file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
Hacl.Impl.Frodo.KEM.KeyGen.fst
Hacl.Impl.Frodo.KEM.KeyGen.crypto_kem_sk
val crypto_kem_sk: a:FP.frodo_alg -> s:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> sk:lbytes (crypto_secretkeybytes a) -> Stack unit (requires fun h -> live h pk /\ live h sk /\ live h s /\ disjoint pk sk /\ disjoint sk s) (ensures fun h0 _ h1 -> modifies (loc sk) h0 h1 /\ (let s_bytes = LSeq.sub (as_seq h0 sk) (v (crypto_bytes a) + v (crypto_publickeybytes a)) (v (secretmatrixbytes_len a)) in as_seq h1 sk == S.crypto_kem_sk a (as_seq h0 s) (as_seq h0 pk) s_bytes))
val crypto_kem_sk: a:FP.frodo_alg -> s:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> sk:lbytes (crypto_secretkeybytes a) -> Stack unit (requires fun h -> live h pk /\ live h sk /\ live h s /\ disjoint pk sk /\ disjoint sk s) (ensures fun h0 _ h1 -> modifies (loc sk) h0 h1 /\ (let s_bytes = LSeq.sub (as_seq h0 sk) (v (crypto_bytes a) + v (crypto_publickeybytes a)) (v (secretmatrixbytes_len a)) in as_seq h1 sk == S.crypto_kem_sk a (as_seq h0 s) (as_seq h0 pk) s_bytes))
let crypto_kem_sk a s pk sk = FP.expand_crypto_secretkeybytes a; let slen1 = crypto_secretkeybytes a -! bytes_pkhash a in let sk_p = sub sk 0ul slen1 in crypto_kem_sk1 a s pk sk_p; let h0 = ST.get () in update_sub_f h0 sk slen1 (bytes_pkhash a) (fun h -> FP.frodo_shake a (v (crypto_publickeybytes a)) (as_seq h0 pk) (v (bytes_pkhash a))) (fun _ -> frodo_shake a (crypto_publickeybytes a) pk (bytes_pkhash a) (sub sk slen1 (bytes_pkhash a))); let h1 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h0 sk) 0 (v slen1)) (LSeq.sub (as_seq h1 sk) 0 (v slen1)); LSeq.lemma_concat2 (v slen1) (LSeq.sub (as_seq h0 sk) 0 (v slen1)) (v (bytes_pkhash a)) (LSeq.sub (as_seq h1 sk) (v slen1) (v (bytes_pkhash a))) (as_seq h1 sk)
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.KeyGen.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 96, "end_line": 246, "start_col": 0, "start_line": 232 }
module Hacl.Impl.Frodo.KEM.KeyGen open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module M = Spec.Matrix module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_shake_r: a:FP.frodo_alg -> c:uint8 -> seed_se:lbytes (crypto_bytes a) -> output_len:size_t -> r:lbytes output_len -> Stack unit (requires fun h -> live h seed_se /\ live h r /\ disjoint seed_se r) (ensures fun h0 _ h1 -> modifies (loc r) h0 h1 /\ as_seq h1 r == S.frodo_shake_r a c (as_seq h0 seed_se) (v output_len)) let frodo_shake_r a c seed_se output_len r = push_frame (); let h0 = ST.get () in let shake_input_seed_se = create (1ul +! crypto_bytes a) (u8 0) in shake_input_seed_se.(0ul) <- c; update_sub shake_input_seed_se 1ul (crypto_bytes a) seed_se; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 shake_input_seed_se) 0 1) (LSeq.create 1 c); LSeq.eq_intro (LSeq.sub (as_seq h2 shake_input_seed_se) 1 (v (crypto_bytes a))) (as_seq h0 seed_se); LSeq.eq_intro (LSeq.concat (LSeq.create 1 c) (as_seq h0 seed_se)) (as_seq h2 shake_input_seed_se); frodo_shake a (1ul +! crypto_bytes a) shake_input_seed_se output_len r; clear_words_u8 shake_input_seed_se; pop_frame () inline_for_extraction noextract val frodo_mul_add_as_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> b_matrix:matrix_t (params_n a) params_nbar -> Stack unit (requires fun h -> live h seed_a /\ live h s_matrix /\ live h e_matrix /\ live h b_matrix /\ disjoint b_matrix seed_a /\ disjoint b_matrix e_matrix /\ disjoint b_matrix s_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc b_matrix) h0 h1 /\ as_matrix h1 b_matrix == S.frodo_mul_add_as_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 s_matrix) (as_matrix h0 e_matrix)) let frodo_mul_add_as_plus_e a gen_a seed_a s_matrix e_matrix b_matrix = FP.params_n_sqr a; push_frame(); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul_s a_matrix s_matrix b_matrix; matrix_add b_matrix e_matrix; pop_frame() inline_for_extraction noextract val frodo_mul_add_as_plus_e_pack: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> b:lbytes (publicmatrixbytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h s_matrix /\ live h e_matrix /\ disjoint seed_a b /\ disjoint b s_matrix /\ disjoint b e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.frodo_mul_add_as_plus_e_pack a gen_a (as_seq h0 seed_a) (as_matrix h0 s_matrix) (as_matrix h0 e_matrix)) let frodo_mul_add_as_plus_e_pack a gen_a seed_a s_matrix e_matrix b = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_mul_add_as_plus_e a gen_a seed_a s_matrix e_matrix b_matrix; frodo_pack (params_logq a) b_matrix b; pop_frame () inline_for_extraction noextract val get_s_e_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h s_matrix /\ live h e_matrix /\ disjoint seed_se s_matrix /\ disjoint seed_se e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc s_matrix |+| loc e_matrix) h0 h1 /\ (as_matrix h1 s_matrix, as_matrix h1 e_matrix) == S.get_s_e_matrices a (as_seq h0 seed_se)) let get_s_e_matrices a seed_se s_matrix e_matrix = push_frame (); [@inline_let] let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len) (u8 0) in frodo_shake_r a (u8 0x5f) seed_se (2ul *! s_bytes_len) r; frodo_sample_matrix a (params_n a) params_nbar (sub r 0ul s_bytes_len) s_matrix; frodo_sample_matrix a (params_n a) params_nbar (sub r s_bytes_len s_bytes_len) e_matrix; pop_frame () inline_for_extraction noextract val clear_matrix2: a:FP.frodo_alg -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> Stack unit (requires fun h -> live h s_matrix /\ live h e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc s_matrix |+| loc e_matrix) h0 h1) let clear_matrix2 a s_matrix e_matrix = clear_matrix s_matrix; clear_matrix e_matrix inline_for_extraction noextract val frodo_mul_add_as_plus_e_pack_shake: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> seed_se:lbytes (crypto_bytes a) -> b:lbytes (publicmatrixbytes_len a) -> s:lbytes (secretmatrixbytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h seed_se /\ live h s /\ live h b /\ disjoint b s /\ disjoint seed_a b /\ disjoint seed_a s /\ disjoint seed_se b /\ disjoint seed_se s) (ensures fun h0 _ h1 -> modifies (loc s |+| loc b) h0 h1 /\ (as_seq h1 b, as_seq h1 s) == S.frodo_mul_add_as_plus_e_pack_shake a gen_a (as_seq h0 seed_a) (as_seq h0 seed_se)) let frodo_mul_add_as_plus_e_pack_shake a gen_a seed_a seed_se b s = push_frame (); let s_matrix = matrix_create (params_n a) params_nbar in let e_matrix = matrix_create (params_n a) params_nbar in get_s_e_matrices a seed_se s_matrix e_matrix; frodo_mul_add_as_plus_e_pack a gen_a seed_a s_matrix e_matrix b; matrix_to_lbytes s_matrix s; clear_matrix2 a s_matrix e_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_sk1: a:FP.frodo_alg -> s:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> sk:lbytes (crypto_secretkeybytes a -! bytes_pkhash a) -> Stack unit (requires fun h -> live h pk /\ live h sk /\ live h s /\ disjoint pk sk /\ disjoint sk s) (ensures fun h0 _ h1 -> modifies (loc sk) h0 h1 /\ (let s_bytes = LSeq.sub (as_seq h0 sk) (v (crypto_bytes a) + v (crypto_publickeybytes a)) (v (secretmatrixbytes_len a)) in as_seq h1 sk == LSeq.concat (LSeq.concat (as_seq h0 s) (as_seq h0 pk)) s_bytes)) let crypto_kem_sk1 a s pk sk = let h1 = ST.get () in FP.expand_crypto_secretkeybytes a; let s_pk_len = crypto_bytes a +! crypto_publickeybytes a in [@inline_let] let sm_len = secretmatrixbytes_len a in let slen1 = crypto_secretkeybytes a -! bytes_pkhash a in let s_bytes = sub sk s_pk_len sm_len in update_sub sk 0ul (crypto_bytes a) s; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 sk) (v s_pk_len) (v sm_len)) (as_seq h1 s_bytes); update_sub sk (crypto_bytes a) (crypto_publickeybytes a) pk; let h3 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h3 sk) 0 (v (crypto_bytes a))) (as_seq h1 s); LSeq.eq_intro (LSeq.sub (as_seq h3 sk) (v (crypto_bytes a)) (v (crypto_publickeybytes a))) (as_seq h1 pk); LSeq.eq_intro (LSeq.sub (as_seq h3 sk) (v s_pk_len) (v sm_len)) (as_seq h1 s_bytes); LSeq.lemma_concat3 (v (crypto_bytes a)) (as_seq h1 s) (v (crypto_publickeybytes a)) (as_seq h1 pk) (v sm_len) (as_seq h1 s_bytes) (as_seq h3 sk) inline_for_extraction noextract val crypto_kem_sk: a:FP.frodo_alg -> s:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> sk:lbytes (crypto_secretkeybytes a) -> Stack unit (requires fun h -> live h pk /\ live h sk /\ live h s /\ disjoint pk sk /\ disjoint sk s) (ensures fun h0 _ h1 -> modifies (loc sk) h0 h1 /\ (let s_bytes = LSeq.sub (as_seq h0 sk) (v (crypto_bytes a) + v (crypto_publickeybytes a)) (v (secretmatrixbytes_len a)) in as_seq h1 sk == S.crypto_kem_sk a (as_seq h0 s) (as_seq h0 pk) s_bytes))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.KeyGen.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.KeyGen.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.KEM.KeyGen", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Frodo.Params.frodo_alg -> s: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_bytes a) -> pk: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_publickeybytes a) -> sk: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_secretkeybytes a) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Spec.Frodo.Params.frodo_alg", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.crypto_bytes", "Hacl.Impl.Frodo.Params.crypto_publickeybytes", "Hacl.Impl.Frodo.Params.crypto_secretkeybytes", "Lib.Sequence.lemma_concat2", "Lib.IntTypes.uint8", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Sequence.sub", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Impl.Frodo.Params.bytes_pkhash", "Prims.unit", "Lib.Sequence.eq_intro", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.Buffer.update_sub_f", "Spec.Frodo.Params.frodo_shake", "Lib.Sequence.lseq", "Hacl.Impl.Frodo.Params.frodo_shake", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Buffer.sub", "Hacl.Impl.Frodo.KEM.KeyGen.crypto_kem_sk1", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.op_Subtraction_Bang", "Spec.Frodo.Params.expand_crypto_secretkeybytes" ]
[]
false
true
false
false
false
let crypto_kem_sk a s pk sk =
FP.expand_crypto_secretkeybytes a; let slen1 = crypto_secretkeybytes a -! bytes_pkhash a in let sk_p = sub sk 0ul slen1 in crypto_kem_sk1 a s pk sk_p; let h0 = ST.get () in update_sub_f h0 sk slen1 (bytes_pkhash a) (fun h -> FP.frodo_shake a (v (crypto_publickeybytes a)) (as_seq h0 pk) (v (bytes_pkhash a))) (fun _ -> frodo_shake a (crypto_publickeybytes a) pk (bytes_pkhash a) (sub sk slen1 (bytes_pkhash a))); let h1 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h0 sk) 0 (v slen1)) (LSeq.sub (as_seq h1 sk) 0 (v slen1)); LSeq.lemma_concat2 (v slen1) (LSeq.sub (as_seq h0 sk) 0 (v slen1)) (v (bytes_pkhash a)) (LSeq.sub (as_seq h1 sk) (v slen1) (v (bytes_pkhash a))) (as_seq h1 sk)
false
Hacl.Impl.Frodo.KEM.KeyGen.fst
Hacl.Impl.Frodo.KEM.KeyGen.get_s_e_matrices
val get_s_e_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h s_matrix /\ live h e_matrix /\ disjoint seed_se s_matrix /\ disjoint seed_se e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc s_matrix |+| loc e_matrix) h0 h1 /\ (as_matrix h1 s_matrix, as_matrix h1 e_matrix) == S.get_s_e_matrices a (as_seq h0 seed_se))
val get_s_e_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h s_matrix /\ live h e_matrix /\ disjoint seed_se s_matrix /\ disjoint seed_se e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc s_matrix |+| loc e_matrix) h0 h1 /\ (as_matrix h1 s_matrix, as_matrix h1 e_matrix) == S.get_s_e_matrices a (as_seq h0 seed_se))
let get_s_e_matrices a seed_se s_matrix e_matrix = push_frame (); [@inline_let] let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len) (u8 0) in frodo_shake_r a (u8 0x5f) seed_se (2ul *! s_bytes_len) r; frodo_sample_matrix a (params_n a) params_nbar (sub r 0ul s_bytes_len) s_matrix; frodo_sample_matrix a (params_n a) params_nbar (sub r s_bytes_len s_bytes_len) e_matrix; pop_frame ()
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.KeyGen.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 130, "start_col": 0, "start_line": 123 }
module Hacl.Impl.Frodo.KEM.KeyGen open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module M = Spec.Matrix module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_shake_r: a:FP.frodo_alg -> c:uint8 -> seed_se:lbytes (crypto_bytes a) -> output_len:size_t -> r:lbytes output_len -> Stack unit (requires fun h -> live h seed_se /\ live h r /\ disjoint seed_se r) (ensures fun h0 _ h1 -> modifies (loc r) h0 h1 /\ as_seq h1 r == S.frodo_shake_r a c (as_seq h0 seed_se) (v output_len)) let frodo_shake_r a c seed_se output_len r = push_frame (); let h0 = ST.get () in let shake_input_seed_se = create (1ul +! crypto_bytes a) (u8 0) in shake_input_seed_se.(0ul) <- c; update_sub shake_input_seed_se 1ul (crypto_bytes a) seed_se; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 shake_input_seed_se) 0 1) (LSeq.create 1 c); LSeq.eq_intro (LSeq.sub (as_seq h2 shake_input_seed_se) 1 (v (crypto_bytes a))) (as_seq h0 seed_se); LSeq.eq_intro (LSeq.concat (LSeq.create 1 c) (as_seq h0 seed_se)) (as_seq h2 shake_input_seed_se); frodo_shake a (1ul +! crypto_bytes a) shake_input_seed_se output_len r; clear_words_u8 shake_input_seed_se; pop_frame () inline_for_extraction noextract val frodo_mul_add_as_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> b_matrix:matrix_t (params_n a) params_nbar -> Stack unit (requires fun h -> live h seed_a /\ live h s_matrix /\ live h e_matrix /\ live h b_matrix /\ disjoint b_matrix seed_a /\ disjoint b_matrix e_matrix /\ disjoint b_matrix s_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc b_matrix) h0 h1 /\ as_matrix h1 b_matrix == S.frodo_mul_add_as_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 s_matrix) (as_matrix h0 e_matrix)) let frodo_mul_add_as_plus_e a gen_a seed_a s_matrix e_matrix b_matrix = FP.params_n_sqr a; push_frame(); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul_s a_matrix s_matrix b_matrix; matrix_add b_matrix e_matrix; pop_frame() inline_for_extraction noextract val frodo_mul_add_as_plus_e_pack: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> b:lbytes (publicmatrixbytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h s_matrix /\ live h e_matrix /\ disjoint seed_a b /\ disjoint b s_matrix /\ disjoint b e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.frodo_mul_add_as_plus_e_pack a gen_a (as_seq h0 seed_a) (as_matrix h0 s_matrix) (as_matrix h0 e_matrix)) let frodo_mul_add_as_plus_e_pack a gen_a seed_a s_matrix e_matrix b = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_mul_add_as_plus_e a gen_a seed_a s_matrix e_matrix b_matrix; frodo_pack (params_logq a) b_matrix b; pop_frame () inline_for_extraction noextract val get_s_e_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h s_matrix /\ live h e_matrix /\ disjoint seed_se s_matrix /\ disjoint seed_se e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc s_matrix |+| loc e_matrix) h0 h1 /\ (as_matrix h1 s_matrix, as_matrix h1 e_matrix) == S.get_s_e_matrices a (as_seq h0 seed_se))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.KeyGen.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.KeyGen.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.KEM.KeyGen", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Frodo.Params.frodo_alg -> seed_se: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_bytes a) -> s_matrix: Hacl.Impl.Matrix.matrix_t (Hacl.Impl.Frodo.Params.params_n a) Hacl.Impl.Frodo.Params.params_nbar -> e_matrix: Hacl.Impl.Matrix.matrix_t (Hacl.Impl.Frodo.Params.params_n a) Hacl.Impl.Frodo.Params.params_nbar -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Spec.Frodo.Params.frodo_alg", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.crypto_bytes", "Hacl.Impl.Matrix.matrix_t", "Hacl.Impl.Frodo.Params.params_n", "Hacl.Impl.Frodo.Params.params_nbar", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Frodo.Sample.frodo_sample_matrix", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.mul", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.sub", "Lib.IntTypes.uint8", "Lib.IntTypes.op_Star_Bang", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Frodo.KEM.KeyGen.frodo_shake_r", "Lib.IntTypes.u8", "Lib.Buffer.create", "Lib.Buffer.lbuffer", "Hacl.Impl.Frodo.Params.secretmatrixbytes_len", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let get_s_e_matrices a seed_se s_matrix e_matrix =
push_frame (); [@@ inline_let ]let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len) (u8 0) in frodo_shake_r a (u8 0x5f) seed_se (2ul *! s_bytes_len) r; frodo_sample_matrix a (params_n a) params_nbar (sub r 0ul s_bytes_len) s_matrix; frodo_sample_matrix a (params_n a) params_nbar (sub r s_bytes_len s_bytes_len) e_matrix; pop_frame ()
false
Hacl.P256.PrecompTable.fst
Hacl.P256.PrecompTable.proj_g_pow2_128_lseq_lemma
val proj_g_pow2_128_lseq_lemma: unit -> Lemma (point_inv_seq proj_g_pow2_128_lseq /\ S.to_aff_point (from_mont_point (as_point_nat_seq proj_g_pow2_128_lseq)) == g_pow2_128)
val proj_g_pow2_128_lseq_lemma: unit -> Lemma (point_inv_seq proj_g_pow2_128_lseq /\ S.to_aff_point (from_mont_point (as_point_nat_seq proj_g_pow2_128_lseq)) == g_pow2_128)
let proj_g_pow2_128_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); proj_g_pow2_128_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_128
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 177, "start_col": 0, "start_line": 174 }
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation module SE = Spec.Exponentiation module SPT = Hacl.Spec.PrecompBaseTable module SPT256 = Hacl.Spec.PrecompBaseTable256 module SPTK = Hacl.Spec.P256.PrecompTable module S = Spec.P256 module SL = Spec.P256.Lemmas open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let proj_point_to_list p = SPTK.proj_point_to_list_lemma p; SPTK.proj_point_to_list p let lemma_refl x = SPTK.proj_point_to_list_lemma x //----------------- inline_for_extraction noextract let proj_g_pow2_64 : S.proj_point = [@inline_let] let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in [@inline_let] let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in [@inline_let] let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in (rX, rY, rZ) val lemma_proj_g_pow2_64_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops S.base_point 64 == proj_g_pow2_64) let lemma_proj_g_pow2_64_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops S.base_point 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64); let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_128 : S.proj_point = [@inline_let] let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in [@inline_let] let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in [@inline_let] let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in (rX, rY, rZ) val lemma_proj_g_pow2_128_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128) let lemma_proj_g_pow2_128_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64); let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_192 : S.proj_point = [@inline_let] let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in [@inline_let] let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in [@inline_let] let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in (rX, rY, rZ) val lemma_proj_g_pow2_192_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192) let lemma_proj_g_pow2_192_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64); let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) // let proj_g_pow2_64 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) // let proj_g_pow2_128 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) // let proj_g_pow2_192 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) inline_for_extraction noextract let proj_g_pow2_64_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_64) inline_for_extraction noextract let proj_g_pow2_128_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_128) inline_for_extraction noextract let proj_g_pow2_192_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_192) let proj_g_pow2_64_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); Seq.seq_of_list proj_g_pow2_64_list let proj_g_pow2_128_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); Seq.seq_of_list proj_g_pow2_128_list let proj_g_pow2_192_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192); Seq.seq_of_list proj_g_pow2_192_list val proj_g_pow2_64_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_64 == pow_point (pow2 64) g_aff) let proj_g_pow2_64_lemma () = lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_64_lemma S.mk_p256_concrete_ops S.base_point val proj_g_pow2_128_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_128 == pow_point (pow2 128) g_aff) let proj_g_pow2_128_lemma () = lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_128_lemma S.mk_p256_concrete_ops S.base_point val proj_g_pow2_192_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_192 == pow_point (pow2 192) g_aff) let proj_g_pow2_192_lemma () = lemma_proj_g_pow2_192_eval (); lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_192_lemma S.mk_p256_concrete_ops S.base_point let proj_g_pow2_64_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); proj_g_pow2_64_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_64
{ "checked_file": "/", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable256.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.PrecompTable.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.P256.PrecompTable.fst" }
[ { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures Hacl.Impl.P256.Point.point_inv_seq Hacl.P256.PrecompTable.proj_g_pow2_128_lseq /\ Spec.P256.PointOps.to_aff_point (Hacl.Impl.P256.Point.from_mont_point (Hacl.Impl.P256.Point.as_point_nat_seq Hacl.P256.PrecompTable.proj_g_pow2_128_lseq)) == Hacl.P256.PrecompTable.g_pow2_128)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "Hacl.Spec.P256.PrecompTable.proj_point_to_list_lemma", "Hacl.P256.PrecompTable.proj_g_pow2_128", "Hacl.P256.PrecompTable.proj_g_pow2_128_lemma", "FStar.Pervasives.normalize_term_spec", "Hacl.Spec.P256.PrecompTable.point_list", "Hacl.Spec.P256.PrecompTable.proj_point_to_list" ]
[]
true
false
true
false
false
let proj_g_pow2_128_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); proj_g_pow2_128_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_128
false
Hacl.P256.PrecompTable.fst
Hacl.P256.PrecompTable.proj_g_pow2_192_lseq_lemma
val proj_g_pow2_192_lseq_lemma: unit -> Lemma (point_inv_seq proj_g_pow2_192_lseq /\ S.to_aff_point (from_mont_point (as_point_nat_seq proj_g_pow2_192_lseq)) == g_pow2_192)
val proj_g_pow2_192_lseq_lemma: unit -> Lemma (point_inv_seq proj_g_pow2_192_lseq /\ S.to_aff_point (from_mont_point (as_point_nat_seq proj_g_pow2_192_lseq)) == g_pow2_192)
let proj_g_pow2_192_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192); proj_g_pow2_192_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_192
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 47, "end_line": 183, "start_col": 0, "start_line": 180 }
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation module SE = Spec.Exponentiation module SPT = Hacl.Spec.PrecompBaseTable module SPT256 = Hacl.Spec.PrecompBaseTable256 module SPTK = Hacl.Spec.P256.PrecompTable module S = Spec.P256 module SL = Spec.P256.Lemmas open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let proj_point_to_list p = SPTK.proj_point_to_list_lemma p; SPTK.proj_point_to_list p let lemma_refl x = SPTK.proj_point_to_list_lemma x //----------------- inline_for_extraction noextract let proj_g_pow2_64 : S.proj_point = [@inline_let] let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in [@inline_let] let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in [@inline_let] let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in (rX, rY, rZ) val lemma_proj_g_pow2_64_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops S.base_point 64 == proj_g_pow2_64) let lemma_proj_g_pow2_64_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops S.base_point 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64); let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_128 : S.proj_point = [@inline_let] let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in [@inline_let] let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in [@inline_let] let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in (rX, rY, rZ) val lemma_proj_g_pow2_128_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128) let lemma_proj_g_pow2_128_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64); let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_192 : S.proj_point = [@inline_let] let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in [@inline_let] let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in [@inline_let] let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in (rX, rY, rZ) val lemma_proj_g_pow2_192_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192) let lemma_proj_g_pow2_192_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64); let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) // let proj_g_pow2_64 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) // let proj_g_pow2_128 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) // let proj_g_pow2_192 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) inline_for_extraction noextract let proj_g_pow2_64_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_64) inline_for_extraction noextract let proj_g_pow2_128_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_128) inline_for_extraction noextract let proj_g_pow2_192_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_192) let proj_g_pow2_64_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); Seq.seq_of_list proj_g_pow2_64_list let proj_g_pow2_128_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); Seq.seq_of_list proj_g_pow2_128_list let proj_g_pow2_192_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192); Seq.seq_of_list proj_g_pow2_192_list val proj_g_pow2_64_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_64 == pow_point (pow2 64) g_aff) let proj_g_pow2_64_lemma () = lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_64_lemma S.mk_p256_concrete_ops S.base_point val proj_g_pow2_128_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_128 == pow_point (pow2 128) g_aff) let proj_g_pow2_128_lemma () = lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_128_lemma S.mk_p256_concrete_ops S.base_point val proj_g_pow2_192_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_192 == pow_point (pow2 192) g_aff) let proj_g_pow2_192_lemma () = lemma_proj_g_pow2_192_eval (); lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_192_lemma S.mk_p256_concrete_ops S.base_point let proj_g_pow2_64_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); proj_g_pow2_64_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_64 let proj_g_pow2_128_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); proj_g_pow2_128_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_128
{ "checked_file": "/", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable256.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.PrecompTable.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.P256.PrecompTable.fst" }
[ { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures Hacl.Impl.P256.Point.point_inv_seq Hacl.P256.PrecompTable.proj_g_pow2_192_lseq /\ Spec.P256.PointOps.to_aff_point (Hacl.Impl.P256.Point.from_mont_point (Hacl.Impl.P256.Point.as_point_nat_seq Hacl.P256.PrecompTable.proj_g_pow2_192_lseq)) == Hacl.P256.PrecompTable.g_pow2_192)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "Hacl.Spec.P256.PrecompTable.proj_point_to_list_lemma", "Hacl.P256.PrecompTable.proj_g_pow2_192", "Hacl.P256.PrecompTable.proj_g_pow2_192_lemma", "FStar.Pervasives.normalize_term_spec", "Hacl.Spec.P256.PrecompTable.point_list", "Hacl.Spec.P256.PrecompTable.proj_point_to_list" ]
[]
true
false
true
false
false
let proj_g_pow2_192_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192); proj_g_pow2_192_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_192
false
Hacl.P256.PrecompTable.fst
Hacl.P256.PrecompTable.proj_g_pow2_128_lemma
val proj_g_pow2_128_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_128 == pow_point (pow2 128) g_aff)
val proj_g_pow2_128_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_128 == pow_point (pow2 128) g_aff)
let proj_g_pow2_128_lemma () = lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_128_lemma S.mk_p256_concrete_ops S.base_point
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 61, "end_line": 155, "start_col": 0, "start_line": 152 }
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation module SE = Spec.Exponentiation module SPT = Hacl.Spec.PrecompBaseTable module SPT256 = Hacl.Spec.PrecompBaseTable256 module SPTK = Hacl.Spec.P256.PrecompTable module S = Spec.P256 module SL = Spec.P256.Lemmas open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let proj_point_to_list p = SPTK.proj_point_to_list_lemma p; SPTK.proj_point_to_list p let lemma_refl x = SPTK.proj_point_to_list_lemma x //----------------- inline_for_extraction noextract let proj_g_pow2_64 : S.proj_point = [@inline_let] let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in [@inline_let] let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in [@inline_let] let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in (rX, rY, rZ) val lemma_proj_g_pow2_64_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops S.base_point 64 == proj_g_pow2_64) let lemma_proj_g_pow2_64_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops S.base_point 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64); let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_128 : S.proj_point = [@inline_let] let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in [@inline_let] let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in [@inline_let] let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in (rX, rY, rZ) val lemma_proj_g_pow2_128_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128) let lemma_proj_g_pow2_128_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64); let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_192 : S.proj_point = [@inline_let] let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in [@inline_let] let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in [@inline_let] let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in (rX, rY, rZ) val lemma_proj_g_pow2_192_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192) let lemma_proj_g_pow2_192_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64); let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) // let proj_g_pow2_64 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) // let proj_g_pow2_128 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) // let proj_g_pow2_192 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) inline_for_extraction noextract let proj_g_pow2_64_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_64) inline_for_extraction noextract let proj_g_pow2_128_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_128) inline_for_extraction noextract let proj_g_pow2_192_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_192) let proj_g_pow2_64_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); Seq.seq_of_list proj_g_pow2_64_list let proj_g_pow2_128_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); Seq.seq_of_list proj_g_pow2_128_list let proj_g_pow2_192_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192); Seq.seq_of_list proj_g_pow2_192_list val proj_g_pow2_64_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_64 == pow_point (pow2 64) g_aff) let proj_g_pow2_64_lemma () = lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_64_lemma S.mk_p256_concrete_ops S.base_point val proj_g_pow2_128_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_128 == pow_point (pow2 128) g_aff)
{ "checked_file": "/", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable256.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.PrecompTable.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.P256.PrecompTable.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.Pervasives.Lemma (ensures Spec.P256.PointOps.to_aff_point Hacl.P256.PrecompTable.proj_g_pow2_128 == Hacl.P256.PrecompTable.pow_point (Prims.pow2 128) Hacl.P256.PrecompTable.g_aff)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.unit", "Hacl.Spec.PrecompBaseTable256.a_pow2_128_lemma", "Spec.P256.PointOps.proj_point", "Spec.P256.mk_p256_concrete_ops", "Spec.P256.PointOps.base_point", "Hacl.P256.PrecompTable.lemma_proj_g_pow2_64_eval", "Hacl.P256.PrecompTable.lemma_proj_g_pow2_128_eval" ]
[]
true
false
true
false
false
let proj_g_pow2_128_lemma () =
lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_128_lemma S.mk_p256_concrete_ops S.base_point
false
Hacl.P256.PrecompTable.fst
Hacl.P256.PrecompTable.proj_g_pow2_192_list
val proj_g_pow2_192_list:SPTK.point_list
val proj_g_pow2_192_list:SPTK.point_list
let proj_g_pow2_192_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_192)
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 58, "end_line": 125, "start_col": 0, "start_line": 124 }
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation module SE = Spec.Exponentiation module SPT = Hacl.Spec.PrecompBaseTable module SPT256 = Hacl.Spec.PrecompBaseTable256 module SPTK = Hacl.Spec.P256.PrecompTable module S = Spec.P256 module SL = Spec.P256.Lemmas open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let proj_point_to_list p = SPTK.proj_point_to_list_lemma p; SPTK.proj_point_to_list p let lemma_refl x = SPTK.proj_point_to_list_lemma x //----------------- inline_for_extraction noextract let proj_g_pow2_64 : S.proj_point = [@inline_let] let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in [@inline_let] let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in [@inline_let] let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in (rX, rY, rZ) val lemma_proj_g_pow2_64_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops S.base_point 64 == proj_g_pow2_64) let lemma_proj_g_pow2_64_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops S.base_point 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64); let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_128 : S.proj_point = [@inline_let] let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in [@inline_let] let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in [@inline_let] let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in (rX, rY, rZ) val lemma_proj_g_pow2_128_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128) let lemma_proj_g_pow2_128_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64); let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_192 : S.proj_point = [@inline_let] let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in [@inline_let] let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in [@inline_let] let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in (rX, rY, rZ) val lemma_proj_g_pow2_192_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192) let lemma_proj_g_pow2_192_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64); let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) // let proj_g_pow2_64 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) // let proj_g_pow2_128 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) // let proj_g_pow2_192 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) inline_for_extraction noextract let proj_g_pow2_64_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_64) inline_for_extraction noextract let proj_g_pow2_128_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_128)
{ "checked_file": "/", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable256.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.PrecompTable.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.P256.PrecompTable.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Spec.P256.PrecompTable.point_list
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.normalize_term", "Hacl.Spec.P256.PrecompTable.point_list", "Hacl.Spec.P256.PrecompTable.proj_point_to_list", "Hacl.P256.PrecompTable.proj_g_pow2_192" ]
[]
false
false
false
true
false
let proj_g_pow2_192_list:SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_192)
false
Hacl.P256.PrecompTable.fst
Hacl.P256.PrecompTable.proj_g_pow2_64_lseq
val proj_g_pow2_64_lseq : LSeq.lseq uint64 12
val proj_g_pow2_64_lseq : LSeq.lseq uint64 12
let proj_g_pow2_64_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); Seq.seq_of_list proj_g_pow2_64_list
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 37, "end_line": 130, "start_col": 0, "start_line": 128 }
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation module SE = Spec.Exponentiation module SPT = Hacl.Spec.PrecompBaseTable module SPT256 = Hacl.Spec.PrecompBaseTable256 module SPTK = Hacl.Spec.P256.PrecompTable module S = Spec.P256 module SL = Spec.P256.Lemmas open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let proj_point_to_list p = SPTK.proj_point_to_list_lemma p; SPTK.proj_point_to_list p let lemma_refl x = SPTK.proj_point_to_list_lemma x //----------------- inline_for_extraction noextract let proj_g_pow2_64 : S.proj_point = [@inline_let] let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in [@inline_let] let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in [@inline_let] let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in (rX, rY, rZ) val lemma_proj_g_pow2_64_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops S.base_point 64 == proj_g_pow2_64) let lemma_proj_g_pow2_64_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops S.base_point 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64); let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_128 : S.proj_point = [@inline_let] let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in [@inline_let] let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in [@inline_let] let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in (rX, rY, rZ) val lemma_proj_g_pow2_128_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128) let lemma_proj_g_pow2_128_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64); let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_192 : S.proj_point = [@inline_let] let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in [@inline_let] let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in [@inline_let] let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in (rX, rY, rZ) val lemma_proj_g_pow2_192_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192) let lemma_proj_g_pow2_192_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64); let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) // let proj_g_pow2_64 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) // let proj_g_pow2_128 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) // let proj_g_pow2_192 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) inline_for_extraction noextract let proj_g_pow2_64_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_64) inline_for_extraction noextract let proj_g_pow2_128_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_128) inline_for_extraction noextract let proj_g_pow2_192_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_192)
{ "checked_file": "/", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable256.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.PrecompTable.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.P256.PrecompTable.fst" }
[ { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq Lib.IntTypes.uint64 12
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq_of_list", "Lib.IntTypes.uint64", "Hacl.P256.PrecompTable.proj_g_pow2_64_list", "Prims.unit", "FStar.Pervasives.normalize_term_spec", "Hacl.Spec.P256.PrecompTable.point_list", "Hacl.Spec.P256.PrecompTable.proj_point_to_list", "Hacl.P256.PrecompTable.proj_g_pow2_64", "Lib.Sequence.lseq" ]
[]
false
false
false
false
false
let proj_g_pow2_64_lseq:LSeq.lseq uint64 12 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); Seq.seq_of_list proj_g_pow2_64_list
false
Hacl.Impl.Frodo.KEM.KeyGen.fst
Hacl.Impl.Frodo.KEM.KeyGen.crypto_kem_keypair
val crypto_kem_keypair: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> pk:lbytes (crypto_publickeybytes a) -> sk:lbytes (crypto_secretkeybytes a) -> Stack uint32 (requires fun h -> live h pk /\ live h sk /\ disjoint state pk /\ disjoint state sk /\ disjoint pk sk) (ensures fun h0 r h1 -> modifies (loc state |+| (loc pk |+| loc sk)) h0 h1 /\ (as_seq h1 pk, as_seq h1 sk) == S.crypto_kem_keypair a gen_a (as_seq h0 state))
val crypto_kem_keypair: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> pk:lbytes (crypto_publickeybytes a) -> sk:lbytes (crypto_secretkeybytes a) -> Stack uint32 (requires fun h -> live h pk /\ live h sk /\ disjoint state pk /\ disjoint state sk /\ disjoint pk sk) (ensures fun h0 r h1 -> modifies (loc state |+| (loc pk |+| loc sk)) h0 h1 /\ (as_seq h1 pk, as_seq h1 sk) == S.crypto_kem_keypair a gen_a (as_seq h0 state))
let crypto_kem_keypair a gen_a pk sk = recall state; push_frame(); let coins = create (size 2 *! crypto_bytes a +! bytes_seed_a) (u8 0) in randombytes_ (size 2 *! crypto_bytes a +! bytes_seed_a) coins; crypto_kem_keypair_ a gen_a coins pk sk; clear_words_u8 coins; pop_frame(); u32 0
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.KeyGen.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 7, "end_line": 304, "start_col": 0, "start_line": 296 }
module Hacl.Impl.Frodo.KEM.KeyGen open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module M = Spec.Matrix module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_shake_r: a:FP.frodo_alg -> c:uint8 -> seed_se:lbytes (crypto_bytes a) -> output_len:size_t -> r:lbytes output_len -> Stack unit (requires fun h -> live h seed_se /\ live h r /\ disjoint seed_se r) (ensures fun h0 _ h1 -> modifies (loc r) h0 h1 /\ as_seq h1 r == S.frodo_shake_r a c (as_seq h0 seed_se) (v output_len)) let frodo_shake_r a c seed_se output_len r = push_frame (); let h0 = ST.get () in let shake_input_seed_se = create (1ul +! crypto_bytes a) (u8 0) in shake_input_seed_se.(0ul) <- c; update_sub shake_input_seed_se 1ul (crypto_bytes a) seed_se; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 shake_input_seed_se) 0 1) (LSeq.create 1 c); LSeq.eq_intro (LSeq.sub (as_seq h2 shake_input_seed_se) 1 (v (crypto_bytes a))) (as_seq h0 seed_se); LSeq.eq_intro (LSeq.concat (LSeq.create 1 c) (as_seq h0 seed_se)) (as_seq h2 shake_input_seed_se); frodo_shake a (1ul +! crypto_bytes a) shake_input_seed_se output_len r; clear_words_u8 shake_input_seed_se; pop_frame () inline_for_extraction noextract val frodo_mul_add_as_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> b_matrix:matrix_t (params_n a) params_nbar -> Stack unit (requires fun h -> live h seed_a /\ live h s_matrix /\ live h e_matrix /\ live h b_matrix /\ disjoint b_matrix seed_a /\ disjoint b_matrix e_matrix /\ disjoint b_matrix s_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc b_matrix) h0 h1 /\ as_matrix h1 b_matrix == S.frodo_mul_add_as_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 s_matrix) (as_matrix h0 e_matrix)) let frodo_mul_add_as_plus_e a gen_a seed_a s_matrix e_matrix b_matrix = FP.params_n_sqr a; push_frame(); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul_s a_matrix s_matrix b_matrix; matrix_add b_matrix e_matrix; pop_frame() inline_for_extraction noextract val frodo_mul_add_as_plus_e_pack: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> b:lbytes (publicmatrixbytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h s_matrix /\ live h e_matrix /\ disjoint seed_a b /\ disjoint b s_matrix /\ disjoint b e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.frodo_mul_add_as_plus_e_pack a gen_a (as_seq h0 seed_a) (as_matrix h0 s_matrix) (as_matrix h0 e_matrix)) let frodo_mul_add_as_plus_e_pack a gen_a seed_a s_matrix e_matrix b = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_mul_add_as_plus_e a gen_a seed_a s_matrix e_matrix b_matrix; frodo_pack (params_logq a) b_matrix b; pop_frame () inline_for_extraction noextract val get_s_e_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h s_matrix /\ live h e_matrix /\ disjoint seed_se s_matrix /\ disjoint seed_se e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc s_matrix |+| loc e_matrix) h0 h1 /\ (as_matrix h1 s_matrix, as_matrix h1 e_matrix) == S.get_s_e_matrices a (as_seq h0 seed_se)) let get_s_e_matrices a seed_se s_matrix e_matrix = push_frame (); [@inline_let] let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len) (u8 0) in frodo_shake_r a (u8 0x5f) seed_se (2ul *! s_bytes_len) r; frodo_sample_matrix a (params_n a) params_nbar (sub r 0ul s_bytes_len) s_matrix; frodo_sample_matrix a (params_n a) params_nbar (sub r s_bytes_len s_bytes_len) e_matrix; pop_frame () inline_for_extraction noextract val clear_matrix2: a:FP.frodo_alg -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> Stack unit (requires fun h -> live h s_matrix /\ live h e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc s_matrix |+| loc e_matrix) h0 h1) let clear_matrix2 a s_matrix e_matrix = clear_matrix s_matrix; clear_matrix e_matrix inline_for_extraction noextract val frodo_mul_add_as_plus_e_pack_shake: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> seed_se:lbytes (crypto_bytes a) -> b:lbytes (publicmatrixbytes_len a) -> s:lbytes (secretmatrixbytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h seed_se /\ live h s /\ live h b /\ disjoint b s /\ disjoint seed_a b /\ disjoint seed_a s /\ disjoint seed_se b /\ disjoint seed_se s) (ensures fun h0 _ h1 -> modifies (loc s |+| loc b) h0 h1 /\ (as_seq h1 b, as_seq h1 s) == S.frodo_mul_add_as_plus_e_pack_shake a gen_a (as_seq h0 seed_a) (as_seq h0 seed_se)) let frodo_mul_add_as_plus_e_pack_shake a gen_a seed_a seed_se b s = push_frame (); let s_matrix = matrix_create (params_n a) params_nbar in let e_matrix = matrix_create (params_n a) params_nbar in get_s_e_matrices a seed_se s_matrix e_matrix; frodo_mul_add_as_plus_e_pack a gen_a seed_a s_matrix e_matrix b; matrix_to_lbytes s_matrix s; clear_matrix2 a s_matrix e_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_sk1: a:FP.frodo_alg -> s:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> sk:lbytes (crypto_secretkeybytes a -! bytes_pkhash a) -> Stack unit (requires fun h -> live h pk /\ live h sk /\ live h s /\ disjoint pk sk /\ disjoint sk s) (ensures fun h0 _ h1 -> modifies (loc sk) h0 h1 /\ (let s_bytes = LSeq.sub (as_seq h0 sk) (v (crypto_bytes a) + v (crypto_publickeybytes a)) (v (secretmatrixbytes_len a)) in as_seq h1 sk == LSeq.concat (LSeq.concat (as_seq h0 s) (as_seq h0 pk)) s_bytes)) let crypto_kem_sk1 a s pk sk = let h1 = ST.get () in FP.expand_crypto_secretkeybytes a; let s_pk_len = crypto_bytes a +! crypto_publickeybytes a in [@inline_let] let sm_len = secretmatrixbytes_len a in let slen1 = crypto_secretkeybytes a -! bytes_pkhash a in let s_bytes = sub sk s_pk_len sm_len in update_sub sk 0ul (crypto_bytes a) s; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 sk) (v s_pk_len) (v sm_len)) (as_seq h1 s_bytes); update_sub sk (crypto_bytes a) (crypto_publickeybytes a) pk; let h3 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h3 sk) 0 (v (crypto_bytes a))) (as_seq h1 s); LSeq.eq_intro (LSeq.sub (as_seq h3 sk) (v (crypto_bytes a)) (v (crypto_publickeybytes a))) (as_seq h1 pk); LSeq.eq_intro (LSeq.sub (as_seq h3 sk) (v s_pk_len) (v sm_len)) (as_seq h1 s_bytes); LSeq.lemma_concat3 (v (crypto_bytes a)) (as_seq h1 s) (v (crypto_publickeybytes a)) (as_seq h1 pk) (v sm_len) (as_seq h1 s_bytes) (as_seq h3 sk) inline_for_extraction noextract val crypto_kem_sk: a:FP.frodo_alg -> s:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> sk:lbytes (crypto_secretkeybytes a) -> Stack unit (requires fun h -> live h pk /\ live h sk /\ live h s /\ disjoint pk sk /\ disjoint sk s) (ensures fun h0 _ h1 -> modifies (loc sk) h0 h1 /\ (let s_bytes = LSeq.sub (as_seq h0 sk) (v (crypto_bytes a) + v (crypto_publickeybytes a)) (v (secretmatrixbytes_len a)) in as_seq h1 sk == S.crypto_kem_sk a (as_seq h0 s) (as_seq h0 pk) s_bytes)) let crypto_kem_sk a s pk sk = FP.expand_crypto_secretkeybytes a; let slen1 = crypto_secretkeybytes a -! bytes_pkhash a in let sk_p = sub sk 0ul slen1 in crypto_kem_sk1 a s pk sk_p; let h0 = ST.get () in update_sub_f h0 sk slen1 (bytes_pkhash a) (fun h -> FP.frodo_shake a (v (crypto_publickeybytes a)) (as_seq h0 pk) (v (bytes_pkhash a))) (fun _ -> frodo_shake a (crypto_publickeybytes a) pk (bytes_pkhash a) (sub sk slen1 (bytes_pkhash a))); let h1 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h0 sk) 0 (v slen1)) (LSeq.sub (as_seq h1 sk) 0 (v slen1)); LSeq.lemma_concat2 (v slen1) (LSeq.sub (as_seq h0 sk) 0 (v slen1)) (v (bytes_pkhash a)) (LSeq.sub (as_seq h1 sk) (v slen1) (v (bytes_pkhash a))) (as_seq h1 sk) inline_for_extraction noextract val crypto_kem_keypair_: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> coins:lbytes (size 2 *! crypto_bytes a +! bytes_seed_a) -> pk:lbytes (crypto_publickeybytes a) -> sk:lbytes (crypto_secretkeybytes a) -> Stack unit (requires fun h -> live h pk /\ live h sk /\ live h coins /\ disjoint pk sk /\ disjoint coins sk /\ disjoint coins pk) (ensures fun h0 _ h1 -> modifies (loc pk |+| loc sk) h0 h1 /\ (as_seq h1 pk, as_seq h1 sk) == S.crypto_kem_keypair_ a gen_a (as_seq h0 coins)) let crypto_kem_keypair_ a gen_a coins pk sk = FP.expand_crypto_secretkeybytes a; FP.expand_crypto_secretkeybytes a; let h0 = ST.get () in let s = sub coins 0ul (crypto_bytes a) in let seed_se = sub coins (crypto_bytes a) (crypto_bytes a) in let z = sub coins (2ul *! crypto_bytes a) bytes_seed_a in let seed_a = sub pk 0ul bytes_seed_a in frodo_shake a bytes_seed_a z bytes_seed_a seed_a; let b_bytes = sub pk bytes_seed_a (publicmatrixbytes_len a) in let s_bytes = sub sk (crypto_bytes a +! crypto_publickeybytes a) (secretmatrixbytes_len a) in frodo_mul_add_as_plus_e_pack_shake a gen_a seed_a seed_se b_bytes s_bytes; let h1 = ST.get () in LSeq.lemma_concat2 (v bytes_seed_a) (as_seq h1 seed_a) (v (publicmatrixbytes_len a)) (as_seq h1 b_bytes) (as_seq h1 pk); crypto_kem_sk a s pk sk inline_for_extraction noextract val crypto_kem_keypair: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> pk:lbytes (crypto_publickeybytes a) -> sk:lbytes (crypto_secretkeybytes a) -> Stack uint32 (requires fun h -> live h pk /\ live h sk /\ disjoint state pk /\ disjoint state sk /\ disjoint pk sk) (ensures fun h0 r h1 -> modifies (loc state |+| (loc pk |+| loc sk)) h0 h1 /\ (as_seq h1 pk, as_seq h1 sk) == S.crypto_kem_keypair a gen_a (as_seq h0 state))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.KeyGen.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.KeyGen.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.KEM.KeyGen", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Frodo.Params.frodo_alg -> gen_a: Spec.Frodo.Params.frodo_gen_a{Hacl.Impl.Frodo.Params.is_supported gen_a} -> pk: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_publickeybytes a) -> sk: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_secretkeybytes a) -> FStar.HyperStack.ST.Stack Lib.IntTypes.uint32
FStar.HyperStack.ST.Stack
[]
[]
[ "Spec.Frodo.Params.frodo_alg", "Spec.Frodo.Params.frodo_gen_a", "Prims.b2t", "Hacl.Impl.Frodo.Params.is_supported", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.crypto_publickeybytes", "Hacl.Impl.Frodo.Params.crypto_secretkeybytes", "Lib.IntTypes.u32", "Lib.IntTypes.uint32", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Hacl.Impl.Frodo.KEM.clear_words_u8", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.size", "Hacl.Impl.Frodo.Params.crypto_bytes", "Hacl.Impl.Frodo.Params.bytes_seed_a", "Hacl.Impl.Frodo.KEM.KeyGen.crypto_kem_keypair_", "Hacl.Frodo.Random.randombytes_", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.add", "Lib.IntTypes.mul", "Lib.IntTypes.mk_int", "Lib.Buffer.create", "Lib.IntTypes.uint8", "Lib.IntTypes.u8", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame", "Lib.Buffer.recall", "FStar.UInt32.__uint_to_t", "Hacl.Frodo.Random.state" ]
[]
false
true
false
false
false
let crypto_kem_keypair a gen_a pk sk =
recall state; push_frame (); let coins = create (size 2 *! crypto_bytes a +! bytes_seed_a) (u8 0) in randombytes_ (size 2 *! crypto_bytes a +! bytes_seed_a) coins; crypto_kem_keypair_ a gen_a coins pk sk; clear_words_u8 coins; pop_frame (); u32 0
false
FStar.DM4F.OTP.Heap.fst
FStar.DM4F.OTP.Heap.to_id
val to_id (n:nat{n < size}) : id
val to_id (n:nat{n < size}) : id
let to_id (n:nat{n < size}) : id = n
{ "file_name": "examples/dm4free/FStar.DM4F.OTP.Heap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 29, "start_col": 0, "start_line": 29 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.OTP.Heap open FStar.BitVector open FStar.Seq (***** Random tape *****) let q = admit () type id : eqtype = i:nat{i < size} type tape : eqtype = h:seq elem{length h == size}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.DM4F.OTP.Heap.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat{n < FStar.DM4F.OTP.Heap.size} -> FStar.DM4F.OTP.Heap.id
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.DM4F.OTP.Heap.size", "FStar.DM4F.OTP.Heap.id" ]
[]
false
false
false
false
false
let to_id (n: nat{n < size}) : id =
n
false
Hacl.Impl.Frodo.KEM.KeyGen.fst
Hacl.Impl.Frodo.KEM.KeyGen.frodo_mul_add_as_plus_e_pack_shake
val frodo_mul_add_as_plus_e_pack_shake: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> seed_se:lbytes (crypto_bytes a) -> b:lbytes (publicmatrixbytes_len a) -> s:lbytes (secretmatrixbytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h seed_se /\ live h s /\ live h b /\ disjoint b s /\ disjoint seed_a b /\ disjoint seed_a s /\ disjoint seed_se b /\ disjoint seed_se s) (ensures fun h0 _ h1 -> modifies (loc s |+| loc b) h0 h1 /\ (as_seq h1 b, as_seq h1 s) == S.frodo_mul_add_as_plus_e_pack_shake a gen_a (as_seq h0 seed_a) (as_seq h0 seed_se))
val frodo_mul_add_as_plus_e_pack_shake: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> seed_se:lbytes (crypto_bytes a) -> b:lbytes (publicmatrixbytes_len a) -> s:lbytes (secretmatrixbytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h seed_se /\ live h s /\ live h b /\ disjoint b s /\ disjoint seed_a b /\ disjoint seed_a s /\ disjoint seed_se b /\ disjoint seed_se s) (ensures fun h0 _ h1 -> modifies (loc s |+| loc b) h0 h1 /\ (as_seq h1 b, as_seq h1 s) == S.frodo_mul_add_as_plus_e_pack_shake a gen_a (as_seq h0 seed_a) (as_seq h0 seed_se))
let frodo_mul_add_as_plus_e_pack_shake a gen_a seed_a seed_se b s = push_frame (); let s_matrix = matrix_create (params_n a) params_nbar in let e_matrix = matrix_create (params_n a) params_nbar in get_s_e_matrices a seed_se s_matrix e_matrix; frodo_mul_add_as_plus_e_pack a gen_a seed_a s_matrix e_matrix b; matrix_to_lbytes s_matrix s; clear_matrix2 a s_matrix e_matrix; pop_frame ()
