1 then begin
bn_sqr_lemma a;
bn_sqr a end
else begin
let aLen2 = aLen / 2 in
let a0 = bn_mod_pow2 a aLen2 in
(**) bn_mod_pow2_lemma a aLen2;
let a1 = bn_div_pow2 a aLen2 in
(**) bn_div_pow2_lemma a aLen2;
(**) bn_eval_bound a aLen;
(**) K.lemma_bn_halves (bits t) aLen (bn_v a);
let c0, t0 = bn_sign_abs a0 a1 in
(**) bn_sign_abs_lemma a0 a1;
let t23 = bn_karatsuba_sqr_ aLen2 t0 in
let r01 = bn_karatsuba_sqr_ aLen2 a0 in
let r23 = bn_karatsuba_sqr_ aLen2 a1 in
let c2, t01 = bn_add r01 r23 in
(**) bn_add_lemma r01 r23;
let c5, t45 = bn_middle_karatsuba_sqr c2 t01 t23 in
(**) bn_middle_karatsuba_sqr_lemma c0 c2 t01 t23;
(**) bn_middle_karatsuba_eval a0 a1 a0 a1 c2 t01 t23;
(**) bn_middle_karatsuba_carry_bound aLen a0 a1 a0 a1 t45 c5;
let c, res = bn_karatsuba_res r01 r23 c5 t45 in
(**) bn_karatsuba_res_lemma r01 r23 c5 t45;
(**) K.lemma_karatsuba (bits t) aLen (bn_v a0) (bn_v a1) (bn_v a0) (bn_v a1);
(**) bn_karatsuba_no_last_carry a a c res;
assert (v c = 0);
res end
val bn_karatsuba_sqr:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen ->
lbignum t (aLen + aLen) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Hacl.Spec.Bignum.Definitions.lbignum t aLen
-> Hacl.Spec.Bignum.Definitions.lbignum t (aLen + aLen) | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_"
] | [] | false | false | false | false | false | let bn_karatsuba_sqr #t #aLen a =
| bn_karatsuba_sqr_ aLen a | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_lemma | val bn_karatsuba_mul_lemma:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (bn_karatsuba_mul a b == bn_mul a b /\
bn_v (bn_karatsuba_mul a b) == bn_v a * bn_v b) | val bn_karatsuba_mul_lemma:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (bn_karatsuba_mul a b == bn_mul a b /\
bn_v (bn_karatsuba_mul a b) == bn_v a * bn_v b) | let bn_karatsuba_mul_lemma #t #aLen a b =
let res = bn_karatsuba_mul_ aLen a b in
assert (bn_v res == bn_v a * bn_v b);
let res' = bn_mul a b in
bn_mul_lemma a b;
assert (bn_v res' == bn_v a * bn_v b);
bn_eval_inj (aLen + aLen) res res';
assert (bn_karatsuba_mul_ aLen a b == bn_mul a b) | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 51,
"end_line": 540,
"start_col": 0,
"start_line": 533
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1)
let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen
val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0))
let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
//assert (v c = (v c2 - v c3) % pow2 pb);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
() end
else begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
//assert (v c = v c2 + v c4);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23);
() end
val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add #t #aLen a b1 i =
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
c, a'
val bn_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
Lemma (let c, res = bn_lshift_add a b1 i in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a + v b1 * pow2 (bits t * i))
let bn_lshift_add_lemma #t #aLen a b1 i =
let pbits = bits t in
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
let p = pow2 (pbits * aLen) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add1_lemma r b1 }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (v b1 - v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + (v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (v b1) (v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + v b1 * pow2 (pbits * i) - (v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * (aLen - i))) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * (aLen - i)) (pbits * i) }
bn_v a + v b1 * pow2 (pbits * i);
}
val bn_lshift_add_early_stop:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add_early_stop #t #aLen #bLen a b i =
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
c, a'
val bn_lshift_add_early_stop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
Lemma (let c, res = bn_lshift_add_early_stop a b i in
bn_v res + v c * pow2 (bits t * (i + bLen)) == bn_v a + bn_v b * pow2 (bits t * i))
let bn_lshift_add_early_stop_lemma #t #aLen #bLen a b i =
let pbits = bits t in
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
let p = pow2 (pbits * (i + bLen)) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add_lemma r b }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (bn_v b - v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + (bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (bn_v b) (v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + bn_v b * pow2 (pbits * i) - (v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * bLen)) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * bLen) (pbits * i) }
bn_v a + bn_v b * pow2 (pbits * i);
}
val bn_karatsuba_res:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t
-> t45:lbignum t aLen ->
tuple2 (carry t) (lbignum t (aLen + aLen))
let bn_karatsuba_res #t #aLen r01 r23 c5 t45 =
let aLen2 = aLen / 2 in
let res = concat r01 r23 in
let c6, res = bn_lshift_add_early_stop res t45 aLen2 in
// let r12 = sub res aLen2 aLen in
// let c6, r12 = bn_add r12 t45 in
// let res = update_sub res aLen2 aLen r12 in
let c7 = c5 +. c6 in
let c8, res = bn_lshift_add res c7 (aLen + aLen2) in
// let r3 = sub res (aLen + aLen2) aLen2 in
// let _, r3 = bn_add r3 (create 1 c7) in
// let res = update_sub res (aLen + aLen2) aLen2 r3 in
c8, res
val bn_karatsuba_res_lemma:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t{v c5 <= 1}
-> t45:lbignum t aLen ->
Lemma
(let c, res = bn_karatsuba_res r01 r23 c5 t45 in
bn_v res + v c * pow2 (bits t * (aLen + aLen)) ==
bn_v r23 * pow2 (bits t * aLen) + (v c5 * pow2 (bits t * aLen) + bn_v t45) * pow2 (aLen / 2 * bits t) + bn_v r01)
let bn_karatsuba_res_lemma #t #aLen r01 r23 c5 t45 =
let pbits = bits t in
let aLen2 = aLen / 2 in
let aLen3 = aLen + aLen2 in
let aLen4 = aLen + aLen in
let res0 = concat r01 r23 in
let c6, res1 = bn_lshift_add_early_stop res0 t45 aLen2 in
let c7 = c5 +. c6 in
let c8, res2 = bn_lshift_add res1 c7 aLen3 in
calc (==) {
bn_v res2 + v c8 * pow2 (pbits * aLen4);
(==) { bn_lshift_add_lemma res1 c7 aLen3 }
bn_v res1 + v c7 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.small_mod (v c5 + v c6) (pow2 pbits) }
bn_v res1 + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { bn_lshift_add_early_stop_lemma res0 t45 aLen2 }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) - v c6 * pow2 (pbits * aLen3) + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { Math.Lemmas.distributivity_add_left (v c5) (v c6) (pow2 (pbits * aLen3)) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * aLen2) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * (pow2 (pbits * aLen) * pow2 (pbits * aLen2));
(==) { Math.Lemmas.paren_mul_right (v c5) (pow2 (pbits * aLen)) (pow2 (pbits * aLen2));
Math.Lemmas.distributivity_add_left (bn_v t45) (v c5 * pow2 (pbits * aLen)) (pow2 (pbits * aLen2)) }
bn_v res0 + (bn_v t45 + v c5 * pow2 (pbits * aLen)) * pow2 (pbits * aLen2);
(==) { bn_concat_lemma r01 r23 }
bn_v r23 * pow2 (pbits * aLen) + (v c5 * pow2 (pbits * aLen) + bn_v t45) * pow2 (pbits * aLen2) + bn_v r01;
}
val bn_middle_karatsuba_carry_bound:
#t:limb_t
-> aLen:size_nat{aLen % 2 = 0}
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c:limb t -> Lemma
(requires bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures v c <= 1)
let bn_middle_karatsuba_carry_bound #t aLen a0 a1 b0 b1 res c =
let pbits = bits t in
let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
bn_eval_bound a0 aLen2;
bn_eval_bound a1 aLen2;
bn_eval_bound b0 aLen2;
bn_eval_bound b1 aLen2;
calc (<) {
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a0) (bn_v b1) p }
p * p + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a1) (bn_v b0) p }
p * p + p * p;
(==) { K.lemma_double_p (bits t) aLen }
pow2 (pbits * aLen) + pow2 (pbits * aLen);
};
bn_eval_bound res aLen;
assert (bn_v res + v c * pow2 (pbits * aLen) < pow2 (pbits * aLen) + pow2 (pbits * aLen));
assert (v c <= 1)
val bn_karatsuba_no_last_carry:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen
-> c:carry t
-> res:lbignum t (aLen + aLen) -> Lemma
(requires bn_v res + v c * pow2 (bits t * (aLen + aLen)) == bn_v a * bn_v b)
(ensures v c == 0)
let bn_karatsuba_no_last_carry #t #aLen a b c res =
bn_eval_bound a aLen;
bn_eval_bound b aLen;
Math.Lemmas.lemma_mult_lt_sqr (bn_v a) (bn_v b) (pow2 (bits t * aLen));
Math.Lemmas.pow2_plus (bits t * aLen) (bits t * aLen);
bn_eval_bound res (aLen + aLen)
val bn_karatsuba_mul_:
#t:limb_t
-> aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Tot (res:lbignum t (aLen + aLen){bn_v res == bn_v a * bn_v b}) (decreases aLen)
let rec bn_karatsuba_mul_ #t aLen a b =
if aLen < bn_mul_threshold || aLen % 2 = 1 then begin
bn_mul_lemma a b;
bn_mul a b end
else begin
let aLen2 = aLen / 2 in
let a0 = bn_mod_pow2 a aLen2 in
(**) bn_mod_pow2_lemma a aLen2;
let a1 = bn_div_pow2 a aLen2 in
(**) bn_div_pow2_lemma a aLen2;
let b0 = bn_mod_pow2 b aLen2 in
(**) bn_mod_pow2_lemma b aLen2;
let b1 = bn_div_pow2 b aLen2 in
(**) bn_div_pow2_lemma b aLen2;
(**) bn_eval_bound a aLen;
(**) bn_eval_bound b aLen;
(**) K.lemma_bn_halves (bits t) aLen (bn_v a);
(**) K.lemma_bn_halves (bits t) aLen (bn_v b);
let c0, t0 = bn_sign_abs a0 a1 in
(**) bn_sign_abs_lemma a0 a1;
let c1, t1 = bn_sign_abs b0 b1 in
(**) bn_sign_abs_lemma b0 b1;
let t23 = bn_karatsuba_mul_ aLen2 t0 t1 in
let r01 = bn_karatsuba_mul_ aLen2 a0 b0 in
let r23 = bn_karatsuba_mul_ aLen2 a1 b1 in
let c2, t01 = bn_add r01 r23 in
(**) bn_add_lemma r01 r23;
let c5, t45 = bn_middle_karatsuba c0 c1 c2 t01 t23 in
(**) bn_middle_karatsuba_eval a0 a1 b0 b1 c2 t01 t23;
(**) bn_middle_karatsuba_carry_bound aLen a0 a1 b0 b1 t45 c5;
let c, res = bn_karatsuba_res r01 r23 c5 t45 in
(**) bn_karatsuba_res_lemma r01 r23 c5 t45;
(**) K.lemma_karatsuba (bits t) aLen (bn_v a0) (bn_v a1) (bn_v b0) (bn_v b1);
(**) bn_karatsuba_no_last_carry a b c res;
assert (v c = 0);
res end
val bn_karatsuba_mul:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
lbignum t (aLen + aLen)
let bn_karatsuba_mul #t #aLen a b =
bn_karatsuba_mul_ aLen a b
val bn_karatsuba_mul_lemma:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (bn_karatsuba_mul a b == bn_mul a b /\
bn_v (bn_karatsuba_mul a b) == bn_v a * bn_v b) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t aLen
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b == Hacl.Spec.Bignum.Multiplication.bn_mul a b /\
Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul a b) ==
Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.bn_v b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims._assert",
"Prims.eq2",
"Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_",
"Hacl.Spec.Bignum.Multiplication.bn_mul",
"Prims.unit",
"Hacl.Spec.Bignum.Definitions.bn_eval_inj",
"Prims.int",
"Hacl.Spec.Bignum.Definitions.bn_v",
"FStar.Mul.op_Star",
"Hacl.Spec.Bignum.Multiplication.bn_mul_lemma",
"Prims.op_Multiply"
] | [] | true | false | true | false | false | let bn_karatsuba_mul_lemma #t #aLen a b =
| let res = bn_karatsuba_mul_ aLen a b in
assert (bn_v res == bn_v a * bn_v b);
let res' = bn_mul a b in
bn_mul_lemma a b;
assert (bn_v res' == bn_v a * bn_v b);
bn_eval_inj (aLen + aLen) res res';
assert (bn_karatsuba_mul_ aLen a b == bn_mul a b) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.apply | val apply (t: term) : Tac unit | val apply (t: term) : Tac unit | let apply (t : term) : Tac unit =
t_apply true false false t | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 171,
"start_col": 0,
"start_line": 170
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V1.Builtins.t_apply",
"Prims.unit"
] | [] | false | true | false | false | false | let apply (t: term) : Tac unit =
| t_apply true false false t | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_sqr | val bn_middle_karatsuba_sqr:
#t:limb_t
-> #aLen:size_nat
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen | val bn_middle_karatsuba_sqr:
#t:limb_t
-> #aLen:size_nat
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen | let bn_middle_karatsuba_sqr #t #aLen c2 t01 t23 =
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
c3, t45 | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 9,
"end_line": 553,
"start_col": 0,
"start_line": 551
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1)
let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen
val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0))
let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
//assert (v c = (v c2 - v c3) % pow2 pb);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
() end
else begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
//assert (v c = v c2 + v c4);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23);
() end
val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add #t #aLen a b1 i =
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
c, a'
val bn_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
Lemma (let c, res = bn_lshift_add a b1 i in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a + v b1 * pow2 (bits t * i))
let bn_lshift_add_lemma #t #aLen a b1 i =
let pbits = bits t in
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
let p = pow2 (pbits * aLen) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add1_lemma r b1 }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (v b1 - v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + (v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (v b1) (v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + v b1 * pow2 (pbits * i) - (v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * (aLen - i))) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * (aLen - i)) (pbits * i) }
bn_v a + v b1 * pow2 (pbits * i);
}
val bn_lshift_add_early_stop:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add_early_stop #t #aLen #bLen a b i =
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
c, a'
val bn_lshift_add_early_stop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
Lemma (let c, res = bn_lshift_add_early_stop a b i in
bn_v res + v c * pow2 (bits t * (i + bLen)) == bn_v a + bn_v b * pow2 (bits t * i))
let bn_lshift_add_early_stop_lemma #t #aLen #bLen a b i =
let pbits = bits t in
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
let p = pow2 (pbits * (i + bLen)) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add_lemma r b }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (bn_v b - v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + (bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (bn_v b) (v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + bn_v b * pow2 (pbits * i) - (v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * bLen)) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * bLen) (pbits * i) }
bn_v a + bn_v b * pow2 (pbits * i);
}
val bn_karatsuba_res:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t
-> t45:lbignum t aLen ->
tuple2 (carry t) (lbignum t (aLen + aLen))
let bn_karatsuba_res #t #aLen r01 r23 c5 t45 =
let aLen2 = aLen / 2 in
let res = concat r01 r23 in
let c6, res = bn_lshift_add_early_stop res t45 aLen2 in
// let r12 = sub res aLen2 aLen in
// let c6, r12 = bn_add r12 t45 in
// let res = update_sub res aLen2 aLen r12 in
let c7 = c5 +. c6 in
let c8, res = bn_lshift_add res c7 (aLen + aLen2) in
// let r3 = sub res (aLen + aLen2) aLen2 in
// let _, r3 = bn_add r3 (create 1 c7) in
// let res = update_sub res (aLen + aLen2) aLen2 r3 in
c8, res
val bn_karatsuba_res_lemma:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t{v c5 <= 1}
-> t45:lbignum t aLen ->
Lemma
(let c, res = bn_karatsuba_res r01 r23 c5 t45 in
bn_v res + v c * pow2 (bits t * (aLen + aLen)) ==
bn_v r23 * pow2 (bits t * aLen) + (v c5 * pow2 (bits t * aLen) + bn_v t45) * pow2 (aLen / 2 * bits t) + bn_v r01)
let bn_karatsuba_res_lemma #t #aLen r01 r23 c5 t45 =
let pbits = bits t in
let aLen2 = aLen / 2 in
let aLen3 = aLen + aLen2 in
let aLen4 = aLen + aLen in
let res0 = concat r01 r23 in
let c6, res1 = bn_lshift_add_early_stop res0 t45 aLen2 in
let c7 = c5 +. c6 in
let c8, res2 = bn_lshift_add res1 c7 aLen3 in
calc (==) {
bn_v res2 + v c8 * pow2 (pbits * aLen4);
(==) { bn_lshift_add_lemma res1 c7 aLen3 }
bn_v res1 + v c7 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.small_mod (v c5 + v c6) (pow2 pbits) }
bn_v res1 + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { bn_lshift_add_early_stop_lemma res0 t45 aLen2 }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) - v c6 * pow2 (pbits * aLen3) + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { Math.Lemmas.distributivity_add_left (v c5) (v c6) (pow2 (pbits * aLen3)) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * aLen2) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * (pow2 (pbits * aLen) * pow2 (pbits * aLen2));
(==) { Math.Lemmas.paren_mul_right (v c5) (pow2 (pbits * aLen)) (pow2 (pbits * aLen2));
Math.Lemmas.distributivity_add_left (bn_v t45) (v c5 * pow2 (pbits * aLen)) (pow2 (pbits * aLen2)) }
bn_v res0 + (bn_v t45 + v c5 * pow2 (pbits * aLen)) * pow2 (pbits * aLen2);
(==) { bn_concat_lemma r01 r23 }
bn_v r23 * pow2 (pbits * aLen) + (v c5 * pow2 (pbits * aLen) + bn_v t45) * pow2 (pbits * aLen2) + bn_v r01;
}
val bn_middle_karatsuba_carry_bound:
#t:limb_t
-> aLen:size_nat{aLen % 2 = 0}
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c:limb t -> Lemma
(requires bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures v c <= 1)
let bn_middle_karatsuba_carry_bound #t aLen a0 a1 b0 b1 res c =
let pbits = bits t in
let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
bn_eval_bound a0 aLen2;
bn_eval_bound a1 aLen2;
bn_eval_bound b0 aLen2;
bn_eval_bound b1 aLen2;
calc (<) {
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a0) (bn_v b1) p }
p * p + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a1) (bn_v b0) p }
p * p + p * p;
(==) { K.lemma_double_p (bits t) aLen }
pow2 (pbits * aLen) + pow2 (pbits * aLen);
};
bn_eval_bound res aLen;
assert (bn_v res + v c * pow2 (pbits * aLen) < pow2 (pbits * aLen) + pow2 (pbits * aLen));
assert (v c <= 1)
val bn_karatsuba_no_last_carry:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen
-> c:carry t
-> res:lbignum t (aLen + aLen) -> Lemma
(requires bn_v res + v c * pow2 (bits t * (aLen + aLen)) == bn_v a * bn_v b)
(ensures v c == 0)
let bn_karatsuba_no_last_carry #t #aLen a b c res =
bn_eval_bound a aLen;
bn_eval_bound b aLen;
Math.Lemmas.lemma_mult_lt_sqr (bn_v a) (bn_v b) (pow2 (bits t * aLen));
Math.Lemmas.pow2_plus (bits t * aLen) (bits t * aLen);
bn_eval_bound res (aLen + aLen)
val bn_karatsuba_mul_:
#t:limb_t
-> aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Tot (res:lbignum t (aLen + aLen){bn_v res == bn_v a * bn_v b}) (decreases aLen)
let rec bn_karatsuba_mul_ #t aLen a b =
if aLen < bn_mul_threshold || aLen % 2 = 1 then begin
bn_mul_lemma a b;
bn_mul a b end
else begin
let aLen2 = aLen / 2 in
let a0 = bn_mod_pow2 a aLen2 in
(**) bn_mod_pow2_lemma a aLen2;
let a1 = bn_div_pow2 a aLen2 in
(**) bn_div_pow2_lemma a aLen2;
let b0 = bn_mod_pow2 b aLen2 in
(**) bn_mod_pow2_lemma b aLen2;
let b1 = bn_div_pow2 b aLen2 in
(**) bn_div_pow2_lemma b aLen2;
(**) bn_eval_bound a aLen;
(**) bn_eval_bound b aLen;
(**) K.lemma_bn_halves (bits t) aLen (bn_v a);
(**) K.lemma_bn_halves (bits t) aLen (bn_v b);
let c0, t0 = bn_sign_abs a0 a1 in
(**) bn_sign_abs_lemma a0 a1;
let c1, t1 = bn_sign_abs b0 b1 in
(**) bn_sign_abs_lemma b0 b1;
let t23 = bn_karatsuba_mul_ aLen2 t0 t1 in
let r01 = bn_karatsuba_mul_ aLen2 a0 b0 in
let r23 = bn_karatsuba_mul_ aLen2 a1 b1 in
let c2, t01 = bn_add r01 r23 in
(**) bn_add_lemma r01 r23;
let c5, t45 = bn_middle_karatsuba c0 c1 c2 t01 t23 in
(**) bn_middle_karatsuba_eval a0 a1 b0 b1 c2 t01 t23;
(**) bn_middle_karatsuba_carry_bound aLen a0 a1 b0 b1 t45 c5;
let c, res = bn_karatsuba_res r01 r23 c5 t45 in
(**) bn_karatsuba_res_lemma r01 r23 c5 t45;
(**) K.lemma_karatsuba (bits t) aLen (bn_v a0) (bn_v a1) (bn_v b0) (bn_v b1);
(**) bn_karatsuba_no_last_carry a b c res;
assert (v c = 0);
res end
val bn_karatsuba_mul:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
lbignum t (aLen + aLen)
let bn_karatsuba_mul #t #aLen a b =
bn_karatsuba_mul_ aLen a b
val bn_karatsuba_mul_lemma:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (bn_karatsuba_mul a b == bn_mul a b /\
bn_v (bn_karatsuba_mul a b) == bn_v a * bn_v b)
let bn_karatsuba_mul_lemma #t #aLen a b =
let res = bn_karatsuba_mul_ aLen a b in
assert (bn_v res == bn_v a * bn_v b);
let res' = bn_mul a b in
bn_mul_lemma a b;
assert (bn_v res' == bn_v a * bn_v b);
bn_eval_inj (aLen + aLen) res res';
assert (bn_karatsuba_mul_ aLen a b == bn_mul a b)
val bn_middle_karatsuba_sqr:
#t:limb_t
-> #aLen:size_nat
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c2: Hacl.Spec.Bignum.Base.carry t ->
t01: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
t23: Hacl.Spec.Bignum.Definitions.lbignum t aLen
-> Hacl.Spec.Bignum.Definitions.limb t * Hacl.Spec.Bignum.Definitions.lbignum t aLen | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Base.carry",
"Hacl.Spec.Bignum.Definitions.lbignum",
"FStar.Pervasives.Native.Mktuple2",
"Hacl.Spec.Bignum.Definitions.limb",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Subtraction_Dot",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Addition.bn_sub"
] | [] | false | false | false | false | false | let bn_middle_karatsuba_sqr #t #aLen c2 t01 t23 =
| let c3, t45 = bn_sub t01 t23 in
let c3 = c2 -. c3 in
c3, t45 | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_lemma | val bn_karatsuba_sqr_lemma:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen ->
Lemma (bn_karatsuba_sqr a == bn_mul a a /\
bn_v (bn_karatsuba_sqr a) == bn_v a * bn_v a) | val bn_karatsuba_sqr_lemma:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen ->
Lemma (bn_karatsuba_sqr a == bn_mul a a /\
bn_v (bn_karatsuba_sqr a) == bn_v a * bn_v a) | let bn_karatsuba_sqr_lemma #t #aLen a =
let res = bn_karatsuba_sqr_ aLen a in
assert (bn_v res == bn_v a * bn_v a);
let res' = bn_mul a a in
bn_mul_lemma a a;
assert (bn_v res' == bn_v a * bn_v a);
bn_eval_inj (aLen + aLen) res res';
assert (bn_karatsuba_sqr_ aLen a == bn_mul a a) | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 49,
"end_line": 635,
"start_col": 0,
"start_line": 628
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1)
let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen
val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0))
let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
//assert (v c = (v c2 - v c3) % pow2 pb);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
() end
else begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
//assert (v c = v c2 + v c4);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23);
() end
val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add #t #aLen a b1 i =
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
c, a'
val bn_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
Lemma (let c, res = bn_lshift_add a b1 i in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a + v b1 * pow2 (bits t * i))
let bn_lshift_add_lemma #t #aLen a b1 i =
let pbits = bits t in
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
let p = pow2 (pbits * aLen) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add1_lemma r b1 }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (v b1 - v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + (v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (v b1) (v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + v b1 * pow2 (pbits * i) - (v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * (aLen - i))) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * (aLen - i)) (pbits * i) }
bn_v a + v b1 * pow2 (pbits * i);
}
val bn_lshift_add_early_stop:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add_early_stop #t #aLen #bLen a b i =