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.KeyGen.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 177, "start_col": 0, "start_line": 167 }
module Hacl.Impl.Frodo.KEM.KeyGen open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module M = Spec.Matrix module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_shake_r: a:FP.frodo_alg -> c:uint8 -> seed_se:lbytes (crypto_bytes a) -> output_len:size_t -> r:lbytes output_len -> Stack unit (requires fun h -> live h seed_se /\ live h r /\ disjoint seed_se r) (ensures fun h0 _ h1 -> modifies (loc r) h0 h1 /\ as_seq h1 r == S.frodo_shake_r a c (as_seq h0 seed_se) (v output_len)) let frodo_shake_r a c seed_se output_len r = push_frame (); let h0 = ST.get () in let shake_input_seed_se = create (1ul +! crypto_bytes a) (u8 0) in shake_input_seed_se.(0ul) <- c; update_sub shake_input_seed_se 1ul (crypto_bytes a) seed_se; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 shake_input_seed_se) 0 1) (LSeq.create 1 c); LSeq.eq_intro (LSeq.sub (as_seq h2 shake_input_seed_se) 1 (v (crypto_bytes a))) (as_seq h0 seed_se); LSeq.eq_intro (LSeq.concat (LSeq.create 1 c) (as_seq h0 seed_se)) (as_seq h2 shake_input_seed_se); frodo_shake a (1ul +! crypto_bytes a) shake_input_seed_se output_len r; clear_words_u8 shake_input_seed_se; pop_frame () inline_for_extraction noextract val frodo_mul_add_as_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> b_matrix:matrix_t (params_n a) params_nbar -> Stack unit (requires fun h -> live h seed_a /\ live h s_matrix /\ live h e_matrix /\ live h b_matrix /\ disjoint b_matrix seed_a /\ disjoint b_matrix e_matrix /\ disjoint b_matrix s_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc b_matrix) h0 h1 /\ as_matrix h1 b_matrix == S.frodo_mul_add_as_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 s_matrix) (as_matrix h0 e_matrix)) let frodo_mul_add_as_plus_e a gen_a seed_a s_matrix e_matrix b_matrix = FP.params_n_sqr a; push_frame(); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul_s a_matrix s_matrix b_matrix; matrix_add b_matrix e_matrix; pop_frame() inline_for_extraction noextract val frodo_mul_add_as_plus_e_pack: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> b:lbytes (publicmatrixbytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h s_matrix /\ live h e_matrix /\ disjoint seed_a b /\ disjoint b s_matrix /\ disjoint b e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.frodo_mul_add_as_plus_e_pack a gen_a (as_seq h0 seed_a) (as_matrix h0 s_matrix) (as_matrix h0 e_matrix)) let frodo_mul_add_as_plus_e_pack a gen_a seed_a s_matrix e_matrix b = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_mul_add_as_plus_e a gen_a seed_a s_matrix e_matrix b_matrix; frodo_pack (params_logq a) b_matrix b; pop_frame () inline_for_extraction noextract val get_s_e_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h s_matrix /\ live h e_matrix /\ disjoint seed_se s_matrix /\ disjoint seed_se e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc s_matrix |+| loc e_matrix) h0 h1 /\ (as_matrix h1 s_matrix, as_matrix h1 e_matrix) == S.get_s_e_matrices a (as_seq h0 seed_se)) let get_s_e_matrices a seed_se s_matrix e_matrix = push_frame (); [@inline_let] let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len) (u8 0) in frodo_shake_r a (u8 0x5f) seed_se (2ul *! s_bytes_len) r; frodo_sample_matrix a (params_n a) params_nbar (sub r 0ul s_bytes_len) s_matrix; frodo_sample_matrix a (params_n a) params_nbar (sub r s_bytes_len s_bytes_len) e_matrix; pop_frame () inline_for_extraction noextract val clear_matrix2: a:FP.frodo_alg -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> Stack unit (requires fun h -> live h s_matrix /\ live h e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc s_matrix |+| loc e_matrix) h0 h1) let clear_matrix2 a s_matrix e_matrix = clear_matrix s_matrix; clear_matrix e_matrix inline_for_extraction noextract val frodo_mul_add_as_plus_e_pack_shake: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> seed_se:lbytes (crypto_bytes a) -> b:lbytes (publicmatrixbytes_len a) -> s:lbytes (secretmatrixbytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h seed_se /\ live h s /\ live h b /\ disjoint b s /\ disjoint seed_a b /\ disjoint seed_a s /\ disjoint seed_se b /\ disjoint seed_se s) (ensures fun h0 _ h1 -> modifies (loc s |+| loc b) h0 h1 /\ (as_seq h1 b, as_seq h1 s) == S.frodo_mul_add_as_plus_e_pack_shake a gen_a (as_seq h0 seed_a) (as_seq h0 seed_se))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.KeyGen.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.KeyGen.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.KEM.KeyGen", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Frodo.Params.frodo_alg -> gen_a: Spec.Frodo.Params.frodo_gen_a{Hacl.Impl.Frodo.Params.is_supported gen_a} -> seed_a: Hacl.Impl.Matrix.lbytes Hacl.Impl.Frodo.Params.bytes_seed_a -> seed_se: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_bytes a) -> b: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.publicmatrixbytes_len a) -> s: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.secretmatrixbytes_len a) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Spec.Frodo.Params.frodo_alg", "Spec.Frodo.Params.frodo_gen_a", "Prims.b2t", "Hacl.Impl.Frodo.Params.is_supported", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.bytes_seed_a", "Hacl.Impl.Frodo.Params.crypto_bytes", "Hacl.Impl.Frodo.Params.publicmatrixbytes_len", "Hacl.Impl.Frodo.Params.secretmatrixbytes_len", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Frodo.KEM.KeyGen.clear_matrix2", "Hacl.Impl.Matrix.matrix_to_lbytes", "Hacl.Impl.Frodo.Params.params_n", "Hacl.Impl.Frodo.Params.params_nbar", "Hacl.Impl.Frodo.KEM.KeyGen.frodo_mul_add_as_plus_e_pack", "Hacl.Impl.Frodo.KEM.KeyGen.get_s_e_matrices", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Lib.IntTypes.mul", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Matrix.matrix_create", "Hacl.Impl.Matrix.matrix_t", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let frodo_mul_add_as_plus_e_pack_shake a gen_a seed_a seed_se b s =
push_frame (); let s_matrix = matrix_create (params_n a) params_nbar in let e_matrix = matrix_create (params_n a) params_nbar in get_s_e_matrices a seed_se s_matrix e_matrix; frodo_mul_add_as_plus_e_pack a gen_a seed_a s_matrix e_matrix b; matrix_to_lbytes s_matrix s; clear_matrix2 a s_matrix e_matrix; pop_frame ()
false
FStar.DM4F.OTP.Heap.fst
FStar.DM4F.OTP.Heap.incrementable
val incrementable: id -> bool
val incrementable: id -> bool
let incrementable (i:id) = i + 1 < size
{ "file_name": "examples/dm4free/FStar.DM4F.OTP.Heap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 31, "start_col": 0, "start_line": 31 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.OTP.Heap open FStar.BitVector open FStar.Seq (***** Random tape *****) let q = admit () type id : eqtype = i:nat{i < size} type tape : eqtype = h:seq elem{length h == size} let to_id (n:nat{n < size}) : id = n
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.DM4F.OTP.Heap.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: FStar.DM4F.OTP.Heap.id -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.OTP.Heap.id", "Prims.op_LessThan", "Prims.op_Addition", "FStar.DM4F.OTP.Heap.size", "Prims.bool" ]
[]
false
false
false
true
false
let incrementable (i: id) =
i + 1 < size
false
FStar.DM4F.OTP.Heap.fst
FStar.DM4F.OTP.Heap.equal
val equal: tape -> tape -> GTot Type0
val equal: tape -> tape -> GTot Type0
let equal (t1:tape) (t2:tape) = Seq.equal t1 t2
{ "file_name": "examples/dm4free/FStar.DM4F.OTP.Heap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 41, "start_col": 0, "start_line": 41 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.OTP.Heap open FStar.BitVector open FStar.Seq (***** Random tape *****) let q = admit () type id : eqtype = i:nat{i < size} type tape : eqtype = h:seq elem{length h == size} let to_id (n:nat{n < size}) : id = n let incrementable (i:id) = i + 1 < size let incr (i:id{incrementable i}) : id = to_id (i + 1) let index (h:tape) (i:id) : Tot elem = index h i let upd (h:tape) (i:id) (x:elem) : Tot tape = upd h i x let create (x:elem) : Tot tape = create #elem size x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.DM4F.OTP.Heap.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t1: FStar.DM4F.OTP.Heap.tape -> t2: FStar.DM4F.OTP.Heap.tape -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.DM4F.OTP.Heap.tape", "FStar.Seq.Base.equal", "FStar.DM4F.OTP.Heap.elem" ]
[]
false
false
false
false
true
let equal (t1 t2: tape) =
Seq.equal t1 t2
false
FStar.DM4F.OTP.Heap.fst
FStar.DM4F.OTP.Heap.upd
val upd (h:tape) (i:id) (x:elem) : Tot tape
val upd (h:tape) (i:id) (x:elem) : Tot tape
let upd (h:tape) (i:id) (x:elem) : Tot tape = upd h i x
{ "file_name": "examples/dm4free/FStar.DM4F.OTP.Heap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 37, "start_col": 0, "start_line": 37 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.OTP.Heap open FStar.BitVector open FStar.Seq (***** Random tape *****) let q = admit () type id : eqtype = i:nat{i < size} type tape : eqtype = h:seq elem{length h == size} let to_id (n:nat{n < size}) : id = n let incrementable (i:id) = i + 1 < size let incr (i:id{incrementable i}) : id = to_id (i + 1) let index (h:tape) (i:id) : Tot elem = index h i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.DM4F.OTP.Heap.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.DM4F.OTP.Heap.tape -> i: FStar.DM4F.OTP.Heap.id -> x: FStar.DM4F.OTP.Heap.elem -> FStar.DM4F.OTP.Heap.tape
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.OTP.Heap.tape", "FStar.DM4F.OTP.Heap.id", "FStar.DM4F.OTP.Heap.elem", "FStar.Seq.Base.upd" ]
[]
false
false
false
true
false
let upd (h: tape) (i: id) (x: elem) : Tot tape =
upd h i x
false
Hacl.P256.PrecompTable.fst
Hacl.P256.PrecompTable.proj_g_pow2_128_lseq
val proj_g_pow2_128_lseq : LSeq.lseq uint64 12
val proj_g_pow2_128_lseq : LSeq.lseq uint64 12
let proj_g_pow2_128_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); Seq.seq_of_list proj_g_pow2_128_list
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 134, "start_col": 0, "start_line": 132 }
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation module SE = Spec.Exponentiation module SPT = Hacl.Spec.PrecompBaseTable module SPT256 = Hacl.Spec.PrecompBaseTable256 module SPTK = Hacl.Spec.P256.PrecompTable module S = Spec.P256 module SL = Spec.P256.Lemmas open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let proj_point_to_list p = SPTK.proj_point_to_list_lemma p; SPTK.proj_point_to_list p let lemma_refl x = SPTK.proj_point_to_list_lemma x //----------------- inline_for_extraction noextract let proj_g_pow2_64 : S.proj_point = [@inline_let] let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in [@inline_let] let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in [@inline_let] let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in (rX, rY, rZ) val lemma_proj_g_pow2_64_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops S.base_point 64 == proj_g_pow2_64) let lemma_proj_g_pow2_64_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops S.base_point 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64); let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_128 : S.proj_point = [@inline_let] let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in [@inline_let] let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in [@inline_let] let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in (rX, rY, rZ) val lemma_proj_g_pow2_128_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128) let lemma_proj_g_pow2_128_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64); let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_192 : S.proj_point = [@inline_let] let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in [@inline_let] let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in [@inline_let] let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in (rX, rY, rZ) val lemma_proj_g_pow2_192_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192) let lemma_proj_g_pow2_192_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64); let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) // let proj_g_pow2_64 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) // let proj_g_pow2_128 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) // let proj_g_pow2_192 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) inline_for_extraction noextract let proj_g_pow2_64_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_64) inline_for_extraction noextract let proj_g_pow2_128_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_128) inline_for_extraction noextract let proj_g_pow2_192_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_192) let proj_g_pow2_64_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); Seq.seq_of_list proj_g_pow2_64_list
{ "checked_file": "/", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable256.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.PrecompTable.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.P256.PrecompTable.fst" }
[ { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq Lib.IntTypes.uint64 12
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq_of_list", "Lib.IntTypes.uint64", "Hacl.P256.PrecompTable.proj_g_pow2_128_list", "Prims.unit", "FStar.Pervasives.normalize_term_spec", "Hacl.Spec.P256.PrecompTable.point_list", "Hacl.Spec.P256.PrecompTable.proj_point_to_list", "Hacl.P256.PrecompTable.proj_g_pow2_128", "Lib.Sequence.lseq" ]
[]
false
false
false
false
false
let proj_g_pow2_128_lseq:LSeq.lseq uint64 12 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); Seq.seq_of_list proj_g_pow2_128_list
false
FStar.DM4F.OTP.Heap.fst
FStar.DM4F.OTP.Heap.index
val index (h:tape) (i:id) : Tot elem
val index (h:tape) (i:id) : Tot elem
let index (h:tape) (i:id) : Tot elem = index h i
{ "file_name": "examples/dm4free/FStar.DM4F.OTP.Heap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 48, "end_line": 35, "start_col": 0, "start_line": 35 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.OTP.Heap open FStar.BitVector open FStar.Seq (***** Random tape *****) let q = admit () type id : eqtype = i:nat{i < size} type tape : eqtype = h:seq elem{length h == size} let to_id (n:nat{n < size}) : id = n let incrementable (i:id) = i + 1 < size let incr (i:id{incrementable i}) : id = to_id (i + 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.DM4F.OTP.Heap.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.DM4F.OTP.Heap.tape -> i: FStar.DM4F.OTP.Heap.id -> FStar.DM4F.OTP.Heap.elem
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.OTP.Heap.tape", "FStar.DM4F.OTP.Heap.id", "FStar.Seq.Base.index", "FStar.DM4F.OTP.Heap.elem" ]
[]
false
false
false
true
false
let index (h: tape) (i: id) : Tot elem =
index h i
false
FStar.DM4F.OTP.Heap.fst
FStar.DM4F.OTP.Heap.incr
val incr (i:id{incrementable i}) : id
val incr (i:id{incrementable i}) : id
let incr (i:id{incrementable i}) : id = to_id (i + 1)
{ "file_name": "examples/dm4free/FStar.DM4F.OTP.Heap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 33, "start_col": 0, "start_line": 33 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.OTP.Heap open FStar.BitVector open FStar.Seq (***** Random tape *****) let q = admit () type id : eqtype = i:nat{i < size} type tape : eqtype = h:seq elem{length h == size} let to_id (n:nat{n < size}) : id = n let incrementable (i:id) = i + 1 < size
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.DM4F.OTP.Heap.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: FStar.DM4F.OTP.Heap.id{FStar.DM4F.OTP.Heap.incrementable i} -> FStar.DM4F.OTP.Heap.id
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.OTP.Heap.id", "Prims.b2t", "FStar.DM4F.OTP.Heap.incrementable", "FStar.DM4F.OTP.Heap.to_id", "Prims.op_Addition" ]
[]
false
false
false
false
false
let incr (i: id{incrementable i}) : id =
to_id (i + 1)
false
FStar.DM4F.Heap.fsti
FStar.DM4F.Heap.equal_dom
val equal_dom (h1 h2: heap) : Tot Type0
val equal_dom (h1 h2: heap) : Tot Type0
let equal_dom (h1:heap) (h2:heap) :Tot Type0 = forall (a:Type0) (r:ref a). h1 `contains` r <==> h2 `contains` r
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 66, "end_line": 100, "start_col": 0, "start_line": 99 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap open FStar.Classical open FStar.Set module F = FStar.FunctionalExtensionality (* Heap is a tuple of a source of freshness (the no. of the next reference to be allocated) and a mapping of allocated raw references (represented as natural numbers) to types and values. *) val heap : Type u#1 (* References. *) (* address * initial value *) (* TODO: test that hasEq for ref is not exported *) //abstract val ref (a:Type0) : Type0 val addr_of: #a:Type -> ref a -> Tot nat val compare_addrs: #a:Type -> #b:Type -> r1:ref a -> r2:ref b -> Tot (b:bool{b = (addr_of r1 = addr_of r2)}) val contains_a_well_typed (#a:Type0) (h:heap) (r:ref a) : Type0 (* Select. *) val sel_tot : #a:Type -> h:heap -> r:ref a{h `contains_a_well_typed` r} -> Tot a val sel: #a:Type -> h:heap -> r:ref a -> GTot a (* Update. *) val upd_tot : #a:Type -> h0:heap -> r:ref a{h0 `contains_a_well_typed` r} -> x:a -> Tot heap val upd: #a:Type -> h0:heap -> r:ref a -> x:a -> GTot heap (* Generating a fresh reference for the given heap. *) val alloc: #a:Type -> h0:heap -> x:a -> Tot (t:(ref a * heap){snd t == upd h0 (fst t) x}) val contains (#a:Type) (h:heap) (r:ref a): Tot Type0 val contains_a_well_typed_implies_contains: #a:Type -> h:heap -> r:ref a -> Lemma (requires (h `contains_a_well_typed` r)) (ensures (h `contains` r)) [SMTPatOr [[SMTPat (h `contains_a_well_typed` r)]; [SMTPat (h `contains` r)]]] val contains_addr_of: #a:Type -> #b:Type -> h:heap -> r1:ref a -> r2:ref b -> Lemma (requires (h `contains` r1 /\ ~ (h `contains` r2))) (ensures (addr_of r1 <> addr_of r2)) [SMTPat (h `contains` r1); SMTPat (h `contains` r2)] let fresh (s:set nat) (h0:heap) (h1:heap) = forall (a:Type) (r:ref a).{:pattern (h0 `contains` r)} mem (addr_of r) s ==> ~ (h0 `contains` r) /\ (h1 `contains` r) let only x = singleton (addr_of x) val alloc_lemma: #a:Type -> h0:heap -> x:a -> Lemma (requires (True)) (ensures (let r, h1 = alloc h0 x in h1 == upd h0 r x /\ ~ (h0 `contains` r) /\ h1 `contains_a_well_typed` r)) [SMTPat (alloc h0 x)] val sel_same_addr_of (#a:Type) (x:ref a) (y:ref a) (h:heap) :Lemma (requires (addr_of x = addr_of y /\ h `contains_a_well_typed` x /\ h `contains_a_well_typed` y)) (ensures (sel h x == sel h y)) [SMTPat (sel h x); SMTPat (sel h y)] val sel_upd1: #a:Type -> h:heap -> r:ref a -> v:a -> r':ref a -> Lemma (requires (addr_of r = addr_of r')) (ensures (sel (upd h r v) r' == v)) [SMTPat (sel (upd h r v) r')] val sel_upd2: #a:Type -> #b:Type -> h:heap -> k1:ref a -> k2:ref b -> v:b -> Lemma (requires True) (ensures (addr_of k1 <> addr_of k2 ==> sel (upd h k2 v) k1 == sel h k1)) [SMTPat (sel (upd h k2 v) k1)] val upd_sel : #a:Type -> h:heap -> r:ref a -> Lemma (requires (h `contains_a_well_typed` r)) (ensures (upd h r (sel h r) == h)) [SMTPat (upd h r (sel h r))]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Heap.fsti" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.Set", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h1: FStar.DM4F.Heap.heap -> h2: FStar.DM4F.Heap.heap -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.Heap.heap", "Prims.l_Forall", "FStar.DM4F.Heap.ref", "Prims.l_iff", "FStar.DM4F.Heap.contains" ]
[]
false
false
false
true
true
let equal_dom (h1 h2: heap) : Tot Type0 =
forall (a: Type0) (r: ref a). h1 `contains` r <==> h2 `contains` r
false
FStar.DM4F.OTP.Heap.fst
FStar.DM4F.OTP.Heap.create
val create (x:elem) : Tot tape
val create (x:elem) : Tot tape
let create (x:elem) : Tot tape = create #elem size x
{ "file_name": "examples/dm4free/FStar.DM4F.OTP.Heap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 52, "end_line": 39, "start_col": 0, "start_line": 39 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.OTP.Heap open FStar.BitVector open FStar.Seq (***** Random tape *****) let q = admit () type id : eqtype = i:nat{i < size} type tape : eqtype = h:seq elem{length h == size} let to_id (n:nat{n < size}) : id = n let incrementable (i:id) = i + 1 < size let incr (i:id{incrementable i}) : id = to_id (i + 1) let index (h:tape) (i:id) : Tot elem = index h i let upd (h:tape) (i:id) (x:elem) : Tot tape = upd h i x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.DM4F.OTP.Heap.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.DM4F.OTP.Heap.elem -> FStar.DM4F.OTP.Heap.tape
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.OTP.Heap.elem", "FStar.Seq.Base.create", "FStar.DM4F.OTP.Heap.size", "FStar.DM4F.OTP.Heap.tape" ]
[]
false
false
false
true
false
let create (x: elem) : Tot tape =
create #elem size x
false
FStar.DM4F.OTP.Heap.fst
FStar.DM4F.OTP.Heap.lemma_eq_intro
val lemma_eq_intro: s1:tape -> s2:tape -> Lemma (requires ((forall (i:id).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i))) (ensures (equal s1 s2)) [SMTPat (equal s1 s2)]
val lemma_eq_intro: s1:tape -> s2:tape -> Lemma (requires ((forall (i:id).{:pattern (index s1 i); (index s2 i)} index s1 i == index s2 i))) (ensures (equal s1 s2)) [SMTPat (equal s1 s2)]
let lemma_eq_intro s1 s2 = assert (forall (i:id). index s1 i == Seq.index s1 i); assert (forall (i:id). index s2 i == Seq.index s2 i); Seq.lemma_eq_intro #elem s1 s2
{ "file_name": "examples/dm4free/FStar.DM4F.OTP.Heap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 46, "start_col": 0, "start_line": 43 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.OTP.Heap open FStar.BitVector open FStar.Seq (***** Random tape *****) let q = admit () type id : eqtype = i:nat{i < size} type tape : eqtype = h:seq elem{length h == size} let to_id (n:nat{n < size}) : id = n let incrementable (i:id) = i + 1 < size let incr (i:id{incrementable i}) : id = to_id (i + 1) let index (h:tape) (i:id) : Tot elem = index h i let upd (h:tape) (i:id) (x:elem) : Tot tape = upd h i x let create (x:elem) : Tot tape = create #elem size x let equal (t1:tape) (t2:tape) = Seq.equal t1 t2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.DM4F.OTP.Heap.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.DM4F.OTP.Heap.tape -> s2: FStar.DM4F.OTP.Heap.tape -> FStar.Pervasives.Lemma (requires forall (i: FStar.DM4F.OTP.Heap.id). {:pattern FStar.DM4F.OTP.Heap.index s1 i; FStar.DM4F.OTP.Heap.index s2 i} FStar.DM4F.OTP.Heap.index s1 i == FStar.DM4F.OTP.Heap.index s2 i) (ensures FStar.DM4F.OTP.Heap.equal s1 s2) [SMTPat (FStar.DM4F.OTP.Heap.equal s1 s2)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.DM4F.OTP.Heap.tape", "FStar.Seq.Base.lemma_eq_intro", "FStar.DM4F.OTP.Heap.elem", "Prims.unit", "Prims._assert", "Prims.l_Forall", "FStar.DM4F.OTP.Heap.id", "Prims.eq2", "FStar.DM4F.OTP.Heap.index", "FStar.Seq.Base.index" ]
[]
false
false
true
false
false
let lemma_eq_intro s1 s2 =
assert (forall (i: id). index s1 i == Seq.index s1 i); assert (forall (i: id). index s2 i == Seq.index s2 i); Seq.lemma_eq_intro #elem s1 s2
false
FStar.DM4F.OTP.Heap.fst
FStar.DM4F.OTP.Heap.lemma_index_upd1
val lemma_index_upd1: s:tape -> n:id -> v:elem -> Lemma (requires True) (ensures (index (upd s n v) n == v)) [SMTPat (index (upd s n v) n)]
val lemma_index_upd1: s:tape -> n:id -> v:elem -> Lemma (requires True) (ensures (index (upd s n v) n == v)) [SMTPat (index (upd s n v) n)]
let lemma_index_upd1 s n v = lemma_index_upd1 #elem s n v
{ "file_name": "examples/dm4free/FStar.DM4F.OTP.Heap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 57, "end_line": 50, "start_col": 0, "start_line": 50 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.OTP.Heap open FStar.BitVector open FStar.Seq (***** Random tape *****) let q = admit () type id : eqtype = i:nat{i < size} type tape : eqtype = h:seq elem{length h == size} let to_id (n:nat{n < size}) : id = n let incrementable (i:id) = i + 1 < size let incr (i:id{incrementable i}) : id = to_id (i + 1) let index (h:tape) (i:id) : Tot elem = index h i let upd (h:tape) (i:id) (x:elem) : Tot tape = upd h i x let create (x:elem) : Tot tape = create #elem size x let equal (t1:tape) (t2:tape) = Seq.equal t1 t2 let lemma_eq_intro s1 s2 = assert (forall (i:id). index s1 i == Seq.index s1 i); assert (forall (i:id). index s2 i == Seq.index s2 i); Seq.lemma_eq_intro #elem s1 s2 let lemma_eq_elim s1 s2 = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.DM4F.OTP.Heap.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.DM4F.OTP.Heap.tape -> n: FStar.DM4F.OTP.Heap.id -> v: FStar.DM4F.OTP.Heap.elem -> FStar.Pervasives.Lemma (ensures FStar.DM4F.OTP.Heap.index (FStar.DM4F.OTP.Heap.upd s n v) n == v) [SMTPat (FStar.DM4F.OTP.Heap.index (FStar.DM4F.OTP.Heap.upd s n v) n)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.DM4F.OTP.Heap.tape", "FStar.DM4F.OTP.Heap.id", "FStar.DM4F.OTP.Heap.elem", "FStar.Seq.Base.lemma_index_upd1", "Prims.unit" ]
[]
true
false
true
false
false
let lemma_index_upd1 s n v =
lemma_index_upd1 #elem s n v
false
Hacl.P256.PrecompTable.fst
Hacl.P256.PrecompTable.mk_proj_g_pow2_64
val mk_proj_g_pow2_64: unit -> StackInline (lbuffer uint64 12ul) (requires fun _ -> True) (ensures fun h0 b h1 -> live h1 b /\ stack_allocated b h0 h1 proj_g_pow2_64_lseq)
val mk_proj_g_pow2_64: unit -> StackInline (lbuffer uint64 12ul) (requires fun _ -> True) (ensures fun h0 b h1 -> live h1 b /\ stack_allocated b h0 h1 proj_g_pow2_64_lseq)
let mk_proj_g_pow2_64 () = createL proj_g_pow2_64_list
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 187, "start_col": 0, "start_line": 186 }
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation module SE = Spec.Exponentiation module SPT = Hacl.Spec.PrecompBaseTable module SPT256 = Hacl.Spec.PrecompBaseTable256 module SPTK = Hacl.Spec.P256.PrecompTable module S = Spec.P256 module SL = Spec.P256.Lemmas open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let proj_point_to_list p = SPTK.proj_point_to_list_lemma p; SPTK.proj_point_to_list p let lemma_refl x = SPTK.proj_point_to_list_lemma x //----------------- inline_for_extraction noextract let proj_g_pow2_64 : S.proj_point = [@inline_let] let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in [@inline_let] let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in [@inline_let] let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in (rX, rY, rZ) val lemma_proj_g_pow2_64_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops S.base_point 64 == proj_g_pow2_64) let lemma_proj_g_pow2_64_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops S.base_point 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64); let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_128 : S.proj_point = [@inline_let] let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in [@inline_let] let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in [@inline_let] let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in (rX, rY, rZ) val lemma_proj_g_pow2_128_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128) let lemma_proj_g_pow2_128_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64); let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_192 : S.proj_point = [@inline_let] let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in [@inline_let] let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in [@inline_let] let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in (rX, rY, rZ) val lemma_proj_g_pow2_192_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192) let lemma_proj_g_pow2_192_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64); let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) // let proj_g_pow2_64 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) // let proj_g_pow2_128 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) // let proj_g_pow2_192 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) inline_for_extraction noextract let proj_g_pow2_64_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_64) inline_for_extraction noextract let proj_g_pow2_128_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_128) inline_for_extraction noextract let proj_g_pow2_192_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_192) let proj_g_pow2_64_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); Seq.seq_of_list proj_g_pow2_64_list let proj_g_pow2_128_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); Seq.seq_of_list proj_g_pow2_128_list let proj_g_pow2_192_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192); Seq.seq_of_list proj_g_pow2_192_list val proj_g_pow2_64_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_64 == pow_point (pow2 64) g_aff) let proj_g_pow2_64_lemma () = lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_64_lemma S.mk_p256_concrete_ops S.base_point val proj_g_pow2_128_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_128 == pow_point (pow2 128) g_aff) let proj_g_pow2_128_lemma () = lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_128_lemma S.mk_p256_concrete_ops S.base_point val proj_g_pow2_192_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_192 == pow_point (pow2 192) g_aff) let proj_g_pow2_192_lemma () = lemma_proj_g_pow2_192_eval (); lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_192_lemma S.mk_p256_concrete_ops S.base_point let proj_g_pow2_64_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); proj_g_pow2_64_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_64 let proj_g_pow2_128_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); proj_g_pow2_128_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_128 let proj_g_pow2_192_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192); proj_g_pow2_192_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_192
{ "checked_file": "/", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable256.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.PrecompTable.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.P256.PrecompTable.fst" }
[ { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.HyperStack.ST.StackInline (Lib.Buffer.lbuffer Lib.IntTypes.uint64 12ul)
FStar.HyperStack.ST.StackInline
[]
[]
[ "Prims.unit", "Lib.Buffer.createL", "Lib.IntTypes.uint64", "Hacl.P256.PrecompTable.proj_g_pow2_64_list", "Lib.Buffer.lbuffer", "Lib.IntTypes.size", "FStar.Pervasives.normalize_term", "Lib.IntTypes.size_nat", "FStar.List.Tot.Base.length", "FStar.UInt32.__uint_to_t" ]
[]
false
true
false
false
false
let mk_proj_g_pow2_64 () =
createL proj_g_pow2_64_list
false
FStar.DM4F.Heap.fsti
FStar.DM4F.Heap.only
val only : x: FStar.DM4F.Heap.ref _ -> FStar.Set.set Prims.nat
let only x = singleton (addr_of x)
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 71, "start_col": 0, "start_line": 71 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap open FStar.Classical open FStar.Set module F = FStar.FunctionalExtensionality (* Heap is a tuple of a source of freshness (the no. of the next reference to be allocated) and a mapping of allocated raw references (represented as natural numbers) to types and values. *) val heap : Type u#1 (* References. *) (* address * initial value *) (* TODO: test that hasEq for ref is not exported *) //abstract val ref (a:Type0) : Type0 val addr_of: #a:Type -> ref a -> Tot nat val compare_addrs: #a:Type -> #b:Type -> r1:ref a -> r2:ref b -> Tot (b:bool{b = (addr_of r1 = addr_of r2)}) val contains_a_well_typed (#a:Type0) (h:heap) (r:ref a) : Type0 (* Select. *) val sel_tot : #a:Type -> h:heap -> r:ref a{h `contains_a_well_typed` r} -> Tot a val sel: #a:Type -> h:heap -> r:ref a -> GTot a (* Update. *) val upd_tot : #a:Type -> h0:heap -> r:ref a{h0 `contains_a_well_typed` r} -> x:a -> Tot heap val upd: #a:Type -> h0:heap -> r:ref a -> x:a -> GTot heap (* Generating a fresh reference for the given heap. *) val alloc: #a:Type -> h0:heap -> x:a -> Tot (t:(ref a * heap){snd t == upd h0 (fst t) x}) val contains (#a:Type) (h:heap) (r:ref a): Tot Type0 val contains_a_well_typed_implies_contains: #a:Type -> h:heap -> r:ref a -> Lemma (requires (h `contains_a_well_typed` r)) (ensures (h `contains` r)) [SMTPatOr [[SMTPat (h `contains_a_well_typed` r)]; [SMTPat (h `contains` r)]]] val contains_addr_of: #a:Type -> #b:Type -> h:heap -> r1:ref a -> r2:ref b -> Lemma (requires (h `contains` r1 /\ ~ (h `contains` r2))) (ensures (addr_of r1 <> addr_of r2)) [SMTPat (h `contains` r1); SMTPat (h `contains` r2)] let fresh (s:set nat) (h0:heap) (h1:heap) = forall (a:Type) (r:ref a).{:pattern (h0 `contains` r)} mem (addr_of r) s ==> ~ (h0 `contains` r) /\ (h1 `contains` r)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Heap.fsti" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.Set", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.DM4F.Heap.ref _ -> FStar.Set.set Prims.nat
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.Heap.ref", "FStar.Set.singleton", "Prims.nat", "FStar.DM4F.Heap.addr_of", "FStar.Set.set" ]
[]
false
false
false
true
false
let only x =
singleton (addr_of x)
false
FStar.DM4F.OTP.Heap.fst
FStar.DM4F.OTP.Heap.lemma_index_upd2
val lemma_index_upd2: s:tape -> n:id -> v:elem -> i:id{i<>n} -> Lemma (requires True) (ensures (index (upd s n v) i == index s i)) [SMTPat (index (upd s n v) i)]
val lemma_index_upd2: s:tape -> n:id -> v:elem -> i:id{i<>n} -> Lemma (requires True) (ensures (index (upd s n v) i == index s i)) [SMTPat (index (upd s n v) i)]
let lemma_index_upd2 s n v i = lemma_index_upd2 #elem s n v i
{ "file_name": "examples/dm4free/FStar.DM4F.OTP.Heap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 61, "end_line": 52, "start_col": 0, "start_line": 52 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.OTP.Heap open FStar.BitVector open FStar.Seq (***** Random tape *****) let q = admit () type id : eqtype = i:nat{i < size} type tape : eqtype = h:seq elem{length h == size} let to_id (n:nat{n < size}) : id = n let incrementable (i:id) = i + 1 < size let incr (i:id{incrementable i}) : id = to_id (i + 1) let index (h:tape) (i:id) : Tot elem = index h i let upd (h:tape) (i:id) (x:elem) : Tot tape = upd h i x let create (x:elem) : Tot tape = create #elem size x let equal (t1:tape) (t2:tape) = Seq.equal t1 t2 let lemma_eq_intro s1 s2 = assert (forall (i:id). index s1 i == Seq.index s1 i); assert (forall (i:id). index s2 i == Seq.index s2 i); Seq.lemma_eq_intro #elem s1 s2 let lemma_eq_elim s1 s2 = () let lemma_index_upd1 s n v = lemma_index_upd1 #elem s n v
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.DM4F.OTP.Heap.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.DM4F.OTP.Heap.tape -> n: FStar.DM4F.OTP.Heap.id -> v: FStar.DM4F.OTP.Heap.elem -> i: FStar.DM4F.OTP.Heap.id{i <> n} -> FStar.Pervasives.Lemma (ensures FStar.DM4F.OTP.Heap.index (FStar.DM4F.OTP.Heap.upd s n v) i == FStar.DM4F.OTP.Heap.index s i ) [SMTPat (FStar.DM4F.OTP.Heap.index (FStar.DM4F.OTP.Heap.upd s n v) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.DM4F.OTP.Heap.tape", "FStar.DM4F.OTP.Heap.id", "FStar.DM4F.OTP.Heap.elem", "Prims.b2t", "Prims.op_disEquality", "FStar.Seq.Base.lemma_index_upd2", "Prims.unit" ]
[]
true
false
true
false
false
let lemma_index_upd2 s n v i =
lemma_index_upd2 #elem s n v i
false
FStar.DM4F.Heap.fsti
FStar.DM4F.Heap.fresh
val fresh : s: FStar.Set.set Prims.nat -> h0: FStar.DM4F.Heap.heap -> h1: FStar.DM4F.Heap.heap -> Prims.logical
let fresh (s:set nat) (h0:heap) (h1:heap) = forall (a:Type) (r:ref a).{:pattern (h0 `contains` r)} mem (addr_of r) s ==> ~ (h0 `contains` r) /\ (h1 `contains` r)
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 85, "end_line": 69, "start_col": 0, "start_line": 67 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap open FStar.Classical open FStar.Set module F = FStar.FunctionalExtensionality (* Heap is a tuple of a source of freshness (the no. of the next reference to be allocated) and a mapping of allocated raw references (represented as natural numbers) to types and values. *) val heap : Type u#1 (* References. *) (* address * initial value *) (* TODO: test that hasEq for ref is not exported *) //abstract val ref (a:Type0) : Type0 val addr_of: #a:Type -> ref a -> Tot nat val compare_addrs: #a:Type -> #b:Type -> r1:ref a -> r2:ref b -> Tot (b:bool{b = (addr_of r1 = addr_of r2)}) val contains_a_well_typed (#a:Type0) (h:heap) (r:ref a) : Type0 (* Select. *) val sel_tot : #a:Type -> h:heap -> r:ref a{h `contains_a_well_typed` r} -> Tot a val sel: #a:Type -> h:heap -> r:ref a -> GTot a (* Update. *) val upd_tot : #a:Type -> h0:heap -> r:ref a{h0 `contains_a_well_typed` r} -> x:a -> Tot heap val upd: #a:Type -> h0:heap -> r:ref a -> x:a -> GTot heap (* Generating a fresh reference for the given heap. *) val alloc: #a:Type -> h0:heap -> x:a -> Tot (t:(ref a * heap){snd t == upd h0 (fst t) x}) val contains (#a:Type) (h:heap) (r:ref a): Tot Type0 val contains_a_well_typed_implies_contains: #a:Type -> h:heap -> r:ref a -> Lemma (requires (h `contains_a_well_typed` r)) (ensures (h `contains` r)) [SMTPatOr [[SMTPat (h `contains_a_well_typed` r)]; [SMTPat (h `contains` r)]]] val contains_addr_of: #a:Type -> #b:Type -> h:heap -> r1:ref a -> r2:ref b -> Lemma (requires (h `contains` r1 /\ ~ (h `contains` r2))) (ensures (addr_of r1 <> addr_of r2)) [SMTPat (h `contains` r1); SMTPat (h `contains` r2)]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Heap.fsti" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.Set", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Set.set Prims.nat -> h0: FStar.DM4F.Heap.heap -> h1: FStar.DM4F.Heap.heap -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Set.set", "Prims.nat", "FStar.DM4F.Heap.heap", "Prims.l_Forall", "FStar.DM4F.Heap.ref", "Prims.l_imp", "Prims.b2t", "FStar.Set.mem", "FStar.DM4F.Heap.addr_of", "Prims.l_and", "Prims.l_not", "FStar.DM4F.Heap.contains", "Prims.logical" ]
[]
false
false
false
true
true
let fresh (s: set nat) (h0 h1: heap) =
forall (a: Type) (r: ref a). {:pattern (h0 `contains` r)} mem (addr_of r) s ==> ~(h0 `contains` r) /\ (h1 `contains` r)
false
FStar.DM4F.Heap.fsti
FStar.DM4F.Heap.op_Plus_Plus_Hat
val ( ++^ ) (#a: Type) (s: set nat) (r: ref a) : Tot (set nat)
val ( ++^ ) (#a: Type) (s: set nat) (r: ref a) : Tot (set nat)
let op_Plus_Plus_Hat (#a:Type) (s:set nat) (r:ref a): Tot (set nat) = union s (only r)
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 86, "end_line": 170, "start_col": 0, "start_line": 170 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap open FStar.Classical open FStar.Set module F = FStar.FunctionalExtensionality (* Heap is a tuple of a source of freshness (the no. of the next reference to be allocated) and a mapping of allocated raw references (represented as natural numbers) to types and values. *) val heap : Type u#1 (* References. *) (* address * initial value *) (* TODO: test that hasEq for ref is not exported *) //abstract val ref (a:Type0) : Type0 val addr_of: #a:Type -> ref a -> Tot nat val compare_addrs: #a:Type -> #b:Type -> r1:ref a -> r2:ref b -> Tot (b:bool{b = (addr_of r1 = addr_of r2)}) val contains_a_well_typed (#a:Type0) (h:heap) (r:ref a) : Type0 (* Select. *) val sel_tot : #a:Type -> h:heap -> r:ref a{h `contains_a_well_typed` r} -> Tot a val sel: #a:Type -> h:heap -> r:ref a -> GTot a (* Update. *) val upd_tot : #a:Type -> h0:heap -> r:ref a{h0 `contains_a_well_typed` r} -> x:a -> Tot heap val upd: #a:Type -> h0:heap -> r:ref a -> x:a -> GTot heap (* Generating a fresh reference for the given heap. *) val alloc: #a:Type -> h0:heap -> x:a -> Tot (t:(ref a * heap){snd t == upd h0 (fst t) x}) val contains (#a:Type) (h:heap) (r:ref a): Tot Type0 val contains_a_well_typed_implies_contains: #a:Type -> h:heap -> r:ref a -> Lemma (requires (h `contains_a_well_typed` r)) (ensures (h `contains` r)) [SMTPatOr [[SMTPat (h `contains_a_well_typed` r)]; [SMTPat (h `contains` r)]]] val contains_addr_of: #a:Type -> #b:Type -> h:heap -> r1:ref a -> r2:ref b -> Lemma (requires (h `contains` r1 /\ ~ (h `contains` r2))) (ensures (addr_of r1 <> addr_of r2)) [SMTPat (h `contains` r1); SMTPat (h `contains` r2)] let fresh (s:set nat) (h0:heap) (h1:heap) = forall (a:Type) (r:ref a).{:pattern (h0 `contains` r)} mem (addr_of r) s ==> ~ (h0 `contains` r) /\ (h1 `contains` r) let only x = singleton (addr_of x) val alloc_lemma: #a:Type -> h0:heap -> x:a -> Lemma (requires (True)) (ensures (let r, h1 = alloc h0 x in h1 == upd h0 r x /\ ~ (h0 `contains` r) /\ h1 `contains_a_well_typed` r)) [SMTPat (alloc h0 x)] val sel_same_addr_of (#a:Type) (x:ref a) (y:ref a) (h:heap) :Lemma (requires (addr_of x = addr_of y /\ h `contains_a_well_typed` x /\ h `contains_a_well_typed` y)) (ensures (sel h x == sel h y)) [SMTPat (sel h x); SMTPat (sel h y)] val sel_upd1: #a:Type -> h:heap -> r:ref a -> v:a -> r':ref a -> Lemma (requires (addr_of r = addr_of r')) (ensures (sel (upd h r v) r' == v)) [SMTPat (sel (upd h r v) r')] val sel_upd2: #a:Type -> #b:Type -> h:heap -> k1:ref a -> k2:ref b -> v:b -> Lemma (requires True) (ensures (addr_of k1 <> addr_of k2 ==> sel (upd h k2 v) k1 == sel h k1)) [SMTPat (sel (upd h k2 v) k1)] val upd_sel : #a:Type -> h:heap -> r:ref a -> Lemma (requires (h `contains_a_well_typed` r)) (ensures (upd h r (sel h r) == h)) [SMTPat (upd h r (sel h r))] (* AR: does not need to be abstract *) let equal_dom (h1:heap) (h2:heap) :Tot Type0 = forall (a:Type0) (r:ref a). h1 `contains` r <==> h2 `contains` r (* Empty. *) //abstract val emp : heap val in_dom_emp: #a:Type -> k:ref a -> Lemma (requires True) (ensures (~ (emp `contains` k))) [SMTPat (emp `contains` k)] val upd_contains: #a:Type -> #b:Type -> h:heap -> r:ref a -> v:a -> r':ref b -> Lemma (requires True) (ensures ((upd h r v) `contains_a_well_typed` r /\ (h `contains` r' ==> (upd h r v) `contains` r'))) [SMTPat ((upd h r v) `contains` r')] val upd_contains_a_well_typed: #a:Type -> #b:Type -> h:heap -> r:ref a -> v:a -> r':ref b -> Lemma (requires True) (ensures ((upd h r v) `contains_a_well_typed` r /\ (((h `contains_a_well_typed` r \/ ~ (h `contains` r)) /\ h `contains_a_well_typed` r') ==> (upd h r v) `contains_a_well_typed` r'))) [SMTPat ((upd h r v) `contains_a_well_typed` r')] let modifies (s:set nat) (h0:heap) (h1:heap) = (forall (a:Type) (r:ref a).{:pattern (sel h1 r)} ~ (mem (addr_of r) s) /\ h0 `contains` r ==> sel h1 r == sel h0 r) /\ (forall (a:Type) (r:ref a).{:pattern (h1 `contains` r)} h0 `contains` r ==> h1 `contains` r) /\ (* AR: an alternative to this would be to prove a lemma that if sel is same and h0 contains_a_well_typed then h1 contains_a_well_typed, then the following clause would follow from the first clause of sel remaining same *) (forall (a:Type) (r:ref a).{:pattern (h1 `contains_a_well_typed` r)} (~ (mem (addr_of r) s) /\ h0 `contains_a_well_typed` r) ==> h1 `contains_a_well_typed` r) (* let modifies (s:set nat) (h0:heap) (h1:heap) = *) (* (forall (a:Type) (r:ref a).{:pattern (sel h1 r)} *) (* ~ (mem (addr_of r) s) /\ h0 `contains_a_well_typed` r ==> *) (* sel h1 r == sel h0 r) /\ *) (* (forall (a:Type) (r:ref a).{:pattern (h1 `contains_a_well_typed` r)} *) (* h0 `contains_a_well_typed` r ==> h1 `contains_a_well_typed` r) *) val lemma_modifies_trans: m1:heap -> m2:heap -> m3:heap -> s1:set nat -> s2:set nat -> Lemma (requires (modifies s1 m1 m2 /\ modifies s2 m2 m3)) (ensures (modifies (union s1 s2) m1 m3)) (* abstract let equal (h1:heap) (h2:heap) = *) (* h1.next_addr = h2.next_addr /\ *) (* FStar.FunctionalExtensionality.feq h1.memory h2.memory *) (* val equal_extensional: h1:heap -> h2:heap *) (* -> Lemma (requires True) (ensures (equal h1 h2 <==> h1 == h2)) *) (* [SMTPat (equal h1 h2)] *) (* let equal_extensional h1 h2 = () *) (* that sel_tot is same as sel and upd_tot is same as upd if h contains_a_well_typed r *) val lemma_sel_tot_is_sel_if_contains_a_well_typed: #a:Type -> h:heap -> r:ref a{h `contains_a_well_typed` r} -> Lemma (requires True) (ensures (sel_tot h r == sel h r)) [SMTPat (sel_tot h r)] val lemma_upd_tot_is_upd_if_contains_a_well_typed: #a:Type -> h:heap -> r:ref a{h `contains_a_well_typed` r} -> x:a -> Lemma (requires True) (ensures (upd h r x == upd_tot h r x)) [SMTPat (upd_tot h r x)] let op_Hat_Plus_Plus (#a:Type) (r:ref a) (s:set nat) : Tot (set nat) = union (only r) s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Heap.fsti" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.Set", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Set.set Prims.nat -> r: FStar.DM4F.Heap.ref a -> FStar.Set.set Prims.nat
Prims.Tot
[ "total" ]
[]
[ "FStar.Set.set", "Prims.nat", "FStar.DM4F.Heap.ref", "FStar.Set.union", "FStar.DM4F.Heap.only" ]
[]
false
false
false
true
false
let ( ++^ ) (#a: Type) (s: set nat) (r: ref a) : Tot (set nat) =
union s (only r)
false
FStar.DM4F.Heap.fsti
FStar.DM4F.Heap.op_Hat_Plus_Plus
val ( ^++ ) (#a: Type) (r: ref a) (s: set nat) : Tot (set nat)
val ( ^++ ) (#a: Type) (r: ref a) (s: set nat) : Tot (set nat)
let op_Hat_Plus_Plus (#a:Type) (r:ref a) (s:set nat) : Tot (set nat) = union (only r) s
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 18, "end_line": 168, "start_col": 0, "start_line": 167 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap open FStar.Classical open FStar.Set module F = FStar.FunctionalExtensionality (* Heap is a tuple of a source of freshness (the no. of the next reference to be allocated) and a mapping of allocated raw references (represented as natural numbers) to types and values. *) val heap : Type u#1 (* References. *) (* address * initial value *) (* TODO: test that hasEq for ref is not exported *) //abstract val ref (a:Type0) : Type0 val addr_of: #a:Type -> ref a -> Tot nat val compare_addrs: #a:Type -> #b:Type -> r1:ref a -> r2:ref b -> Tot (b:bool{b = (addr_of r1 = addr_of r2)}) val contains_a_well_typed (#a:Type0) (h:heap) (r:ref a) : Type0 (* Select. *) val sel_tot : #a:Type -> h:heap -> r:ref a{h `contains_a_well_typed` r} -> Tot a val sel: #a:Type -> h:heap -> r:ref a -> GTot a (* Update. *) val upd_tot : #a:Type -> h0:heap -> r:ref a{h0 `contains_a_well_typed` r} -> x:a -> Tot heap val upd: #a:Type -> h0:heap -> r:ref a -> x:a -> GTot heap (* Generating a fresh reference for the given heap. *) val alloc: #a:Type -> h0:heap -> x:a -> Tot (t:(ref a * heap){snd t == upd h0 (fst t) x}) val contains (#a:Type) (h:heap) (r:ref a): Tot Type0 val contains_a_well_typed_implies_contains: #a:Type -> h:heap -> r:ref a -> Lemma (requires (h `contains_a_well_typed` r)) (ensures (h `contains` r)) [SMTPatOr [[SMTPat (h `contains_a_well_typed` r)]; [SMTPat (h `contains` r)]]] val contains_addr_of: #a:Type -> #b:Type -> h:heap -> r1:ref a -> r2:ref b -> Lemma (requires (h `contains` r1 /\ ~ (h `contains` r2))) (ensures (addr_of r1 <> addr_of r2)) [SMTPat (h `contains` r1); SMTPat (h `contains` r2)] let fresh (s:set nat) (h0:heap) (h1:heap) = forall (a:Type) (r:ref a).{:pattern (h0 `contains` r)} mem (addr_of r) s ==> ~ (h0 `contains` r) /\ (h1 `contains` r) let only x = singleton (addr_of x) val alloc_lemma: #a:Type -> h0:heap -> x:a -> Lemma (requires (True)) (ensures (let r, h1 = alloc h0 x in h1 == upd h0 r x /\ ~ (h0 `contains` r) /\ h1 `contains_a_well_typed` r)) [SMTPat (alloc h0 x)] val sel_same_addr_of (#a:Type) (x:ref a) (y:ref a) (h:heap) :Lemma (requires (addr_of x = addr_of y /\ h `contains_a_well_typed` x /\ h `contains_a_well_typed` y)) (ensures (sel h x == sel h y)) [SMTPat (sel h x); SMTPat (sel h y)] val sel_upd1: #a:Type -> h:heap -> r:ref a -> v:a -> r':ref a -> Lemma (requires (addr_of r = addr_of r')) (ensures (sel (upd h r v) r' == v)) [SMTPat (sel (upd h r v) r')] val sel_upd2: #a:Type -> #b:Type -> h:heap -> k1:ref a -> k2:ref b -> v:b -> Lemma (requires True) (ensures (addr_of k1 <> addr_of k2 ==> sel (upd h k2 v) k1 == sel h k1)) [SMTPat (sel (upd h k2 v) k1)] val upd_sel : #a:Type -> h:heap -> r:ref a -> Lemma (requires (h `contains_a_well_typed` r)) (ensures (upd h r (sel h r) == h)) [SMTPat (upd h r (sel h r))] (* AR: does not need to be abstract *) let equal_dom (h1:heap) (h2:heap) :Tot Type0 = forall (a:Type0) (r:ref a). h1 `contains` r <==> h2 `contains` r (* Empty. *) //abstract val emp : heap val in_dom_emp: #a:Type -> k:ref a -> Lemma (requires True) (ensures (~ (emp `contains` k))) [SMTPat (emp `contains` k)] val upd_contains: #a:Type -> #b:Type -> h:heap -> r:ref a -> v:a -> r':ref b -> Lemma (requires True) (ensures ((upd h r v) `contains_a_well_typed` r /\ (h `contains` r' ==> (upd h r v) `contains` r'))) [SMTPat ((upd h r v) `contains` r')] val upd_contains_a_well_typed: #a:Type -> #b:Type -> h:heap -> r:ref a -> v:a -> r':ref b -> Lemma (requires True) (ensures ((upd h r v) `contains_a_well_typed` r /\ (((h `contains_a_well_typed` r \/ ~ (h `contains` r)) /\ h `contains_a_well_typed` r') ==> (upd h r v) `contains_a_well_typed` r'))) [SMTPat ((upd h r v) `contains_a_well_typed` r')] let modifies (s:set nat) (h0:heap) (h1:heap) = (forall (a:Type) (r:ref a).{:pattern (sel h1 r)} ~ (mem (addr_of r) s) /\ h0 `contains` r ==> sel h1 r == sel h0 r) /\ (forall (a:Type) (r:ref a).{:pattern (h1 `contains` r)} h0 `contains` r ==> h1 `contains` r) /\ (* AR: an alternative to this would be to prove a lemma that if sel is same and h0 contains_a_well_typed then h1 contains_a_well_typed, then the following clause would follow from the first clause of sel remaining same *) (forall (a:Type) (r:ref a).{:pattern (h1 `contains_a_well_typed` r)} (~ (mem (addr_of r) s) /\ h0 `contains_a_well_typed` r) ==> h1 `contains_a_well_typed` r) (* let modifies (s:set nat) (h0:heap) (h1:heap) = *) (* (forall (a:Type) (r:ref a).{:pattern (sel h1 r)} *) (* ~ (mem (addr_of r) s) /\ h0 `contains_a_well_typed` r ==> *) (* sel h1 r == sel h0 r) /\ *) (* (forall (a:Type) (r:ref a).{:pattern (h1 `contains_a_well_typed` r)} *) (* h0 `contains_a_well_typed` r ==> h1 `contains_a_well_typed` r) *) val lemma_modifies_trans: m1:heap -> m2:heap -> m3:heap -> s1:set nat -> s2:set nat -> Lemma (requires (modifies s1 m1 m2 /\ modifies s2 m2 m3)) (ensures (modifies (union s1 s2) m1 m3)) (* abstract let equal (h1:heap) (h2:heap) = *) (* h1.next_addr = h2.next_addr /\ *) (* FStar.FunctionalExtensionality.feq h1.memory h2.memory *) (* val equal_extensional: h1:heap -> h2:heap *) (* -> Lemma (requires True) (ensures (equal h1 h2 <==> h1 == h2)) *) (* [SMTPat (equal h1 h2)] *) (* let equal_extensional h1 h2 = () *) (* that sel_tot is same as sel and upd_tot is same as upd if h contains_a_well_typed r *) val lemma_sel_tot_is_sel_if_contains_a_well_typed: #a:Type -> h:heap -> r:ref a{h `contains_a_well_typed` r} -> Lemma (requires True) (ensures (sel_tot h r == sel h r)) [SMTPat (sel_tot h r)] val lemma_upd_tot_is_upd_if_contains_a_well_typed: #a:Type -> h:heap -> r:ref a{h `contains_a_well_typed` r} -> x:a -> Lemma (requires True) (ensures (upd h r x == upd_tot h r x)) [SMTPat (upd_tot h r x)]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Heap.fsti" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.Set", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.DM4F.Heap.ref a -> s: FStar.Set.set Prims.nat -> FStar.Set.set Prims.nat
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.Heap.ref", "FStar.Set.set", "Prims.nat", "FStar.Set.union", "FStar.DM4F.Heap.only" ]
[]
false
false
false
true
false
let ( ^++ ) (#a: Type) (r: ref a) (s: set nat) : Tot (set nat) =
union (only r) s
false
FStar.DM4F.Heap.fsti
FStar.DM4F.Heap.modifies
val modifies : s: FStar.Set.set Prims.nat -> h0: FStar.DM4F.Heap.heap -> h1: FStar.DM4F.Heap.heap -> Prims.logical
let modifies (s:set nat) (h0:heap) (h1:heap) = (forall (a:Type) (r:ref a).{:pattern (sel h1 r)} ~ (mem (addr_of r) s) /\ h0 `contains` r ==> sel h1 r == sel h0 r) /\ (forall (a:Type) (r:ref a).{:pattern (h1 `contains` r)} h0 `contains` r ==> h1 `contains` r) /\ (* AR: an alternative to this would be to prove a lemma that if sel is same and h0 contains_a_well_typed then h1 contains_a_well_typed, then the following clause would follow from the first clause of sel remaining same *) (forall (a:Type) (r:ref a).{:pattern (h1 `contains_a_well_typed` r)} (~ (mem (addr_of r) s) /\ h0 `contains_a_well_typed` r) ==> h1 `contains_a_well_typed` r)
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 113, "end_line": 131, "start_col": 0, "start_line": 123 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap open FStar.Classical open FStar.Set module F = FStar.FunctionalExtensionality (* Heap is a tuple of a source of freshness (the no. of the next reference to be allocated) and a mapping of allocated raw references (represented as natural numbers) to types and values. *) val heap : Type u#1 (* References. *) (* address * initial value *) (* TODO: test that hasEq for ref is not exported *) //abstract val ref (a:Type0) : Type0 val addr_of: #a:Type -> ref a -> Tot nat val compare_addrs: #a:Type -> #b:Type -> r1:ref a -> r2:ref b -> Tot (b:bool{b = (addr_of r1 = addr_of r2)}) val contains_a_well_typed (#a:Type0) (h:heap) (r:ref a) : Type0 (* Select. *) val sel_tot : #a:Type -> h:heap -> r:ref a{h `contains_a_well_typed` r} -> Tot a val sel: #a:Type -> h:heap -> r:ref a -> GTot a (* Update. *) val upd_tot : #a:Type -> h0:heap -> r:ref a{h0 `contains_a_well_typed` r} -> x:a -> Tot heap val upd: #a:Type -> h0:heap -> r:ref a -> x:a -> GTot heap (* Generating a fresh reference for the given heap. *) val alloc: #a:Type -> h0:heap -> x:a -> Tot (t:(ref a * heap){snd t == upd h0 (fst t) x}) val contains (#a:Type) (h:heap) (r:ref a): Tot Type0 val contains_a_well_typed_implies_contains: #a:Type -> h:heap -> r:ref a -> Lemma (requires (h `contains_a_well_typed` r)) (ensures (h `contains` r)) [SMTPatOr [[SMTPat (h `contains_a_well_typed` r)]; [SMTPat (h `contains` r)]]] val contains_addr_of: #a:Type -> #b:Type -> h:heap -> r1:ref a -> r2:ref b -> Lemma (requires (h `contains` r1 /\ ~ (h `contains` r2))) (ensures (addr_of r1 <> addr_of r2)) [SMTPat (h `contains` r1); SMTPat (h `contains` r2)] let fresh (s:set nat) (h0:heap) (h1:heap) = forall (a:Type) (r:ref a).{:pattern (h0 `contains` r)} mem (addr_of r) s ==> ~ (h0 `contains` r) /\ (h1 `contains` r) let only x = singleton (addr_of x) val alloc_lemma: #a:Type -> h0:heap -> x:a -> Lemma (requires (True)) (ensures (let r, h1 = alloc h0 x in h1 == upd h0 r x /\ ~ (h0 `contains` r) /\ h1 `contains_a_well_typed` r)) [SMTPat (alloc h0 x)] val sel_same_addr_of (#a:Type) (x:ref a) (y:ref a) (h:heap) :Lemma (requires (addr_of x = addr_of y /\ h `contains_a_well_typed` x /\ h `contains_a_well_typed` y)) (ensures (sel h x == sel h y)) [SMTPat (sel h x); SMTPat (sel h y)] val sel_upd1: #a:Type -> h:heap -> r:ref a -> v:a -> r':ref a -> Lemma (requires (addr_of r = addr_of r')) (ensures (sel (upd h r v) r' == v)) [SMTPat (sel (upd h r v) r')] val sel_upd2: #a:Type -> #b:Type -> h:heap -> k1:ref a -> k2:ref b -> v:b -> Lemma (requires True) (ensures (addr_of k1 <> addr_of k2 ==> sel (upd h k2 v) k1 == sel h k1)) [SMTPat (sel (upd h k2 v) k1)] val upd_sel : #a:Type -> h:heap -> r:ref a -> Lemma (requires (h `contains_a_well_typed` r)) (ensures (upd h r (sel h r) == h)) [SMTPat (upd h r (sel h r))] (* AR: does not need to be abstract *) let equal_dom (h1:heap) (h2:heap) :Tot Type0 = forall (a:Type0) (r:ref a). h1 `contains` r <==> h2 `contains` r (* Empty. *) //abstract val emp : heap val in_dom_emp: #a:Type -> k:ref a -> Lemma (requires True) (ensures (~ (emp `contains` k))) [SMTPat (emp `contains` k)] val upd_contains: #a:Type -> #b:Type -> h:heap -> r:ref a -> v:a -> r':ref b -> Lemma (requires True) (ensures ((upd h r v) `contains_a_well_typed` r /\ (h `contains` r' ==> (upd h r v) `contains` r'))) [SMTPat ((upd h r v) `contains` r')] val upd_contains_a_well_typed: #a:Type -> #b:Type -> h:heap -> r:ref a -> v:a -> r':ref b -> Lemma (requires True) (ensures ((upd h r v) `contains_a_well_typed` r /\ (((h `contains_a_well_typed` r \/ ~ (h `contains` r)) /\ h `contains_a_well_typed` r') ==> (upd h r v) `contains_a_well_typed` r'))) [SMTPat ((upd h r v) `contains_a_well_typed` r')]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Heap.fsti" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.Set", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Set.set Prims.nat -> h0: FStar.DM4F.Heap.heap -> h1: FStar.DM4F.Heap.heap -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Set.set", "Prims.nat", "FStar.DM4F.Heap.heap", "Prims.l_and", "Prims.l_Forall", "FStar.DM4F.Heap.ref", "Prims.l_imp", "Prims.l_not", "Prims.b2t", "FStar.Set.mem", "FStar.DM4F.Heap.addr_of", "FStar.DM4F.Heap.contains", "Prims.eq2", "FStar.DM4F.Heap.sel", "FStar.DM4F.Heap.contains_a_well_typed", "Prims.logical" ]