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
c, a'
val bn_lshift_add_early_stop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
Lemma (let c, res = bn_lshift_add_early_stop a b i in
bn_v res + v c * pow2 (bits t * (i + bLen)) == bn_v a + bn_v b * pow2 (bits t * i))
let bn_lshift_add_early_stop_lemma #t #aLen #bLen a b i =
let pbits = bits t in
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
let p = pow2 (pbits * (i + bLen)) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add_lemma r b }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (bn_v b - v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + (bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (bn_v b) (v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + bn_v b * pow2 (pbits * i) - (v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * bLen)) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * bLen) (pbits * i) }
bn_v a + bn_v b * pow2 (pbits * i);
}
val bn_karatsuba_res:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t
-> t45:lbignum t aLen ->
tuple2 (carry t) (lbignum t (aLen + aLen))
let bn_karatsuba_res #t #aLen r01 r23 c5 t45 =
let aLen2 = aLen / 2 in
let res = concat r01 r23 in
let c6, res = bn_lshift_add_early_stop res t45 aLen2 in
// let r12 = sub res aLen2 aLen in
// let c6, r12 = bn_add r12 t45 in
// let res = update_sub res aLen2 aLen r12 in
let c7 = c5 +. c6 in
let c8, res = bn_lshift_add res c7 (aLen + aLen2) in
// let r3 = sub res (aLen + aLen2) aLen2 in
// let _, r3 = bn_add r3 (create 1 c7) in
// let res = update_sub res (aLen + aLen2) aLen2 r3 in
c8, res
val bn_karatsuba_res_lemma:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t{v c5 <= 1}
-> t45:lbignum t aLen ->
Lemma
(let c, res = bn_karatsuba_res r01 r23 c5 t45 in
bn_v res + v c * pow2 (bits t * (aLen + aLen)) ==
bn_v r23 * pow2 (bits t * aLen) + (v c5 * pow2 (bits t * aLen) + bn_v t45) * pow2 (aLen / 2 * bits t) + bn_v r01)
let bn_karatsuba_res_lemma #t #aLen r01 r23 c5 t45 =
let pbits = bits t in
let aLen2 = aLen / 2 in
let aLen3 = aLen + aLen2 in
let aLen4 = aLen + aLen in
let res0 = concat r01 r23 in
let c6, res1 = bn_lshift_add_early_stop res0 t45 aLen2 in
let c7 = c5 +. c6 in
let c8, res2 = bn_lshift_add res1 c7 aLen3 in
calc (==) {
bn_v res2 + v c8 * pow2 (pbits * aLen4);
(==) { bn_lshift_add_lemma res1 c7 aLen3 }
bn_v res1 + v c7 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.small_mod (v c5 + v c6) (pow2 pbits) }
bn_v res1 + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { bn_lshift_add_early_stop_lemma res0 t45 aLen2 }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) - v c6 * pow2 (pbits * aLen3) + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { Math.Lemmas.distributivity_add_left (v c5) (v c6) (pow2 (pbits * aLen3)) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * aLen2) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * (pow2 (pbits * aLen) * pow2 (pbits * aLen2));
(==) { Math.Lemmas.paren_mul_right (v c5) (pow2 (pbits * aLen)) (pow2 (pbits * aLen2));
Math.Lemmas.distributivity_add_left (bn_v t45) (v c5 * pow2 (pbits * aLen)) (pow2 (pbits * aLen2)) }
bn_v res0 + (bn_v t45 + v c5 * pow2 (pbits * aLen)) * pow2 (pbits * aLen2);
(==) { bn_concat_lemma r01 r23 }
bn_v r23 * pow2 (pbits * aLen) + (v c5 * pow2 (pbits * aLen) + bn_v t45) * pow2 (pbits * aLen2) + bn_v r01;
}
val bn_middle_karatsuba_carry_bound:
#t:limb_t
-> aLen:size_nat{aLen % 2 = 0}
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c:limb t -> Lemma
(requires bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures v c <= 1)
let bn_middle_karatsuba_carry_bound #t aLen a0 a1 b0 b1 res c =
let pbits = bits t in
let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
bn_eval_bound a0 aLen2;
bn_eval_bound a1 aLen2;
bn_eval_bound b0 aLen2;
bn_eval_bound b1 aLen2;
calc (<) {
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a0) (bn_v b1) p }
p * p + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a1) (bn_v b0) p }
p * p + p * p;
(==) { K.lemma_double_p (bits t) aLen }
pow2 (pbits * aLen) + pow2 (pbits * aLen);
};
bn_eval_bound res aLen;
assert (bn_v res + v c * pow2 (pbits * aLen) < pow2 (pbits * aLen) + pow2 (pbits * aLen));
assert (v c <= 1)
val bn_karatsuba_no_last_carry:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen
-> c:carry t
-> res:lbignum t (aLen + aLen) -> Lemma
(requires bn_v res + v c * pow2 (bits t * (aLen + aLen)) == bn_v a * bn_v b)
(ensures v c == 0)
let bn_karatsuba_no_last_carry #t #aLen a b c res =
bn_eval_bound a aLen;
bn_eval_bound b aLen;
Math.Lemmas.lemma_mult_lt_sqr (bn_v a) (bn_v b) (pow2 (bits t * aLen));
Math.Lemmas.pow2_plus (bits t * aLen) (bits t * aLen);
bn_eval_bound res (aLen + aLen)
val bn_karatsuba_mul_:
#t:limb_t
-> aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Tot (res:lbignum t (aLen + aLen){bn_v res == bn_v a * bn_v b}) (decreases aLen)
let rec bn_karatsuba_mul_ #t aLen a b =
if aLen < bn_mul_threshold || aLen % 2 = 1 then begin
bn_mul_lemma a b;
bn_mul a b end
else begin
let aLen2 = aLen / 2 in
let a0 = bn_mod_pow2 a aLen2 in
(**) bn_mod_pow2_lemma a aLen2;
let a1 = bn_div_pow2 a aLen2 in
(**) bn_div_pow2_lemma a aLen2;
let b0 = bn_mod_pow2 b aLen2 in
(**) bn_mod_pow2_lemma b aLen2;
let b1 = bn_div_pow2 b aLen2 in
(**) bn_div_pow2_lemma b aLen2;
(**) bn_eval_bound a aLen;
(**) bn_eval_bound b aLen;
(**) K.lemma_bn_halves (bits t) aLen (bn_v a);
(**) K.lemma_bn_halves (bits t) aLen (bn_v b);
let c0, t0 = bn_sign_abs a0 a1 in
(**) bn_sign_abs_lemma a0 a1;
let c1, t1 = bn_sign_abs b0 b1 in
(**) bn_sign_abs_lemma b0 b1;
let t23 = bn_karatsuba_mul_ aLen2 t0 t1 in
let r01 = bn_karatsuba_mul_ aLen2 a0 b0 in
let r23 = bn_karatsuba_mul_ aLen2 a1 b1 in
let c2, t01 = bn_add r01 r23 in
(**) bn_add_lemma r01 r23;
let c5, t45 = bn_middle_karatsuba c0 c1 c2 t01 t23 in
(**) bn_middle_karatsuba_eval a0 a1 b0 b1 c2 t01 t23;
(**) bn_middle_karatsuba_carry_bound aLen a0 a1 b0 b1 t45 c5;
let c, res = bn_karatsuba_res r01 r23 c5 t45 in
(**) bn_karatsuba_res_lemma r01 r23 c5 t45;
(**) K.lemma_karatsuba (bits t) aLen (bn_v a0) (bn_v a1) (bn_v b0) (bn_v b1);
(**) bn_karatsuba_no_last_carry a b c res;
assert (v c = 0);
res end
val bn_karatsuba_mul:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
lbignum t (aLen + aLen)
let bn_karatsuba_mul #t #aLen a b =
bn_karatsuba_mul_ aLen a b
val bn_karatsuba_mul_lemma:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (bn_karatsuba_mul a b == bn_mul a b /\
bn_v (bn_karatsuba_mul a b) == bn_v a * bn_v b)
let bn_karatsuba_mul_lemma #t #aLen a b =
let res = bn_karatsuba_mul_ aLen a b in
assert (bn_v res == bn_v a * bn_v b);
let res' = bn_mul a b in
bn_mul_lemma a b;
assert (bn_v res' == bn_v a * bn_v b);
bn_eval_inj (aLen + aLen) res res';
assert (bn_karatsuba_mul_ aLen a b == bn_mul a b)
val bn_middle_karatsuba_sqr:
#t:limb_t
-> #aLen:size_nat
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba_sqr #t #aLen c2 t01 t23 =
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
c3, t45
val bn_middle_karatsuba_sqr_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (bn_middle_karatsuba_sqr c2 t01 t23 == bn_middle_karatsuba c0 c0 c2 t01 t23)
let bn_middle_karatsuba_sqr_lemma #t #aLen c0 c2 t01 t23 =
let (c, res) = bn_middle_karatsuba c0 c0 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
bn_middle_karatsuba_lemma c0 c0 c2 t01 t23;
assert (v c == v c3' /\ bn_v res == bn_v t45);
bn_eval_inj aLen t45 res
val bn_karatsuba_sqr_: #t:limb_t -> aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen ->
Tot (res:lbignum t (aLen + aLen){bn_v res == bn_v a * bn_v a}) (decreases aLen)
let rec bn_karatsuba_sqr_ #t aLen a =
if aLen < bn_mul_threshold || aLen % 2 = 1 then begin
bn_sqr_lemma a;
bn_sqr a end
else begin
let aLen2 = aLen / 2 in
let a0 = bn_mod_pow2 a aLen2 in
(**) bn_mod_pow2_lemma a aLen2;
let a1 = bn_div_pow2 a aLen2 in
(**) bn_div_pow2_lemma a aLen2;
(**) bn_eval_bound a aLen;
(**) K.lemma_bn_halves (bits t) aLen (bn_v a);
let c0, t0 = bn_sign_abs a0 a1 in
(**) bn_sign_abs_lemma a0 a1;
let t23 = bn_karatsuba_sqr_ aLen2 t0 in
let r01 = bn_karatsuba_sqr_ aLen2 a0 in
let r23 = bn_karatsuba_sqr_ aLen2 a1 in
let c2, t01 = bn_add r01 r23 in
(**) bn_add_lemma r01 r23;
let c5, t45 = bn_middle_karatsuba_sqr c2 t01 t23 in
(**) bn_middle_karatsuba_sqr_lemma c0 c2 t01 t23;
(**) bn_middle_karatsuba_eval a0 a1 a0 a1 c2 t01 t23;
(**) bn_middle_karatsuba_carry_bound aLen a0 a1 a0 a1 t45 c5;
let c, res = bn_karatsuba_res r01 r23 c5 t45 in
(**) bn_karatsuba_res_lemma r01 r23 c5 t45;
(**) K.lemma_karatsuba (bits t) aLen (bn_v a0) (bn_v a1) (bn_v a0) (bn_v a1);
(**) bn_karatsuba_no_last_carry a a c res;
assert (v c = 0);
res end
val bn_karatsuba_sqr:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen ->
lbignum t (aLen + aLen)
let bn_karatsuba_sqr #t #aLen a =
bn_karatsuba_sqr_ aLen a
val bn_karatsuba_sqr_lemma:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen ->
Lemma (bn_karatsuba_sqr a == bn_mul a a /\
bn_v (bn_karatsuba_sqr a) == bn_v a * bn_v a) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Hacl.Spec.Bignum.Definitions.lbignum t aLen
-> FStar.Pervasives.Lemma
(ensures
Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a == Hacl.Spec.Bignum.Multiplication.bn_mul a a /\
Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr a) ==
Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.bn_v a) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims._assert",
"Prims.eq2",
"Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_",
"Hacl.Spec.Bignum.Multiplication.bn_mul",
"Prims.unit",
"Hacl.Spec.Bignum.Definitions.bn_eval_inj",
"Prims.int",
"Hacl.Spec.Bignum.Definitions.bn_v",
"FStar.Mul.op_Star",
"Hacl.Spec.Bignum.Multiplication.bn_mul_lemma",
"Prims.op_Multiply"
] | [] | true | false | true | false | false | let bn_karatsuba_sqr_lemma #t #aLen a =
| let res = bn_karatsuba_sqr_ aLen a in
assert (bn_v res == bn_v a * bn_v a);
let res' = bn_mul a a in
bn_mul_lemma a a;
assert (bn_v res' == bn_v a * bn_v a);
bn_eval_inj (aLen + aLen) res res';
assert (bn_karatsuba_sqr_ aLen a == bn_mul a a) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.trefl | val trefl: Prims.unit -> Tac unit | val trefl: Prims.unit -> Tac unit | let trefl () : Tac unit =
t_trefl false | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 185,
"start_col": 0,
"start_line": 184
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.V1.Builtins.t_trefl"
] | [] | false | true | false | false | false | let trefl () : Tac unit =
| t_trefl false | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.apply_lemma | val apply_lemma (t: term) : Tac unit | val apply_lemma (t: term) : Tac unit | let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 181,
"start_col": 0,
"start_line": 180
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V1.Builtins.t_apply_lemma",
"Prims.unit"
] | [] | false | true | false | false | false | let apply_lemma (t: term) : Tac unit =
| t_apply_lemma false false t | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_sign_abs_lemma | val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0)) | val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0)) | let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 23,
"end_line": 69,
"start_col": 0,
"start_line": 49
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Hacl.Spec.Bignum.Definitions.lbignum t aLen -> b: Hacl.Spec.Bignum.Definitions.lbignum t aLen
-> FStar.Pervasives.Lemma
(ensures
(let _ = Hacl.Spec.Bignum.Karatsuba.bn_sign_abs a b in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in
Hacl.Spec.Bignum.Definitions.bn_v res ==
Hacl.Spec.Karatsuba.Lemmas.abs (Hacl.Spec.Bignum.Definitions.bn_v a)
(Hacl.Spec.Bignum.Definitions.bn_v b) /\
Lib.IntTypes.v c ==
(match Hacl.Spec.Bignum.Definitions.bn_v a < Hacl.Spec.Bignum.Definitions.bn_v b with
| true -> 1
| _ -> 0))
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Karatsuba.Lemmas.sign",
"Prims.nat",
"Hacl.Spec.Bignum.Base.carry",
"Hacl.Spec.Bignum.Definitions.bn_eval_bound",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Equality",
"Prims.int",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.bool",
"Hacl.Spec.Bignum.Base.lseq_mask_select_lemma",
"Lib.Sequence.lseq",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.Sequence.index",
"Hacl.Spec.Bignum.Base.mask_select",
"Lib.Sequence.map2",
"Lib.IntTypes.ones",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Subtraction_Dot",
"Lib.IntTypes.uint",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"Prims.pow2",
"Lib.IntTypes.bits",
"Hacl.Spec.Bignum.Addition.bn_sub_lemma",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Addition.bn_sub",
"Hacl.Spec.Karatsuba.Lemmas.sign_abs"
] | [] | false | false | true | false | false | let bn_sign_abs_lemma #t #aLen a b =
| let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.commute_applied_match | val commute_applied_match: Prims.unit -> Tac unit | val commute_applied_match: Prims.unit -> Tac unit | let commute_applied_match () : Tac unit =
t_commute_applied_match () | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 193,
"start_col": 0,
"start_line": 192
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.V1.Builtins.t_commute_applied_match"
] | [] | false | true | false | false | false | let commute_applied_match () : Tac unit =
| t_commute_applied_match () | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.trefl_guard | val trefl_guard: Prims.unit -> Tac unit | val trefl_guard: Prims.unit -> Tac unit | let trefl_guard () : Tac unit =
t_trefl true | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 14,
"end_line": 189,
"start_col": 0,
"start_line": 188
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.V1.Builtins.t_trefl"
] | [] | false | true | false | false | false | let trefl_guard () : Tac unit =
| t_trefl true | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_lemma | val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67) | val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67) | let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3' | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 152,
"start_col": 0,
"start_line": 136
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c0: Hacl.Spec.Bignum.Base.carry t ->
c1: Hacl.Spec.Bignum.Base.carry t ->
c2: Hacl.Spec.Bignum.Base.carry t ->
t01: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
t23: Hacl.Spec.Bignum.Definitions.lbignum t aLen
-> FStar.Pervasives.Lemma
(ensures
(let _ = Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba c0 c1 c2 t01 t23 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in
let _ = Hacl.Spec.Bignum.Addition.bn_sub t01 t23 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c3 t45 = _ in
let c3' = c2 -. c3 in
let _ = Hacl.Spec.Bignum.Addition.bn_add t01 t23 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c4 t67 = _ in
let c4' = c2 +. c4 in
(match Lib.IntTypes.v c0 = Lib.IntTypes.v c1 with
| true ->
Lib.IntTypes.v c == Lib.IntTypes.v c3' /\
Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.bn_v t45
| _ ->
Lib.IntTypes.v c == Lib.IntTypes.v c4' /\
Hacl.Spec.Bignum.Definitions.bn_v res == Hacl.Spec.Bignum.Definitions.bn_v t67)
<:
Type0)
<:
Type0)
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Base.carry",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Base.mask_select_lemma",
"Hacl.Spec.Bignum.Definitions.limb",
"Hacl.Spec.Bignum.Base.mask_select",
"Prims.unit",
"Hacl.Spec.Bignum.Base.lseq_mask_select_lemma",
"Lib.Sequence.lseq",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.eq2",
"Lib.Sequence.index",
"Lib.Sequence.map2",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Subtraction_Dot",
"Lib.IntTypes.uint",
"Lib.IntTypes.op_Plus_Dot",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Addition.bn_add",
"Hacl.Spec.Bignum.Addition.bn_sub",
"Prims._assert",
"Prims.int",
"Lib.IntTypes.v",
"Prims.op_Equality",
"Lib.IntTypes.range_t",
"Prims.bool",
"Hacl.Spec.Bignum.Karatsuba.sign_lemma",
"Lib.IntTypes.op_Hat_Dot",
"Prims.op_Addition",
"Hacl.Spec.Bignum.Definitions.bn_v",
"FStar.Mul.op_Star",
"Prims.pow2",
"Lib.IntTypes.bits",
"Prims.op_Subtraction"
] | [] | false | false | true | false | false | let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
| let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in
let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in
let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3' | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_no_last_carry | val bn_karatsuba_no_last_carry:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen
-> c:carry t
-> res:lbignum t (aLen + aLen) -> Lemma
(requires bn_v res + v c * pow2 (bits t * (aLen + aLen)) == bn_v a * bn_v b)
(ensures v c == 0) | val bn_karatsuba_no_last_carry:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen
-> c:carry t
-> res:lbignum t (aLen + aLen) -> Lemma
(requires bn_v res + v c * pow2 (bits t * (aLen + aLen)) == bn_v a * bn_v b)
(ensures v c == 0) | let bn_karatsuba_no_last_carry #t #aLen a b c res =
bn_eval_bound a aLen;
bn_eval_bound b aLen;
Math.Lemmas.lemma_mult_lt_sqr (bn_v a) (bn_v b) (pow2 (bits t * aLen));
Math.Lemmas.pow2_plus (bits t * aLen) (bits t * aLen);
bn_eval_bound res (aLen + aLen) | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 33,
"end_line": 461,
"start_col": 0,
"start_line": 456
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1)
let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen
val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0))
let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
//assert (v c = (v c2 - v c3) % pow2 pb);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
() end
else begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
//assert (v c = v c2 + v c4);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23);
() end
val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add #t #aLen a b1 i =
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
c, a'
val bn_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
Lemma (let c, res = bn_lshift_add a b1 i in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a + v b1 * pow2 (bits t * i))
let bn_lshift_add_lemma #t #aLen a b1 i =
let pbits = bits t in
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
let p = pow2 (pbits * aLen) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add1_lemma r b1 }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (v b1 - v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + (v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (v b1) (v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + v b1 * pow2 (pbits * i) - (v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * (aLen - i))) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * (aLen - i)) (pbits * i) }
bn_v a + v b1 * pow2 (pbits * i);
}
val bn_lshift_add_early_stop:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add_early_stop #t #aLen #bLen a b i =
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
c, a'
val bn_lshift_add_early_stop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
Lemma (let c, res = bn_lshift_add_early_stop a b i in
bn_v res + v c * pow2 (bits t * (i + bLen)) == bn_v a + bn_v b * pow2 (bits t * i))
let bn_lshift_add_early_stop_lemma #t #aLen #bLen a b i =
let pbits = bits t in
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
let p = pow2 (pbits * (i + bLen)) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add_lemma r b }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (bn_v b - v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + (bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (bn_v b) (v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + bn_v b * pow2 (pbits * i) - (v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * bLen)) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * bLen) (pbits * i) }
bn_v a + bn_v b * pow2 (pbits * i);
}
val bn_karatsuba_res:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t
-> t45:lbignum t aLen ->
tuple2 (carry t) (lbignum t (aLen + aLen))
let bn_karatsuba_res #t #aLen r01 r23 c5 t45 =
let aLen2 = aLen / 2 in
let res = concat r01 r23 in
let c6, res = bn_lshift_add_early_stop res t45 aLen2 in
// let r12 = sub res aLen2 aLen in
// let c6, r12 = bn_add r12 t45 in
// let res = update_sub res aLen2 aLen r12 in
let c7 = c5 +. c6 in
let c8, res = bn_lshift_add res c7 (aLen + aLen2) in
// let r3 = sub res (aLen + aLen2) aLen2 in
// let _, r3 = bn_add r3 (create 1 c7) in
// let res = update_sub res (aLen + aLen2) aLen2 r3 in
c8, res
val bn_karatsuba_res_lemma:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t{v c5 <= 1}
-> t45:lbignum t aLen ->
Lemma
(let c, res = bn_karatsuba_res r01 r23 c5 t45 in
bn_v res + v c * pow2 (bits t * (aLen + aLen)) ==
bn_v r23 * pow2 (bits t * aLen) + (v c5 * pow2 (bits t * aLen) + bn_v t45) * pow2 (aLen / 2 * bits t) + bn_v r01)
let bn_karatsuba_res_lemma #t #aLen r01 r23 c5 t45 =
let pbits = bits t in
let aLen2 = aLen / 2 in
let aLen3 = aLen + aLen2 in
let aLen4 = aLen + aLen in
let res0 = concat r01 r23 in
let c6, res1 = bn_lshift_add_early_stop res0 t45 aLen2 in
let c7 = c5 +. c6 in
let c8, res2 = bn_lshift_add res1 c7 aLen3 in
calc (==) {
bn_v res2 + v c8 * pow2 (pbits * aLen4);
(==) { bn_lshift_add_lemma res1 c7 aLen3 }
bn_v res1 + v c7 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.small_mod (v c5 + v c6) (pow2 pbits) }
bn_v res1 + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { bn_lshift_add_early_stop_lemma res0 t45 aLen2 }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) - v c6 * pow2 (pbits * aLen3) + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { Math.Lemmas.distributivity_add_left (v c5) (v c6) (pow2 (pbits * aLen3)) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * aLen2) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * (pow2 (pbits * aLen) * pow2 (pbits * aLen2));
(==) { Math.Lemmas.paren_mul_right (v c5) (pow2 (pbits * aLen)) (pow2 (pbits * aLen2));
Math.Lemmas.distributivity_add_left (bn_v t45) (v c5 * pow2 (pbits * aLen)) (pow2 (pbits * aLen2)) }
bn_v res0 + (bn_v t45 + v c5 * pow2 (pbits * aLen)) * pow2 (pbits * aLen2);
(==) { bn_concat_lemma r01 r23 }
bn_v r23 * pow2 (pbits * aLen) + (v c5 * pow2 (pbits * aLen) + bn_v t45) * pow2 (pbits * aLen2) + bn_v r01;
}
val bn_middle_karatsuba_carry_bound:
#t:limb_t
-> aLen:size_nat{aLen % 2 = 0}
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c:limb t -> Lemma
(requires bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures v c <= 1)
let bn_middle_karatsuba_carry_bound #t aLen a0 a1 b0 b1 res c =
let pbits = bits t in
let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
bn_eval_bound a0 aLen2;
bn_eval_bound a1 aLen2;
bn_eval_bound b0 aLen2;
bn_eval_bound b1 aLen2;
calc (<) {
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a0) (bn_v b1) p }
p * p + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a1) (bn_v b0) p }
p * p + p * p;
(==) { K.lemma_double_p (bits t) aLen }
pow2 (pbits * aLen) + pow2 (pbits * aLen);
};
bn_eval_bound res aLen;
assert (bn_v res + v c * pow2 (pbits * aLen) < pow2 (pbits * aLen) + pow2 (pbits * aLen));
assert (v c <= 1)
val bn_karatsuba_no_last_carry:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen
-> c:carry t
-> res:lbignum t (aLen + aLen) -> Lemma
(requires bn_v res + v c * pow2 (bits t * (aLen + aLen)) == bn_v a * bn_v b)
(ensures v c == 0) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
b: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
c: Hacl.Spec.Bignum.Base.carry t ->
res: Hacl.Spec.Bignum.Definitions.lbignum t (aLen + aLen)
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.Bignum.Definitions.bn_v res +
Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * (aLen + aLen)) ==
Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.bn_v b)
(ensures Lib.IntTypes.v c == 0) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Base.carry",
"Hacl.Spec.Bignum.Definitions.bn_eval_bound",
"Prims.unit",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Mul.op_Star",
"Lib.IntTypes.bits",
"FStar.Math.Lemmas.lemma_mult_lt_sqr",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.pow2"
] | [] | true | false | true | false | false | let bn_karatsuba_no_last_carry #t #aLen a b c res =
| bn_eval_bound a aLen;
bn_eval_bound b aLen;
Math.Lemmas.lemma_mult_lt_sqr (bn_v a) (bn_v b) (pow2 (bits t * aLen));
Math.Lemmas.pow2_plus (bits t * aLen) (bits t * aLen);
bn_eval_bound res (aLen + aLen) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.apply_lemma_noinst | val apply_lemma_noinst (t: term) : Tac unit | val apply_lemma_noinst (t: term) : Tac unit | let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 198,
"start_col": 0,
"start_line": 197
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V1.Builtins.t_apply_lemma",
"Prims.unit"
] | [] | false | true | false | false | false | let apply_lemma_noinst (t: term) : Tac unit =
| t_apply_lemma true false t | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.apply_lemma_rw | val apply_lemma_rw (t: term) : Tac unit | val apply_lemma_rw (t: term) : Tac unit | let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 201,
"start_col": 0,
"start_line": 200
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V1.Builtins.t_apply_lemma",
"Prims.unit"
] | [] | false | true | false | false | false | let apply_lemma_rw (t: term) : Tac unit =
| t_apply_lemma false true t | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.apply_raw | val apply_raw (t: term) : Tac unit | val apply_raw (t: term) : Tac unit | let apply_raw (t : term) : Tac unit =
t_apply false false false t | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 207,
"start_col": 0,
"start_line": 206
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V1.Builtins.t_apply",
"Prims.unit"
] | [] | false | true | false | false | false | let apply_raw (t: term) : Tac unit =
| t_apply false false false t | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.exact_guard | val exact_guard (t: term) : Tac unit | val exact_guard (t: term) : Tac unit | let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 53,
"end_line": 212,
"start_col": 0,
"start_line": 211
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Derived.with_policy",
"Prims.unit",
"FStar.Stubs.Tactics.Types.Goal",
"FStar.Stubs.Tactics.V1.Builtins.t_exact"
] | [] | false | true | false | false | false | let exact_guard (t: term) : Tac unit =
| with_policy Goal (fun () -> t_exact true false t) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.t_pointwise | val t_pointwise (d: direction) (tau: (unit -> Tac unit)) : Tac unit | val t_pointwise (d: direction) (tau: (unit -> Tac unit)) : Tac unit | let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 24,
"end_line": 228,
"start_col": 0,
"start_line": 221
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
d: FStar.Stubs.Tactics.Types.direction ->
tau: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit)
-> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Tactics.Types.direction",
"Prims.unit",
"FStar.Stubs.Tactics.V1.Builtins.ctrl_rewrite",
"FStar.Stubs.Reflection.Types.term",
"FStar.Pervasives.Native.tuple2",
"Prims.bool",
"FStar.Stubs.Tactics.Types.ctrl_flag",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Stubs.Tactics.Types.Continue"
] | [] | false | true | false | false | false | let t_pointwise (d: direction) (tau: (unit -> Tac unit)) : Tac unit =
| let ctrl (t: term) : Tac (bool & ctrl_flag) = true, Continue in
let rw () : Tac unit = tau () in
ctrl_rewrite d ctrl rw | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.dismiss | val dismiss: Prims.unit -> Tac unit | val dismiss: Prims.unit -> Tac unit | let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 124,
"start_col": 0,
"start_line": 121
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.fail",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"FStar.Stubs.Tactics.V1.Builtins.set_goals",
"FStar.Tactics.V1.Derived.goals"
] | [] | false | true | false | false | false | let dismiss () : Tac unit =
| match goals () with
| [] -> fail "dismiss: no more goals"
| _ :: gs -> set_goals gs | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.pointwise' | val pointwise' (tau: (unit -> Tac unit)) : Tac unit | val pointwise' (tau: (unit -> Tac unit)) : Tac unit | let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 77,
"end_line": 266,
"start_col": 0,
"start_line": 266
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | tau: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.t_pointwise",
"FStar.Stubs.Tactics.Types.TopDown"
] | [] | false | true | false | false | false | let pointwise' (tau: (unit -> Tac unit)) : Tac unit =
| t_pointwise TopDown tau | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.flip | val flip: Prims.unit -> Tac unit | val flip: Prims.unit -> Tac unit | let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 42,
"end_line": 131,
"start_col": 0,
"start_line": 127
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.fail",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"FStar.Stubs.Tactics.V1.Builtins.set_goals",
"Prims.Cons",
"FStar.Tactics.V1.Derived.goals"
] | [] | false | true | false | false | false | let flip () : Tac unit =
| let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1 :: g2 :: gs -> set_goals (g2 :: g1 :: gs) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.pointwise | val pointwise (tau: (unit -> Tac unit)) : Tac unit | val pointwise (tau: (unit -> Tac unit)) : Tac unit | let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 77,
"end_line": 265,
"start_col": 0,
"start_line": 265
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | tau: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.t_pointwise",
"FStar.Stubs.Tactics.Types.BottomUp"
] | [] | false | true | false | false | false | let pointwise (tau: (unit -> Tac unit)) : Tac unit =
| t_pointwise BottomUp tau | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.fresh_uvar | val fresh_uvar (o: option typ) : Tac term | val fresh_uvar (o: option typ) : Tac term | let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 16,
"end_line": 276,
"start_col": 0,
"start_line": 274
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | o: FStar.Pervasives.Native.option FStar.Stubs.Reflection.Types.typ
-> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.term | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Stubs.Tactics.V1.Builtins.uvar_env",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.Types.env",
"FStar.Tactics.V1.Derived.cur_env"
] | [] | false | true | false | false | false | let fresh_uvar (o: option typ) : Tac term =
| let e = cur_env () in
uvar_env e o | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.topdown_rewrite | val topdown_rewrite (ctrl: (term -> Tac (bool * int))) (rw: (unit -> Tac unit)) : Tac unit | val topdown_rewrite (ctrl: (term -> Tac (bool * int))) (rw: (unit -> Tac unit)) : Tac unit | let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 263,
"start_col": 0,
"start_line": 250
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal. | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
ctrl:
(_: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac (Prims.bool * Prims.int)) ->
rw: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit)
-> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Pervasives.Native.tuple2",
"Prims.bool",
"Prims.int",
"Prims.unit",
"FStar.Stubs.Tactics.V1.Builtins.ctrl_rewrite",
"FStar.Stubs.Tactics.Types.TopDown",
"FStar.Stubs.Tactics.Types.ctrl_flag",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Stubs.Tactics.Types.Continue",
"FStar.Stubs.Tactics.Types.Skip",
"FStar.Stubs.Tactics.Types.Abort",
"FStar.Tactics.V1.Derived.fail"
] | [] | false | true | false | false | false | let topdown_rewrite (ctrl: (term -> Tac (bool * int))) (rw: (unit -> Tac unit)) : Tac unit =
| let ctrl' (t: term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.unify | val unify (t1 t2: term) : Tac bool | val unify (t1 t2: term) : Tac bool | let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2 | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 21,
"end_line": 280,
"start_col": 0,
"start_line": 278
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t1: FStar.Stubs.Reflection.Types.term -> t2: FStar.Stubs.Reflection.Types.term
-> FStar.Tactics.Effect.Tac Prims.bool | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V1.Builtins.unify_env",
"Prims.bool",
"FStar.Stubs.Reflection.Types.env",
"FStar.Tactics.V1.Derived.cur_env"
] | [] | false | true | false | false | false | let unify (t1 t2: term) : Tac bool =
| let e = cur_env () in
unify_env e t1 t2 | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_eval_aux | val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1) | val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1) | let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 24,
"end_line": 172,
"start_col": 0,
"start_line": 171
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a0: Hacl.Spec.Bignum.Definitions.lbignum t (aLen / 2) ->
a1: Hacl.Spec.Bignum.Definitions.lbignum t (aLen / 2) ->
b0: Hacl.Spec.Bignum.Definitions.lbignum t (aLen / 2) ->
b1: Hacl.Spec.Bignum.Definitions.lbignum t (aLen / 2) ->
res: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
c2: Hacl.Spec.Bignum.Base.carry t ->
c3: Hacl.Spec.Bignum.Base.carry t
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.Bignum.Definitions.bn_v res +
(Lib.IntTypes.v c2 - Lib.IntTypes.v c3) * Prims.pow2 (Lib.IntTypes.bits t * aLen) ==
Hacl.Spec.Bignum.Definitions.bn_v a0 * Hacl.Spec.Bignum.Definitions.bn_v b1 +
Hacl.Spec.Bignum.Definitions.bn_v a1 * Hacl.Spec.Bignum.Definitions.bn_v b0)
(ensures
0 <= Lib.IntTypes.v c2 - Lib.IntTypes.v c3 /\ Lib.IntTypes.v c2 - Lib.IntTypes.v c3 <= 1) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.op_Division",
"Hacl.Spec.Bignum.Base.carry",
"Hacl.Spec.Bignum.Definitions.bn_eval_bound",
"Prims.unit"
] | [] | true | false | true | false | false | let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
| bn_eval_bound res aLen | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.cur_module | val cur_module: Prims.unit -> Tac name | val cur_module: Prims.unit -> Tac name | let cur_module () : Tac name =
moduleof (top_env ()) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 25,
"end_line": 269,
"start_col": 0,
"start_line": 268
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.name | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Reflection.V1.Builtins.moduleof",
"FStar.Stubs.Reflection.Types.name",
"FStar.Stubs.Reflection.Types.env",
"FStar.Stubs.Tactics.V1.Builtins.top_env"
] | [] | false | true | false | false | false | let cur_module () : Tac name =
| moduleof (top_env ()) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.open_modules | val open_modules: Prims.unit -> Tac (list name) | val open_modules: Prims.unit -> Tac (list name) | let open_modules () : Tac (list name) =
env_open_modules (top_env ()) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 272,
"start_col": 0,
"start_line": 271
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Stubs.Reflection.Types.name) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Reflection.V1.Builtins.env_open_modules",
"Prims.list",
"FStar.Stubs.Reflection.Types.name",
"FStar.Stubs.Reflection.Types.env",
"FStar.Stubs.Tactics.V1.Builtins.top_env"
] | [] | false | true | false | false | false | let open_modules () : Tac (list name) =
| env_open_modules (top_env ()) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.tmatch | val tmatch (t1 t2: term) : Tac bool | val tmatch (t1 t2: term) : Tac bool | let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2 | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 21,
"end_line": 288,
"start_col": 0,
"start_line": 286
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t1: FStar.Stubs.Reflection.Types.term -> t2: FStar.Stubs.Reflection.Types.term
-> FStar.Tactics.Effect.Tac Prims.bool | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V1.Builtins.match_env",
"Prims.bool",
"FStar.Stubs.Reflection.Types.env",
"FStar.Tactics.V1.Derived.cur_env"
] | [] | false | true | false | false | false | let tmatch (t1 t2: term) : Tac bool =
| let e = cur_env () in
match_env e t1 t2 | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.smt | val smt: Prims.unit -> Tac unit | val smt: Prims.unit -> Tac unit | let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 156,
"start_col": 0,
"start_line": 149
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.list",
"FStar.Stubs.Tactics.Types.goal",
"FStar.Tactics.V1.Derived.fail",
"FStar.Stubs.Tactics.V1.Builtins.set_smt_goals",
"Prims.Cons",
"FStar.Stubs.Tactics.V1.Builtins.set_goals",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Tactics.V1.Derived.smt_goals",
"FStar.Tactics.V1.Derived.goals"
] | [] | false | true | false | false | false | let smt () : Tac unit =
| match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g :: gs, gs' ->
set_goals gs;
set_smt_goals (g :: gs') | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.unify_guard | val unify_guard (t1 t2: term) : Tac bool | val unify_guard (t1 t2: term) : Tac bool | let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2 | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 284,
"start_col": 0,
"start_line": 282
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t1: FStar.Stubs.Reflection.Types.term -> t2: FStar.Stubs.Reflection.Types.term
-> FStar.Tactics.Effect.Tac Prims.bool | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V1.Builtins.unify_guard_env",
"Prims.bool",
"FStar.Stubs.Reflection.Types.env",
"FStar.Tactics.V1.Derived.cur_env"
] | [] | false | true | false | false | false | let unify_guard (t1 t2: term) : Tac bool =
| let e = cur_env () in
unify_guard_env e t1 t2 | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.exact_args | val exact_args (qs: list aqualv) (t: term) : Tac unit | val exact_args (qs: list aqualv) (t: term) : Tac unit | let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 365,
"start_col": 0,
"start_line": 356
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | qs: Prims.list FStar.Stubs.Reflection.V1.Data.aqualv -> t: FStar.Stubs.Reflection.Types.term
-> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"FStar.Stubs.Reflection.V1.Data.aqualv",
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Derived.focus",
"Prims.unit",
"FStar.Tactics.Util.iter",
"FStar.Reflection.V1.Derived.is_uvar",
"FStar.Stubs.Tactics.V1.Builtins.unshelve",
"Prims.bool",
"FStar.List.Tot.Base.rev",
"FStar.Tactics.V1.Derived.exact",
"FStar.Reflection.V1.Derived.mk_app",
"FStar.Stubs.Reflection.V1.Data.argv",
"FStar.Tactics.Util.zip",
"FStar.Pervasives.Native.tuple2",
"Prims.l_or",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"FStar.Tactics.Util.repeatn",
"FStar.Tactics.V1.Derived.fresh_uvar",
"FStar.Pervasives.Native.None",
"FStar.Stubs.Reflection.Types.typ",
"Prims.nat"
] | [] | false | true | false | false | false | let exact_args (qs: list aqualv) (t: term) : Tac unit =
| focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv then unshelve uv) (L.rev uvs)) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.dump1 | val dump1 : m: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit | let dump1 (m : string) = focus (fun () -> dump m) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 49,
"end_line": 328,
"start_col": 0,
"start_line": 328
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Prims.string -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.string",
"FStar.Tactics.V1.Derived.focus",
"Prims.unit",
"FStar.Stubs.Tactics.V1.Builtins.dump"
] | [] | false | true | false | false | false | let dump1 (m: string) =
| focus (fun () -> dump m) | false |
|
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.ngoals_smt | val ngoals_smt: Prims.unit -> Tac int | val ngoals_smt: Prims.unit -> Tac int | let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ()) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 65,
"end_line": 374,
"start_col": 0,
"start_line": 374
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.int | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.List.Tot.Base.length",
"FStar.Stubs.Tactics.Types.goal",
"Prims.int",
"Prims.list",
"FStar.Tactics.V1.Derived.smt_goals"
] | [] | false | true | false | false | false | let ngoals_smt () : Tac int =
| List.Tot.Base.length (smt_goals ()) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.seq | val seq (f g: (unit -> Tac unit)) : Tac unit | val seq (f g: (unit -> Tac unit)) : Tac unit | let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 354,
"start_col": 0,
"start_line": 353
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) ->
g: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit)
-> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.focus",
"FStar.Tactics.V1.Derived.iterAll"
] | [] | false | true | false | false | false | let seq (f g: (unit -> Tac unit)) : Tac unit =
| focus (fun () ->
f ();
iterAll g) | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_lshift_add_early_stop_lemma | val bn_lshift_add_early_stop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
Lemma (let c, res = bn_lshift_add_early_stop a b i in
bn_v res + v c * pow2 (bits t * (i + bLen)) == bn_v a + bn_v b * pow2 (bits t * i)) | val bn_lshift_add_early_stop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
Lemma (let c, res = bn_lshift_add_early_stop a b i in
bn_v res + v c * pow2 (bits t * (i + bLen)) == bn_v a + bn_v b * pow2 (bits t * i)) | let bn_lshift_add_early_stop_lemma #t #aLen #bLen a b i =
let pbits = bits t in
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
let p = pow2 (pbits * (i + bLen)) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add_lemma r b }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (bn_v b - v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + (bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (bn_v b) (v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + bn_v b * pow2 (pbits * i) - (v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * bLen)) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * bLen) (pbits * i) }
bn_v a + bn_v b * pow2 (pbits * i);
} | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 337,
"start_col": 0,
"start_line": 317
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1)
let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen
val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0))
let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
//assert (v c = (v c2 - v c3) % pow2 pb);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
() end
else begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
//assert (v c = v c2 + v c4);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23);
() end
val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add #t #aLen a b1 i =
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
c, a'
val bn_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
Lemma (let c, res = bn_lshift_add a b1 i in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a + v b1 * pow2 (bits t * i))
let bn_lshift_add_lemma #t #aLen a b1 i =
let pbits = bits t in
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
let p = pow2 (pbits * aLen) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add1_lemma r b1 }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (v b1 - v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + (v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (v b1) (v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + v b1 * pow2 (pbits * i) - (v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * (aLen - i))) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * (aLen - i)) (pbits * i) }
bn_v a + v b1 * pow2 (pbits * i);
}
val bn_lshift_add_early_stop:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add_early_stop #t #aLen #bLen a b i =
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
c, a'
val bn_lshift_add_early_stop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
Lemma (let c, res = bn_lshift_add_early_stop a b i in
bn_v res + v c * pow2 (bits t * (i + bLen)) == bn_v a + bn_v b * pow2 (bits t * i)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
b: Hacl.Spec.Bignum.Definitions.lbignum t bLen ->
i: Prims.nat{i + bLen <= aLen}
-> FStar.Pervasives.Lemma
(ensures
(let _ = Hacl.Spec.Bignum.Karatsuba.bn_lshift_add_early_stop a b i in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in
Hacl.Spec.Bignum.Definitions.bn_v res +
Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * (i + bLen)) ==
Hacl.Spec.Bignum.Definitions.bn_v a +
Hacl.Spec.Bignum.Definitions.bn_v b * Prims.pow2 (Lib.IntTypes.bits t * i))
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Hacl.Spec.Bignum.Base.carry",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Hacl.Spec.Bignum.Definitions.bn_v",
"FStar.Mul.op_Star",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.pow2",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Subtraction",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Bignum.Definitions.bn_update_sub_eval",
"Prims.squash",
"Hacl.Spec.Bignum.Addition.bn_add_lemma",
"FStar.Math.Lemmas.distributivity_add_left",
"FStar.Math.Lemmas.distributivity_sub_left",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.paren_mul_right",
"Prims.pos",
"Lib.Sequence.lseq",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.l_and",
"Lib.Sequence.sub",
"Prims.l_Forall",
"Prims.l_or",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index",
"Lib.Sequence.update_sub",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Addition.bn_add",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Lib.IntTypes.bits"
] | [] | false | false | true | false | false | let bn_lshift_add_early_stop_lemma #t #aLen #bLen a b i =
| let pbits = bits t in
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
let p = pow2 (pbits * (i + bLen)) in
calc ( == ) {
bn_v a' + v c * p;
( == ) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
( == ) { bn_add_lemma r b }
bn_v a - bn_v r * pow2 (pbits * i) +
(bn_v r + bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) +
v c * p;
( == ) { Math.Lemmas.distributivity_add_left (bn_v r)
(bn_v b - v c * pow2 (pbits * bLen))
(pow2 (pbits * i)) }
bn_v a + (bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
( == ) { Math.Lemmas.distributivity_sub_left (bn_v b)
(v c * pow2 (pbits * bLen))
(pow2 (pbits * i)) }
bn_v a + bn_v b * pow2 (pbits * i) - (v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
( == ) { (Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * bLen)) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * bLen) (pbits * i)) }
bn_v a + bn_v b * pow2 (pbits * i);
} | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.exact_n | val exact_n (n: int) (t: term) : Tac unit | val exact_n (n: int) (t: term) : Tac unit | let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 368,
"start_col": 0,
"start_line": 367
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.int -> t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.int",
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Derived.exact_args",
"Prims.unit",
"Prims.list",
"FStar.Stubs.Reflection.V1.Data.aqualv",
"FStar.Tactics.Util.repeatn",
"FStar.Stubs.Reflection.V1.Data.Q_Explicit",
"Prims.l_or",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.eq2",
"FStar.List.Tot.Base.length"
] | [] | false | true | false | false | false | let exact_n (n: int) (t: term) : Tac unit =
| exact_args (repeatn n (fun () -> Q_Explicit)) t | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.iterAllSMT | val iterAllSMT (t: (unit -> Tac unit)) : Tac unit | val iterAllSMT (t: (unit -> Tac unit)) : Tac unit | let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs') | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 348,