[]
false
false
false
true
true
let modifies (s: set nat) (h0 h1: heap) =
(forall (a: Type) (r: ref a). {:pattern (sel h1 r)} ~(mem (addr_of r) s) /\ h0 `contains` r ==> sel h1 r == sel h0 r) /\ (forall (a: Type) (r: ref a). {:pattern (h1 `contains` r)} h0 `contains` r ==> h1 `contains` r) /\ (forall (a: Type) (r: ref a). {:pattern (h1 `contains_a_well_typed` r)} (~(mem (addr_of r) s) /\ h0 `contains_a_well_typed` r) ==> h1 `contains_a_well_typed` r)
false
EverParse3d.AppCtxt.fsti
EverParse3d.AppCtxt.app_ctxt
val app_ctxt : Type0
let app_ctxt = x:B.pointer U8.t { B.frameOf x == region }
{ "file_name": "src/3d/prelude/EverParse3d.AppCtxt.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 57, "end_line": 9, "start_col": 0, "start_line": 9 }
module EverParse3d.AppCtxt module B = LowStar.Buffer module HS = FStar.HyperStack module U64 = FStar.UInt64 module U8 = FStar.UInt8 open LowStar.Buffer open FStar.HyperStack.ST
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "EverParse3d.AppCtxt.fsti" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 2, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.qi.eager_threshold=10" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "LowStar.Buffer.pointer", "FStar.UInt8.t", "Prims.eq2", "FStar.Monotonic.HyperHeap.rid", "LowStar.Monotonic.Buffer.frameOf", "LowStar.Buffer.trivial_preorder", "EverParse3d.AppCtxt.region" ]
[]
false
false
false
true
true
let app_ctxt =
x: B.pointer U8.t {B.frameOf x == region}
false
EverParse3d.AppCtxt.fsti
EverParse3d.AppCtxt.loc_of
val loc_of (x: app_ctxt) : GTot B.loc
val loc_of (x: app_ctxt) : GTot B.loc
let loc_of (x:app_ctxt) : GTot B.loc = B.loc_buffer x
{ "file_name": "src/3d/prelude/EverParse3d.AppCtxt.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 53, "end_line": 10, "start_col": 0, "start_line": 10 }
module EverParse3d.AppCtxt module B = LowStar.Buffer module HS = FStar.HyperStack module U64 = FStar.UInt64 module U8 = FStar.UInt8 open LowStar.Buffer open FStar.HyperStack.ST val region : HS.rid
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Buffer.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "EverParse3d.AppCtxt.fsti" }
[ { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 2, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.qi.eager_threshold=10" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: EverParse3d.AppCtxt.app_ctxt -> Prims.GTot LowStar.Monotonic.Buffer.loc
Prims.GTot
[ "sometrivial" ]
[]
[ "EverParse3d.AppCtxt.app_ctxt", "LowStar.Monotonic.Buffer.loc_buffer", "FStar.UInt8.t", "LowStar.Buffer.trivial_preorder", "LowStar.Monotonic.Buffer.loc" ]
[]
false
false
false
false
false
let loc_of (x: app_ctxt) : GTot B.loc =
B.loc_buffer x
false
FStar.DM4F.Heap.fsti
FStar.DM4F.Heap.op_Hat_Plus_Hat
val ( ^+^ ) (#a #b: Type) (r1: ref a) (r2: ref b) : Tot (set nat)
val ( ^+^ ) (#a #b: Type) (r1: ref a) (r2: ref b) : Tot (set nat)
let op_Hat_Plus_Hat (#a:Type) (#b:Type) (r1:ref a) (r2:ref b) : Tot (set nat) = union (only r1) (only r2)
{ "file_name": "examples/dm4free/FStar.DM4F.Heap.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 173, "start_col": 0, "start_line": 172 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.Heap open FStar.Classical open FStar.Set module F = FStar.FunctionalExtensionality (* Heap is a tuple of a source of freshness (the no. of the next reference to be allocated) and a mapping of allocated raw references (represented as natural numbers) to types and values. *) val heap : Type u#1 (* References. *) (* address * initial value *) (* TODO: test that hasEq for ref is not exported *) //abstract val ref (a:Type0) : Type0 val addr_of: #a:Type -> ref a -> Tot nat val compare_addrs: #a:Type -> #b:Type -> r1:ref a -> r2:ref b -> Tot (b:bool{b = (addr_of r1 = addr_of r2)}) val contains_a_well_typed (#a:Type0) (h:heap) (r:ref a) : Type0 (* Select. *) val sel_tot : #a:Type -> h:heap -> r:ref a{h `contains_a_well_typed` r} -> Tot a val sel: #a:Type -> h:heap -> r:ref a -> GTot a (* Update. *) val upd_tot : #a:Type -> h0:heap -> r:ref a{h0 `contains_a_well_typed` r} -> x:a -> Tot heap val upd: #a:Type -> h0:heap -> r:ref a -> x:a -> GTot heap (* Generating a fresh reference for the given heap. *) val alloc: #a:Type -> h0:heap -> x:a -> Tot (t:(ref a * heap){snd t == upd h0 (fst t) x}) val contains (#a:Type) (h:heap) (r:ref a): Tot Type0 val contains_a_well_typed_implies_contains: #a:Type -> h:heap -> r:ref a -> Lemma (requires (h `contains_a_well_typed` r)) (ensures (h `contains` r)) [SMTPatOr [[SMTPat (h `contains_a_well_typed` r)]; [SMTPat (h `contains` r)]]] val contains_addr_of: #a:Type -> #b:Type -> h:heap -> r1:ref a -> r2:ref b -> Lemma (requires (h `contains` r1 /\ ~ (h `contains` r2))) (ensures (addr_of r1 <> addr_of r2)) [SMTPat (h `contains` r1); SMTPat (h `contains` r2)] let fresh (s:set nat) (h0:heap) (h1:heap) = forall (a:Type) (r:ref a).{:pattern (h0 `contains` r)} mem (addr_of r) s ==> ~ (h0 `contains` r) /\ (h1 `contains` r) let only x = singleton (addr_of x) val alloc_lemma: #a:Type -> h0:heap -> x:a -> Lemma (requires (True)) (ensures (let r, h1 = alloc h0 x in h1 == upd h0 r x /\ ~ (h0 `contains` r) /\ h1 `contains_a_well_typed` r)) [SMTPat (alloc h0 x)] val sel_same_addr_of (#a:Type) (x:ref a) (y:ref a) (h:heap) :Lemma (requires (addr_of x = addr_of y /\ h `contains_a_well_typed` x /\ h `contains_a_well_typed` y)) (ensures (sel h x == sel h y)) [SMTPat (sel h x); SMTPat (sel h y)] val sel_upd1: #a:Type -> h:heap -> r:ref a -> v:a -> r':ref a -> Lemma (requires (addr_of r = addr_of r')) (ensures (sel (upd h r v) r' == v)) [SMTPat (sel (upd h r v) r')] val sel_upd2: #a:Type -> #b:Type -> h:heap -> k1:ref a -> k2:ref b -> v:b -> Lemma (requires True) (ensures (addr_of k1 <> addr_of k2 ==> sel (upd h k2 v) k1 == sel h k1)) [SMTPat (sel (upd h k2 v) k1)] val upd_sel : #a:Type -> h:heap -> r:ref a -> Lemma (requires (h `contains_a_well_typed` r)) (ensures (upd h r (sel h r) == h)) [SMTPat (upd h r (sel h r))] (* AR: does not need to be abstract *) let equal_dom (h1:heap) (h2:heap) :Tot Type0 = forall (a:Type0) (r:ref a). h1 `contains` r <==> h2 `contains` r (* Empty. *) //abstract val emp : heap val in_dom_emp: #a:Type -> k:ref a -> Lemma (requires True) (ensures (~ (emp `contains` k))) [SMTPat (emp `contains` k)] val upd_contains: #a:Type -> #b:Type -> h:heap -> r:ref a -> v:a -> r':ref b -> Lemma (requires True) (ensures ((upd h r v) `contains_a_well_typed` r /\ (h `contains` r' ==> (upd h r v) `contains` r'))) [SMTPat ((upd h r v) `contains` r')] val upd_contains_a_well_typed: #a:Type -> #b:Type -> h:heap -> r:ref a -> v:a -> r':ref b -> Lemma (requires True) (ensures ((upd h r v) `contains_a_well_typed` r /\ (((h `contains_a_well_typed` r \/ ~ (h `contains` r)) /\ h `contains_a_well_typed` r') ==> (upd h r v) `contains_a_well_typed` r'))) [SMTPat ((upd h r v) `contains_a_well_typed` r')] let modifies (s:set nat) (h0:heap) (h1:heap) = (forall (a:Type) (r:ref a).{:pattern (sel h1 r)} ~ (mem (addr_of r) s) /\ h0 `contains` r ==> sel h1 r == sel h0 r) /\ (forall (a:Type) (r:ref a).{:pattern (h1 `contains` r)} h0 `contains` r ==> h1 `contains` r) /\ (* AR: an alternative to this would be to prove a lemma that if sel is same and h0 contains_a_well_typed then h1 contains_a_well_typed, then the following clause would follow from the first clause of sel remaining same *) (forall (a:Type) (r:ref a).{:pattern (h1 `contains_a_well_typed` r)} (~ (mem (addr_of r) s) /\ h0 `contains_a_well_typed` r) ==> h1 `contains_a_well_typed` r) (* let modifies (s:set nat) (h0:heap) (h1:heap) = *) (* (forall (a:Type) (r:ref a).{:pattern (sel h1 r)} *) (* ~ (mem (addr_of r) s) /\ h0 `contains_a_well_typed` r ==> *) (* sel h1 r == sel h0 r) /\ *) (* (forall (a:Type) (r:ref a).{:pattern (h1 `contains_a_well_typed` r)} *) (* h0 `contains_a_well_typed` r ==> h1 `contains_a_well_typed` r) *) val lemma_modifies_trans: m1:heap -> m2:heap -> m3:heap -> s1:set nat -> s2:set nat -> Lemma (requires (modifies s1 m1 m2 /\ modifies s2 m2 m3)) (ensures (modifies (union s1 s2) m1 m3)) (* abstract let equal (h1:heap) (h2:heap) = *) (* h1.next_addr = h2.next_addr /\ *) (* FStar.FunctionalExtensionality.feq h1.memory h2.memory *) (* val equal_extensional: h1:heap -> h2:heap *) (* -> Lemma (requires True) (ensures (equal h1 h2 <==> h1 == h2)) *) (* [SMTPat (equal h1 h2)] *) (* let equal_extensional h1 h2 = () *) (* that sel_tot is same as sel and upd_tot is same as upd if h contains_a_well_typed r *) val lemma_sel_tot_is_sel_if_contains_a_well_typed: #a:Type -> h:heap -> r:ref a{h `contains_a_well_typed` r} -> Lemma (requires True) (ensures (sel_tot h r == sel h r)) [SMTPat (sel_tot h r)] val lemma_upd_tot_is_upd_if_contains_a_well_typed: #a:Type -> h:heap -> r:ref a{h `contains_a_well_typed` r} -> x:a -> Lemma (requires True) (ensures (upd h r x == upd_tot h r x)) [SMTPat (upd_tot h r x)] let op_Hat_Plus_Plus (#a:Type) (r:ref a) (s:set nat) : Tot (set nat) = union (only r) s let op_Plus_Plus_Hat (#a:Type) (s:set nat) (r:ref a): Tot (set nat) = union s (only r)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.Heap.fsti" }
[ { "abbrev": true, "full_module": "FStar.FunctionalExtensionality", "short_module": "F" }, { "abbrev": false, "full_module": "FStar.Set", "short_module": null }, { "abbrev": false, "full_module": "FStar.Classical", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r1: FStar.DM4F.Heap.ref a -> r2: FStar.DM4F.Heap.ref b -> FStar.Set.set Prims.nat
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.Heap.ref", "FStar.Set.union", "Prims.nat", "FStar.DM4F.Heap.only", "FStar.Set.set" ]
[]
false
false
false
true
false
let ( ^+^ ) (#a #b: Type) (r1: ref a) (r2: ref b) : Tot (set nat) =
union (only r1) (only r2)
false
FStar.DM4F.OTP.Heap.fst
FStar.DM4F.OTP.Heap.lemma_index_create
val lemma_index_create: v:elem -> i:id -> Lemma (requires True) (ensures (index (create v) i == v)) [SMTPat (index (create v) i)]
val lemma_index_create: v:elem -> i:id -> Lemma (requires True) (ensures (index (create v) i == v)) [SMTPat (index (create v) i)]
let lemma_index_create v i = lemma_index_create #elem size v i
{ "file_name": "examples/dm4free/FStar.DM4F.OTP.Heap.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 54, "start_col": 0, "start_line": 54 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.OTP.Heap open FStar.BitVector open FStar.Seq (***** Random tape *****) let q = admit () type id : eqtype = i:nat{i < size} type tape : eqtype = h:seq elem{length h == size} let to_id (n:nat{n < size}) : id = n let incrementable (i:id) = i + 1 < size let incr (i:id{incrementable i}) : id = to_id (i + 1) let index (h:tape) (i:id) : Tot elem = index h i let upd (h:tape) (i:id) (x:elem) : Tot tape = upd h i x let create (x:elem) : Tot tape = create #elem size x let equal (t1:tape) (t2:tape) = Seq.equal t1 t2 let lemma_eq_intro s1 s2 = assert (forall (i:id). index s1 i == Seq.index s1 i); assert (forall (i:id). index s2 i == Seq.index s2 i); Seq.lemma_eq_intro #elem s1 s2 let lemma_eq_elim s1 s2 = () let lemma_index_upd1 s n v = lemma_index_upd1 #elem s n v let lemma_index_upd2 s n v i = lemma_index_upd2 #elem s n v i
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.BitVector.fst.checked" ], "interface_file": true, "source_file": "FStar.DM4F.OTP.Heap.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.BitVector", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.OTP", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: FStar.DM4F.OTP.Heap.elem -> i: FStar.DM4F.OTP.Heap.id -> FStar.Pervasives.Lemma (ensures FStar.DM4F.OTP.Heap.index (FStar.DM4F.OTP.Heap.create v) i == v) [SMTPat (FStar.DM4F.OTP.Heap.index (FStar.DM4F.OTP.Heap.create v) i)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.DM4F.OTP.Heap.elem", "FStar.DM4F.OTP.Heap.id", "FStar.Seq.Base.lemma_index_create", "FStar.DM4F.OTP.Heap.size", "Prims.unit" ]
[]
true
false
true
false
false
let lemma_index_create v i =
lemma_index_create #elem size v i
false
Hacl.P256.PrecompTable.fst
Hacl.P256.PrecompTable.precomp_basepoint_table_list_w4
val precomp_basepoint_table_list_w4:x: list uint64 {FStar.List.Tot.length x = 192}
val precomp_basepoint_table_list_w4:x: list uint64 {FStar.List.Tot.length x = 192}
let precomp_basepoint_table_list_w4: x:list uint64{FStar.List.Tot.length x = 192} = normalize_term (SPT.precomp_base_table_list mk_p256_precomp_base_table S.base_point 15)
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 89, "end_line": 201, "start_col": 0, "start_line": 200 }
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation module SE = Spec.Exponentiation module SPT = Hacl.Spec.PrecompBaseTable module SPT256 = Hacl.Spec.PrecompBaseTable256 module SPTK = Hacl.Spec.P256.PrecompTable module S = Spec.P256 module SL = Spec.P256.Lemmas open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let proj_point_to_list p = SPTK.proj_point_to_list_lemma p; SPTK.proj_point_to_list p let lemma_refl x = SPTK.proj_point_to_list_lemma x //----------------- inline_for_extraction noextract let proj_g_pow2_64 : S.proj_point = [@inline_let] let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in [@inline_let] let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in [@inline_let] let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in (rX, rY, rZ) val lemma_proj_g_pow2_64_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops S.base_point 64 == proj_g_pow2_64) let lemma_proj_g_pow2_64_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops S.base_point 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64); let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_128 : S.proj_point = [@inline_let] let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in [@inline_let] let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in [@inline_let] let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in (rX, rY, rZ) val lemma_proj_g_pow2_128_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128) let lemma_proj_g_pow2_128_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64); let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_192 : S.proj_point = [@inline_let] let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in [@inline_let] let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in [@inline_let] let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in (rX, rY, rZ) val lemma_proj_g_pow2_192_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192) let lemma_proj_g_pow2_192_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64); let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) // let proj_g_pow2_64 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) // let proj_g_pow2_128 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) // let proj_g_pow2_192 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) inline_for_extraction noextract let proj_g_pow2_64_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_64) inline_for_extraction noextract let proj_g_pow2_128_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_128) inline_for_extraction noextract let proj_g_pow2_192_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_192) let proj_g_pow2_64_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); Seq.seq_of_list proj_g_pow2_64_list let proj_g_pow2_128_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); Seq.seq_of_list proj_g_pow2_128_list let proj_g_pow2_192_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192); Seq.seq_of_list proj_g_pow2_192_list val proj_g_pow2_64_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_64 == pow_point (pow2 64) g_aff) let proj_g_pow2_64_lemma () = lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_64_lemma S.mk_p256_concrete_ops S.base_point val proj_g_pow2_128_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_128 == pow_point (pow2 128) g_aff) let proj_g_pow2_128_lemma () = lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_128_lemma S.mk_p256_concrete_ops S.base_point val proj_g_pow2_192_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_192 == pow_point (pow2 192) g_aff) let proj_g_pow2_192_lemma () = lemma_proj_g_pow2_192_eval (); lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_192_lemma S.mk_p256_concrete_ops S.base_point let proj_g_pow2_64_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); proj_g_pow2_64_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_64 let proj_g_pow2_128_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); proj_g_pow2_128_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_128 let proj_g_pow2_192_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192); proj_g_pow2_192_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_192 let mk_proj_g_pow2_64 () = createL proj_g_pow2_64_list let mk_proj_g_pow2_128 () = createL proj_g_pow2_128_list let mk_proj_g_pow2_192 () = createL proj_g_pow2_192_list //---------------- /// window size = 4; precomputed table = [[0]G, [1]G, ..., [15]G]
{ "checked_file": "/", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable256.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.PrecompTable.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.P256.PrecompTable.fst" }
[ { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.list (Lib.IntTypes.int_t Lib.IntTypes.U64 Lib.IntTypes.SEC) {FStar.List.Tot.Base.length x = 192}
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.normalize_term", "Prims.list", "Lib.IntTypes.int_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.List.Tot.Base.length", "Hacl.Spec.PrecompBaseTable.precomp_base_table_list", "Spec.P256.PointOps.proj_point", "FStar.UInt32.uint_to_t", "Hacl.P256.PrecompTable.mk_p256_precomp_base_table", "Spec.P256.PointOps.base_point" ]
[]
false
false
false
false
false
let precomp_basepoint_table_list_w4:x: list uint64 {FStar.List.Tot.length x = 192} =
normalize_term (SPT.precomp_base_table_list mk_p256_precomp_base_table S.base_point 15)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.to_post
val to_post : post: Steel.Effect.Common.post_t a -> x: a -> Steel.Memory.slprop
let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x))
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 65, "end_line": 33, "start_col": 0, "start_line": 33 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
post: Steel.Effect.Common.post_t a -> x: a -> Steel.Memory.slprop
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.post_t", "Steel.Effect.Common.hp_of", "Steel.Memory.slprop" ]
[]
false
false
false
true
false
let to_post (#a: Type) (post: post_t a) =
fun x -> (hp_of (post x))
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.repr
val repr (a:Type u#a) (already_framed:bool) (opened_invariants:inames) (g:observability) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) : Type u#(max a 2)
val repr (a:Type u#a) (already_framed:bool) (opened_invariants:inames) (g:observability) (pre:pre_t) (post:post_t a) (req:req_t pre) (ens:ens_t pre a post) : Type u#(max a 2)
let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 45, "end_line": 42, "start_col": 0, "start_line": 40 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> already_framed: Prims.bool -> opened_invariants: Steel.Memory.inames -> g: Steel.Effect.Common.observability -> pre: Steel.Effect.Common.pre_t -> post: Steel.Effect.Common.post_t a -> req: Steel.Effect.Common.req_t pre -> ens: Steel.Effect.Common.ens_t pre a post -> Type
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Steel.Memory.inames", "Steel.Effect.Common.observability", "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Steel.Memory.action_except_full", "Steel.Effect.Common.hp_of", "Steel.Effect.Atomic.to_post", "Steel.Effect.Atomic.req_to_act_req", "Steel.Effect.Atomic.ens_to_act_ens" ]
[]
false
false
false
false
true
let repr a framed opened f pre post req ens =
action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.lift_ghost_atomic
val lift_ghost_atomic (a:Type) (opened:inames) (#framed:eqtype_as_type bool) (#[@@@ framing_implicit] pre:pre_t) (#[@@@ framing_implicit] post:post_t a) (#[@@@ framing_implicit] req:req_t pre) (#[@@@ framing_implicit] ens:ens_t pre a post) (f:repr a framed opened Unobservable pre post req ens) : repr a framed opened Unobservable pre post req ens
val lift_ghost_atomic (a:Type) (opened:inames) (#framed:eqtype_as_type bool) (#[@@@ framing_implicit] pre:pre_t) (#[@@@ framing_implicit] post:post_t a) (#[@@@ framing_implicit] req:req_t pre) (#[@@@ framing_implicit] ens:ens_t pre a post) (f:repr a framed opened Unobservable pre post req ens) : repr a framed opened Unobservable pre post req ens
let lift_ghost_atomic a o f = f
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 31, "end_line": 351, "start_col": 0, "start_line": 351 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> opened: Steel.Memory.inames -> f: Steel.Effect.Atomic.repr a framed opened Steel.Effect.Common.Unobservable pre post req ens -> Steel.Effect.Atomic.repr a framed opened Steel.Effect.Common.Unobservable pre post req ens
Prims.Tot
[ "total" ]
[]
[ "Steel.Memory.inames", "FStar.Pervasives.eqtype_as_type", "Prims.bool", "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Steel.Effect.Atomic.repr", "Steel.Effect.Common.Unobservable" ]
[]
false
false
false
false
false
let lift_ghost_atomic a o f =
f
false
Hacl.P256.PrecompTable.fst
Hacl.P256.PrecompTable.mk_proj_g_pow2_128
val mk_proj_g_pow2_128: unit -> StackInline (lbuffer uint64 12ul) (requires fun _ -> True) (ensures fun h0 b h1 -> live h1 b /\ stack_allocated b h0 h1 proj_g_pow2_128_lseq)
val mk_proj_g_pow2_128: unit -> StackInline (lbuffer uint64 12ul) (requires fun _ -> True) (ensures fun h0 b h1 -> live h1 b /\ stack_allocated b h0 h1 proj_g_pow2_128_lseq)
let mk_proj_g_pow2_128 () = createL proj_g_pow2_128_list
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 190, "start_col": 0, "start_line": 189 }
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation module SE = Spec.Exponentiation module SPT = Hacl.Spec.PrecompBaseTable module SPT256 = Hacl.Spec.PrecompBaseTable256 module SPTK = Hacl.Spec.P256.PrecompTable module S = Spec.P256 module SL = Spec.P256.Lemmas open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let proj_point_to_list p = SPTK.proj_point_to_list_lemma p; SPTK.proj_point_to_list p let lemma_refl x = SPTK.proj_point_to_list_lemma x //----------------- inline_for_extraction noextract let proj_g_pow2_64 : S.proj_point = [@inline_let] let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in [@inline_let] let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in [@inline_let] let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in (rX, rY, rZ) val lemma_proj_g_pow2_64_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops S.base_point 64 == proj_g_pow2_64) let lemma_proj_g_pow2_64_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops S.base_point 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64); let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_128 : S.proj_point = [@inline_let] let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in [@inline_let] let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in [@inline_let] let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in (rX, rY, rZ) val lemma_proj_g_pow2_128_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128) let lemma_proj_g_pow2_128_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64); let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_192 : S.proj_point = [@inline_let] let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in [@inline_let] let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in [@inline_let] let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in (rX, rY, rZ) val lemma_proj_g_pow2_192_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192) let lemma_proj_g_pow2_192_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64); let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) // let proj_g_pow2_64 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) // let proj_g_pow2_128 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) // let proj_g_pow2_192 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) inline_for_extraction noextract let proj_g_pow2_64_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_64) inline_for_extraction noextract let proj_g_pow2_128_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_128) inline_for_extraction noextract let proj_g_pow2_192_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_192) let proj_g_pow2_64_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); Seq.seq_of_list proj_g_pow2_64_list let proj_g_pow2_128_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); Seq.seq_of_list proj_g_pow2_128_list let proj_g_pow2_192_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192); Seq.seq_of_list proj_g_pow2_192_list val proj_g_pow2_64_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_64 == pow_point (pow2 64) g_aff) let proj_g_pow2_64_lemma () = lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_64_lemma S.mk_p256_concrete_ops S.base_point val proj_g_pow2_128_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_128 == pow_point (pow2 128) g_aff) let proj_g_pow2_128_lemma () = lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_128_lemma S.mk_p256_concrete_ops S.base_point val proj_g_pow2_192_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_192 == pow_point (pow2 192) g_aff) let proj_g_pow2_192_lemma () = lemma_proj_g_pow2_192_eval (); lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_192_lemma S.mk_p256_concrete_ops S.base_point let proj_g_pow2_64_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); proj_g_pow2_64_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_64 let proj_g_pow2_128_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); proj_g_pow2_128_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_128 let proj_g_pow2_192_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192); proj_g_pow2_192_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_192 let mk_proj_g_pow2_64 () = createL proj_g_pow2_64_list