"start_col": 0,
"start_line": 341
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.list",
"FStar.Stubs.Tactics.Types.goal",
"FStar.Stubs.Tactics.V1.Builtins.set_smt_goals",
"FStar.Tactics.V1.Derived.op_At",
"FStar.Stubs.Tactics.V1.Builtins.set_goals",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Tactics.V1.Derived.smt_goals",
"FStar.Tactics.V1.Derived.goals",
"FStar.Tactics.V1.Derived.iterAll",
"Prims.Nil"
] | [] | false | true | false | false | false | let iterAllSMT (t: (unit -> Tac unit)) : Tac unit =
| let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs' @ sgs') | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.ngoals | val ngoals: Prims.unit -> Tac int | val ngoals: Prims.unit -> Tac int | let ngoals () : Tac int = List.Tot.Base.length (goals ()) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 57,
"end_line": 371,
"start_col": 0,
"start_line": 371
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.int | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.List.Tot.Base.length",
"FStar.Stubs.Tactics.Types.goal",
"Prims.int",
"Prims.list",
"FStar.Tactics.V1.Derived.goals"
] | [] | false | true | false | false | false | let ngoals () : Tac int =
| List.Tot.Base.length (goals ()) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.or_else | val or_else (#a: Type) (t1 t2: (unit -> Tac a)) : Tac a | val or_else (#a: Type) (t1 t2: (unit -> Tac a)) : Tac a | let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 () | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 21,
"end_line": 423,
"start_col": 0,
"start_line": 421
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
t1: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) ->
t2: (_: Prims.unit -> FStar.Tactics.Effect.Tac a)
-> FStar.Tactics.Effect.Tac a | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.try_with",
"Prims.exn"
] | [] | false | true | false | false | false | let or_else (#a: Type) (t1 t2: (unit -> Tac a)) : Tac a =
| try t1 () with | _ -> t2 () | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.first | val first (ts: list (unit -> Tac 'a)) : Tac 'a | val first (ts: list (unit -> Tac 'a)) : Tac 'a | let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") () | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 65,
"end_line": 431,
"start_col": 0,
"start_line": 430
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ts: Prims.list (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac 'a | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"Prims.unit",
"FStar.List.Tot.Base.fold_right",
"FStar.Tactics.V1.Derived.op_Less_Bar_Greater",
"FStar.Tactics.V1.Derived.fail"
] | [] | false | true | false | false | false | let first (ts: list (unit -> Tac 'a)) : Tac 'a =
| L.fold_right ( <|> ) ts (fun () -> fail "no tactics to try") () | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_ | val bn_karatsuba_mul_:
#t:limb_t
-> aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Tot (res:lbignum t (aLen + aLen){bn_v res == bn_v a * bn_v b}) (decreases aLen) | val bn_karatsuba_mul_:
#t:limb_t
-> aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Tot (res:lbignum t (aLen + aLen){bn_v res == bn_v a * bn_v b}) (decreases aLen) | let rec bn_karatsuba_mul_ #t aLen a b =
if aLen < bn_mul_threshold || aLen % 2 = 1 then begin
bn_mul_lemma a b;
bn_mul a b end
else begin
let aLen2 = aLen / 2 in
let a0 = bn_mod_pow2 a aLen2 in
(**) bn_mod_pow2_lemma a aLen2;
let a1 = bn_div_pow2 a aLen2 in
(**) bn_div_pow2_lemma a aLen2;
let b0 = bn_mod_pow2 b aLen2 in
(**) bn_mod_pow2_lemma b aLen2;
let b1 = bn_div_pow2 b aLen2 in
(**) bn_div_pow2_lemma b aLen2;
(**) bn_eval_bound a aLen;
(**) bn_eval_bound b aLen;
(**) K.lemma_bn_halves (bits t) aLen (bn_v a);
(**) K.lemma_bn_halves (bits t) aLen (bn_v b);
let c0, t0 = bn_sign_abs a0 a1 in
(**) bn_sign_abs_lemma a0 a1;
let c1, t1 = bn_sign_abs b0 b1 in
(**) bn_sign_abs_lemma b0 b1;
let t23 = bn_karatsuba_mul_ aLen2 t0 t1 in
let r01 = bn_karatsuba_mul_ aLen2 a0 b0 in
let r23 = bn_karatsuba_mul_ aLen2 a1 b1 in
let c2, t01 = bn_add r01 r23 in
(**) bn_add_lemma r01 r23;
let c5, t45 = bn_middle_karatsuba c0 c1 c2 t01 t23 in
(**) bn_middle_karatsuba_eval a0 a1 b0 b1 c2 t01 t23;
(**) bn_middle_karatsuba_carry_bound aLen a0 a1 b0 b1 t45 c5;
let c, res = bn_karatsuba_res r01 r23 c5 t45 in
(**) bn_karatsuba_res_lemma r01 r23 c5 t45;
(**) K.lemma_karatsuba (bits t) aLen (bn_v a0) (bn_v a1) (bn_v b0) (bn_v b1);
(**) bn_karatsuba_no_last_carry a b c res;
assert (v c = 0);
res end | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 11,
"end_line": 511,
"start_col": 0,
"start_line": 471
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1)
let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen
val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0))
let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
//assert (v c = (v c2 - v c3) % pow2 pb);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
() end
else begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
//assert (v c = v c2 + v c4);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23);
() end
val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add #t #aLen a b1 i =
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
c, a'
val bn_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
Lemma (let c, res = bn_lshift_add a b1 i in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a + v b1 * pow2 (bits t * i))
let bn_lshift_add_lemma #t #aLen a b1 i =
let pbits = bits t in
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
let p = pow2 (pbits * aLen) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add1_lemma r b1 }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (v b1 - v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + (v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (v b1) (v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + v b1 * pow2 (pbits * i) - (v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * (aLen - i))) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * (aLen - i)) (pbits * i) }
bn_v a + v b1 * pow2 (pbits * i);
}
val bn_lshift_add_early_stop:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add_early_stop #t #aLen #bLen a b i =
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
c, a'
val bn_lshift_add_early_stop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
Lemma (let c, res = bn_lshift_add_early_stop a b i in
bn_v res + v c * pow2 (bits t * (i + bLen)) == bn_v a + bn_v b * pow2 (bits t * i))
let bn_lshift_add_early_stop_lemma #t #aLen #bLen a b i =
let pbits = bits t in
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
let p = pow2 (pbits * (i + bLen)) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add_lemma r b }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (bn_v b - v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + (bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (bn_v b) (v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + bn_v b * pow2 (pbits * i) - (v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * bLen)) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * bLen) (pbits * i) }
bn_v a + bn_v b * pow2 (pbits * i);
}
val bn_karatsuba_res:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t
-> t45:lbignum t aLen ->
tuple2 (carry t) (lbignum t (aLen + aLen))
let bn_karatsuba_res #t #aLen r01 r23 c5 t45 =
let aLen2 = aLen / 2 in
let res = concat r01 r23 in
let c6, res = bn_lshift_add_early_stop res t45 aLen2 in
// let r12 = sub res aLen2 aLen in
// let c6, r12 = bn_add r12 t45 in
// let res = update_sub res aLen2 aLen r12 in
let c7 = c5 +. c6 in
let c8, res = bn_lshift_add res c7 (aLen + aLen2) in
// let r3 = sub res (aLen + aLen2) aLen2 in
// let _, r3 = bn_add r3 (create 1 c7) in
// let res = update_sub res (aLen + aLen2) aLen2 r3 in
c8, res
val bn_karatsuba_res_lemma:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t{v c5 <= 1}
-> t45:lbignum t aLen ->
Lemma
(let c, res = bn_karatsuba_res r01 r23 c5 t45 in
bn_v res + v c * pow2 (bits t * (aLen + aLen)) ==
bn_v r23 * pow2 (bits t * aLen) + (v c5 * pow2 (bits t * aLen) + bn_v t45) * pow2 (aLen / 2 * bits t) + bn_v r01)
let bn_karatsuba_res_lemma #t #aLen r01 r23 c5 t45 =
let pbits = bits t in
let aLen2 = aLen / 2 in
let aLen3 = aLen + aLen2 in
let aLen4 = aLen + aLen in
let res0 = concat r01 r23 in
let c6, res1 = bn_lshift_add_early_stop res0 t45 aLen2 in
let c7 = c5 +. c6 in
let c8, res2 = bn_lshift_add res1 c7 aLen3 in
calc (==) {
bn_v res2 + v c8 * pow2 (pbits * aLen4);
(==) { bn_lshift_add_lemma res1 c7 aLen3 }
bn_v res1 + v c7 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.small_mod (v c5 + v c6) (pow2 pbits) }
bn_v res1 + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { bn_lshift_add_early_stop_lemma res0 t45 aLen2 }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) - v c6 * pow2 (pbits * aLen3) + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { Math.Lemmas.distributivity_add_left (v c5) (v c6) (pow2 (pbits * aLen3)) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * aLen2) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * (pow2 (pbits * aLen) * pow2 (pbits * aLen2));
(==) { Math.Lemmas.paren_mul_right (v c5) (pow2 (pbits * aLen)) (pow2 (pbits * aLen2));
Math.Lemmas.distributivity_add_left (bn_v t45) (v c5 * pow2 (pbits * aLen)) (pow2 (pbits * aLen2)) }
bn_v res0 + (bn_v t45 + v c5 * pow2 (pbits * aLen)) * pow2 (pbits * aLen2);
(==) { bn_concat_lemma r01 r23 }
bn_v r23 * pow2 (pbits * aLen) + (v c5 * pow2 (pbits * aLen) + bn_v t45) * pow2 (pbits * aLen2) + bn_v r01;
}
val bn_middle_karatsuba_carry_bound:
#t:limb_t
-> aLen:size_nat{aLen % 2 = 0}
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c:limb t -> Lemma
(requires bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures v c <= 1)
let bn_middle_karatsuba_carry_bound #t aLen a0 a1 b0 b1 res c =
let pbits = bits t in
let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
bn_eval_bound a0 aLen2;
bn_eval_bound a1 aLen2;
bn_eval_bound b0 aLen2;
bn_eval_bound b1 aLen2;
calc (<) {
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a0) (bn_v b1) p }
p * p + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a1) (bn_v b0) p }
p * p + p * p;
(==) { K.lemma_double_p (bits t) aLen }
pow2 (pbits * aLen) + pow2 (pbits * aLen);
};
bn_eval_bound res aLen;
assert (bn_v res + v c * pow2 (pbits * aLen) < pow2 (pbits * aLen) + pow2 (pbits * aLen));
assert (v c <= 1)
val bn_karatsuba_no_last_carry:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen
-> c:carry t
-> res:lbignum t (aLen + aLen) -> Lemma
(requires bn_v res + v c * pow2 (bits t * (aLen + aLen)) == bn_v a * bn_v b)
(ensures v c == 0)
let bn_karatsuba_no_last_carry #t #aLen a b c res =
bn_eval_bound a aLen;
bn_eval_bound b aLen;
Math.Lemmas.lemma_mult_lt_sqr (bn_v a) (bn_v b) (pow2 (bits t * aLen));
Math.Lemmas.pow2_plus (bits t * aLen) (bits t * aLen);
bn_eval_bound res (aLen + aLen)
val bn_karatsuba_mul_:
#t:limb_t
-> aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Tot (res:lbignum t (aLen + aLen){bn_v res == bn_v a * bn_v b}) (decreases aLen) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
aLen: Lib.IntTypes.size_nat{aLen + aLen <= Lib.IntTypes.max_size_t} ->
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
b: Hacl.Spec.Bignum.Definitions.lbignum t aLen
-> Prims.Tot
(res:
Hacl.Spec.Bignum.Definitions.lbignum t (aLen + aLen)
{ Hacl.Spec.Bignum.Definitions.bn_v res ==
Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.bn_v b }) | Prims.Tot | [
"total",
""
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.op_BarBar",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Karatsuba.bn_mul_threshold",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Hacl.Spec.Bignum.Multiplication.bn_mul",
"Prims.unit",
"Hacl.Spec.Bignum.Multiplication.bn_mul_lemma",
"Prims.bool",
"Hacl.Spec.Bignum.Base.carry",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims._assert",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_no_last_carry",
"Hacl.Spec.Karatsuba.Lemmas.lemma_karatsuba",
"Lib.IntTypes.bits",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Subtraction",
"Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_res_lemma",
"Prims.eq2",
"FStar.Mul.op_Star",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_res",
"Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_carry_bound",
"Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_eval",
"Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba",
"Hacl.Spec.Bignum.Addition.bn_add_lemma",
"Hacl.Spec.Bignum.Addition.bn_add",
"Prims.op_Multiply",
"Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_mul_",
"Hacl.Spec.Bignum.Karatsuba.bn_sign_abs_lemma",
"Hacl.Spec.Bignum.Karatsuba.bn_sign_abs",
"Hacl.Spec.Karatsuba.Lemmas.lemma_bn_halves",
"Hacl.Spec.Bignum.Definitions.bn_eval_bound",
"Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma",
"Hacl.Spec.Bignum.Lib.bn_div_pow2",
"Hacl.Spec.Bignum.Lib.bn_mod_pow2_lemma",
"Hacl.Spec.Bignum.Lib.bn_mod_pow2",
"Prims.op_Division"
] | [
"recursion"
] | false | false | false | false | false | let rec bn_karatsuba_mul_ #t aLen a b =
| if aLen < bn_mul_threshold || aLen % 2 = 1
then
(bn_mul_lemma a b;
bn_mul a b)
else
let aLen2 = aLen / 2 in
let a0 = bn_mod_pow2 a aLen2 in
bn_mod_pow2_lemma a aLen2;
let a1 = bn_div_pow2 a aLen2 in
bn_div_pow2_lemma a aLen2;
let b0 = bn_mod_pow2 b aLen2 in
bn_mod_pow2_lemma b aLen2;
let b1 = bn_div_pow2 b aLen2 in
bn_div_pow2_lemma b aLen2;
bn_eval_bound a aLen;
bn_eval_bound b aLen;
K.lemma_bn_halves (bits t) aLen (bn_v a);
K.lemma_bn_halves (bits t) aLen (bn_v b);
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
let t23 = bn_karatsuba_mul_ aLen2 t0 t1 in
let r01 = bn_karatsuba_mul_ aLen2 a0 b0 in
let r23 = bn_karatsuba_mul_ aLen2 a1 b1 in
let c2, t01 = bn_add r01 r23 in
bn_add_lemma r01 r23;
let c5, t45 = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_eval a0 a1 b0 b1 c2 t01 t23;
bn_middle_karatsuba_carry_bound aLen a0 a1 b0 b1 t45 c5;
let c, res = bn_karatsuba_res r01 r23 c5 t45 in
bn_karatsuba_res_lemma r01 r23 c5 t45;
K.lemma_karatsuba (bits t) aLen (bn_v a0) (bn_v a1) (bn_v b0) (bn_v b1);
bn_karatsuba_no_last_carry a b c res;
assert (v c = 0);
res | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.trytac | val trytac (t: (unit -> Tac 'a)) : Tac (option 'a) | val trytac (t: (unit -> Tac 'a)) : Tac (option 'a) | let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 419,
"start_col": 0,
"start_line": 416
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a)
-> FStar.Tactics.Effect.Tac (FStar.Pervasives.Native.option 'a) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.try_with",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.Some",
"Prims.exn",
"FStar.Pervasives.Native.None"
] | [] | false | true | false | false | false | let trytac (t: (unit -> Tac 'a)) : Tac (option 'a) =
| try Some (t ()) with | _ -> None | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.fresh_bv | val fresh_bv: Prims.unit -> Tac bv | val fresh_bv: Prims.unit -> Tac bv | let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 42,
"end_line": 383,
"start_col": 0,
"start_line": 378
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.bv | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.V1.Builtins.fresh_bv_named",
"Prims.op_Hat",
"Prims.string_of_int",
"FStar.Stubs.Reflection.Types.bv",
"Prims.int",
"FStar.Stubs.Tactics.V1.Builtins.fresh"
] | [] | false | true | false | false | false | let fresh_bv () : Tac bv =
| let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.repeat' | val repeat' (f: (unit -> Tac 'a)) : Tac unit | val repeat' (f: (unit -> Tac 'a)) : Tac unit | let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in () | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 26,
"end_line": 442,
"start_col": 0,
"start_line": 441
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.list",
"FStar.Tactics.V1.Derived.repeat"
] | [] | false | true | false | false | false | let repeat' (f: (unit -> Tac 'a)) : Tac unit =
| let _ = repeat f in
() | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.repeat1 | val repeat1 (#a: Type) (t: (unit -> Tac a)) : Tac (list a) | val repeat1 (#a: Type) (t: (unit -> Tac a)) : Tac (list a) | let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 20,
"end_line": 439,
"start_col": 0,
"start_line": 438
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> FStar.Tactics.Effect.Tac (Prims.list a) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.Cons",
"Prims.list",
"FStar.Tactics.V1.Derived.repeat"
] | [] | false | true | false | false | false | let repeat1 (#a: Type) (t: (unit -> Tac a)) : Tac (list a) =
| t () :: repeat t | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.discard | val discard: tau: (unit -> Tac 'a) -> unit -> Tac unit | val discard: tau: (unit -> Tac 'a) -> unit -> Tac unit | let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in () | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 34,
"end_line": 465,
"start_col": 0,
"start_line": 464
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | tau: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> _: Prims.unit
-> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit"
] | [] | false | true | false | false | false | let discard (tau: (unit -> Tac 'a)) : unit -> Tac unit =
| fun () ->
let _ = tau () in
() | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.tadmit | val tadmit : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | let tadmit () = tadmit_t (`()) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 471,
"start_col": 0,
"start_line": 471
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.V1.Builtins.tadmit_t"
] | [] | false | true | false | false | false | let tadmit () =
| tadmit_t (`()) | false |
|
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.join_all_smt_goals | val join_all_smt_goals : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs' | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 20,
"end_line": 462,
"start_col": 0,
"start_line": 455
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.list",
"FStar.Stubs.Tactics.Types.goal",
"FStar.Stubs.Tactics.V1.Builtins.set_smt_goals",
"FStar.Stubs.Tactics.V1.Builtins.set_goals",
"FStar.Tactics.V1.Derived.goals",
"FStar.Tactics.V1.Derived.repeat'",
"FStar.Stubs.Tactics.V1.Builtins.join",
"Prims.Nil",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Tactics.V1.Derived.smt_goals"
] | [] | false | true | false | false | false | let join_all_smt_goals () =
| let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in
set_goals gs;
set_smt_goals sgs' | false |
|
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.admit1 | val admit1: Prims.unit -> Tac unit | val admit1: Prims.unit -> Tac unit | let admit1 () : Tac unit =
tadmit () | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 13,
"end_line": 474,
"start_col": 0,
"start_line": 473
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.tadmit"
] | [] | false | true | false | false | false | let admit1 () : Tac unit =
| tadmit () | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.repeatseq | val repeatseq (#a: Type) (t: (unit -> Tac a)) : Tac unit | val repeatseq (#a: Type) (t: (unit -> Tac a)) : Tac unit | let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in () | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 88,
"end_line": 469,
"start_col": 0,
"start_line": 468
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac a) -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Pervasives.Native.option",
"FStar.Tactics.V1.Derived.trytac",
"FStar.Tactics.V1.Derived.seq",
"FStar.Tactics.V1.Derived.discard",
"FStar.Tactics.V1.Derived.repeatseq"
] | [
"recursion"
] | false | true | false | false | false | let rec repeatseq (#a: Type) (t: (unit -> Tac a)) : Tac unit =
| let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in
() | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.norm_term | val norm_term (s: list norm_step) (t: term) : Tac term | val norm_term (s: list norm_step) (t: term) : Tac term | let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 23,
"end_line": 449,
"start_col": 0,
"start_line": 444
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Prims.list FStar.Pervasives.norm_step -> t: FStar.Stubs.Reflection.Types.term
-> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.term | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"FStar.Pervasives.norm_step",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V1.Builtins.norm_term_env",
"FStar.Stubs.Reflection.Types.env",
"FStar.Tactics.V1.Derived.try_with",
"Prims.unit",
"FStar.Tactics.V1.Derived.cur_env",
"Prims.exn",
"FStar.Stubs.Tactics.V1.Builtins.top_env"
] | [] | false | true | false | false | false | let norm_term (s: list norm_step) (t: term) : Tac term =
| let e = try cur_env () with | _ -> top_env () in
norm_term_env e s t | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.admit_all | val admit_all: Prims.unit -> Tac unit | val admit_all: Prims.unit -> Tac unit | let admit_all () : Tac unit =
let _ = repeat tadmit in
() | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 6,
"end_line": 478,
"start_col": 0,
"start_line": 476
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.list",
"FStar.Tactics.V1.Derived.repeat",
"FStar.Tactics.V1.Derived.tadmit"
] | [] | false | true | false | false | false | let admit_all () : Tac unit =
| let _ = repeat tadmit in
() | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_ | val bn_karatsuba_sqr_: #t:limb_t -> aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen ->
Tot (res:lbignum t (aLen + aLen){bn_v res == bn_v a * bn_v a}) (decreases aLen) | val bn_karatsuba_sqr_: #t:limb_t -> aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen ->
Tot (res:lbignum t (aLen + aLen){bn_v res == bn_v a * bn_v a}) (decreases aLen) | let rec bn_karatsuba_sqr_ #t aLen a =
if aLen < bn_mul_threshold || aLen % 2 = 1 then begin
bn_sqr_lemma a;
bn_sqr a end
else begin
let aLen2 = aLen / 2 in
let a0 = bn_mod_pow2 a aLen2 in
(**) bn_mod_pow2_lemma a aLen2;
let a1 = bn_div_pow2 a aLen2 in
(**) bn_div_pow2_lemma a aLen2;
(**) bn_eval_bound a aLen;
(**) K.lemma_bn_halves (bits t) aLen (bn_v a);
let c0, t0 = bn_sign_abs a0 a1 in
(**) bn_sign_abs_lemma a0 a1;
let t23 = bn_karatsuba_sqr_ aLen2 t0 in
let r01 = bn_karatsuba_sqr_ aLen2 a0 in
let r23 = bn_karatsuba_sqr_ aLen2 a1 in
let c2, t01 = bn_add r01 r23 in
(**) bn_add_lemma r01 r23;
let c5, t45 = bn_middle_karatsuba_sqr c2 t01 t23 in
(**) bn_middle_karatsuba_sqr_lemma c0 c2 t01 t23;
(**) bn_middle_karatsuba_eval a0 a1 a0 a1 c2 t01 t23;
(**) bn_middle_karatsuba_carry_bound aLen a0 a1 a0 a1 t45 c5;
let c, res = bn_karatsuba_res r01 r23 c5 t45 in
(**) bn_karatsuba_res_lemma r01 r23 c5 t45;
(**) K.lemma_karatsuba (bits t) aLen (bn_v a0) (bn_v a1) (bn_v a0) (bn_v a1);
(**) bn_karatsuba_no_last_carry a a c res;
assert (v c = 0);
res end | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 11,
"end_line": 608,
"start_col": 0,
"start_line": 576
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1)
let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen
val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0))
let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
//assert (v c = (v c2 - v c3) % pow2 pb);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
() end
else begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
//assert (v c = v c2 + v c4);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23);
() end
val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add #t #aLen a b1 i =
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
c, a'
val bn_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