{ "checked_file": "/", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable256.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.PrecompTable.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.P256.PrecompTable.fst" }
[ { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.HyperStack.ST.StackInline (Lib.Buffer.lbuffer Lib.IntTypes.uint64 12ul)
FStar.HyperStack.ST.StackInline
[]
[]
[ "Prims.unit", "Lib.Buffer.createL", "Lib.IntTypes.uint64", "Hacl.P256.PrecompTable.proj_g_pow2_128_list", "Lib.Buffer.lbuffer", "Lib.IntTypes.size", "FStar.Pervasives.normalize_term", "Lib.IntTypes.size_nat", "FStar.List.Tot.Base.length", "FStar.UInt32.__uint_to_t" ]
[]
false
true
false
false
false
let mk_proj_g_pow2_128 () =
createL proj_g_pow2_128_list
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.get
val get (#p:vprop) (#opened:inames) (_:unit) : SteelGhostF (erased (rmem p)) opened p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1)
val get (#p:vprop) (#opened:inames) (_:unit) : SteelGhostF (erased (rmem p)) opened p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1)
let get () = SteelGhost?.reflect (get0 ())
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 42, "end_line": 371, "start_col": 0, "start_line": 371 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Steel.Effect.Atomic.SteelGhostF (FStar.Ghost.erased (Steel.Effect.Common.rmem p))
Steel.Effect.Atomic.SteelGhostF
[]
[]
[ "Steel.Effect.Common.vprop", "Steel.Memory.inames", "Prims.unit", "Steel.Effect.Atomic.get0", "FStar.Ghost.erased", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.l_and", "Steel.Effect.Common.frame_equalities", "FStar.Ghost.reveal" ]
[]
false
true
false
false
false
let get () =
SteelGhost?.reflect (get0 ())
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.ens_to_act_ens
val ens_to_act_ens (#pre: pre_t) (#a: Type) (#post: post_t a) (ens: ens_t pre a post) : mprop2 (hp_of pre) (to_post post)
val ens_to_act_ens (#pre: pre_t) (#a: Type) (#post: post_t a) (ens: ens_t pre a post) : mprop2 (hp_of pre) (to_post post)
let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 48, "end_line": 38, "start_col": 0, "start_line": 35 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x))
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ens: Steel.Effect.Common.ens_t pre a post -> Steel.Memory.mprop2 (Steel.Effect.Common.hp_of pre) (Steel.Effect.Atomic.to_post post)
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.ens_t", "Steel.Memory.mem", "Prims.l_and", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Steel.Effect.Common.mk_rmem", "Prims.prop", "Steel.Memory.mprop2", "Steel.Effect.Atomic.to_post" ]
[]
false
false
false
false
false
let ens_to_act_ens (#pre: pre_t) (#a: Type) (#post: post_t a) (ens: ens_t pre a post) : mprop2 (hp_of pre) (to_post post) =
fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.equiv_middle_left_assoc
val equiv_middle_left_assoc (a b c d: slprop) : Lemma ((((a `Mem.star` b) `Mem.star` c) `Mem.star` d) `Mem.equiv` ((a `Mem.star` (b `Mem.star` c)) `Mem.star` d))
val equiv_middle_left_assoc (a b c d: slprop) : Lemma ((((a `Mem.star` b) `Mem.star` c) `Mem.star` d) `Mem.equiv` ((a `Mem.star` (b `Mem.star` c)) `Mem.star` d))
let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 71, "end_line": 82, "start_col": 0, "start_line": 77 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Steel.Memory.slprop -> b: Steel.Memory.slprop -> c: Steel.Memory.slprop -> d: Steel.Memory.slprop -> FStar.Pervasives.Lemma (ensures Steel.Memory.equiv (Steel.Memory.star (Steel.Memory.star (Steel.Memory.star a b) c) d) (Steel.Memory.star (Steel.Memory.star a (Steel.Memory.star b c)) d))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Memory.slprop", "Steel.Memory.star_congruence", "Steel.Memory.star", "Prims.unit", "Steel.Memory.star_associative", "Prims.l_True", "Prims.squash", "Steel.Memory.equiv", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let equiv_middle_left_assoc (a b c d: slprop) : Lemma ((((a `Mem.star` b) `Mem.star` c) `Mem.star` d) `Mem.equiv` ((a `Mem.star` (b `Mem.star` c)) `Mem.star` d)) =
let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.req_to_act_req
val req_to_act_req (#pre: vprop) (req: req_t pre) : mprop (hp_of pre)
val req_to_act_req (#pre: vprop) (req: req_t pre) : mprop (hp_of pre)
let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 47, "end_line": 30, "start_col": 0, "start_line": 27 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
req: Steel.Effect.Common.req_t pre -> Steel.Memory.mprop (Steel.Effect.Common.hp_of pre)
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.req_t", "Steel.Memory.mem", "Prims.l_and", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Steel.Effect.Common.mk_rmem", "Prims.unit", "Steel.Effect.rmem_depends_only_on", "Prims.prop", "Steel.Memory.mprop" ]
[]
false
false
false
false
false
let req_to_act_req (#pre: vprop) (req: req_t pre) : mprop (hp_of pre) =
fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.rewrite_slprop
val rewrite_slprop (#opened:inames) (p q:vprop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : SteelGhostT unit opened p (fun _ -> q)
val rewrite_slprop (#opened:inames) (p q:vprop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : SteelGhostT unit opened p (fun _ -> q)
let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 70, "end_line": 408, "start_col": 0, "start_line": 408 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> l: (m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of p) m) (ensures Steel.Memory.interp (Steel.Effect.Common.hp_of q) m)) -> Steel.Effect.Atomic.SteelGhostT Prims.unit
Steel.Effect.Atomic.SteelGhostT
[]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Steel.Memory.mem", "Prims.unit", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Effect.Atomic.rewrite_slprop0" ]
[]
false
true
false
false
false
let rewrite_slprop p q l =
SteelGhost?.reflect (rewrite_slprop0 p q l)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.return_
val return_ (a:Type u#a) (x:a) (opened_invariants:inames) (#[@@@ framing_implicit] p:a -> vprop) : repr a true opened_invariants Unobservable (return_pre (p x)) p (return_req (p x)) (return_ens a x p)
val return_ (a:Type u#a) (x:a) (opened_invariants:inames) (#[@@@ framing_implicit] p:a -> vprop) : repr a true opened_invariants Unobservable (return_pre (p x)) p (return_req (p x)) (return_ens a x p)
let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 3, "end_line": 48, "start_col": 0, "start_line": 44 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> x: a -> opened_invariants: Steel.Memory.inames -> Steel.Effect.Atomic.repr a true opened_invariants Steel.Effect.Common.Unobservable (Steel.Effect.Common.return_pre (p x)) p (Steel.Effect.Atomic.return_req (p x)) (Steel.Effect.Atomic.return_ens a x p)
Prims.Tot
[ "total" ]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Steel.Memory.slprop", "Prims.unit", "Steel.Effect.lemma_frame_equalities_refl", "Steel.Effect.Common.rmem'", "Steel.Effect.Common.valid_rmem", "Steel.Effect.Common.mk_rmem", "Steel.Memory.core_mem", "Steel.Memory.full_mem", "FStar.NMSTTotal.get", "Steel.Memory.mem_evolves" ]
[]
false
false
false
false
false
let return_ a x opened #p =
fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.bind_req_opaque
val bind_req_opaque: #a: Type -> #pre_f: pre_t -> #post_f: post_t a -> req_f: req_t pre_f -> ens_f: ens_t pre_f a post_f -> #pre_g: (a -> pre_t) -> #pr: (a -> prop) -> req_g: (x: a -> req_t (pre_g x)) -> frame_f: vprop -> frame_g: (a -> vprop) -> squash (can_be_split_forall_dep pr (fun x -> (post_f x) `star` frame_f) (fun x -> (pre_g x) `star` (frame_g x))) -> req_t (pre_f `star` frame_f)
val bind_req_opaque: #a: Type -> #pre_f: pre_t -> #post_f: post_t a -> req_f: req_t pre_f -> ens_f: ens_t pre_f a post_f -> #pre_g: (a -> pre_t) -> #pr: (a -> prop) -> req_g: (x: a -> req_t (pre_g x)) -> frame_f: vprop -> frame_g: (a -> vprop) -> squash (can_be_split_forall_dep pr (fun x -> (post_f x) `star` frame_f) (fun x -> (pre_g x) `star` (frame_g x))) -> req_t (pre_f `star` frame_f)
let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x))))
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 79, "end_line": 138, "start_col": 0, "start_line": 122 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
req_f: Steel.Effect.Common.req_t pre_f -> ens_f: Steel.Effect.Common.ens_t pre_f a post_f -> req_g: (x: a -> Steel.Effect.Common.req_t (pre_g x)) -> frame_f: Steel.Effect.Common.vprop -> frame_g: (_: a -> Steel.Effect.Common.vprop) -> _: Prims.squash (Steel.Effect.Common.can_be_split_forall_dep pr (fun x -> Steel.Effect.Common.star (post_f x) frame_f) (fun x -> Steel.Effect.Common.star (pre_g x) (frame_g x))) -> Steel.Effect.Common.req_t (Steel.Effect.Common.star pre_f frame_f)
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Prims.prop", "Steel.Effect.Common.vprop", "Prims.squash", "Steel.Effect.Common.can_be_split_forall_dep", "Steel.Effect.Common.star", "Steel.Effect.Common.rmem", "Prims.l_and", "Steel.Effect.Common.focus_rmem", "Prims.l_Forall", "Steel.Effect.Common.hmem", "Prims.l_imp", "Steel.Effect.Common.mk_rmem", "Steel.Effect.frame_opaque", "Prims.unit", "Steel.Effect.Common.can_be_split_trans" ]
[]
false
false
false
false
false
let bind_req_opaque (#a: Type) (#pre_f: pre_t) (#post_f: post_t a) (req_f: req_t pre_f) (ens_f: ens_t pre_f a post_f) (#pre_g: (a -> pre_t)) (#pr: (a -> prop)) (req_g: (x: a -> req_t (pre_g x))) (frame_f: vprop) (frame_g: (a -> vprop)) (_: squash (can_be_split_forall_dep pr (fun x -> (post_f x) `star` frame_f) (fun x -> (pre_g x) `star` (frame_g x)))) : req_t (pre_f `star` frame_f) =
fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x: a) (h1: hmem ((post_f x) `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem ((post_f x) `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem ((post_f x) `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans ((post_f x) `star` frame_f) ((pre_g x) `star` (frame_g x)) (pre_g x); (req_g x) (focus_rmem (mk_rmem ((post_f x) `star` frame_f) h1) (pre_g x))))
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.get0
val get0: #opened: inames -> #p: vprop -> unit -> repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1)
val get0: #opened: inames -> #p: vprop -> unit -> repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1)
let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 8, "end_line": 369, "start_col": 0, "start_line": 361 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Steel.Effect.Atomic.repr (FStar.Ghost.erased (Steel.Effect.Common.rmem p)) true opened Steel.Effect.Common.Unobservable p (fun _ -> p) (fun _ -> Prims.l_True) (fun h0 r h1 -> Steel.Effect.Common.frame_equalities p h0 h1 /\ Steel.Effect.Common.frame_equalities p (FStar.Ghost.reveal r) h1)
Prims.Tot
[ "total" ]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Prims.unit", "Steel.Memory.slprop", "FStar.Ghost.hide", "Steel.Effect.Common.rmem", "Steel.Effect.lemma_frame_equalities_refl", "Steel.Effect.Common.rmem'", "Steel.Effect.Common.valid_rmem", "Steel.Effect.Common.mk_rmem", "Steel.Memory.core_mem", "FStar.Ghost.erased", "Steel.Memory.full_mem", "FStar.NMSTTotal.get", "Steel.Memory.mem_evolves", "Steel.Effect.Atomic.repr", "Steel.Effect.Common.Unobservable", "Prims.l_True", "Prims.l_and", "Steel.Effect.Common.frame_equalities", "FStar.Ghost.reveal" ]
[]
false
false
false
false
false
let get0 (#opened: inames) (#p: vprop) (_: unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) =
fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.bind_ens_opaque
val bind_ens_opaque: #a: Type -> #b: Type -> #pre_f: pre_t -> #post_f: post_t a -> req_f: req_t pre_f -> ens_f: ens_t pre_f a post_f -> #pre_g: (a -> pre_t) -> #post_g: (a -> post_t b) -> #pr: (a -> prop) -> ens_g: (x: a -> ens_t (pre_g x) b (post_g x)) -> frame_f: vprop -> frame_g: (a -> vprop) -> post: post_t b -> squash (can_be_split_forall_dep pr (fun x -> (post_f x) `star` frame_f) (fun x -> (pre_g x) `star` (frame_g x))) -> squash (can_be_split_post (fun x y -> (post_g x y) `star` (frame_g x)) post) -> ens_t (pre_f `star` frame_f) b post
val bind_ens_opaque: #a: Type -> #b: Type -> #pre_f: pre_t -> #post_f: post_t a -> req_f: req_t pre_f -> ens_f: ens_t pre_f a post_f -> #pre_g: (a -> pre_t) -> #post_g: (a -> post_t b) -> #pr: (a -> prop) -> ens_g: (x: a -> ens_t (pre_g x) b (post_g x)) -> frame_f: vprop -> frame_g: (a -> vprop) -> post: post_t b -> squash (can_be_split_forall_dep pr (fun x -> (post_f x) `star` frame_f) (fun x -> (pre_g x) `star` (frame_g x))) -> squash (can_be_split_post (fun x y -> (post_g x y) `star` (frame_g x)) post) -> ens_t (pre_f `star` frame_f) b post
let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y))))
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 108, "end_line": 164, "start_col": 0, "start_line": 141 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x))))
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
req_f: Steel.Effect.Common.req_t pre_f -> ens_f: Steel.Effect.Common.ens_t pre_f a post_f -> ens_g: (x: a -> Steel.Effect.Common.ens_t (pre_g x) b (post_g x)) -> frame_f: Steel.Effect.Common.vprop -> frame_g: (_: a -> Steel.Effect.Common.vprop) -> post: Steel.Effect.Common.post_t b -> _: Prims.squash (Steel.Effect.Common.can_be_split_forall_dep pr (fun x -> Steel.Effect.Common.star (post_f x) frame_f) (fun x -> Steel.Effect.Common.star (pre_g x) (frame_g x))) -> _: Prims.squash (Steel.Effect.Common.can_be_split_post (fun x y -> Steel.Effect.Common.star (post_g x y) (frame_g x)) post) -> Steel.Effect.Common.ens_t (Steel.Effect.Common.star pre_f frame_f) b post
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Prims.prop", "Steel.Effect.Common.vprop", "Prims.squash", "Steel.Effect.Common.can_be_split_forall_dep", "Steel.Effect.Common.star", "Steel.Effect.Common.can_be_split_post", "Steel.Effect.Common.rmem", "Prims.l_and", "Steel.Effect.Common.focus_rmem", "Prims.l_Exists", "Steel.Effect.Common.hmem", "Steel.Effect.frame_opaque", "Steel.Effect.Common.mk_rmem", "Prims.unit", "Steel.Effect.Common.can_be_split_trans" ]
[]
false
false
false
false
false
let bind_ens_opaque (#a: Type) (#b: Type) (#pre_f: pre_t) (#post_f: post_t a) (req_f: req_t pre_f) (ens_f: ens_t pre_f a post_f) (#pre_g: (a -> pre_t)) (#post_g: (a -> post_t b)) (#pr: (a -> prop)) (ens_g: (x: a -> ens_t (pre_g x) b (post_g x))) (frame_f: vprop) (frame_g: (a -> vprop)) (post: post_t b) (_: squash (can_be_split_forall_dep pr (fun x -> (post_f x) `star` frame_f) (fun x -> (pre_g x) `star` (frame_g x)))) (_: squash (can_be_split_post (fun x y -> (post_g x y) `star` (frame_g x)) post)) : ens_t (pre_f `star` frame_f) b post =
fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x: a) (h1: hmem ((post_f x) `star` frame_f)). pr x /\ (can_be_split_trans ((post_f x) `star` frame_f) ((pre_g x) `star` (frame_g x)) (pre_g x); can_be_split_trans ((post_f x) `star` frame_f) ((pre_g x) `star` (frame_g x)) (frame_g x); can_be_split_trans (post y) ((post_g x y) `star` (frame_g x)) (post_g x y); can_be_split_trans (post y) ((post_g x y) `star` (frame_g x)) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem ((post_f x) `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem ((post_f x) `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem ((post_f x) `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem ((post_f x) `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y))))
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.norm_repr
val norm_repr (#a: Type) (#framed: bool) (#opened: inames) (#obs: observability) (#pre: pre_t) (#post: post_t a) (#req: req_t pre) (#ens: ens_t pre a post) (f: repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1))
val norm_repr (#a: Type) (#framed: bool) (#opened: inames) (#obs: observability) (#pre: pre_t) (#post: post_t a) (#req: req_t pre) (#ens: ens_t pre a post) (f: repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1))
let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 4, "end_line": 277, "start_col": 0, "start_line": 273 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Steel.Effect.Atomic.repr a framed opened obs pre post req ens -> Steel.Effect.Atomic.repr a framed opened obs pre post (fun h -> Steel.Effect.norm_opaque (req h)) (fun h0 x h1 -> Steel.Effect.norm_opaque (ens h0 x h1))
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Steel.Memory.inames", "Steel.Effect.Common.observability", "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Steel.Effect.Atomic.repr", "Steel.Effect.Common.rmem", "Steel.Effect.norm_opaque" ]
[]
false
false
false
false
false
let norm_repr (#a: Type) (#framed: bool) (#opened: inames) (#obs: observability) (#pre: pre_t) (#post: post_t a) (#req: req_t pre) (#ens: ens_t pre a post) (f: repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) =
f
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.sladmit
val sladmit (#a:Type) (#opened:inames) (#p:pre_t) (#q:post_t a) (_:unit) : SteelGhostF a opened p q (requires fun _ -> True) (ensures fun _ _ _ -> False)
val sladmit (#a:Type) (#opened:inames) (#p:pre_t) (#q:post_t a) (_:unit) : SteelGhostF a opened p q (requires fun _ -> True) (ensures fun _ _ _ -> False)
let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ())
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 75, "end_line": 546, "start_col": 0, "start_line": 546 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ())
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Steel.Effect.Atomic.SteelGhostF a
Steel.Effect.Atomic.SteelGhostF
[]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Prims.unit", "Steel.Memory.slprop", "FStar.NMSTTotal.nmst_tot_admit", "Steel.Memory.full_mem", "Steel.Memory.mem_evolves", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.l_False" ]
[]
false
true
false
false
false
let sladmit _ =
SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ())
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.lift_atomic_steel
val lift_atomic_steel (a:Type) (o:eqtype_as_type observability) (#framed:eqtype_as_type bool) (#[@@@ framing_implicit] pre:pre_t) (#[@@@ framing_implicit] post:post_t a) (#[@@@ framing_implicit] req:req_t pre) (#[@@@ framing_implicit] ens:ens_t pre a post) (f:repr a framed Set.empty o pre post req ens) : Steel.Effect.repr a framed pre post req ens
val lift_atomic_steel (a:Type) (o:eqtype_as_type observability) (#framed:eqtype_as_type bool) (#[@@@ framing_implicit] pre:pre_t) (#[@@@ framing_implicit] post:post_t a) (#[@@@ framing_implicit] req:req_t pre) (#[@@@ framing_implicit] ens:ens_t pre a post) (f:repr a framed Set.empty o pre post req ens) : Steel.Effect.repr a framed pre post req ens
let lift_atomic_steel a o f = f
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 31, "end_line": 353, "start_col": 0, "start_line": 353 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> o: FStar.Pervasives.eqtype_as_type Steel.Effect.Common.observability -> f: Steel.Effect.Atomic.repr a framed (FStar.Ghost.hide FStar.Set.empty) o pre post req ens -> Steel.Effect.repr a framed pre post req ens
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.eqtype_as_type", "Steel.Effect.Common.observability", "Prims.bool", "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Steel.Effect.Atomic.repr", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Effect.repr" ]
[]
false
false
false
false
false
let lift_atomic_steel a o f =
f
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.rewrite_slprop0
val rewrite_slprop0 (#opened: inames) (p q: vprop) (proof: (m: mem -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m))) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True)
val rewrite_slprop0 (#opened: inames) (p q: vprop) (proof: (m: mem -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m))) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True)
let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 69, "end_line": 405, "start_col": 0, "start_line": 393 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> proof: (m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of p) m) (ensures Steel.Memory.interp (Steel.Effect.Common.hp_of q) m)) -> Steel.Effect.Atomic.repr Prims.unit false opened Steel.Effect.Common.Unobservable p (fun _ -> q) (fun _ -> Prims.l_True) (fun _ _ _ -> Prims.l_True)
Prims.Tot
[ "total" ]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Steel.Memory.mem", "Prims.unit", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Memory.slprop", "Steel.Memory.star_associative", "Steel.Memory.locks_invariant", "Steel.Effect.Atomic.intro_star", "Steel.Memory.star", "FStar.Ghost.hide", "Steel.Effect.Common.t_of", "Steel.Effect.Common.sel_of", "FStar.Classical.forall_intro", "Prims.l_imp", "FStar.Classical.move_requires", "Steel.Memory.core_mem", "Steel.Memory.full_mem", "FStar.NMSTTotal.get", "Steel.Memory.mem_evolves", "Steel.Effect.Atomic.repr", "Steel.Effect.Common.Unobservable", "Steel.Effect.Common.rmem", "Prims.l_True" ]
[]
false
false
false
false
false
let rewrite_slprop0 (#opened: inames) (p q: vprop) (proof: (m: mem -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m))) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) =
fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` (locks_invariant opened m)) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.intro_star
val intro_star (p q: vprop) (r: slprop) (vp: erased (t_of p)) (vq: erased (t_of q)) (m: mem) (proof: (m: mem -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m))) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m)
val intro_star (p q: vprop) (r: slprop) (vp: erased (t_of p)) (vq: erased (t_of q)) (m: mem) (proof: (m: mem -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m))) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m)
let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 60, "end_line": 390, "start_col": 0, "start_line": 373 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ())
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> r: Steel.Memory.slprop -> vp: FStar.Ghost.erased (Steel.Effect.Common.t_of p) -> vq: FStar.Ghost.erased (Steel.Effect.Common.t_of q) -> m: Steel.Memory.mem -> proof: (m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of p) m /\ Steel.Effect.Common.sel_of p m == FStar.Ghost.reveal vp) (ensures Steel.Memory.interp (Steel.Effect.Common.hp_of q) m)) -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Memory.star (Steel.Effect.Common.hp_of p) r) m /\ Steel.Effect.Common.sel_of p m == FStar.Ghost.reveal vp) (ensures Steel.Memory.interp (Steel.Memory.star (Steel.Effect.Common.hp_of q) r) m)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Memory.slprop", "FStar.Ghost.erased", "Steel.Effect.Common.t_of", "Steel.Memory.mem", "Prims.unit", "Prims.l_and", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Prims.eq2", "Steel.Effect.Common.sel_of", "FStar.Ghost.reveal", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Classical.forall_intro_2", "Prims.l_imp", "Steel.Memory.disjoint", "Steel.Memory.star", "Steel.Memory.join", "FStar.Classical.move_requires_2", "FStar.Classical.forall_intro", "FStar.Classical.move_requires", "Steel.Memory.elim_star", "Steel.Memory.intro_star" ]
[]
false
false
true
false
false
let intro_star (p q: vprop) (r: slprop) (vp: erased (t_of p)) (vq: erased (t_of q)) (m: mem) (proof: (m: mem -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m))) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) =
let p = hp_of p in let q = hp_of q in let intro (ml mr: mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.subcomp
val subcomp (a:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f: eqtype_as_type bool) (#framed_g: eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p: prop) (#[@@@ framing_implicit] p1:squash (can_be_split_dep p pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened_invariants o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True)
val subcomp (a:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f: eqtype_as_type bool) (#framed_g: eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p: prop) (#[@@@ framing_implicit] p1:squash (can_be_split_dep p pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened_invariants o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True)
let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 130, "end_line": 341, "start_col": 0, "start_line": 339 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> opened_invariants: Steel.Memory.inames -> o1: FStar.Pervasives.eqtype_as_type Steel.Effect.Common.observability -> o2: FStar.Pervasives.eqtype_as_type Steel.Effect.Common.observability -> f: Steel.Effect.Atomic.repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f -> Prims.Pure (Steel.Effect.Atomic.repr a framed_g opened_invariants o2 pre_g post_g req_g ens_g)
Prims.Pure
[]
[]
[ "Steel.Memory.inames", "FStar.Pervasives.eqtype_as_type", "Steel.Effect.Common.observability", "Prims.bool", "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Steel.Effect.Common.vprop", "Prims.squash", "Steel.Effect.Common.maybe_emp", "Prims.prop", "Steel.Effect.Common.can_be_split_dep", "Steel.Effect.Common.star", "Steel.Effect.Common.equiv_forall", "Steel.Effect.Atomic.repr", "Steel.Effect.Atomic.subcomp_opaque", "Prims.unit", "Steel.Effect.lemma_subcomp_pre_opaque" ]
[]
false
false
false
false
false
let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f =
lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.extract_info_raw
val extract_info_raw (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : SteelGhost unit opened p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact)
val extract_info_raw (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : SteelGhost unit opened p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact)
let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 80, "end_line": 542, "start_col": 0, "start_line": 542 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> fact: Prims.prop -> l: (m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of p) m) (ensures fact)) -> Steel.Effect.Atomic.SteelGhost Prims.unit
Steel.Effect.Atomic.SteelGhost
[]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Prims.prop", "Steel.Memory.mem", "Prims.unit", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Effect.Atomic.extract_info_raw0", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.l_and", "Steel.Effect.Common.frame_equalities" ]
[]
false
true
false
false
false
let extract_info_raw p fact l =
SteelGhost?.reflect (extract_info_raw0 p fact l)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.bind
val bind (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:a -> pre_t) (#[@@@ framing_implicit] post_g:a -> post_t b) (#[@@@ framing_implicit] req_g:(x:a -> req_t (pre_g x))) (#[@@@ framing_implicit] ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#[@@@ framing_implicit] frame_f:vprop) (#[@@@ framing_implicit] frame_g:a -> vprop) (#[@@@ framing_implicit] post:post_t b) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame_f)) (#[@@@ framing_implicit] _ : squash (maybe_emp_dep framed_g frame_g)) (#[@@@ framing_implicit] pr:a -> prop) (#[@@@ framing_implicit] p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#[@@@ framing_implicit] p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req req_f ens_f req_g frame_f frame_g p1) (bind_ens req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True)