Lemma (let c, res = bn_lshift_add a b1 i in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a + v b1 * pow2 (bits t * i))
let bn_lshift_add_lemma #t #aLen a b1 i =
let pbits = bits t in
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
let p = pow2 (pbits * aLen) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add1_lemma r b1 }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (v b1 - v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + (v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (v b1) (v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + v b1 * pow2 (pbits * i) - (v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * (aLen - i))) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * (aLen - i)) (pbits * i) }
bn_v a + v b1 * pow2 (pbits * i);
}
val bn_lshift_add_early_stop:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add_early_stop #t #aLen #bLen a b i =
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
c, a'
val bn_lshift_add_early_stop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
Lemma (let c, res = bn_lshift_add_early_stop a b i in
bn_v res + v c * pow2 (bits t * (i + bLen)) == bn_v a + bn_v b * pow2 (bits t * i))
let bn_lshift_add_early_stop_lemma #t #aLen #bLen a b i =
let pbits = bits t in
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
let p = pow2 (pbits * (i + bLen)) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add_lemma r b }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (bn_v b - v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + (bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (bn_v b) (v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + bn_v b * pow2 (pbits * i) - (v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * bLen)) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * bLen) (pbits * i) }
bn_v a + bn_v b * pow2 (pbits * i);
}
val bn_karatsuba_res:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t
-> t45:lbignum t aLen ->
tuple2 (carry t) (lbignum t (aLen + aLen))
let bn_karatsuba_res #t #aLen r01 r23 c5 t45 =
let aLen2 = aLen / 2 in
let res = concat r01 r23 in
let c6, res = bn_lshift_add_early_stop res t45 aLen2 in
// let r12 = sub res aLen2 aLen in
// let c6, r12 = bn_add r12 t45 in
// let res = update_sub res aLen2 aLen r12 in
let c7 = c5 +. c6 in
let c8, res = bn_lshift_add res c7 (aLen + aLen2) in
// let r3 = sub res (aLen + aLen2) aLen2 in
// let _, r3 = bn_add r3 (create 1 c7) in
// let res = update_sub res (aLen + aLen2) aLen2 r3 in
c8, res
val bn_karatsuba_res_lemma:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t{v c5 <= 1}
-> t45:lbignum t aLen ->
Lemma
(let c, res = bn_karatsuba_res r01 r23 c5 t45 in
bn_v res + v c * pow2 (bits t * (aLen + aLen)) ==
bn_v r23 * pow2 (bits t * aLen) + (v c5 * pow2 (bits t * aLen) + bn_v t45) * pow2 (aLen / 2 * bits t) + bn_v r01)
let bn_karatsuba_res_lemma #t #aLen r01 r23 c5 t45 =
let pbits = bits t in
let aLen2 = aLen / 2 in
let aLen3 = aLen + aLen2 in
let aLen4 = aLen + aLen in
let res0 = concat r01 r23 in
let c6, res1 = bn_lshift_add_early_stop res0 t45 aLen2 in
let c7 = c5 +. c6 in
let c8, res2 = bn_lshift_add res1 c7 aLen3 in
calc (==) {
bn_v res2 + v c8 * pow2 (pbits * aLen4);
(==) { bn_lshift_add_lemma res1 c7 aLen3 }
bn_v res1 + v c7 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.small_mod (v c5 + v c6) (pow2 pbits) }
bn_v res1 + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { bn_lshift_add_early_stop_lemma res0 t45 aLen2 }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) - v c6 * pow2 (pbits * aLen3) + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { Math.Lemmas.distributivity_add_left (v c5) (v c6) (pow2 (pbits * aLen3)) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * aLen2) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * (pow2 (pbits * aLen) * pow2 (pbits * aLen2));
(==) { Math.Lemmas.paren_mul_right (v c5) (pow2 (pbits * aLen)) (pow2 (pbits * aLen2));
Math.Lemmas.distributivity_add_left (bn_v t45) (v c5 * pow2 (pbits * aLen)) (pow2 (pbits * aLen2)) }
bn_v res0 + (bn_v t45 + v c5 * pow2 (pbits * aLen)) * pow2 (pbits * aLen2);
(==) { bn_concat_lemma r01 r23 }
bn_v r23 * pow2 (pbits * aLen) + (v c5 * pow2 (pbits * aLen) + bn_v t45) * pow2 (pbits * aLen2) + bn_v r01;
}
val bn_middle_karatsuba_carry_bound:
#t:limb_t
-> aLen:size_nat{aLen % 2 = 0}
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c:limb t -> Lemma
(requires bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures v c <= 1)
let bn_middle_karatsuba_carry_bound #t aLen a0 a1 b0 b1 res c =
let pbits = bits t in
let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
bn_eval_bound a0 aLen2;
bn_eval_bound a1 aLen2;
bn_eval_bound b0 aLen2;
bn_eval_bound b1 aLen2;
calc (<) {
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a0) (bn_v b1) p }
p * p + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a1) (bn_v b0) p }
p * p + p * p;
(==) { K.lemma_double_p (bits t) aLen }
pow2 (pbits * aLen) + pow2 (pbits * aLen);
};
bn_eval_bound res aLen;
assert (bn_v res + v c * pow2 (pbits * aLen) < pow2 (pbits * aLen) + pow2 (pbits * aLen));
assert (v c <= 1)
val bn_karatsuba_no_last_carry:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen
-> c:carry t
-> res:lbignum t (aLen + aLen) -> Lemma
(requires bn_v res + v c * pow2 (bits t * (aLen + aLen)) == bn_v a * bn_v b)
(ensures v c == 0)
let bn_karatsuba_no_last_carry #t #aLen a b c res =
bn_eval_bound a aLen;
bn_eval_bound b aLen;
Math.Lemmas.lemma_mult_lt_sqr (bn_v a) (bn_v b) (pow2 (bits t * aLen));
Math.Lemmas.pow2_plus (bits t * aLen) (bits t * aLen);
bn_eval_bound res (aLen + aLen)
val bn_karatsuba_mul_:
#t:limb_t
-> aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Tot (res:lbignum t (aLen + aLen){bn_v res == bn_v a * bn_v b}) (decreases aLen)
let rec bn_karatsuba_mul_ #t aLen a b =
if aLen < bn_mul_threshold || aLen % 2 = 1 then begin
bn_mul_lemma a b;
bn_mul a b end
else begin
let aLen2 = aLen / 2 in
let a0 = bn_mod_pow2 a aLen2 in
(**) bn_mod_pow2_lemma a aLen2;
let a1 = bn_div_pow2 a aLen2 in
(**) bn_div_pow2_lemma a aLen2;
let b0 = bn_mod_pow2 b aLen2 in
(**) bn_mod_pow2_lemma b aLen2;
let b1 = bn_div_pow2 b aLen2 in
(**) bn_div_pow2_lemma b aLen2;
(**) bn_eval_bound a aLen;
(**) bn_eval_bound b aLen;
(**) K.lemma_bn_halves (bits t) aLen (bn_v a);
(**) K.lemma_bn_halves (bits t) aLen (bn_v b);
let c0, t0 = bn_sign_abs a0 a1 in
(**) bn_sign_abs_lemma a0 a1;
let c1, t1 = bn_sign_abs b0 b1 in
(**) bn_sign_abs_lemma b0 b1;
let t23 = bn_karatsuba_mul_ aLen2 t0 t1 in
let r01 = bn_karatsuba_mul_ aLen2 a0 b0 in
let r23 = bn_karatsuba_mul_ aLen2 a1 b1 in
let c2, t01 = bn_add r01 r23 in
(**) bn_add_lemma r01 r23;
let c5, t45 = bn_middle_karatsuba c0 c1 c2 t01 t23 in
(**) bn_middle_karatsuba_eval a0 a1 b0 b1 c2 t01 t23;
(**) bn_middle_karatsuba_carry_bound aLen a0 a1 b0 b1 t45 c5;
let c, res = bn_karatsuba_res r01 r23 c5 t45 in
(**) bn_karatsuba_res_lemma r01 r23 c5 t45;
(**) K.lemma_karatsuba (bits t) aLen (bn_v a0) (bn_v a1) (bn_v b0) (bn_v b1);
(**) bn_karatsuba_no_last_carry a b c res;
assert (v c = 0);
res end
val bn_karatsuba_mul:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
lbignum t (aLen + aLen)
let bn_karatsuba_mul #t #aLen a b =
bn_karatsuba_mul_ aLen a b
val bn_karatsuba_mul_lemma:
#t:limb_t
-> #aLen:size_nat{aLen + aLen <= max_size_t}
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (bn_karatsuba_mul a b == bn_mul a b /\
bn_v (bn_karatsuba_mul a b) == bn_v a * bn_v b)
let bn_karatsuba_mul_lemma #t #aLen a b =
let res = bn_karatsuba_mul_ aLen a b in
assert (bn_v res == bn_v a * bn_v b);
let res' = bn_mul a b in
bn_mul_lemma a b;
assert (bn_v res' == bn_v a * bn_v b);
bn_eval_inj (aLen + aLen) res res';
assert (bn_karatsuba_mul_ aLen a b == bn_mul a b)
val bn_middle_karatsuba_sqr:
#t:limb_t
-> #aLen:size_nat
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba_sqr #t #aLen c2 t01 t23 =
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
c3, t45
val bn_middle_karatsuba_sqr_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (bn_middle_karatsuba_sqr c2 t01 t23 == bn_middle_karatsuba c0 c0 c2 t01 t23)
let bn_middle_karatsuba_sqr_lemma #t #aLen c0 c2 t01 t23 =
let (c, res) = bn_middle_karatsuba c0 c0 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
bn_middle_karatsuba_lemma c0 c0 c2 t01 t23;
assert (v c == v c3' /\ bn_v res == bn_v t45);
bn_eval_inj aLen t45 res
val bn_karatsuba_sqr_: #t:limb_t -> aLen:size_nat{aLen + aLen <= max_size_t} -> a:lbignum t aLen ->
Tot (res:lbignum t (aLen + aLen){bn_v res == bn_v a * bn_v a}) (decreases aLen) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
aLen: Lib.IntTypes.size_nat{aLen + aLen <= Lib.IntTypes.max_size_t} ->
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen
-> Prims.Tot
(res:
Hacl.Spec.Bignum.Definitions.lbignum t (aLen + aLen)
{ Hacl.Spec.Bignum.Definitions.bn_v res ==
Hacl.Spec.Bignum.Definitions.bn_v a * Hacl.Spec.Bignum.Definitions.bn_v a }) | Prims.Tot | [
"total",
""
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.op_BarBar",
"Prims.op_LessThan",
"Hacl.Spec.Bignum.Karatsuba.bn_mul_threshold",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Hacl.Spec.Bignum.Squaring.bn_sqr",
"Prims.unit",
"Hacl.Spec.Bignum.Squaring.bn_sqr_lemma",
"Prims.bool",
"Hacl.Spec.Bignum.Base.carry",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims._assert",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_no_last_carry",
"Hacl.Spec.Karatsuba.Lemmas.lemma_karatsuba",
"Lib.IntTypes.bits",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Prims.op_Subtraction",
"Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_res_lemma",
"Prims.eq2",
"FStar.Mul.op_Star",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_res",
"Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_carry_bound",
"Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_eval",
"Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_sqr_lemma",
"Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_sqr",
"Hacl.Spec.Bignum.Addition.bn_add_lemma",
"Hacl.Spec.Bignum.Addition.bn_add",
"Prims.op_Multiply",
"Hacl.Spec.Bignum.Karatsuba.bn_karatsuba_sqr_",
"Hacl.Spec.Bignum.Karatsuba.bn_sign_abs_lemma",
"Hacl.Spec.Bignum.Karatsuba.bn_sign_abs",
"Hacl.Spec.Karatsuba.Lemmas.lemma_bn_halves",
"Hacl.Spec.Bignum.Definitions.bn_eval_bound",
"Hacl.Spec.Bignum.Lib.bn_div_pow2_lemma",
"Hacl.Spec.Bignum.Lib.bn_div_pow2",
"Hacl.Spec.Bignum.Lib.bn_mod_pow2_lemma",
"Hacl.Spec.Bignum.Lib.bn_mod_pow2",
"Prims.op_Division"
] | [
"recursion"
] | false | false | false | false | false | let rec bn_karatsuba_sqr_ #t aLen a =
| if aLen < bn_mul_threshold || aLen % 2 = 1
then
(bn_sqr_lemma a;
bn_sqr a)
else
let aLen2 = aLen / 2 in
let a0 = bn_mod_pow2 a aLen2 in
bn_mod_pow2_lemma a aLen2;
let a1 = bn_div_pow2 a aLen2 in
bn_div_pow2_lemma a aLen2;
bn_eval_bound a aLen;
K.lemma_bn_halves (bits t) aLen (bn_v a);
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
let t23 = bn_karatsuba_sqr_ aLen2 t0 in
let r01 = bn_karatsuba_sqr_ aLen2 a0 in
let r23 = bn_karatsuba_sqr_ aLen2 a1 in
let c2, t01 = bn_add r01 r23 in
bn_add_lemma r01 r23;
let c5, t45 = bn_middle_karatsuba_sqr c2 t01 t23 in
bn_middle_karatsuba_sqr_lemma c0 c2 t01 t23;
bn_middle_karatsuba_eval a0 a1 a0 a1 c2 t01 t23;
bn_middle_karatsuba_carry_bound aLen a0 a1 a0 a1 t45 c5;
let c, res = bn_karatsuba_res r01 r23 c5 t45 in
bn_karatsuba_res_lemma r01 r23 c5 t45;
K.lemma_karatsuba (bits t) aLen (bn_v a0) (bn_v a1) (bn_v a0) (bn_v a1);
bn_karatsuba_no_last_carry a a c res;
assert (v c = 0);
res | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.skip_guard | val skip_guard: Prims.unit -> Tac unit | val skip_guard: Prims.unit -> Tac unit | let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail "" | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 16,
"end_line": 487,
"start_col": 0,
"start_line": 484
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.smt",
"Prims.bool",
"FStar.Tactics.V1.Derived.fail",
"FStar.Tactics.V1.Derived.is_guard"
] | [] | false | true | false | false | false | let skip_guard () : Tac unit =
| if is_guard () then smt () else fail "" | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.guards_to_smt | val guards_to_smt: Prims.unit -> Tac unit | val guards_to_smt: Prims.unit -> Tac unit | let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
() | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 6,
"end_line": 491,
"start_col": 0,
"start_line": 489
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail "" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.list",
"FStar.Tactics.V1.Derived.repeat",
"FStar.Tactics.V1.Derived.skip_guard"
] | [] | false | true | false | false | false | let guards_to_smt () : Tac unit =
| let _ = repeat skip_guard in
() | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_lshift_add_lemma | val bn_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
Lemma (let c, res = bn_lshift_add a b1 i in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a + v b1 * pow2 (bits t * i)) | val bn_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
Lemma (let c, res = bn_lshift_add a b1 i in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a + v b1 * pow2 (bits t * i)) | let bn_lshift_add_lemma #t #aLen a b1 i =
let pbits = bits t in
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
let p = pow2 (pbits * aLen) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add1_lemma r b1 }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (v b1 - v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + (v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (v b1) (v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + v b1 * pow2 (pbits * i) - (v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * (aLen - i))) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * (aLen - i)) (pbits * i) }
bn_v a + v b1 * pow2 (pbits * i);
} | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 288,
"start_col": 0,
"start_line": 268
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1)
let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen
val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0))
let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
//assert (v c = (v c2 - v c3) % pow2 pb);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
() end
else begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
//assert (v c = v c2 + v c4);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23);
() end
val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add #t #aLen a b1 i =
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
c, a'
val bn_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
Lemma (let c, res = bn_lshift_add a b1 i in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a + v b1 * pow2 (bits t * i)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
b1: Hacl.Spec.Bignum.Definitions.limb t ->
i: Prims.nat{i + 1 <= aLen}
-> FStar.Pervasives.Lemma
(ensures
(let _ = Hacl.Spec.Bignum.Karatsuba.bn_lshift_add a b1 i in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in
Hacl.Spec.Bignum.Definitions.bn_v res +
Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * aLen) ==
Hacl.Spec.Bignum.Definitions.bn_v a +
Lib.IntTypes.v b1 * Prims.pow2 (Lib.IntTypes.bits t * i))
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Hacl.Spec.Bignum.Base.carry",
"Prims.op_Subtraction",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Hacl.Spec.Bignum.Definitions.bn_v",
"FStar.Mul.op_Star",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.pow2",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.Bignum.Definitions.bn_update_sub_eval",
"Prims.squash",
"Hacl.Spec.Bignum.Addition.bn_add1_lemma",
"FStar.Math.Lemmas.distributivity_add_left",
"FStar.Math.Lemmas.distributivity_sub_left",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.paren_mul_right",
"Prims.pos",
"Lib.Sequence.lseq",
"Prims.l_and",
"Lib.Sequence.sub",
"Prims.l_Forall",
"Prims.l_or",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index",
"Lib.Sequence.update_sub",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Addition.bn_add1",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.slice",
"Lib.IntTypes.bits"
] | [] | false | false | true | false | false | let bn_lshift_add_lemma #t #aLen a b1 i =
| let pbits = bits t in
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
let p = pow2 (pbits * aLen) in
calc ( == ) {
bn_v a' + v c * p;
( == ) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
( == ) { bn_add1_lemma r b1 }
bn_v a - bn_v r * pow2 (pbits * i) +
(bn_v r + v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) +
v c * p;
( == ) { Math.Lemmas.distributivity_add_left (bn_v r)
(v b1 - v c * pow2 (pbits * (aLen - i)))
(pow2 (pbits * i)) }
bn_v a + (v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
( == ) { Math.Lemmas.distributivity_sub_left (v b1)
(v c * pow2 (pbits * (aLen - i)))
(pow2 (pbits * i)) }
bn_v a + v b1 * pow2 (pbits * i) - (v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
( == ) { (Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * (aLen - i))) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * (aLen - i)) (pbits * i)) }
bn_v a + v b1 * pow2 (pbits * i);
} | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.whnf | val whnf: Prims.unit -> Tac unit | val whnf: Prims.unit -> Tac unit | let whnf () : Tac unit = norm [weak; hnf; primops; delta] | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 60,
"end_line": 494,
"start_col": 0,
"start_line": 494
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.V1.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.weak",
"FStar.Pervasives.hnf",
"FStar.Pervasives.primops",
"FStar.Pervasives.delta",
"Prims.Nil"
] | [] | false | true | false | false | false | let whnf () : Tac unit =
| norm [weak; hnf; primops; delta] | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.is_guard | val is_guard: Prims.unit -> Tac bool | val is_guard: Prims.unit -> Tac bool | let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ()) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 482,
"start_col": 0,
"start_line": 481
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.bool | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.Types.is_guard",
"Prims.bool",
"FStar.Stubs.Tactics.Types.goal",
"FStar.Tactics.V1.Derived._cur_goal"
] | [] | false | true | false | false | false | let is_guard () : Tac bool =
| Stubs.Tactics.Types.is_guard (_cur_goal ()) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.compute | val compute: Prims.unit -> Tac unit | val compute: Prims.unit -> Tac unit | let compute () : Tac unit = norm [primops; iota; delta; zeta] | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 495,
"start_col": 0,
"start_line": 495
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.V1.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.primops",
"FStar.Pervasives.iota",
"FStar.Pervasives.delta",
"FStar.Pervasives.zeta",
"Prims.Nil"
] | [] | false | true | false | false | false | let compute () : Tac unit =
| norm [primops; iota; delta; zeta] | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.intros | val intros: Prims.unit -> Tac (list binder) | val intros: Prims.unit -> Tac (list binder) | let intros () : Tac (list binder) = repeat intro | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 48,
"end_line": 497,
"start_col": 0,
"start_line": 497
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Stubs.Reflection.Types.binder) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.repeat",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Stubs.Tactics.V1.Builtins.intro",
"Prims.list"
] | [] | false | true | false | false | false | let intros () : Tac (list binder) =
| repeat intro | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.simpl | val simpl: Prims.unit -> Tac unit | val simpl: Prims.unit -> Tac unit | let simpl () : Tac unit = norm [simplify; primops] | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 52,
"end_line": 493,
"start_col": 0,
"start_line": 493
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.V1.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.simplify",
"FStar.Pervasives.primops",
"Prims.Nil"
] | [] | false | true | false | false | false | let simpl () : Tac unit =
| norm [simplify; primops] | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_carry_bound | val bn_middle_karatsuba_carry_bound:
#t:limb_t
-> aLen:size_nat{aLen % 2 = 0}
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c:limb t -> Lemma
(requires bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures v c <= 1) | val bn_middle_karatsuba_carry_bound:
#t:limb_t
-> aLen:size_nat{aLen % 2 = 0}
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c:limb t -> Lemma
(requires bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures v c <= 1) | let bn_middle_karatsuba_carry_bound #t aLen a0 a1 b0 b1 res c =
let pbits = bits t in
let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
bn_eval_bound a0 aLen2;
bn_eval_bound a1 aLen2;
bn_eval_bound b0 aLen2;
bn_eval_bound b1 aLen2;
calc (<) {
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a0) (bn_v b1) p }
p * p + bn_v a1 * bn_v b0;
(<) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a1) (bn_v b0) p }
p * p + p * p;
(==) { K.lemma_double_p (bits t) aLen }
pow2 (pbits * aLen) + pow2 (pbits * aLen);
};
bn_eval_bound res aLen;
assert (bn_v res + v c * pow2 (pbits * aLen) < pow2 (pbits * aLen) + pow2 (pbits * aLen));
assert (v c <= 1) | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 19,
"end_line": 443,
"start_col": 0,
"start_line": 422
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1)
let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen
val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0))
let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
//assert (v c = (v c2 - v c3) % pow2 pb);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
() end
else begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
//assert (v c = v c2 + v c4);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23);
() end
val bn_lshift_add:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add #t #aLen a b1 i =
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
c, a'
val bn_lshift_add_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b1:limb t
-> i:nat{i + 1 <= aLen} ->
Lemma (let c, res = bn_lshift_add a b1 i in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a + v b1 * pow2 (bits t * i))
let bn_lshift_add_lemma #t #aLen a b1 i =
let pbits = bits t in
let r = sub a i (aLen - i) in
let c, r' = bn_add1 r b1 in
let a' = update_sub a i (aLen - i) r' in
let p = pow2 (pbits * aLen) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add1_lemma r b1 }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (v b1 - v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + (v b1 - v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (v b1) (v c * pow2 (pbits * (aLen - i))) (pow2 (pbits * i)) }
bn_v a + v b1 * pow2 (pbits * i) - (v c * pow2 (pbits * (aLen - i))) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * (aLen - i))) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * (aLen - i)) (pbits * i) }
bn_v a + v b1 * pow2 (pbits * i);
}
val bn_lshift_add_early_stop:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
tuple2 (carry t) (lbignum t aLen)
let bn_lshift_add_early_stop #t #aLen #bLen a b i =
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
c, a'
val bn_lshift_add_early_stop_lemma:
#t:limb_t
-> #aLen:size_nat
-> #bLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t bLen
-> i:nat{i + bLen <= aLen} ->
Lemma (let c, res = bn_lshift_add_early_stop a b i in
bn_v res + v c * pow2 (bits t * (i + bLen)) == bn_v a + bn_v b * pow2 (bits t * i))
let bn_lshift_add_early_stop_lemma #t #aLen #bLen a b i =
let pbits = bits t in
let r = sub a i bLen in
let c, r' = bn_add r b in