val bind (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:a -> pre_t) (#[@@@ framing_implicit] post_g:a -> post_t b) (#[@@@ framing_implicit] req_g:(x:a -> req_t (pre_g x))) (#[@@@ framing_implicit] ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#[@@@ framing_implicit] frame_f:vprop) (#[@@@ framing_implicit] frame_g:a -> vprop) (#[@@@ framing_implicit] post:post_t b) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame_f)) (#[@@@ framing_implicit] _ : squash (maybe_emp_dep framed_g frame_g)) (#[@@@ framing_implicit] pr:a -> prop) (#[@@@ framing_implicit] p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#[@@@ framing_implicit] p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req req_f ens_f req_g frame_f frame_g p1) (bind_ens req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True)
let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 163, "end_line": 280, "start_col": 0, "start_line": 279 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> b: Type -> opened_invariants: Steel.Memory.inames -> o1: FStar.Pervasives.eqtype_as_type Steel.Effect.Common.observability -> o2: FStar.Pervasives.eqtype_as_type Steel.Effect.Common.observability -> f: Steel.Effect.Atomic.repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f -> g: (x: a -> Steel.Effect.Atomic.repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x)) -> Prims.Pure (Steel.Effect.Atomic.repr b true opened_invariants (Steel.Effect.Common.join_obs o1 o2) (Steel.Effect.Common.star pre_f frame_f) post (Steel.Effect.Atomic.bind_req req_f ens_f req_g frame_f frame_g p1) (Steel.Effect.Atomic.bind_ens req_f ens_f ens_g frame_f frame_g post p1 p2))
Prims.Pure
[]
[]
[ "Steel.Memory.inames", "FStar.Pervasives.eqtype_as_type", "Steel.Effect.Common.observability", "Prims.bool", "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Steel.Effect.Common.vprop", "Prims.squash", "Steel.Effect.Common.maybe_emp", "Steel.Effect.Common.maybe_emp_dep", "Prims.prop", "Steel.Effect.Common.can_be_split_forall_dep", "Steel.Effect.Common.star", "Steel.Effect.Common.can_be_split_post", "Steel.Effect.Atomic.repr", "Steel.Effect.Atomic.norm_repr", "Steel.Effect.Common.join_obs", "Steel.Effect.Atomic.bind_req_opaque", "Steel.Effect.Atomic.bind_ens_opaque", "Steel.Effect.Atomic.bind_opaque", "Steel.Effect.Atomic.bind_req", "Steel.Effect.Atomic.bind_ens" ]
[]
false
false
false
false
false
let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g =
norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.slassert
val slassert (#opened_invariants:_) (p:vprop) : SteelGhost unit opened_invariants p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 _ h1 -> frame_equalities p h0 h1)
val slassert (#opened_invariants:_) (p:vprop) : SteelGhost unit opened_invariants p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 _ h1 -> frame_equalities p h0 h1)
let slassert p = SteelGhost?.reflect (slassert0 p)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 50, "end_line": 557, "start_col": 0, "start_line": 557 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ()) let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ()) let slassert0 (#opened:inames) (p:vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> Steel.Effect.Atomic.SteelGhost Prims.unit
Steel.Effect.Atomic.SteelGhost
[]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Steel.Effect.Atomic.slassert0", "Prims.unit", "Steel.Effect.Common.rmem", "Prims.l_True", "Steel.Effect.Common.frame_equalities" ]
[]
false
true
false
false
false
let slassert p =
SteelGhost?.reflect (slassert0 p)
false
Hacl.Impl.Frodo.KEM.KeyGen.fst
Hacl.Impl.Frodo.KEM.KeyGen.frodo_mul_add_as_plus_e_pack
val frodo_mul_add_as_plus_e_pack: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> b:lbytes (publicmatrixbytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h s_matrix /\ live h e_matrix /\ disjoint seed_a b /\ disjoint b s_matrix /\ disjoint b e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.frodo_mul_add_as_plus_e_pack a gen_a (as_seq h0 seed_a) (as_matrix h0 s_matrix) (as_matrix h0 e_matrix))
val frodo_mul_add_as_plus_e_pack: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> b:lbytes (publicmatrixbytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h s_matrix /\ live h e_matrix /\ disjoint seed_a b /\ disjoint b s_matrix /\ disjoint b e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.frodo_mul_add_as_plus_e_pack a gen_a (as_seq h0 seed_a) (as_matrix h0 s_matrix) (as_matrix h0 e_matrix))
let frodo_mul_add_as_plus_e_pack a gen_a seed_a s_matrix e_matrix b = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_mul_add_as_plus_e a gen_a seed_a s_matrix e_matrix b_matrix; frodo_pack (params_logq a) b_matrix b; pop_frame ()
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.KeyGen.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 106, "start_col": 0, "start_line": 101 }
module Hacl.Impl.Frodo.KEM.KeyGen open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module M = Spec.Matrix module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_shake_r: a:FP.frodo_alg -> c:uint8 -> seed_se:lbytes (crypto_bytes a) -> output_len:size_t -> r:lbytes output_len -> Stack unit (requires fun h -> live h seed_se /\ live h r /\ disjoint seed_se r) (ensures fun h0 _ h1 -> modifies (loc r) h0 h1 /\ as_seq h1 r == S.frodo_shake_r a c (as_seq h0 seed_se) (v output_len)) let frodo_shake_r a c seed_se output_len r = push_frame (); let h0 = ST.get () in let shake_input_seed_se = create (1ul +! crypto_bytes a) (u8 0) in shake_input_seed_se.(0ul) <- c; update_sub shake_input_seed_se 1ul (crypto_bytes a) seed_se; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 shake_input_seed_se) 0 1) (LSeq.create 1 c); LSeq.eq_intro (LSeq.sub (as_seq h2 shake_input_seed_se) 1 (v (crypto_bytes a))) (as_seq h0 seed_se); LSeq.eq_intro (LSeq.concat (LSeq.create 1 c) (as_seq h0 seed_se)) (as_seq h2 shake_input_seed_se); frodo_shake a (1ul +! crypto_bytes a) shake_input_seed_se output_len r; clear_words_u8 shake_input_seed_se; pop_frame () inline_for_extraction noextract val frodo_mul_add_as_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> b_matrix:matrix_t (params_n a) params_nbar -> Stack unit (requires fun h -> live h seed_a /\ live h s_matrix /\ live h e_matrix /\ live h b_matrix /\ disjoint b_matrix seed_a /\ disjoint b_matrix e_matrix /\ disjoint b_matrix s_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc b_matrix) h0 h1 /\ as_matrix h1 b_matrix == S.frodo_mul_add_as_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 s_matrix) (as_matrix h0 e_matrix)) let frodo_mul_add_as_plus_e a gen_a seed_a s_matrix e_matrix b_matrix = FP.params_n_sqr a; push_frame(); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul_s a_matrix s_matrix b_matrix; matrix_add b_matrix e_matrix; pop_frame() inline_for_extraction noextract val frodo_mul_add_as_plus_e_pack: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> s_matrix:matrix_t (params_n a) params_nbar -> e_matrix:matrix_t (params_n a) params_nbar -> b:lbytes (publicmatrixbytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h s_matrix /\ live h e_matrix /\ disjoint seed_a b /\ disjoint b s_matrix /\ disjoint b e_matrix /\ disjoint s_matrix e_matrix) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.frodo_mul_add_as_plus_e_pack a gen_a (as_seq h0 seed_a) (as_matrix h0 s_matrix) (as_matrix h0 e_matrix))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.KeyGen.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.KeyGen.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.KEM.KeyGen", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Frodo.Params.frodo_alg -> gen_a: Spec.Frodo.Params.frodo_gen_a{Hacl.Impl.Frodo.Params.is_supported gen_a} -> seed_a: Hacl.Impl.Matrix.lbytes Hacl.Impl.Frodo.Params.bytes_seed_a -> s_matrix: Hacl.Impl.Matrix.matrix_t (Hacl.Impl.Frodo.Params.params_n a) Hacl.Impl.Frodo.Params.params_nbar -> e_matrix: Hacl.Impl.Matrix.matrix_t (Hacl.Impl.Frodo.Params.params_n a) Hacl.Impl.Frodo.Params.params_nbar -> b: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.publicmatrixbytes_len a) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Spec.Frodo.Params.frodo_alg", "Spec.Frodo.Params.frodo_gen_a", "Prims.b2t", "Hacl.Impl.Frodo.Params.is_supported", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.bytes_seed_a", "Hacl.Impl.Matrix.matrix_t", "Hacl.Impl.Frodo.Params.params_n", "Hacl.Impl.Frodo.Params.params_nbar", "Hacl.Impl.Frodo.Params.publicmatrixbytes_len", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Hacl.Impl.Frodo.Pack.frodo_pack", "Hacl.Impl.Frodo.Params.params_logq", "Hacl.Impl.Frodo.KEM.KeyGen.frodo_mul_add_as_plus_e", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Lib.IntTypes.mul", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Hacl.Impl.Matrix.matrix_create", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let frodo_mul_add_as_plus_e_pack a gen_a seed_a s_matrix e_matrix b =
push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_mul_add_as_plus_e a gen_a seed_a s_matrix e_matrix b_matrix; frodo_pack (params_logq a) b_matrix b; pop_frame ()
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.as_atomic_action_ghost
val as_atomic_action_ghost (#a:Type u#a) (#opened_invariants:inames) (#fp:slprop) (#fp': a -> slprop) (f:action_except a opened_invariants fp fp') : SteelGhostT a opened_invariants (to_vprop fp) (fun x -> to_vprop (fp' x))
val as_atomic_action_ghost (#a:Type u#a) (#opened_invariants:inames) (#fp:slprop) (#fp': a -> slprop) (f:action_except a opened_invariants fp fp') : SteelGhostT a opened_invariants (to_vprop fp) (fun x -> to_vprop (fp' x))
let as_atomic_action_ghost f = SteelGhost?.reflect f
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 52, "end_line": 356, "start_col": 0, "start_line": 356 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Steel.Memory.action_except a opened_invariants fp fp' -> Steel.Effect.Atomic.SteelGhostT a
Steel.Effect.Atomic.SteelGhostT
[]
[]
[ "Steel.Memory.inames", "Steel.Memory.slprop", "Steel.Memory.action_except", "Steel.Effect.Common.to_vprop", "Steel.Effect.Common.vprop" ]
[]
false
true
false
false
false
let as_atomic_action_ghost f =
SteelGhost?.reflect f
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.change_slprop0
val change_slprop0 (#opened: inames) (p q: vprop) (vp: erased (t_of p)) (vq: erased (t_of q)) (proof: (m: mem -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq))) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq)
val change_slprop0 (#opened: inames) (p q: vprop) (vp: erased (t_of p)) (vq: erased (t_of q)) (proof: (m: mem -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq))) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq)
let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 69, "end_line": 423, "start_col": 0, "start_line": 411 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> vp: FStar.Ghost.erased (Steel.Effect.Common.t_of p) -> vq: FStar.Ghost.erased (Steel.Effect.Common.t_of q) -> proof: (m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of p) m /\ Steel.Effect.Common.sel_of p m == FStar.Ghost.reveal vp) (ensures Steel.Memory.interp (Steel.Effect.Common.hp_of q) m /\ Steel.Effect.Common.sel_of q m == FStar.Ghost.reveal vq)) -> Steel.Effect.Atomic.repr Prims.unit false opened Steel.Effect.Common.Unobservable p (fun _ -> q) (fun h -> h p == FStar.Ghost.reveal vp) (fun _ _ h1 -> h1 q == FStar.Ghost.reveal vq)
Prims.Tot
[ "total" ]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "FStar.Ghost.erased", "Steel.Effect.Common.t_of", "Steel.Memory.mem", "Prims.unit", "Prims.l_and", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Prims.eq2", "Steel.Effect.Common.sel_of", "FStar.Ghost.reveal", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Memory.slprop", "Steel.Memory.star_associative", "Steel.Memory.locks_invariant", "Steel.Effect.Atomic.intro_star", "Steel.Memory.star", "FStar.Classical.forall_intro", "Prims.l_imp", "FStar.Classical.move_requires", "Steel.Memory.core_mem", "FStar.Classical.forall_intro_3", "Steel.Effect.Common.hmem", "Steel.Effect.Common.can_be_split", "Steel.Effect.Common.normal", "Steel.Effect.Common.mk_rmem", "Steel.Effect.Common.reveal_mk_rmem", "Steel.Memory.full_mem", "FStar.NMSTTotal.get", "Steel.Memory.mem_evolves", "Steel.Effect.Atomic.repr", "Steel.Effect.Common.Unobservable", "Steel.Effect.Common.rmem" ]
[]
false
false
false
false
false
let change_slprop0 (#opened: inames) (p q: vprop) (vp: erased (t_of p)) (vq: erased (t_of q)) (proof: (m: mem -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq))) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) =
fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` (locks_invariant opened m)) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.as_atomic_action
val as_atomic_action (#a:Type u#a) (#opened_invariants:inames) (#fp:slprop) (#fp': a -> slprop) (f:action_except a opened_invariants fp fp') : SteelAtomicT a opened_invariants (to_vprop fp) (fun x -> to_vprop (fp' x))
val as_atomic_action (#a:Type u#a) (#opened_invariants:inames) (#fp:slprop) (#fp': a -> slprop) (f:action_except a opened_invariants fp fp') : SteelAtomicT a opened_invariants (to_vprop fp) (fun x -> to_vprop (fp' x))
let as_atomic_action f = SteelAtomic?.reflect f
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 47, "end_line": 355, "start_col": 0, "start_line": 355 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Steel.Memory.action_except a opened_invariants fp fp' -> Steel.Effect.Atomic.SteelAtomicT a
Steel.Effect.Atomic.SteelAtomicT
[]
[]
[ "Steel.Memory.inames", "Steel.Memory.slprop", "Steel.Memory.action_except", "Steel.Effect.Common.to_vprop", "Steel.Effect.Common.vprop" ]
[]
false
true
false
false
false
let as_atomic_action f =
SteelAtomic?.reflect f
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.change_slprop_20
val change_slprop_20 (#opened: inames) (p q: vprop) (vq: erased (t_of q)) (proof: (m: mem -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq))) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq)
val change_slprop_20 (#opened: inames) (p q: vprop) (vq: erased (t_of q)) (proof: (m: mem -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq))) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq)
let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 69, "end_line": 454, "start_col": 0, "start_line": 441 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ())
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> vq: FStar.Ghost.erased (Steel.Effect.Common.t_of q) -> proof: (m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of p) m) (ensures Steel.Memory.interp (Steel.Effect.Common.hp_of q) m /\ Steel.Effect.Common.sel_of q m == FStar.Ghost.reveal vq)) -> Steel.Effect.Atomic.repr Prims.unit false opened Steel.Effect.Common.Unobservable p (fun _ -> q) (fun _ -> Prims.l_True) (fun _ _ h1 -> h1 q == FStar.Ghost.reveal vq)
Prims.Tot
[ "total" ]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "FStar.Ghost.erased", "Steel.Effect.Common.t_of", "Steel.Memory.mem", "Prims.unit", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Prims.squash", "Prims.l_and", "Prims.eq2", "Steel.Effect.Common.sel_of", "FStar.Ghost.reveal", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Memory.slprop", "Steel.Memory.star_associative", "Steel.Memory.locks_invariant", "Steel.Effect.Atomic.intro_star", "Steel.Memory.star", "FStar.Ghost.hide", "FStar.Classical.forall_intro", "Prims.l_imp", "FStar.Classical.move_requires", "Steel.Memory.core_mem", "FStar.Classical.forall_intro_3", "Steel.Effect.Common.hmem", "Steel.Effect.Common.can_be_split", "Steel.Effect.Common.normal", "Steel.Effect.Common.mk_rmem", "Steel.Effect.Common.reveal_mk_rmem", "Steel.Memory.full_mem", "FStar.NMSTTotal.get", "Steel.Memory.mem_evolves", "Steel.Effect.Atomic.repr", "Steel.Effect.Common.Unobservable", "Steel.Effect.Common.rmem", "Prims.l_True" ]
[]
false
false
false
false
false
let change_slprop_20 (#opened: inames) (p q: vprop) (vq: erased (t_of q)) (proof: (m: mem -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq))) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) =
fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` (locks_invariant opened m)) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.as_atomic_unobservable_action
val as_atomic_unobservable_action (#a:Type u#a) (#opened_invariants:inames) (#fp:slprop) (#fp': a -> slprop) (f:action_except a opened_invariants fp fp') : SteelAtomicUT a opened_invariants (to_vprop fp) (fun x -> to_vprop (fp' x))
val as_atomic_unobservable_action (#a:Type u#a) (#opened_invariants:inames) (#fp:slprop) (#fp': a -> slprop) (f:action_except a opened_invariants fp fp') : SteelAtomicUT a opened_invariants (to_vprop fp) (fun x -> to_vprop (fp' x))
let as_atomic_unobservable_action f = SteelAtomicU?.reflect f
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 61, "end_line": 357, "start_col": 0, "start_line": 357 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Steel.Memory.action_except a opened_invariants fp fp' -> Steel.Effect.Atomic.SteelAtomicUT a
Steel.Effect.Atomic.SteelAtomicUT
[]
[]
[ "Steel.Memory.inames", "Steel.Memory.slprop", "Steel.Memory.action_except", "Steel.Effect.Common.to_vprop", "Steel.Effect.Common.vprop" ]
[]
false
true
false
false
false
let as_atomic_unobservable_action f =
SteelAtomicU?.reflect f
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.extract_info_raw0
val extract_info_raw0 (#opened: inames) (p: vprop) (fact: prop) (l: (m: mem -> Lemma (requires interp (hp_of p) m) (ensures fact))) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact)
val extract_info_raw0 (#opened: inames) (p: vprop) (fact: prop) (l: (m: mem -> Lemma (requires interp (hp_of p) m) (ensures fact))) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact)
let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 21, "end_line": 540, "start_col": 0, "start_line": 529 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> fact: Prims.prop -> l: (m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of p) m) (ensures fact)) -> Steel.Effect.Atomic.repr Prims.unit false opened Steel.Effect.Common.Unobservable p (fun _ -> p) (fun _ -> Prims.l_True) (fun h0 _ h1 -> Steel.Effect.Common.frame_equalities p h0 h1 /\ fact)
Prims.Tot
[ "total" ]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Prims.prop", "Steel.Memory.mem", "Prims.unit", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Memory.slprop", "Steel.Memory.core_mem", "Steel.Effect.lemma_frame_equalities_refl", "Steel.Effect.Common.rmem'", "Steel.Effect.Common.valid_rmem", "Steel.Effect.Common.mk_rmem", "Steel.Memory.full_mem", "FStar.NMSTTotal.get", "Steel.Memory.mem_evolves", "Steel.Effect.Atomic.repr", "Steel.Effect.Common.Unobservable", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.l_and", "Steel.Effect.Common.frame_equalities" ]
[]
false
false
false
false
false
let extract_info_raw0 (#opened: inames) (p: vprop) (fact: prop) (l: (m: mem -> Lemma (requires interp (hp_of p) m) (ensures fact))) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) =
fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.change_slprop
val change_slprop (#opened:inames) (p q:vprop) (vp:erased (normal (t_of p))) (vq:erased (normal (t_of q))) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : SteelGhost unit opened p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq)
val change_slprop (#opened:inames) (p q:vprop) (vp:erased (normal (t_of p))) (vq:erased (normal (t_of q))) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : SteelGhost unit opened p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq)
let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 81, "end_line": 426, "start_col": 0, "start_line": 426 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> vp: FStar.Ghost.erased (Steel.Effect.Common.normal (Steel.Effect.Common.t_of p)) -> vq: FStar.Ghost.erased (Steel.Effect.Common.normal (Steel.Effect.Common.t_of q)) -> l: (m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of p) m /\ Steel.Effect.Common.sel_of p m == FStar.Ghost.reveal vp) (ensures Steel.Memory.interp (Steel.Effect.Common.hp_of q) m /\ Steel.Effect.Common.sel_of q m == FStar.Ghost.reveal vq)) -> Steel.Effect.Atomic.SteelGhost Prims.unit
Steel.Effect.Atomic.SteelGhost
[]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "FStar.Ghost.erased", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Steel.Memory.mem", "Prims.unit", "Prims.l_and", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Prims.eq2", "Steel.Effect.Common.sel_of", "FStar.Ghost.reveal", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Effect.Atomic.change_slprop0", "Steel.Effect.Common.rmem" ]
[]
false
true
false
false
false
let change_slprop p q vp vq l =
SteelGhost?.reflect (change_slprop0 p q vp vq l)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.return
val return (#a:Type u#a) (#opened_invariants:inames) (#p:a -> vprop) (x:a) : SteelAtomicBase a true opened_invariants Unobservable (return_pre (p x)) p (return_req (p x)) (return_ens a x p)
val return (#a:Type u#a) (#opened_invariants:inames) (#p:a -> vprop) (x:a) : SteelAtomicBase a true opened_invariants Unobservable (return_pre (p x)) p (return_req (p x)) (return_ens a x p)
let return #a #opened #p x = SteelAtomicBase?.reflect (return_ a x opened #p)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 77, "end_line": 608, "start_col": 0, "start_line": 608 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ()) let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ()) let slassert0 (#opened:inames) (p:vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0 let slassert p = SteelGhost?.reflect (slassert0 p) let drop p = rewrite_slprop p emp (fun m -> emp_unit (hp_of p); affine_star (hp_of p) Mem.emp m; reveal_emp()) let reveal_star0 (#opened:inames) (p1 p2:vprop) : repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2) (fun _ -> True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem let reveal_star p1 p2 = SteelGhost?.reflect (reveal_star0 p1 p2) let reveal_star_30 (#opened:inames) (p1 p2 p3:vprop) : repr unit false opened Unobservable (p1 `star` p2 `star` p3) (fun _ -> p1 `star` p2 `star` p3) (requires fun _ -> True) (ensures fun h0 _ h1 -> can_be_split (p1 `star` p2 `star` p3) p1 /\ can_be_split (p1 `star` p2 `star` p3) p2 /\ h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 p3 == h1 p3 /\ h0 (p1 `star` p2 `star` p3) == ((h0 p1, h0 p2), h0 p3) /\ h1 (p1 `star` p2 `star` p3) == ((h1 p1, h1 p2), h1 p3) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem (p1 `star` p2 `star` p3) (core_mem m) in can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p1; can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p2; reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2 `star` p3); reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2); reveal_mk_rmem (p1 `star` p2 `star` p3) m p3 let reveal_star_3 p1 p2 p3 = SteelGhost?.reflect (reveal_star_30 p1 p2 p3) let intro_pure p = rewrite_slprop emp (pure p) (fun m -> pure_interp p m) let elim_pure_aux #uses (p:prop) : SteelGhostT (_:unit{p}) uses (pure p) (fun _ -> to_vprop Mem.emp) = as_atomic_action_ghost (Steel.Memory.elim_pure #uses p) let elim_pure #uses p = let _ = elim_pure_aux p in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ())
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> Steel.Effect.Atomic.SteelAtomicBase a
Steel.Effect.Atomic.SteelAtomicBase
[]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Steel.Effect.Atomic.return_", "Steel.Effect.Common.Unobservable", "Steel.Effect.Common.return_pre", "Steel.Effect.Atomic.return_req", "Steel.Effect.Atomic.return_ens" ]
[]
false
true
false
false
false
let return #a #opened #p x =
SteelAtomicBase?.reflect (return_ a x opened #p)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.slassert0
val slassert0 (#opened: inames) (p: vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1)
val slassert0 (#opened: inames) (p: vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1)
let slassert0 (#opened:inames) (p:vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 38, "end_line": 555, "start_col": 0, "start_line": 548 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ()) let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ())
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> Steel.Effect.Atomic.repr Prims.unit false opened Steel.Effect.Common.Unobservable p (fun _ -> p) (fun _ -> Prims.l_True) (fun h0 _ h1 -> Steel.Effect.Common.frame_equalities p h0 h1)
Prims.Tot
[ "total" ]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Steel.Memory.slprop", "Steel.Effect.lemma_frame_equalities_refl", "Steel.Effect.Common.rmem'", "Steel.Effect.Common.valid_rmem", "Steel.Effect.Common.mk_rmem", "Steel.Memory.core_mem", "Prims.unit", "Steel.Memory.full_mem", "FStar.NMSTTotal.get", "Steel.Memory.mem_evolves", "Steel.Effect.Atomic.repr", "Steel.Effect.Common.Unobservable", "Steel.Effect.Common.rmem", "Prims.l_True", "Steel.Effect.Common.frame_equalities" ]
[]
false
false
false
false
false
let slassert0 (#opened: inames) (p: vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) =
fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.change_slprop_rel0
val change_slprop_rel0 (#opened: inames) (p q: vprop) (rel: (normal (t_of p) -> normal (t_of q) -> prop)) (proof: (m: mem -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m) ))) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q))
val change_slprop_rel0 (#opened: inames) (p q: vprop) (rel: (normal (t_of p) -> normal (t_of q) -> prop)) (proof: (m: mem -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m) ))) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q))
let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 69, "end_line": 480, "start_col": 0, "start_line": 459 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> rel: ( _: Steel.Effect.Common.normal (Steel.Effect.Common.t_of p) -> _: Steel.Effect.Common.normal (Steel.Effect.Common.t_of q) -> Prims.prop) -> proof: (m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of p) m) (ensures Steel.Memory.interp (Steel.Effect.Common.hp_of p) m /\ Steel.Memory.interp (Steel.Effect.Common.hp_of q) m /\ rel (Steel.Effect.Common.sel_of p m) (Steel.Effect.Common.sel_of q m))) -> Steel.Effect.Atomic.repr Prims.unit false opened Steel.Effect.Common.Unobservable p (fun _ -> q) (fun _ -> Prims.l_True) (fun h0 _ h1 -> rel (h0 p) (h1 q))
Prims.Tot
[ "total" ]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Prims.prop", "Steel.Memory.mem", "Prims.unit", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Prims.squash", "Prims.l_and", "Steel.Effect.Common.sel_of", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Memory.slprop", "Steel.Memory.star_associative", "Steel.Memory.locks_invariant", "Steel.Effect.Atomic.intro_star", "Steel.Memory.star", "FStar.Ghost.hide", "Steel.Memory.core_mem", "Steel.Effect.Common.reveal_mk_rmem", "Steel.Effect.Common.rmem'", "Steel.Effect.Common.valid_rmem", "Steel.Effect.Common.mk_rmem", "FStar.Classical.forall_intro_3", "Steel.Effect.Common.hmem", "Steel.Effect.Common.can_be_split", "Prims.eq2", "Steel.Memory.full_mem", "FStar.NMSTTotal.get", "Steel.Memory.mem_evolves", "Steel.Effect.Atomic.repr", "Steel.Effect.Common.Unobservable", "Steel.Effect.Common.rmem", "Prims.l_True" ]
[]
false