let a' = update_sub a i bLen r' in
let p = pow2 (pbits * (i + bLen)) in
calc (==) {
bn_v a' + v c * p;
(==) { bn_update_sub_eval a r' i }
bn_v a - bn_v r * pow2 (pbits * i) + bn_v r' * pow2 (pbits * i) + v c * p;
(==) { bn_add_lemma r b }
bn_v a - bn_v r * pow2 (pbits * i) + (bn_v r + bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_add_left (bn_v r) (bn_v b - v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + (bn_v b - v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.distributivity_sub_left (bn_v b) (v c * pow2 (pbits * bLen)) (pow2 (pbits * i)) }
bn_v a + bn_v b * pow2 (pbits * i) - (v c * pow2 (pbits * bLen)) * pow2 (pbits * i) + v c * p;
(==) { Math.Lemmas.paren_mul_right (v c) (pow2 (pbits * bLen)) (pow2 (pbits * i));
Math.Lemmas.pow2_plus (pbits * bLen) (pbits * i) }
bn_v a + bn_v b * pow2 (pbits * i);
}
val bn_karatsuba_res:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t
-> t45:lbignum t aLen ->
tuple2 (carry t) (lbignum t (aLen + aLen))
let bn_karatsuba_res #t #aLen r01 r23 c5 t45 =
let aLen2 = aLen / 2 in
let res = concat r01 r23 in
let c6, res = bn_lshift_add_early_stop res t45 aLen2 in
// let r12 = sub res aLen2 aLen in
// let c6, r12 = bn_add r12 t45 in
// let res = update_sub res aLen2 aLen r12 in
let c7 = c5 +. c6 in
let c8, res = bn_lshift_add res c7 (aLen + aLen2) in
// let r3 = sub res (aLen + aLen2) aLen2 in
// let _, r3 = bn_add r3 (create 1 c7) in
// let res = update_sub res (aLen + aLen2) aLen2 r3 in
c8, res
val bn_karatsuba_res_lemma:
#t:limb_t
-> #aLen:size_pos{2 * aLen <= max_size_t}
-> r01:lbignum t aLen
-> r23:lbignum t aLen
-> c5:limb t{v c5 <= 1}
-> t45:lbignum t aLen ->
Lemma
(let c, res = bn_karatsuba_res r01 r23 c5 t45 in
bn_v res + v c * pow2 (bits t * (aLen + aLen)) ==
bn_v r23 * pow2 (bits t * aLen) + (v c5 * pow2 (bits t * aLen) + bn_v t45) * pow2 (aLen / 2 * bits t) + bn_v r01)
let bn_karatsuba_res_lemma #t #aLen r01 r23 c5 t45 =
let pbits = bits t in
let aLen2 = aLen / 2 in
let aLen3 = aLen + aLen2 in
let aLen4 = aLen + aLen in
let res0 = concat r01 r23 in
let c6, res1 = bn_lshift_add_early_stop res0 t45 aLen2 in
let c7 = c5 +. c6 in
let c8, res2 = bn_lshift_add res1 c7 aLen3 in
calc (==) {
bn_v res2 + v c8 * pow2 (pbits * aLen4);
(==) { bn_lshift_add_lemma res1 c7 aLen3 }
bn_v res1 + v c7 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.small_mod (v c5 + v c6) (pow2 pbits) }
bn_v res1 + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { bn_lshift_add_early_stop_lemma res0 t45 aLen2 }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) - v c6 * pow2 (pbits * aLen3) + (v c5 + v c6) * pow2 (pbits * aLen3);
(==) { Math.Lemmas.distributivity_add_left (v c5) (v c6) (pow2 (pbits * aLen3)) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * pow2 (pbits * aLen3);
(==) { Math.Lemmas.pow2_plus (pbits * aLen) (pbits * aLen2) }
bn_v res0 + bn_v t45 * pow2 (pbits * aLen2) + v c5 * (pow2 (pbits * aLen) * pow2 (pbits * aLen2));
(==) { Math.Lemmas.paren_mul_right (v c5) (pow2 (pbits * aLen)) (pow2 (pbits * aLen2));
Math.Lemmas.distributivity_add_left (bn_v t45) (v c5 * pow2 (pbits * aLen)) (pow2 (pbits * aLen2)) }
bn_v res0 + (bn_v t45 + v c5 * pow2 (pbits * aLen)) * pow2 (pbits * aLen2);
(==) { bn_concat_lemma r01 r23 }
bn_v r23 * pow2 (pbits * aLen) + (v c5 * pow2 (pbits * aLen) + bn_v t45) * pow2 (pbits * aLen2) + bn_v r01;
}
val bn_middle_karatsuba_carry_bound:
#t:limb_t
-> aLen:size_nat{aLen % 2 = 0}
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c:limb t -> Lemma
(requires bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures v c <= 1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
aLen: Lib.IntTypes.size_nat{aLen % 2 = 0} ->
a0: Hacl.Spec.Bignum.Definitions.lbignum t (aLen / 2) ->
a1: Hacl.Spec.Bignum.Definitions.lbignum t (aLen / 2) ->
b0: Hacl.Spec.Bignum.Definitions.lbignum t (aLen / 2) ->
b1: Hacl.Spec.Bignum.Definitions.lbignum t (aLen / 2) ->
res: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
c: Hacl.Spec.Bignum.Definitions.limb t
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.Bignum.Definitions.bn_v res +
Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * aLen) ==
Hacl.Spec.Bignum.Definitions.bn_v a0 * Hacl.Spec.Bignum.Definitions.bn_v b1 +
Hacl.Spec.Bignum.Definitions.bn_v a1 * Hacl.Spec.Bignum.Definitions.bn_v b0)
(ensures Lib.IntTypes.v c <= 1) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.op_Division",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims._assert",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.unit",
"Prims.op_LessThan",
"Prims.op_Addition",
"Hacl.Spec.Bignum.Definitions.bn_v",
"FStar.Mul.op_Star",
"Prims.pow2",
"Hacl.Spec.Bignum.Definitions.bn_eval_bound",
"FStar.Calc.calc_finish",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.eq2",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mult_lt_sqr",
"Prims.squash",
"Hacl.Spec.Karatsuba.Lemmas.lemma_double_p",
"Lib.IntTypes.bits",
"Prims.pos"
] | [] | false | false | true | false | false | let bn_middle_karatsuba_carry_bound #t aLen a0 a1 b0 b1 res c =
| let pbits = bits t in
let aLen2 = aLen / 2 in
let p = pow2 (pbits * aLen2) in
bn_eval_bound a0 aLen2;
bn_eval_bound a1 aLen2;
bn_eval_bound b0 aLen2;
bn_eval_bound b1 aLen2;
calc ( < ) {
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0;
( < ) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a0) (bn_v b1) p }
p * p + bn_v a1 * bn_v b0;
( < ) { Math.Lemmas.lemma_mult_lt_sqr (bn_v a1) (bn_v b0) p }
p * p + p * p;
( == ) { K.lemma_double_p (bits t) aLen }
pow2 (pbits * aLen) + pow2 (pbits * aLen);
};
bn_eval_bound res aLen;
assert (bn_v res + v c * pow2 (pbits * aLen) < pow2 (pbits * aLen) + pow2 (pbits * aLen));
assert (v c <= 1) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.intros' | val intros': Prims.unit -> Tac unit | val intros': Prims.unit -> Tac unit | let intros' () : Tac unit = let _ = intros () in () | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 499,
"start_col": 0,
"start_line": 499
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.list",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Derived.intros"
] | [] | false | true | false | false | false | let intros' () : Tac unit =
| let _ = intros () in
() | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.__cut | val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b | val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b | let __cut a b f x = f x | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 31,
"end_line": 504,
"start_col": 8,
"start_line": 504
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> b: Type -> f: (_: a -> b) -> x: a -> b | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let __cut a b f x =
| f x | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.focus | val focus (t: (unit -> Tac 'a)) : Tac 'a | val focus (t: (unit -> Tac 'a)) : Tac 'a | let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 9,
"end_line": 325,
"start_col": 0,
"start_line": 317
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac 'a | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.fail",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"FStar.Stubs.Tactics.V1.Builtins.set_smt_goals",
"FStar.Tactics.V1.Derived.op_At",
"FStar.Tactics.V1.Derived.smt_goals",
"FStar.Stubs.Tactics.V1.Builtins.set_goals",
"FStar.Tactics.V1.Derived.goals",
"Prims.Nil",
"Prims.Cons"
] | [] | false | true | false | false | false | let focus (t: (unit -> Tac 'a)) : Tac 'a =
| match goals () with
| [] -> fail "focus: no goals"
| g :: gs ->
let sgs = smt_goals () in
set_goals [g];
set_smt_goals [];
let x = t () in
set_goals (goals () @ gs);
set_smt_goals (smt_goals () @ sgs);
x | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.intro_as | val intro_as (s: string) : Tac binder | val intro_as (s: string) : Tac binder | let intro_as (s:string) : Tac binder =
let b = intro () in
rename_to b s | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 520,
"start_col": 0,
"start_line": 518
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binder =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binder =
apply (`__cut);
flip ();
exact t;
intro () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Prims.string -> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.binder | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.string",
"FStar.Stubs.Tactics.V1.Builtins.rename_to",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Stubs.Tactics.V1.Builtins.intro"
] | [] | false | true | false | false | false | let intro_as (s: string) : Tac binder =
| let b = intro () in
rename_to b s | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.tcut | val tcut (t: term) : Tac binder | val tcut (t: term) : Tac binder | let tcut (t:term) : Tac binder =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro () | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 12,
"end_line": 510,
"start_col": 0,
"start_line": 506
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.binder | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V1.Builtins.intro",
"FStar.Stubs.Reflection.Types.binder",
"Prims.unit",
"FStar.Tactics.V1.Derived.apply",
"FStar.Reflection.V1.Derived.mk_e_app",
"Prims.Cons",
"Prims.Nil",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.V1.Derived.cur_goal"
] | [] | false | true | false | false | false | let tcut (t: term) : Tac binder =
| let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro () | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.bv_to_term | val bv_to_term (bv: bv) : Tac term | val bv_to_term (bv: bv) : Tac term | let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 54,
"end_line": 536,
"start_col": 0,
"start_line": 536
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binder =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binder =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binder =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binder =
let b = pose t in
rename_to b s
let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) =
map f (cur_binders ())
let rec revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | bv: FStar.Stubs.Reflection.Types.bv -> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.term | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.bv",
"FStar.Stubs.Tactics.V1.Builtins.pack",
"FStar.Stubs.Reflection.V1.Data.Tv_Var",
"FStar.Stubs.Reflection.Types.term"
] | [] | false | true | false | false | false | let bv_to_term (bv: bv) : Tac term =
| pack (Tv_Var bv) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.iseq | val iseq (ts: list (unit -> Tac unit)) : Tac unit | val iseq (ts: list (unit -> Tac unit)) : Tac unit | let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> () | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 313,
"start_col": 0,
"start_line": 310
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ts: Prims.list (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit)
-> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"Prims.unit",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V1.Derived.divide",
"FStar.Tactics.V1.Derived.iseq"
] | [
"recursion"
] | false | true | false | false | false | let rec iseq (ts: list (unit -> Tac unit)) : Tac unit =
| match ts with
| t :: ts ->
let _ = divide 1 t (fun () -> iseq ts) in
()
| [] -> () | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.pose | val pose (t: term) : Tac binder | val pose (t: term) : Tac binder | let pose (t:term) : Tac binder =
apply (`__cut);
flip ();
exact t;
intro () | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 12,
"end_line": 516,
"start_col": 0,
"start_line": 512
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binder =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.binder | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V1.Builtins.intro",
"FStar.Stubs.Reflection.Types.binder",
"Prims.unit",
"FStar.Tactics.V1.Derived.exact",
"FStar.Tactics.V1.Derived.flip",
"FStar.Tactics.V1.Derived.apply"
] | [] | false | true | false | false | false | let pose (t: term) : Tac binder =
| apply (`__cut);
flip ();
exact t;
intro () | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.try_with | val try_with (f: (unit -> Tac 'a)) (h: (exn -> Tac 'a)) : Tac 'a | val try_with (f: (unit -> Tac 'a)) (h: (exn -> Tac 'a)) : Tac 'a | let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 16,
"end_line": 414,
"start_col": 0,
"start_line": 411
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) ->
h: (_: Prims.exn -> FStar.Tactics.Effect.Tac 'a)
-> FStar.Tactics.Effect.Tac 'a | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.exn",
"FStar.Pervasives.either",
"FStar.Stubs.Tactics.V1.Builtins.catch"
] | [] | false | true | false | false | false | let try_with (f: (unit -> Tac 'a)) (h: (exn -> Tac 'a)) : Tac 'a =
| match catch f with
| Inl e -> h e
| Inr x -> x | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.for_each_binder | val for_each_binder (f: (binder -> Tac 'a)) : Tac (list 'a) | val for_each_binder (f: (binder -> Tac 'a)) : Tac (list 'a) | let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) =
map f (cur_binders ()) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 26,
"end_line": 527,
"start_col": 0,
"start_line": 526
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binder =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binder =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binder =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binder =
let b = pose t in
rename_to b s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: FStar.Stubs.Reflection.Types.binder -> FStar.Tactics.Effect.Tac 'a)
-> FStar.Tactics.Effect.Tac (Prims.list 'a) | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.Util.map",
"Prims.list",
"FStar.Tactics.V1.Derived.cur_binders",
"FStar.Stubs.Reflection.Types.binders"
] | [] | false | true | false | false | false | let for_each_binder (f: (binder -> Tac 'a)) : Tac (list 'a) =
| map f (cur_binders ()) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.pose_as | val pose_as (s: string) (t: term) : Tac binder | val pose_as (s: string) (t: term) : Tac binder | let pose_as (s:string) (t:term) : Tac binder =
let b = pose t in
rename_to b s | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 524,
"start_col": 0,
"start_line": 522
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binder =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binder =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binder =
let b = intro () in
rename_to b s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Prims.string -> t: FStar.Stubs.Reflection.Types.term
-> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.binder | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.string",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Tactics.V1.Builtins.rename_to",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Derived.pose"
] | [] | false | true | false | false | false | let pose_as (s: string) (t: term) : Tac binder =
| let b = pose t in
rename_to b s | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.iterAll | val iterAll (t: (unit -> Tac unit)) : Tac unit | val iterAll (t: (unit -> Tac unit)) : Tac unit | let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in () | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 60,
"end_line": 339,
"start_col": 0,
"start_line": 335
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit) -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V1.Derived.divide",
"FStar.Tactics.V1.Derived.iterAll",
"FStar.Tactics.V1.Derived.goals"
] | [
"recursion"
] | false | true | false | false | false | let rec iterAll (t: (unit -> Tac unit)) : Tac unit =
| match goals () with
| [] -> ()
| _ :: _ ->
let _ = divide 1 t (fun () -> iterAll t) in
() | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.mapAll | val mapAll (t: (unit -> Tac 'a)) : Tac (list 'a) | val mapAll (t: (unit -> Tac 'a)) : Tac (list 'a) | let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 66,
"end_line": 333,
"start_col": 0,
"start_line": 330
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) -> FStar.Tactics.Effect.Tac (Prims.list 'a) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"Prims.Nil",
"Prims.list",
"FStar.Stubs.Tactics.Types.goal",
"Prims.Cons",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V1.Derived.divide",
"FStar.Tactics.V1.Derived.mapAll",
"FStar.Tactics.V1.Derived.goals"
] | [
"recursion"
] | false | true | false | false | false | let rec mapAll (t: (unit -> Tac 'a)) : Tac (list 'a) =
| match goals () with
| [] -> []
| _ :: _ ->
let h, t = divide 1 t (fun () -> mapAll t) in
h :: t | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.binder_sort | val binder_sort (b: binder) : Tac typ | val binder_sort (b: binder) : Tac typ | let binder_sort (b : binder) : Tac typ =
(inspect_binder b).binder_sort | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 544,
"start_col": 0,
"start_line": 543
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binder =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binder =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binder =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binder =
let b = pose t in
rename_to b s
let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) =
map f (cur_binders ())
let rec revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
(* Some syntax utility functions *)
let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv)
[@@coercion]
let binder_to_term (b : binder) : Tac term =
let bview = inspect_binder b in
bv_to_term bview.binder_bv | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Stubs.Reflection.Types.binder -> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.typ | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.binder",
"FStar.Stubs.Reflection.V1.Data.__proj__Mkbinder_view__item__binder_sort",
"FStar.Stubs.Reflection.V1.Builtins.inspect_binder",
"FStar.Stubs.Reflection.Types.typ"
] | [] | false | true | false | false | false | let binder_sort (b: binder) : Tac typ =
| (inspect_binder b).binder_sort | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.binder_to_term | val binder_to_term (b: binder) : Tac term | val binder_to_term (b: binder) : Tac term | let binder_to_term (b : binder) : Tac term =
let bview = inspect_binder b in
bv_to_term bview.binder_bv | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 541,
"start_col": 0,
"start_line": 539
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binder =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binder =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binder =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binder =
let b = pose t in
rename_to b s
let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) =
map f (cur_binders ())
let rec revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
(* Some syntax utility functions *)
let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Stubs.Reflection.Types.binder -> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.term | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Derived.bv_to_term",
"FStar.Stubs.Reflection.V1.Data.__proj__Mkbinder_view__item__binder_bv",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.V1.Data.binder_view",
"Prims.precedes",
"FStar.Stubs.Reflection.V1.Builtins.inspect_binder"
] | [] | false | true | false | false | false | let binder_to_term (b: binder) : Tac term =
| let bview = inspect_binder b in
bv_to_term bview.binder_bv | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.rewrite' | val rewrite' (b: binder) : Tac unit | val rewrite' (b: binder) : Tac unit | let rewrite' (b:binder) : Tac unit =
((fun () -> rewrite b)
<|> (fun () -> binder_retype b;
apply_lemma (`__eq_sym);
rewrite b)
<|> (fun () -> fail "rewrite' failed"))
() | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 6,
"end_line": 583,
"start_col": 0,
"start_line": 577
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binder =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binder =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binder =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binder =
let b = pose t in
rename_to b s
let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) =
map f (cur_binders ())
let rec revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
(* Some syntax utility functions *)
let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv)
[@@coercion]
let binder_to_term (b : binder) : Tac term =
let bview = inspect_binder b in
bv_to_term bview.binder_bv
let binder_sort (b : binder) : Tac typ =
(inspect_binder b).binder_sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (bs : binders) : Tac unit =
match bs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
let t = binder_to_term b in
try exact t with | _ ->
try (apply (`FStar.Squash.return_squash);
exact t) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_binders ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Stubs.Reflection.Types.binder -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Derived.op_Less_Bar_Greater",
"Prims.unit",
"FStar.Stubs.Tactics.V1.Builtins.rewrite",
"FStar.Tactics.V1.Derived.apply_lemma",
"FStar.Stubs.Tactics.V1.Builtins.binder_retype",
"FStar.Tactics.V1.Derived.fail"
] | [] | false | true | false | false | false | let rewrite' (b: binder) : Tac unit =
| ((fun () -> rewrite b) <|>
(fun () ->
binder_retype b;
apply_lemma (`__eq_sym);
rewrite b) <|>
(fun () -> fail "rewrite' failed")) () | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.guard | val guard (b: bool)
: TacH unit
(requires (fun _ -> True))
(ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) | val guard (b: bool)
: TacH unit
(requires (fun _ -> True))
(ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) | let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else () | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 409,
"start_col": 0,
"start_line": 401
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Prims.bool -> FStar.Tactics.Effect.TacH Prims.unit | FStar.Tactics.Effect.TacH | [] | [] | [
"Prims.bool",
"Prims.op_Negation",
"FStar.Tactics.V1.Derived.fail",
"Prims.unit",
"FStar.Stubs.Tactics.Types.proofstate",
"Prims.l_True",
"FStar.Stubs.Tactics.Result.__result",
"Prims.l_and",
"Prims.b2t",
"FStar.Stubs.Tactics.Result.uu___is_Success",
"Prims.eq2",
"FStar.Stubs.Tactics.Result.__proj__Success__item__ps",
"FStar.Stubs.Tactics.Result.uu___is_Failed"
] | [] | false | true | false | false | false | let guard (b: bool)
: TacH unit
(requires (fun _ -> True))
(ensures (fun ps r -> if b then Success? r /\ Success?.ps r == ps else Failed? r)) =
| if not b then fail "guard failed" | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.assumption | val assumption: Prims.unit -> Tac unit | val assumption: Prims.unit -> Tac unit | let assumption () : Tac unit =
__assumption_aux (cur_binders ()) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 560,
"start_col": 0,
"start_line": 559
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binder =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binder =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binder =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binder =
let b = pose t in
rename_to b s
let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) =
map f (cur_binders ())
let rec revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
(* Some syntax utility functions *)
let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv)
[@@coercion]
let binder_to_term (b : binder) : Tac term =
let bview = inspect_binder b in
bv_to_term bview.binder_bv
let binder_sort (b : binder) : Tac typ =
(inspect_binder b).binder_sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (bs : binders) : Tac unit =
match bs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
let t = binder_to_term b in
try exact t with | _ ->
try (apply (`FStar.Squash.return_squash);
exact t) with | _ ->
__assumption_aux bs | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.__assumption_aux",
"FStar.Stubs.Reflection.Types.binders",
"FStar.Tactics.V1.Derived.cur_binders"
] | [] | false | true | false | false | false | let assumption () : Tac unit =
| __assumption_aux (cur_binders ()) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.rewrite_eqs_from_context | val rewrite_eqs_from_context: Prims.unit -> Tac unit | val rewrite_eqs_from_context: Prims.unit -> Tac unit | let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_binders ()) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 607,
"start_col": 0,
"start_line": 606
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binder =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binder =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binder =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binder =
let b = pose t in
rename_to b s
let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) =
map f (cur_binders ())
let rec revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
(* Some syntax utility functions *)
let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv)
[@@coercion]
let binder_to_term (b : binder) : Tac term =
let bview = inspect_binder b in
bv_to_term bview.binder_bv
let binder_sort (b : binder) : Tac typ =
(inspect_binder b).binder_sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (bs : binders) : Tac unit =
match bs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
let t = binder_to_term b in
try exact t with | _ ->
try (apply (`FStar.Squash.return_squash);
exact t) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_binders ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (b:binder) : Tac unit =
((fun () -> rewrite b)
<|> (fun () -> binder_retype b;
apply_lemma (`__eq_sym);
rewrite b)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binder x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:binders) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.rewrite_all_context_equalities",
"FStar.Stubs.Reflection.Types.binders",
"FStar.Tactics.V1.Derived.cur_binders"
] | [] | false | true | false | false | false | let rewrite_eqs_from_context () : Tac unit =
| rewrite_all_context_equalities (cur_binders ()) | false |
Hacl.Spec.Bignum.Karatsuba.fst | Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_eval | val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)) | val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)) | let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
//assert (v c = (v c2 - v c3) % pow2 pb);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
() end
else begin
assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
//assert (v c = v c2 + v c4);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23);
() end | {
"file_name": "code/bignum/Hacl.Spec.Bignum.Karatsuba.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 241,
"start_col": 0,
"start_line": 198
} | module Hacl.Spec.Bignum.Karatsuba
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.LoopCombinators
open Hacl.Spec.Bignum.Definitions
open Hacl.Spec.Bignum.Base
open Hacl.Spec.Bignum.Lib
open Hacl.Spec.Lib
open Hacl.Spec.Bignum.Addition
open Hacl.Spec.Bignum.Multiplication
open Hacl.Spec.Bignum.Squaring
module K = Hacl.Spec.Karatsuba.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let bn_mul_threshold = 32
(* this carry means nothing but the sign of the result *)
val bn_sign_abs:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
tuple2 (carry t) (lbignum t aLen)
let bn_sign_abs #t #aLen a b =
let c0, t0 = bn_sub a b in
let c1, t1 = bn_sub b a in
let res = map2 (mask_select (uint #t 0 -. c0)) t1 t0 in
c0, res
val bn_sign_abs_lemma:
#t:limb_t
-> #aLen:size_nat
-> a:lbignum t aLen
-> b:lbignum t aLen ->
Lemma (let c, res = bn_sign_abs a b in
bn_v res == K.abs (bn_v a) (bn_v b) /\
v c == (if bn_v a < bn_v b then 1 else 0))
let bn_sign_abs_lemma #t #aLen a b =
let s, r = K.sign_abs (bn_v a) (bn_v b) in
let c0, t0 = bn_sub a b in
bn_sub_lemma a b;
assert (bn_v t0 - v c0 * pow2 (bits t * aLen) == bn_v a - bn_v b);
let c1, t1 = bn_sub b a in
bn_sub_lemma b a;
assert (bn_v t1 - v c1 * pow2 (bits t * aLen) == bn_v b - bn_v a);
let mask = uint #t 0 -. c0 in
assert (v mask == (if v c0 = 0 then 0 else v (ones t SEC)));
let res = map2 (mask_select mask) t1 t0 in
lseq_mask_select_lemma t1 t0 mask;
assert (bn_v res == (if v mask = 0 then bn_v t0 else bn_v t1));
bn_eval_bound a aLen;
bn_eval_bound b aLen;
bn_eval_bound t0 aLen;
bn_eval_bound t1 aLen
// if bn_v a < bn_v b then begin
// assert (v mask = v (ones U64 SEC));
// assert (bn_v res == bn_v b - bn_v a);
// assert (bn_v res == r /\ v c0 = 1) end
// else begin
// assert (v mask = 0);
// assert (bn_v res == bn_v a - bn_v b);
// assert (bn_v res == r /\ v c0 = 0) end;
// assert (bn_v res == r /\ v c0 == (if bn_v a < bn_v b then 1 else 0))
val bn_middle_karatsuba:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
limb t & lbignum t aLen
let bn_middle_karatsuba #t #aLen c0 c1 c2 t01 t23 =
let c_sign = c0 ^. c1 in
let c3, t45 = bn_sub t01 t23 in let c3 = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4 = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45 = map2 (mask_select mask) t67 t45 in
let c5 = mask_select mask c4 c3 in
c5, t45
val sign_lemma: #t:limb_t -> c0:carry t -> c1:carry t ->
Lemma (v (c0 ^. c1) == (if v c0 = v c1 then 0 else 1))
let sign_lemma #t c0 c1 =
logxor_spec c0 c1;
match t with
| U32 ->
assert_norm (UInt32.logxor 0ul 0ul == 0ul);
assert_norm (UInt32.logxor 0ul 1ul == 1ul);
assert_norm (UInt32.logxor 1ul 0ul == 1ul);
assert_norm (UInt32.logxor 1ul 1ul == 0ul)
| U64 ->
assert_norm (UInt64.logxor 0uL 0uL == 0uL);
assert_norm (UInt64.logxor 0uL 1uL == 1uL);
assert_norm (UInt64.logxor 1uL 0uL == 1uL);
assert_norm (UInt64.logxor 1uL 1uL == 0uL)
val bn_middle_karatsuba_lemma:
#t:limb_t
-> #aLen:size_nat
-> c0:carry t
-> c1:carry t
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma (let (c, res) = bn_middle_karatsuba c0 c1 c2 t01 t23 in
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
if v c0 = v c1 then
v c == v c3' /\ bn_v res == bn_v t45
else
v c == v c4' /\ bn_v res == bn_v t67)
let bn_middle_karatsuba_lemma #t #aLen c0 c1 c2 t01 t23 =
let lp = bn_v t01 + v c2 * pow2 (bits t * aLen) - bn_v t23 in
let rp = bn_v t01 + v c2 * pow2 (bits t * aLen) + bn_v t23 in
let c_sign = c0 ^. c1 in
sign_lemma c0 c1;
assert (v c_sign == (if v c0 = v c1 then 0 else 1));
let c3, t45 = bn_sub t01 t23 in let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in let c4' = c2 +. c4 in
let mask = uint #t 0 -. c_sign in
let t45' = map2 (mask_select mask) t67 t45 in
lseq_mask_select_lemma t67 t45 mask;
//assert (bn_v t45' == (if v mask = 0 then bn_v t45 else bn_v t67));
let c5 = mask_select mask c4' c3' in
mask_select_lemma mask c4' c3'
//assert (v c5 == (if v mask = 0 then v c3' else v c4'));
val bn_middle_karatsuba_eval_aux:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> res:lbignum t aLen
-> c2:carry t
-> c3:carry t -> Lemma
(requires
bn_v res + (v c2 - v c3) * pow2 (bits t * aLen) ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)
(ensures 0 <= v c2 - v c3 /\ v c2 - v c3 <= 1)
let bn_middle_karatsuba_eval_aux #t #aLen a0 a1 b0 b1 res c2 c3 =
bn_eval_bound res aLen
val bn_middle_karatsuba_eval:
#t:limb_t
-> #aLen:size_nat
-> a0:lbignum t (aLen / 2)
-> a1:lbignum t (aLen / 2)
-> b0:lbignum t (aLen / 2)
-> b1:lbignum t (aLen / 2)
-> c2:carry t
-> t01:lbignum t aLen
-> t23:lbignum t aLen ->
Lemma
(requires
(let t0 = K.abs (bn_v a0) (bn_v a1) in
let t1 = K.abs (bn_v b0) (bn_v b1) in
bn_v t01 + v c2 * pow2 (bits t * aLen) == bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 /\
bn_v t23 == t0 * t1))
(ensures
(let c0, t0 = bn_sign_abs a0 a1 in
let c1, t1 = bn_sign_abs b0 b1 in
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_v res + v c * pow2 (bits t * aLen) == bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Lib.fst.checked",
"Hacl.Spec.Karatsuba.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Squaring.fst.checked",
"Hacl.Spec.Bignum.Multiplication.fst.checked",
"Hacl.Spec.Bignum.Lib.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Spec.Bignum.Addition.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Bignum.Karatsuba.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Karatsuba.Lemmas",
"short_module": "K"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Squaring",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Multiplication",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Addition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a0: Hacl.Spec.Bignum.Definitions.lbignum t (aLen / 2) ->
a1: Hacl.Spec.Bignum.Definitions.lbignum t (aLen / 2) ->
b0: Hacl.Spec.Bignum.Definitions.lbignum t (aLen / 2) ->
b1: Hacl.Spec.Bignum.Definitions.lbignum t (aLen / 2) ->
c2: Hacl.Spec.Bignum.Base.carry t ->
t01: Hacl.Spec.Bignum.Definitions.lbignum t aLen ->
t23: Hacl.Spec.Bignum.Definitions.lbignum t aLen
-> FStar.Pervasives.Lemma
(requires
(let t0 =
Hacl.Spec.Karatsuba.Lemmas.abs (Hacl.Spec.Bignum.Definitions.bn_v a0)
(Hacl.Spec.Bignum.Definitions.bn_v a1)
in
let t1 =
Hacl.Spec.Karatsuba.Lemmas.abs (Hacl.Spec.Bignum.Definitions.bn_v b0)
(Hacl.Spec.Bignum.Definitions.bn_v b1)
in
Hacl.Spec.Bignum.Definitions.bn_v t01 +
Lib.IntTypes.v c2 * Prims.pow2 (Lib.IntTypes.bits t * aLen) ==
Hacl.Spec.Bignum.Definitions.bn_v a0 * Hacl.Spec.Bignum.Definitions.bn_v b0 +
Hacl.Spec.Bignum.Definitions.bn_v a1 * Hacl.Spec.Bignum.Definitions.bn_v b1 /\
Hacl.Spec.Bignum.Definitions.bn_v t23 == t0 * t1))
(ensures
(let _ = Hacl.Spec.Bignum.Karatsuba.bn_sign_abs a0 a1 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c0 _ = _ in
let _ = Hacl.Spec.Bignum.Karatsuba.bn_sign_abs b0 b1 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c1 _ = _ in
let _ = Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba c0 c1 c2 t01 t23 in
(let FStar.Pervasives.Native.Mktuple2 #_ #_ c res = _ in
Hacl.Spec.Bignum.Definitions.bn_v res +
Lib.IntTypes.v c * Prims.pow2 (Lib.IntTypes.bits t * aLen) ==
Hacl.Spec.Bignum.Definitions.bn_v a0 * Hacl.Spec.Bignum.Definitions.bn_v b1 +
Hacl.Spec.Bignum.Definitions.bn_v a1 * Hacl.Spec.Bignum.Definitions.bn_v b0)
<:
Type0)
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Bignum.Definitions.limb_t",
"Lib.IntTypes.size_nat",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Prims.op_Division",
"Hacl.Spec.Bignum.Base.carry",
"Hacl.Spec.Bignum.Definitions.limb",
"Prims.op_Equality",
"Lib.IntTypes.range_t",
"Lib.IntTypes.v",
"Lib.IntTypes.SEC",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Addition",
"Hacl.Spec.Bignum.Definitions.bn_v",
"FStar.Mul.op_Star",
"Prims.pow2",
"Prims.op_Subtraction",
"FStar.Math.Lemmas.small_mod",
"Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_eval_aux",
"FStar.Math.Lemmas.distributivity_sub_left",
"Hacl.Spec.Bignum.Addition.bn_sub_lemma",
"Prims.l_and",
"Prims.nat",
"Prims.bool",
"FStar.Math.Lemmas.distributivity_add_left",
"Hacl.Spec.Bignum.Addition.bn_add_lemma",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Plus_Dot",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Addition.bn_add",
"Lib.IntTypes.op_Subtraction_Dot",
"Hacl.Spec.Bignum.Addition.bn_sub",
"Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba_lemma",
"Hacl.Spec.Bignum.Karatsuba.bn_middle_karatsuba",
"Prims.op_LessThan",
"Hacl.Spec.Karatsuba.Lemmas.abs",
"Hacl.Spec.Bignum.Karatsuba.bn_sign_abs_lemma",
"Hacl.Spec.Bignum.Karatsuba.bn_sign_abs",
"Lib.IntTypes.bits"
] | [] | false | false | true | false | false | let bn_middle_karatsuba_eval #t #aLen a0 a1 b0 b1 c2 t01 t23 =
| let pbits = bits t in
let c0, t0 = bn_sign_abs a0 a1 in
bn_sign_abs_lemma a0 a1;
assert (bn_v t0 == K.abs (bn_v a0) (bn_v a1));
assert (v c0 == (if bn_v a0 < bn_v a1 then 1 else 0));
let c1, t1 = bn_sign_abs b0 b1 in
bn_sign_abs_lemma b0 b1;
assert (bn_v t1 == K.abs (bn_v b0) (bn_v b1));
assert (v c1 == (if bn_v b0 < bn_v b1 then 1 else 0));
let c, res = bn_middle_karatsuba c0 c1 c2 t01 t23 in
bn_middle_karatsuba_lemma c0 c1 c2 t01 t23;
let c3, t45 = bn_sub t01 t23 in
let c3' = c2 -. c3 in
let c4, t67 = bn_add t01 t23 in
let c4' = c2 +. c4 in
if v c0 = v c1
then
(assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 - bn_v t0 * bn_v t1 ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23 ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c3' /\ bn_v res == bn_v t45);
bn_sub_lemma t01 t23;
assert (bn_v res - v c3 * pow2 (pbits * aLen) == bn_v t01 - bn_v t23);
Math.Lemmas.distributivity_sub_left (v c2) (v c3) (pow2 (pbits * aLen));
assert (bn_v res + (v c2 - v c3) * pow2 (pbits * aLen) ==
v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23);
bn_middle_karatsuba_eval_aux a0 a1 b0 b1 res c2 c3;
Math.Lemmas.small_mod (v c2 - v c3) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 - bn_v t23
);
())
else
(assert (bn_v a0 * bn_v b0 + bn_v a1 * bn_v b1 + bn_v t0 * bn_v t1 ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23 ==
bn_v a0 * bn_v b1 + bn_v a1 * bn_v b0);
assert (v c == v c4' /\ bn_v res == bn_v t67);
bn_add_lemma t01 t23;
assert (bn_v res + v c4 * pow2 (pbits * aLen) == bn_v t01 + bn_v t23);
Math.Lemmas.distributivity_add_left (v c2) (v c4) (pow2 (pbits * aLen));
Math.Lemmas.small_mod (v c2 + v c4) (pow2 pbits);
assert (bn_v res + v c * pow2 (pbits * aLen) == v c2 * pow2 (pbits * aLen) + bn_v t01 + bn_v t23
);
()) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.destruct_equality_implication | val destruct_equality_implication (t: term) : Tac (option (formula * term)) | val destruct_equality_implication (t: term) : Tac (option (formula * term)) | let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 570,
"start_col": 0,
"start_line": 562
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binder =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binder =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binder =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binder =
let b = pose t in
rename_to b s
let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) =
map f (cur_binders ())
let rec revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
(* Some syntax utility functions *)
let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv)
[@@coercion]
let binder_to_term (b : binder) : Tac term =
let bview = inspect_binder b in
bv_to_term bview.binder_bv
let binder_sort (b : binder) : Tac typ =
(inspect_binder b).binder_sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (bs : binders) : Tac unit =
match bs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
let t = binder_to_term b in
try exact t with | _ ->
try (apply (`FStar.Squash.return_squash);
exact t) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_binders ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term
-> FStar.Tactics.Effect.Tac
(FStar.Pervasives.Native.option (FStar.Reflection.V1.Formula.formula *
FStar.Stubs.Reflection.Types.term)) | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.tuple2",
"FStar.Reflection.V1.Formula.formula",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.None",
"FStar.Reflection.V1.Formula.term_as_formula'",
"FStar.Reflection.V1.Formula.term_as_formula"
] | [] | false | true | false | false | false | let destruct_equality_implication (t: term) : Tac (option (formula * term)) =
| match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
(match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None)
| _ -> None | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.divide | val divide (n: int) (l: (unit -> Tac 'a)) (r: (unit -> Tac 'b)) : Tac ('a * 'b) | val divide (n: int) (l: (unit -> Tac 'a)) (r: (unit -> Tac 'b)) : Tac ('a * 'b) | let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y) | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 10,
"end_line": 308,
"start_col": 0,
"start_line": 293
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.int ->
l: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'a) ->
r: (_: Prims.unit -> FStar.Tactics.Effect.Tac 'b)
-> FStar.Tactics.Effect.Tac ('a * 'b) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.int",
"Prims.unit",
"Prims.list",
"FStar.Stubs.Tactics.Types.goal",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple2",
"FStar.Stubs.Tactics.V1.Builtins.set_smt_goals",
"FStar.Tactics.V1.Derived.op_At",
"FStar.Stubs.Tactics.V1.Builtins.set_goals",
"FStar.Tactics.V1.Derived.smt_goals",
"FStar.Tactics.V1.Derived.goals",
"Prims.Nil",
"FStar.List.Tot.Base.splitAt",
"Prims.op_LessThan",
"FStar.Tactics.V1.Derived.fail",
"Prims.bool"
] | [] | false | true | false | false | false | let divide (n: int) (l: (unit -> Tac 'a)) (r: (unit -> Tac 'b)) : Tac ('a * 'b) =
| if n < 0 then fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1;
set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2;
set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr);
set_smt_goals (sgs @ sgsl @ sgsr);
(x, y) | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.mk_squash | val mk_squash (t: term) : term | val mk_squash (t: term) : term | let mk_squash (t : term) : term =
let sq : term = pack_ln (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t] | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 632,
"start_col": 0,
"start_line": 630
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binder =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binder =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binder =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binder =
let b = pose t in
rename_to b s
let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) =
map f (cur_binders ())
let rec revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
(* Some syntax utility functions *)
let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv)
[@@coercion]
let binder_to_term (b : binder) : Tac term =
let bview = inspect_binder b in
bv_to_term bview.binder_bv
let binder_sort (b : binder) : Tac typ =
(inspect_binder b).binder_sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (bs : binders) : Tac unit =
match bs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
let t = binder_to_term b in
try exact t with | _ ->
try (apply (`FStar.Squash.return_squash);
exact t) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_binders ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (b:binder) : Tac unit =
((fun () -> rewrite b)
<|> (fun () -> binder_retype b;
apply_lemma (`__eq_sym);
rewrite b)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binder x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:binders) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_binders ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_binders ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that
is, using [==]. *)
let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Stubs.Reflection.Types.term | Prims.Tot | [
"total"
] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Reflection.V1.Derived.mk_e_app",
"Prims.Cons",
"Prims.Nil",
"FStar.Stubs.Reflection.V1.Builtins.pack_ln",
"FStar.Stubs.Reflection.V1.Data.Tv_FVar",
"FStar.Stubs.Reflection.V1.Builtins.pack_fv",
"FStar.Reflection.Const.squash_qn"
] | [] | false | false | false | true | false | let mk_squash (t: term) : term =
| let sq:term = pack_ln (Tv_FVar (pack_fv squash_qn)) in
mk_e_app sq [t] | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.unfold_def | val unfold_def (t: term) : Tac unit | val unfold_def (t: term) : Tac unit | let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv" | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 46,
"end_line": 617,
"start_col": 0,
"start_line": 612
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binder =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binder =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binder =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binder =
let b = pose t in
rename_to b s
let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) =
map f (cur_binders ())
let rec revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
(* Some syntax utility functions *)
let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv)
[@@coercion]
let binder_to_term (b : binder) : Tac term =
let bview = inspect_binder b in
bv_to_term bview.binder_bv
let binder_sort (b : binder) : Tac typ =
(inspect_binder b).binder_sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (bs : binders) : Tac unit =
match bs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
let t = binder_to_term b in
try exact t with | _ ->
try (apply (`FStar.Squash.return_squash);
exact t) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_binders ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (b:binder) : Tac unit =
((fun () -> rewrite b)
<|> (fun () -> binder_retype b;
apply_lemma (`__eq_sym);
rewrite b)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binder x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:binders) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_binders ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_binders ()) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.Types.fv",
"FStar.Stubs.Tactics.V1.Builtins.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta_fully",
"Prims.string",
"Prims.Nil",
"Prims.unit",
"FStar.Stubs.Reflection.V1.Builtins.implode_qn",
"FStar.Stubs.Reflection.V1.Builtins.inspect_fv",
"FStar.Stubs.Reflection.V1.Data.term_view",
"FStar.Tactics.V1.Derived.fail",
"FStar.Stubs.Tactics.V1.Builtins.inspect"
] | [] | false | true | false | false | false | let unfold_def (t: term) : Tac unit =
| match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv" | false |
FStar.Tactics.V1.Derived.fst | FStar.Tactics.V1.Derived.l_to_r | val l_to_r (lems: list term) : Tac unit | val l_to_r (lems: list term) : Tac unit | let l_to_r (lems:list term) : Tac unit =
let first_or_trefl () : Tac unit =
fold_left (fun k l () ->
(fun () -> apply_lemma_rw l)
`or_else` k)
trefl lems () in
pointwise first_or_trefl | {
"file_name": "ulib/FStar.Tactics.V1.Derived.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 628,
"start_col": 0,
"start_line": 622
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Derived
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.Types
open FStar.Stubs.Tactics.Result
open FStar.Tactics.Util
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.SyntaxHelpers
open FStar.VConfig
module L = FStar.List.Tot.Base
module V = FStar.Tactics.Visit
private let (@) = L.op_At
let name_of_bv (bv : bv) : Tac string =
unseal ((inspect_bv bv).bv_ppname)
let bv_to_string (bv : bv) : Tac string =
(* Could also print type...? *)
name_of_bv bv
let name_of_binder (b : binder) : Tac string =
name_of_bv (bv_of_binder b)
let binder_to_string (b : binder) : Tac string =
bv_to_string (bv_of_binder b) //TODO: print aqual, attributes
exception Goal_not_trivial
let goals () : Tac (list goal) = goals_of (get ())
let smt_goals () : Tac (list goal) = smt_goals_of (get ())
let fail (#a:Type) (m:string)
: TAC a (fun ps post -> post (Failed (TacticFailure m) ps))
= raise #a (TacticFailure m)
let fail_silently (#a:Type) (m:string)
: TAC a (fun _ post -> forall ps. post (Failed (TacticFailure m) ps))
= set_urgency 0;
raise #a (TacticFailure m)
(** Return the current *goal*, not its type. (Ignores SMT goals) *)
let _cur_goal () : Tac goal =
match goals () with
| [] -> fail "no more goals"
| g::_ -> g
(** [cur_env] returns the current goal's environment *)
let cur_env () : Tac env = goal_env (_cur_goal ())
(** [cur_goal] returns the current goal's type *)
let cur_goal () : Tac typ = goal_type (_cur_goal ())
(** [cur_witness] returns the current goal's witness *)
let cur_witness () : Tac term = goal_witness (_cur_goal ())
(** [cur_goal_safe] will always return the current goal, without failing.
It must be statically verified that there indeed is a goal in order to
call it. *)
let cur_goal_safe () : TacH goal (requires (fun ps -> ~(goals_of ps == [])))
(ensures (fun ps0 r -> exists g. r == Success g ps0))
= match goals_of (get ()) with
| g :: _ -> g
(** [cur_binders] returns the list of binders in the current goal. *)
let cur_binders () : Tac binders =
binders_of_env (cur_env ())
(** Set the guard policy only locally, without affecting calling code *)
let with_policy pol (f : unit -> Tac 'a) : Tac 'a =
let old_pol = get_guard_policy () in
set_guard_policy pol;
let r = f () in
set_guard_policy old_pol;
r
(** [exact e] will solve a goal [Gamma |- w : t] if [e] has type exactly
[t] in [Gamma]. *)
let exact (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true false t)
(** [exact_with_ref e] will solve a goal [Gamma |- w : t] if [e] has
type [t'] where [t'] is a subtype of [t] in [Gamma]. This is a more
flexible variant of [exact]. *)
let exact_with_ref (t : term) : Tac unit =
with_policy SMT (fun () -> t_exact true true t)
let trivial () : Tac unit =
norm [iota; zeta; reify_; delta; primops; simplify; unmeta];
let g = cur_goal () in
match term_as_formula g with
| True_ -> exact (`())
| _ -> raise Goal_not_trivial
(* Another hook to just run a tactic without goals, just by reusing `with_tactic` *)
let run_tactic (t:unit -> Tac unit)
: Pure unit
(requires (set_range_of (with_tactic (fun () -> trivial (); t ()) (squash True)) (range_of t)))
(ensures (fun _ -> True))
= ()
(** Ignore the current goal. If left unproven, this will fail after
the tactic finishes. *)
let dismiss () : Tac unit =
match goals () with
| [] -> fail "dismiss: no more goals"
| _::gs -> set_goals gs
(** Flip the order of the first two goals. *)
let flip () : Tac unit =
let gs = goals () in
match goals () with
| [] | [_] -> fail "flip: less than two goals"
| g1::g2::gs -> set_goals (g2::g1::gs)
(** Succeed if there are no more goals left, and fail otherwise. *)
let qed () : Tac unit =
match goals () with
| [] -> ()
| _ -> fail "qed: not done!"
(** [debug str] is similar to [print str], but will only print the message
if the [--debug] option was given for the current module AND
[--debug_level Tac] is on. *)
let debug (m:string) : Tac unit =
if debugging () then print m
(** [smt] will mark the current goal for being solved through the SMT.
This does not immediately run the SMT: it just dumps the goal in the
SMT bin. Note, if you dump a proof-relevant goal there, the engine will
later raise an error. *)
let smt () : Tac unit =
match goals (), smt_goals () with
| [], _ -> fail "smt: no active goals"
| g::gs, gs' ->
begin
set_goals gs;
set_smt_goals (g :: gs')
end
let idtac () : Tac unit = ()
(** Push the current goal to the back. *)
let later () : Tac unit =
match goals () with
| g::gs -> set_goals (gs @ [g])
| _ -> fail "later: no goals"
(** [apply f] will attempt to produce a solution to the goal by an application
of [f] to any amount of arguments (which need to be solved as further goals).
The amount of arguments introduced is the least such that [f a_i] unifies
with the goal's type. *)
let apply (t : term) : Tac unit =
t_apply true false false t
let apply_noinst (t : term) : Tac unit =
t_apply true true false t
(** [apply_lemma l] will solve a goal of type [squash phi] when [l] is a
Lemma ensuring [phi]. The arguments to [l] and its requires clause are
introduced as new goals. As a small optimization, [unit] arguments are
discharged by the engine. Just a thin wrapper around [t_apply_lemma]. *)
let apply_lemma (t : term) : Tac unit =
t_apply_lemma false false t
(** See docs for [t_trefl] *)
let trefl () : Tac unit =
t_trefl false
(** See docs for [t_trefl] *)
let trefl_guard () : Tac unit =
t_trefl true
(** See docs for [t_commute_applied_match] *)
let commute_applied_match () : Tac unit =
t_commute_applied_match ()
(** Similar to [apply_lemma], but will not instantiate uvars in the
goal while applying. *)
let apply_lemma_noinst (t : term) : Tac unit =
t_apply_lemma true false t
let apply_lemma_rw (t : term) : Tac unit =
t_apply_lemma false true t
(** [apply_raw f] is like [apply], but will ask for all arguments
regardless of whether they appear free in further goals. See the
explanation in [t_apply]. *)
let apply_raw (t : term) : Tac unit =
t_apply false false false t
(** Like [exact], but allows for the term [e] to have a type [t] only
under some guard [g], adding the guard as a goal. *)
let exact_guard (t : term) : Tac unit =
with_policy Goal (fun () -> t_exact true false t)
(** (TODO: explain better) When running [pointwise tau] For every
subterm [t'] of the goal's type [t], the engine will build a goal [Gamma
|= t' == ?u] and run [tau] on it. When the tactic proves the goal,
the engine will rewrite [t'] for [?u] in the original goal type. This
is done for every subterm, bottom-up. This allows to recurse over an
unknown goal type. By inspecting the goal, the [tau] can then decide
what to do (to not do anything, use [trefl]). *)
let t_pointwise (d:direction) (tau : unit -> Tac unit) : Tac unit =
let ctrl (t:term) : Tac (bool & ctrl_flag) =
true, Continue
in
let rw () : Tac unit =
tau ()
in
ctrl_rewrite d ctrl rw
(** [topdown_rewrite ctrl rw] is used to rewrite those sub-terms [t]
of the goal on which [fst (ctrl t)] returns true.
On each such sub-term, [rw] is presented with an equality of goal
of the form [Gamma |= t == ?u]. When [rw] proves the goal,
the engine will rewrite [t] for [?u] in the original goal
type.
The goal formula is traversed top-down and the traversal can be
controlled by [snd (ctrl t)]:
When [snd (ctrl t) = 0], the traversal continues down through the
position in the goal term.
When [snd (ctrl t) = 1], the traversal continues to the next
sub-tree of the goal.
When [snd (ctrl t) = 2], no more rewrites are performed in the
goal.
*)
let topdown_rewrite (ctrl : term -> Tac (bool * int))
(rw:unit -> Tac unit) : Tac unit
= let ctrl' (t:term) : Tac (bool & ctrl_flag) =
let b, i = ctrl t in
let f =
match i with
| 0 -> Continue
| 1 -> Skip
| 2 -> Abort
| _ -> fail "topdown_rewrite: bad value from ctrl"
in
b, f
in
ctrl_rewrite TopDown ctrl' rw
let pointwise (tau : unit -> Tac unit) : Tac unit = t_pointwise BottomUp tau
let pointwise' (tau : unit -> Tac unit) : Tac unit = t_pointwise TopDown tau
let cur_module () : Tac name =
moduleof (top_env ())
let open_modules () : Tac (list name) =
env_open_modules (top_env ())
let fresh_uvar (o : option typ) : Tac term =
let e = cur_env () in
uvar_env e o
let unify (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_env e t1 t2
let unify_guard (t1 t2 : term) : Tac bool =
let e = cur_env () in
unify_guard_env e t1 t2
let tmatch (t1 t2 : term) : Tac bool =
let e = cur_env () in
match_env e t1 t2
(** [divide n t1 t2] will split the current set of goals into the [n]
first ones, and the rest. It then runs [t1] on the first set, and [t2]
on the second, returning both results (and concatenating remaining goals). *)
let divide (n:int) (l : unit -> Tac 'a) (r : unit -> Tac 'b) : Tac ('a * 'b) =
if n < 0 then
fail "divide: negative n";
let gs, sgs = goals (), smt_goals () in
let gs1, gs2 = List.Tot.Base.splitAt n gs in
set_goals gs1; set_smt_goals [];
let x = l () in
let gsl, sgsl = goals (), smt_goals () in
set_goals gs2; set_smt_goals [];
let y = r () in
let gsr, sgsr = goals (), smt_goals () in
set_goals (gsl @ gsr); set_smt_goals (sgs @ sgsl @ sgsr);
(x, y)
let rec iseq (ts : list (unit -> Tac unit)) : Tac unit =
match ts with
| t::ts -> let _ = divide 1 t (fun () -> iseq ts) in ()
| [] -> ()
(** [focus t] runs [t ()] on the current active goal, hiding all others
and restoring them at the end. *)
let focus (t : unit -> Tac 'a) : Tac 'a =
match goals () with
| [] -> fail "focus: no goals"
| g::gs ->
let sgs = smt_goals () in
set_goals [g]; set_smt_goals [];
let x = t () in
set_goals (goals () @ gs); set_smt_goals (smt_goals () @ sgs);
x
(** Similar to [dump], but only dumping the current goal. *)
let dump1 (m : string) = focus (fun () -> dump m)
let rec mapAll (t : unit -> Tac 'a) : Tac (list 'a) =
match goals () with
| [] -> []
| _::_ -> let (h, t) = divide 1 t (fun () -> mapAll t) in h::t
let rec iterAll (t : unit -> Tac unit) : Tac unit =
(* Could use mapAll, but why even build that list *)
match goals () with
| [] -> ()
| _::_ -> let _ = divide 1 t (fun () -> iterAll t) in ()
let iterAllSMT (t : unit -> Tac unit) : Tac unit =
let gs, sgs = goals (), smt_goals () in
set_goals sgs;
set_smt_goals [];
iterAll t;
let gs', sgs' = goals (), smt_goals () in
set_goals gs;
set_smt_goals (gs'@sgs')
(** Runs tactic [t1] on the current goal, and then tactic [t2] on *each*
subgoal produced by [t1]. Each invocation of [t2] runs on a proofstate
with a single goal (they're "focused"). *)
let seq (f : unit -> Tac unit) (g : unit -> Tac unit) : Tac unit =
focus (fun () -> f (); iterAll g)
let exact_args (qs : list aqualv) (t : term) : Tac unit =
focus (fun () ->
let n = List.Tot.Base.length qs in
let uvs = repeatn n (fun () -> fresh_uvar None) in
let t' = mk_app t (zip uvs qs) in
exact t';
iter (fun uv -> if is_uvar uv
then unshelve uv
else ()) (L.rev uvs)
)
let exact_n (n : int) (t : term) : Tac unit =
exact_args (repeatn n (fun () -> Q_Explicit)) t
(** [ngoals ()] returns the number of goals *)
let ngoals () : Tac int = List.Tot.Base.length (goals ())
(** [ngoals_smt ()] returns the number of SMT goals *)
let ngoals_smt () : Tac int = List.Tot.Base.length (smt_goals ())
(* Create a fresh bound variable (bv), using a generic name. See also
[fresh_bv_named]. *)
let fresh_bv () : Tac bv =
(* These bvs are fresh anyway through a separate counter,
* but adding the integer allows for more readability when
* generating code *)
let i = fresh () in
fresh_bv_named ("x" ^ string_of_int i)
let fresh_binder_named nm t : Tac binder =
mk_binder (fresh_bv_named nm) t
let fresh_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_binder_named ("x" ^ string_of_int i) t
let fresh_implicit_binder_named nm t : Tac binder =
mk_implicit_binder (fresh_bv_named nm) t
let fresh_implicit_binder t : Tac binder =
(* See comment in fresh_bv *)
let i = fresh () in
fresh_implicit_binder_named ("x" ^ string_of_int i) t
let guard (b : bool) : TacH unit (requires (fun _ -> True))
(ensures (fun ps r -> if b
then Success? r /\ Success?.ps r == ps
else Failed? r))
(* ^ the proofstate on failure is not exactly equal (has the psc set) *)
=
if not b then
fail "guard failed"
else ()
let try_with (f : unit -> Tac 'a) (h : exn -> Tac 'a) : Tac 'a =
match catch f with
| Inl e -> h e
| Inr x -> x
let trytac (t : unit -> Tac 'a) : Tac (option 'a) =
try Some (t ())
with
| _ -> None
let or_else (#a:Type) (t1 : unit -> Tac a) (t2 : unit -> Tac a) : Tac a =
try t1 ()
with | _ -> t2 ()
val (<|>) : (unit -> Tac 'a) ->
(unit -> Tac 'a) ->
(unit -> Tac 'a)
let (<|>) t1 t2 = fun () -> or_else t1 t2
let first (ts : list (unit -> Tac 'a)) : Tac 'a =
L.fold_right (<|>) ts (fun () -> fail "no tactics to try") ()
let rec repeat (#a:Type) (t : unit -> Tac a) : Tac (list a) =
match catch t with
| Inl _ -> []
| Inr x -> x :: repeat t
let repeat1 (#a:Type) (t : unit -> Tac a) : Tac (list a) =
t () :: repeat t
let repeat' (f : unit -> Tac 'a) : Tac unit =
let _ = repeat f in ()
let norm_term (s : list norm_step) (t : term) : Tac term =
let e =
try cur_env ()
with | _ -> top_env ()
in
norm_term_env e s t
(** Join all of the SMT goals into one. This helps when all of them are
expected to be similar, and therefore easier to prove at once by the SMT
solver. TODO: would be nice to try to join them in a more meaningful
way, as the order can matter. *)
let join_all_smt_goals () =
let gs, sgs = goals (), smt_goals () in
set_smt_goals [];
set_goals sgs;
repeat' join;
let sgs' = goals () in // should be a single one
set_goals gs;
set_smt_goals sgs'
let discard (tau : unit -> Tac 'a) : unit -> Tac unit =
fun () -> let _ = tau () in ()
// TODO: do we want some value out of this?
let rec repeatseq (#a:Type) (t : unit -> Tac a) : Tac unit =
let _ = trytac (fun () -> (discard t) `seq` (discard (fun () -> repeatseq t))) in ()
let tadmit () = tadmit_t (`())
let admit1 () : Tac unit =
tadmit ()
let admit_all () : Tac unit =
let _ = repeat tadmit in
()
(** [is_guard] returns whether the current goal arose from a typechecking guard *)
let is_guard () : Tac bool =
Stubs.Tactics.Types.is_guard (_cur_goal ())
let skip_guard () : Tac unit =
if is_guard ()
then smt ()
else fail ""
let guards_to_smt () : Tac unit =
let _ = repeat skip_guard in
()
let simpl () : Tac unit = norm [simplify; primops]
let whnf () : Tac unit = norm [weak; hnf; primops; delta]
let compute () : Tac unit = norm [primops; iota; delta; zeta]
let intros () : Tac (list binder) = repeat intro
let intros' () : Tac unit = let _ = intros () in ()
let destruct tm : Tac unit = let _ = t_destruct tm in ()
let destruct_intros tm : Tac unit = seq (fun () -> let _ = t_destruct tm in ()) intros'
private val __cut : (a:Type) -> (b:Type) -> (a -> b) -> a -> b
private let __cut a b f x = f x
let tcut (t:term) : Tac binder =
let g = cur_goal () in
let tt = mk_e_app (`__cut) [t; g] in
apply tt;
intro ()
let pose (t:term) : Tac binder =
apply (`__cut);
flip ();
exact t;
intro ()
let intro_as (s:string) : Tac binder =
let b = intro () in
rename_to b s
let pose_as (s:string) (t:term) : Tac binder =
let b = pose t in
rename_to b s
let for_each_binder (f : binder -> Tac 'a) : Tac (list 'a) =
map f (cur_binders ())
let rec revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> revert ();
revert_all tl
(* Some syntax utility functions *)
let bv_to_term (bv : bv) : Tac term = pack (Tv_Var bv)
[@@coercion]
let binder_to_term (b : binder) : Tac term =
let bview = inspect_binder b in
bv_to_term bview.binder_bv
let binder_sort (b : binder) : Tac typ =
(inspect_binder b).binder_sort
// Cannot define this inside `assumption` due to #1091
private
let rec __assumption_aux (bs : binders) : Tac unit =
match bs with
| [] ->
fail "no assumption matches goal"
| b::bs ->
let t = binder_to_term b in
try exact t with | _ ->
try (apply (`FStar.Squash.return_squash);
exact t) with | _ ->
__assumption_aux bs
let assumption () : Tac unit =
__assumption_aux (cur_binders ())
let destruct_equality_implication (t:term) : Tac (option (formula * term)) =
match term_as_formula t with
| Implies lhs rhs ->
let lhs = term_as_formula' lhs in
begin match lhs with
| Comp (Eq _) _ _ -> Some (lhs, rhs)
| _ -> None
end
| _ -> None
private
let __eq_sym #t (a b : t) : Lemma ((a == b) == (b == a)) =
FStar.PropositionalExtensionality.apply (a==b) (b==a)
(** Like [rewrite], but works with equalities [v == e] and [e == v] *)
let rewrite' (b:binder) : Tac unit =
((fun () -> rewrite b)
<|> (fun () -> binder_retype b;
apply_lemma (`__eq_sym);
rewrite b)
<|> (fun () -> fail "rewrite' failed"))
()
let rec try_rewrite_equality (x:term) (bs:binders) : Tac unit =
match bs with
| [] -> ()
| x_t::bs ->
begin match term_as_formula (type_of_binder x_t) with
| Comp (Eq _) y _ ->
if term_eq x y
then rewrite x_t
else try_rewrite_equality x bs
| _ ->
try_rewrite_equality x bs
end
let rec rewrite_all_context_equalities (bs:binders) : Tac unit =
match bs with
| [] -> ()
| x_t::bs -> begin
(try rewrite x_t with | _ -> ());
rewrite_all_context_equalities bs
end
let rewrite_eqs_from_context () : Tac unit =
rewrite_all_context_equalities (cur_binders ())
let rewrite_equality (t:term) : Tac unit =
try_rewrite_equality t (cur_binders ())
let unfold_def (t:term) : Tac unit =
match inspect t with
| Tv_FVar fv ->
let n = implode_qn (inspect_fv fv) in
norm [delta_fully [n]]
| _ -> fail "unfold_def: term is not a fv"
(** Rewrites left-to-right, and bottom-up, given a set of lemmas stating
equalities. The lemmas need to prove *propositional* equalities, that | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.VConfig.fsti.checked",
"FStar.Tactics.Visit.fst.checked",
"FStar.Tactics.V1.SyntaxHelpers.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Stubs.Tactics.Types.fsti.checked",
"FStar.Stubs.Tactics.Result.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Range.fsti.checked",
"FStar.PropositionalExtensionality.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.Base.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Derived.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Tactics.Visit",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot.Base",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar.VConfig",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.SyntaxHelpers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Result",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | lems: Prims.list FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.list",
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Derived.pointwise",
"Prims.unit",
"FStar.Tactics.Util.fold_left",
"FStar.Tactics.V1.Derived.or_else",
"FStar.Tactics.V1.Derived.apply_lemma_rw",
"FStar.Tactics.V1.Derived.trefl"
] | [] | false | true | false | false | false | let l_to_r (lems: list term) : Tac unit =
| let first_or_trefl () : Tac unit =
fold_left (fun k l () -> (fun () -> apply_lemma_rw l) `or_else` k) trefl lems ()
in
pointwise first_or_trefl | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.