false
false
false
false
let change_slprop_rel0 (#opened: inames) (p q: vprop) (rel: (normal (t_of p) -> normal (t_of q) -> prop)) (proof: (m: mem -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m) ))) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) =
fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` (locks_invariant opened m)) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.vdep_cond
val vdep_cond (v q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) : Tot prop
val vdep_cond (v q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) : Tot prop
let vdep_cond (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) : Tot prop = q == p (fst x1)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 17, "end_line": 727, "start_col": 0, "start_line": 721 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ()) let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ()) let slassert0 (#opened:inames) (p:vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0 let slassert p = SteelGhost?.reflect (slassert0 p) let drop p = rewrite_slprop p emp (fun m -> emp_unit (hp_of p); affine_star (hp_of p) Mem.emp m; reveal_emp()) let reveal_star0 (#opened:inames) (p1 p2:vprop) : repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2) (fun _ -> True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem let reveal_star p1 p2 = SteelGhost?.reflect (reveal_star0 p1 p2) let reveal_star_30 (#opened:inames) (p1 p2 p3:vprop) : repr unit false opened Unobservable (p1 `star` p2 `star` p3) (fun _ -> p1 `star` p2 `star` p3) (requires fun _ -> True) (ensures fun h0 _ h1 -> can_be_split (p1 `star` p2 `star` p3) p1 /\ can_be_split (p1 `star` p2 `star` p3) p2 /\ h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 p3 == h1 p3 /\ h0 (p1 `star` p2 `star` p3) == ((h0 p1, h0 p2), h0 p3) /\ h1 (p1 `star` p2 `star` p3) == ((h1 p1, h1 p2), h1 p3) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem (p1 `star` p2 `star` p3) (core_mem m) in can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p1; can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p2; reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2 `star` p3); reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2); reveal_mk_rmem (p1 `star` p2 `star` p3) m p3 let reveal_star_3 p1 p2 p3 = SteelGhost?.reflect (reveal_star_30 p1 p2 p3) let intro_pure p = rewrite_slprop emp (pure p) (fun m -> pure_interp p m) let elim_pure_aux #uses (p:prop) : SteelGhostT (_:unit{p}) uses (pure p) (fun _ -> to_vprop Mem.emp) = as_atomic_action_ghost (Steel.Memory.elim_pure #uses p) let elim_pure #uses p = let _ = elim_pure_aux p in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ()) let return #a #opened #p x = SteelAtomicBase?.reflect (return_ a x opened #p) let intro_exists #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists x (h_exists_sl' p) m) let intro_exists_erased #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists (Ghost.reveal x) (h_exists_sl' p) m) let witness_exists #a #u #p _ = SteelGhost?.reflect (Steel.Memory.witness_h_exists #u (fun x -> hp_of (p x))) let lift_exists #a #u p = as_atomic_action_ghost (Steel.Memory.lift_h_exists #u (fun x -> hp_of (p x))) let exists_equiv p q = Classical.forall_intro_2 reveal_equiv; h_exists_cong (h_exists_sl' p) (h_exists_sl' q) let exists_cong p q = rewrite_slprop (h_exists p) (h_exists q) (fun m -> reveal_equiv (h_exists p) (h_exists q); exists_equiv p q) let fresh_invariant #uses p ctxt = rewrite_slprop p (to_vprop (hp_of p)) (fun _ -> ()); let i = as_atomic_unobservable_action (fresh_invariant uses (hp_of p) ctxt) in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ()); return i let new_invariant #uses p = let i = fresh_invariant #uses p [] in return i (* * AR: SteelAtomic and SteelGhost are not marked reifiable since we intend to run Steel programs natively * However to implement the with_inv combinators we need to reify their thunks to reprs * We could implement it better by having support for reification only in the .fst file * But for now assuming a function *) assume val reify_steel_atomic_comp (#a:Type) (#framed:bool) (#opened_invariants:inames) (#g:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:unit -> SteelAtomicBase a framed opened_invariants g pre post req ens) : repr a framed opened_invariants g pre post req ens [@@warn_on_use "as_unobservable_atomic_action is a trusted primitive"] let as_atomic_o_action (#a:Type u#a) (#opened_invariants:inames) (#fp:slprop) (#fp': a -> slprop) (o:observability) (f:action_except a opened_invariants fp fp') : SteelAtomicBaseT a opened_invariants o (to_vprop fp) (fun x -> to_vprop (fp' x)) = SteelAtomicBaseT?.reflect f let with_invariant #a #fp #fp' #obs #opened #p i f = rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ()); let x = as_atomic_o_action obs (Steel.Memory.with_invariant #a #(hp_of fp) #(fun x -> hp_of (fp' x)) #opened #(hp_of p) i (reify_steel_atomic_comp f)) in rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ()); return x assume val reify_steel_ghost_comp (#a:Type) (#framed:bool) (#opened_invariants:inames) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:unit -> SteelGhostBase a framed opened_invariants Unobservable pre post req ens) : repr a framed opened_invariants Unobservable pre post req ens let with_invariant_g #a #fp #fp' #opened #p i f = rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ()); let x = as_atomic_unobservable_action (Steel.Memory.with_invariant #a #(hp_of fp) #(fun x -> hp_of (fp' x)) #opened #(hp_of p) i (reify_steel_ghost_comp f)) in rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ()); return (hide x) let intro_vrefine v p = let m = get () in let x : Ghost.erased (t_of v) = gget v in let x' : Ghost.erased (vrefine_t v p) = Ghost.hide (Ghost.reveal x) in change_slprop v (vrefine v p) x x' (fun m -> interp_vrefine_hp v p m; vrefine_sel_eq v p m ) let elim_vrefine v p = let h = get() in let x : Ghost.erased (vrefine_t v p) = gget (vrefine v p) in let x' : Ghost.erased (t_of v) = Ghost.hide (Ghost.reveal x) in change_slprop (vrefine v p) v x x' (fun m -> interp_vrefine_hp v p m; vrefine_sel_eq v p m )
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> p: (_: Steel.Effect.Common.t_of v -> Steel.Effect.Common.vprop) -> x1: Steel.Effect.Common.t_of (Steel.Effect.Common.star v q) -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Steel.Effect.Common.star", "Prims.eq2", "FStar.Pervasives.Native.fst", "Prims.prop" ]
[]
false
false
false
false
true
let vdep_cond (v q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) : Tot prop =
q == p (fst x1)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.vdep_rel_recip
val vdep_rel_recip (v q: vprop) (p: (t_of v -> Tot vprop)) (x2: (t_of (vdep v p))) (x1: t_of (v `star` q)) : Tot prop
val vdep_rel_recip (v q: vprop) (p: (t_of v -> Tot vprop)) (x2: (t_of (vdep v p))) (x1: t_of (v `star` q)) : Tot prop
let vdep_rel_recip (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x2: (t_of (vdep v p))) (x1: t_of (v `star` q)) : Tot prop = vdep_rel v q p x1 x2
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 22, "end_line": 788, "start_col": 0, "start_line": 780 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ()) let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ()) let slassert0 (#opened:inames) (p:vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0 let slassert p = SteelGhost?.reflect (slassert0 p) let drop p = rewrite_slprop p emp (fun m -> emp_unit (hp_of p); affine_star (hp_of p) Mem.emp m; reveal_emp()) let reveal_star0 (#opened:inames) (p1 p2:vprop) : repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2) (fun _ -> True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem let reveal_star p1 p2 = SteelGhost?.reflect (reveal_star0 p1 p2) let reveal_star_30 (#opened:inames) (p1 p2 p3:vprop) : repr unit false opened Unobservable (p1 `star` p2 `star` p3) (fun _ -> p1 `star` p2 `star` p3) (requires fun _ -> True) (ensures fun h0 _ h1 -> can_be_split (p1 `star` p2 `star` p3) p1 /\ can_be_split (p1 `star` p2 `star` p3) p2 /\ h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 p3 == h1 p3 /\ h0 (p1 `star` p2 `star` p3) == ((h0 p1, h0 p2), h0 p3) /\ h1 (p1 `star` p2 `star` p3) == ((h1 p1, h1 p2), h1 p3) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem (p1 `star` p2 `star` p3) (core_mem m) in can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p1; can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p2; reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2 `star` p3); reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2); reveal_mk_rmem (p1 `star` p2 `star` p3) m p3 let reveal_star_3 p1 p2 p3 = SteelGhost?.reflect (reveal_star_30 p1 p2 p3) let intro_pure p = rewrite_slprop emp (pure p) (fun m -> pure_interp p m) let elim_pure_aux #uses (p:prop) : SteelGhostT (_:unit{p}) uses (pure p) (fun _ -> to_vprop Mem.emp) = as_atomic_action_ghost (Steel.Memory.elim_pure #uses p) let elim_pure #uses p = let _ = elim_pure_aux p in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ()) let return #a #opened #p x = SteelAtomicBase?.reflect (return_ a x opened #p) let intro_exists #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists x (h_exists_sl' p) m) let intro_exists_erased #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists (Ghost.reveal x) (h_exists_sl' p) m) let witness_exists #a #u #p _ = SteelGhost?.reflect (Steel.Memory.witness_h_exists #u (fun x -> hp_of (p x))) let lift_exists #a #u p = as_atomic_action_ghost (Steel.Memory.lift_h_exists #u (fun x -> hp_of (p x))) let exists_equiv p q = Classical.forall_intro_2 reveal_equiv; h_exists_cong (h_exists_sl' p) (h_exists_sl' q) let exists_cong p q = rewrite_slprop (h_exists p) (h_exists q) (fun m -> reveal_equiv (h_exists p) (h_exists q); exists_equiv p q) let fresh_invariant #uses p ctxt = rewrite_slprop p (to_vprop (hp_of p)) (fun _ -> ()); let i = as_atomic_unobservable_action (fresh_invariant uses (hp_of p) ctxt) in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ()); return i let new_invariant #uses p = let i = fresh_invariant #uses p [] in return i (* * AR: SteelAtomic and SteelGhost are not marked reifiable since we intend to run Steel programs natively * However to implement the with_inv combinators we need to reify their thunks to reprs * We could implement it better by having support for reification only in the .fst file * But for now assuming a function *) assume val reify_steel_atomic_comp (#a:Type) (#framed:bool) (#opened_invariants:inames) (#g:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:unit -> SteelAtomicBase a framed opened_invariants g pre post req ens) : repr a framed opened_invariants g pre post req ens [@@warn_on_use "as_unobservable_atomic_action is a trusted primitive"] let as_atomic_o_action (#a:Type u#a) (#opened_invariants:inames) (#fp:slprop) (#fp': a -> slprop) (o:observability) (f:action_except a opened_invariants fp fp') : SteelAtomicBaseT a opened_invariants o (to_vprop fp) (fun x -> to_vprop (fp' x)) = SteelAtomicBaseT?.reflect f let with_invariant #a #fp #fp' #obs #opened #p i f = rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ()); let x = as_atomic_o_action obs (Steel.Memory.with_invariant #a #(hp_of fp) #(fun x -> hp_of (fp' x)) #opened #(hp_of p) i (reify_steel_atomic_comp f)) in rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ()); return x assume val reify_steel_ghost_comp (#a:Type) (#framed:bool) (#opened_invariants:inames) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:unit -> SteelGhostBase a framed opened_invariants Unobservable pre post req ens) : repr a framed opened_invariants Unobservable pre post req ens let with_invariant_g #a #fp #fp' #opened #p i f = rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ()); let x = as_atomic_unobservable_action (Steel.Memory.with_invariant #a #(hp_of fp) #(fun x -> hp_of (fp' x)) #opened #(hp_of p) i (reify_steel_ghost_comp f)) in rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ()); return (hide x) let intro_vrefine v p = let m = get () in let x : Ghost.erased (t_of v) = gget v in let x' : Ghost.erased (vrefine_t v p) = Ghost.hide (Ghost.reveal x) in change_slprop v (vrefine v p) x x' (fun m -> interp_vrefine_hp v p m; vrefine_sel_eq v p m ) let elim_vrefine v p = let h = get() in let x : Ghost.erased (vrefine_t v p) = gget (vrefine v p) in let x' : Ghost.erased (t_of v) = Ghost.hide (Ghost.reveal x) in change_slprop (vrefine v p) v x x' (fun m -> interp_vrefine_hp v p m; vrefine_sel_eq v p m ) let vdep_cond (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) : Tot prop = q == p (fst x1) let vdep_rel (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) (x2: (t_of (vdep v p))) : Tot prop = q == p (fst x1) /\ dfst (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == fst x1 /\ dsnd (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == snd x1 let intro_vdep_lemma (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (m: mem) : Lemma (requires ( interp (hp_of (v `star` q)) m /\ q == p (fst (sel_of (v `star` q) m)) )) (ensures ( interp (hp_of (v `star` q)) m /\ interp (hp_of (vdep v p)) m /\ vdep_rel v q p (sel_of (v `star` q) m) (sel_of (vdep v p) m) )) = Mem.interp_star (hp_of v) (hp_of q) m; interp_vdep_hp v p m; vdep_sel_eq v p m let intro_vdep v q p = reveal_star v q; change_slprop_rel_with_cond (v `star` q) (vdep v p) (vdep_cond v q p) (vdep_rel v q p) (fun m -> intro_vdep_lemma v q p m) let vdep_cond_recip (v: vprop) (p: (t_of v -> Tot vprop)) (q: vprop) (x2: t_of (vdep v p)) : Tot prop = q == p (dfst (x2 <: dtuple2 (t_of v) (vdep_payload v p)))
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> p: (_: Steel.Effect.Common.t_of v -> Steel.Effect.Common.vprop) -> x2: Steel.Effect.Common.t_of (Steel.Effect.Common.vdep v p) -> x1: Steel.Effect.Common.t_of (Steel.Effect.Common.star v q) -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Steel.Effect.Common.vdep", "Steel.Effect.Common.star", "Steel.Effect.Atomic.vdep_rel", "Prims.prop" ]
[]
false
false
false
false
true
let vdep_rel_recip (v q: vprop) (p: (t_of v -> Tot vprop)) (x2: (t_of (vdep v p))) (x1: t_of (v `star` q)) : Tot prop =
vdep_rel v q p x1 x2
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.vdep_cond_recip
val vdep_cond_recip (v: vprop) (p: (t_of v -> Tot vprop)) (q: vprop) (x2: t_of (vdep v p)) : Tot prop
val vdep_cond_recip (v: vprop) (p: (t_of v -> Tot vprop)) (q: vprop) (x2: t_of (vdep v p)) : Tot prop
let vdep_cond_recip (v: vprop) (p: (t_of v -> Tot vprop)) (q: vprop) (x2: t_of (vdep v p)) : Tot prop = q == p (dfst (x2 <: dtuple2 (t_of v) (vdep_payload v p)))
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 59, "end_line": 778, "start_col": 0, "start_line": 772 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ()) let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ()) let slassert0 (#opened:inames) (p:vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0 let slassert p = SteelGhost?.reflect (slassert0 p) let drop p = rewrite_slprop p emp (fun m -> emp_unit (hp_of p); affine_star (hp_of p) Mem.emp m; reveal_emp()) let reveal_star0 (#opened:inames) (p1 p2:vprop) : repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2) (fun _ -> True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem let reveal_star p1 p2 = SteelGhost?.reflect (reveal_star0 p1 p2) let reveal_star_30 (#opened:inames) (p1 p2 p3:vprop) : repr unit false opened Unobservable (p1 `star` p2 `star` p3) (fun _ -> p1 `star` p2 `star` p3) (requires fun _ -> True) (ensures fun h0 _ h1 -> can_be_split (p1 `star` p2 `star` p3) p1 /\ can_be_split (p1 `star` p2 `star` p3) p2 /\ h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 p3 == h1 p3 /\ h0 (p1 `star` p2 `star` p3) == ((h0 p1, h0 p2), h0 p3) /\ h1 (p1 `star` p2 `star` p3) == ((h1 p1, h1 p2), h1 p3) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem (p1 `star` p2 `star` p3) (core_mem m) in can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p1; can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p2; reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2 `star` p3); reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2); reveal_mk_rmem (p1 `star` p2 `star` p3) m p3 let reveal_star_3 p1 p2 p3 = SteelGhost?.reflect (reveal_star_30 p1 p2 p3) let intro_pure p = rewrite_slprop emp (pure p) (fun m -> pure_interp p m) let elim_pure_aux #uses (p:prop) : SteelGhostT (_:unit{p}) uses (pure p) (fun _ -> to_vprop Mem.emp) = as_atomic_action_ghost (Steel.Memory.elim_pure #uses p) let elim_pure #uses p = let _ = elim_pure_aux p in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ()) let return #a #opened #p x = SteelAtomicBase?.reflect (return_ a x opened #p) let intro_exists #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists x (h_exists_sl' p) m) let intro_exists_erased #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists (Ghost.reveal x) (h_exists_sl' p) m) let witness_exists #a #u #p _ = SteelGhost?.reflect (Steel.Memory.witness_h_exists #u (fun x -> hp_of (p x))) let lift_exists #a #u p = as_atomic_action_ghost (Steel.Memory.lift_h_exists #u (fun x -> hp_of (p x))) let exists_equiv p q = Classical.forall_intro_2 reveal_equiv; h_exists_cong (h_exists_sl' p) (h_exists_sl' q) let exists_cong p q = rewrite_slprop (h_exists p) (h_exists q) (fun m -> reveal_equiv (h_exists p) (h_exists q); exists_equiv p q) let fresh_invariant #uses p ctxt = rewrite_slprop p (to_vprop (hp_of p)) (fun _ -> ()); let i = as_atomic_unobservable_action (fresh_invariant uses (hp_of p) ctxt) in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ()); return i let new_invariant #uses p = let i = fresh_invariant #uses p [] in return i (* * AR: SteelAtomic and SteelGhost are not marked reifiable since we intend to run Steel programs natively * However to implement the with_inv combinators we need to reify their thunks to reprs * We could implement it better by having support for reification only in the .fst file * But for now assuming a function *) assume val reify_steel_atomic_comp (#a:Type) (#framed:bool) (#opened_invariants:inames) (#g:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:unit -> SteelAtomicBase a framed opened_invariants g pre post req ens) : repr a framed opened_invariants g pre post req ens [@@warn_on_use "as_unobservable_atomic_action is a trusted primitive"] let as_atomic_o_action (#a:Type u#a) (#opened_invariants:inames) (#fp:slprop) (#fp': a -> slprop) (o:observability) (f:action_except a opened_invariants fp fp') : SteelAtomicBaseT a opened_invariants o (to_vprop fp) (fun x -> to_vprop (fp' x)) = SteelAtomicBaseT?.reflect f let with_invariant #a #fp #fp' #obs #opened #p i f = rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ()); let x = as_atomic_o_action obs (Steel.Memory.with_invariant #a #(hp_of fp) #(fun x -> hp_of (fp' x)) #opened #(hp_of p) i (reify_steel_atomic_comp f)) in rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ()); return x assume val reify_steel_ghost_comp (#a:Type) (#framed:bool) (#opened_invariants:inames) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:unit -> SteelGhostBase a framed opened_invariants Unobservable pre post req ens) : repr a framed opened_invariants Unobservable pre post req ens let with_invariant_g #a #fp #fp' #opened #p i f = rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ()); let x = as_atomic_unobservable_action (Steel.Memory.with_invariant #a #(hp_of fp) #(fun x -> hp_of (fp' x)) #opened #(hp_of p) i (reify_steel_ghost_comp f)) in rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ()); return (hide x) let intro_vrefine v p = let m = get () in let x : Ghost.erased (t_of v) = gget v in let x' : Ghost.erased (vrefine_t v p) = Ghost.hide (Ghost.reveal x) in change_slprop v (vrefine v p) x x' (fun m -> interp_vrefine_hp v p m; vrefine_sel_eq v p m ) let elim_vrefine v p = let h = get() in let x : Ghost.erased (vrefine_t v p) = gget (vrefine v p) in let x' : Ghost.erased (t_of v) = Ghost.hide (Ghost.reveal x) in change_slprop (vrefine v p) v x x' (fun m -> interp_vrefine_hp v p m; vrefine_sel_eq v p m ) let vdep_cond (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) : Tot prop = q == p (fst x1) let vdep_rel (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) (x2: (t_of (vdep v p))) : Tot prop = q == p (fst x1) /\ dfst (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == fst x1 /\ dsnd (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == snd x1 let intro_vdep_lemma (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (m: mem) : Lemma (requires ( interp (hp_of (v `star` q)) m /\ q == p (fst (sel_of (v `star` q) m)) )) (ensures ( interp (hp_of (v `star` q)) m /\ interp (hp_of (vdep v p)) m /\ vdep_rel v q p (sel_of (v `star` q) m) (sel_of (vdep v p) m) )) = Mem.interp_star (hp_of v) (hp_of q) m; interp_vdep_hp v p m; vdep_sel_eq v p m let intro_vdep v q p = reveal_star v q; change_slprop_rel_with_cond (v `star` q) (vdep v p) (vdep_cond v q p) (vdep_rel v q p) (fun m -> intro_vdep_lemma v q p m)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Steel.Effect.Common.vprop -> p: (_: Steel.Effect.Common.t_of v -> Steel.Effect.Common.vprop) -> q: Steel.Effect.Common.vprop -> x2: Steel.Effect.Common.t_of (Steel.Effect.Common.vdep v p) -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Steel.Effect.Common.vdep", "Prims.eq2", "FStar.Pervasives.dfst", "Steel.Effect.Common.vdep_payload", "Prims.dtuple2", "Prims.prop" ]
[]
false
false
false
false
true
let vdep_cond_recip (v: vprop) (p: (t_of v -> Tot vprop)) (q: vprop) (x2: t_of (vdep v p)) : Tot prop =
q == p (dfst (x2 <: dtuple2 (t_of v) (vdep_payload v p)))
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.extract_info0
val extract_info0 (#opened: inames) (p: vprop) (vp: erased (normal (t_of p))) (fact: prop) (l: (m: mem -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact))) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact)
val extract_info0 (#opened: inames) (p: vprop) (vp: erased (normal (t_of p))) (fact: prop) (l: (m: mem -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact))) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact)
let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 21, "end_line": 525, "start_col": 0, "start_line": 512 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> vp: FStar.Ghost.erased (Steel.Effect.Common.normal (Steel.Effect.Common.t_of p)) -> fact: Prims.prop -> l: (m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of p) m /\ Steel.Effect.Common.sel_of p m == FStar.Ghost.reveal vp) (ensures fact)) -> Steel.Effect.Atomic.repr Prims.unit false opened Steel.Effect.Common.Unobservable p (fun _ -> p) (fun h -> h p == FStar.Ghost.reveal vp) (fun h0 _ h1 -> Steel.Effect.Common.frame_equalities p h0 h1 /\ fact)
Prims.Tot
[ "total" ]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "FStar.Ghost.erased", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Prims.prop", "Steel.Memory.mem", "Prims.unit", "Prims.l_and", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Prims.eq2", "Steel.Effect.Common.sel_of", "FStar.Ghost.reveal", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Memory.slprop", "Steel.Memory.core_mem", "Steel.Effect.lemma_frame_equalities_refl", "Steel.Effect.Common.rmem'", "Steel.Effect.Common.valid_rmem", "Steel.Effect.Common.mk_rmem", "FStar.Classical.forall_intro_3", "Steel.Effect.Common.hmem", "Steel.Effect.Common.can_be_split", "Steel.Effect.Common.reveal_mk_rmem", "Steel.Memory.full_mem", "FStar.NMSTTotal.get", "Steel.Memory.mem_evolves", "Steel.Effect.Atomic.repr", "Steel.Effect.Common.Unobservable", "Steel.Effect.Common.rmem", "Steel.Effect.Common.frame_equalities" ]
[]
false
false
false
false
false
let extract_info0 (#opened: inames) (p: vprop) (vp: erased (normal (t_of p))) (fact: prop) (l: (m: mem -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact))) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) =
fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.mk_selector_vprop_hp
val mk_selector_vprop_hp (#t: Type0) (p: t -> vprop) : Tot (slprop u#1)
val mk_selector_vprop_hp (#t: Type0) (p: t -> vprop) : Tot (slprop u#1)
let mk_selector_vprop_hp p = Steel.Memory.h_exists (hp_of_pointwise p)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 43, "end_line": 875, "start_col": 0, "start_line": 873 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ()) let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ()) let slassert0 (#opened:inames) (p:vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0 let slassert p = SteelGhost?.reflect (slassert0 p) let drop p = rewrite_slprop p emp (fun m -> emp_unit (hp_of p); affine_star (hp_of p) Mem.emp m; reveal_emp()) let reveal_star0 (#opened:inames) (p1 p2:vprop) : repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2) (fun _ -> True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem let reveal_star p1 p2 = SteelGhost?.reflect (reveal_star0 p1 p2) let reveal_star_30 (#opened:inames) (p1 p2 p3:vprop) : repr unit false opened Unobservable (p1 `star` p2 `star` p3) (fun _ -> p1 `star` p2 `star` p3) (requires fun _ -> True) (ensures fun h0 _ h1 -> can_be_split (p1 `star` p2 `star` p3) p1 /\ can_be_split (p1 `star` p2 `star` p3) p2 /\ h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 p3 == h1 p3 /\ h0 (p1 `star` p2 `star` p3) == ((h0 p1, h0 p2), h0 p3) /\ h1 (p1 `star` p2 `star` p3) == ((h1 p1, h1 p2), h1 p3) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem (p1 `star` p2 `star` p3) (core_mem m) in can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p1; can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p2; reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2 `star` p3); reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2); reveal_mk_rmem (p1 `star` p2 `star` p3) m p3 let reveal_star_3 p1 p2 p3 = SteelGhost?.reflect (reveal_star_30 p1 p2 p3) let intro_pure p = rewrite_slprop emp (pure p) (fun m -> pure_interp p m) let elim_pure_aux #uses (p:prop) : SteelGhostT (_:unit{p}) uses (pure p) (fun _ -> to_vprop Mem.emp) = as_atomic_action_ghost (Steel.Memory.elim_pure #uses p) let elim_pure #uses p = let _ = elim_pure_aux p in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ()) let return #a #opened #p x = SteelAtomicBase?.reflect (return_ a x opened #p) let intro_exists #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists x (h_exists_sl' p) m) let intro_exists_erased #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists (Ghost.reveal x) (h_exists_sl' p) m) let witness_exists #a #u #p _ = SteelGhost?.reflect (Steel.Memory.witness_h_exists #u (fun x -> hp_of (p x))) let lift_exists #a #u p = as_atomic_action_ghost (Steel.Memory.lift_h_exists #u (fun x -> hp_of (p x))) let exists_equiv p q = Classical.forall_intro_2 reveal_equiv; h_exists_cong (h_exists_sl' p) (h_exists_sl' q) let exists_cong p q = rewrite_slprop (h_exists p) (h_exists q) (fun m -> reveal_equiv (h_exists p) (h_exists q); exists_equiv p q) let fresh_invariant #uses p ctxt = rewrite_slprop p (to_vprop (hp_of p)) (fun _ -> ()); let i = as_atomic_unobservable_action (fresh_invariant uses (hp_of p) ctxt) in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ()); return i let new_invariant #uses p = let i = fresh_invariant #uses p [] in return i (* * AR: SteelAtomic and SteelGhost are not marked reifiable since we intend to run Steel programs natively * However to implement the with_inv combinators we need to reify their thunks to reprs * We could implement it better by having support for reification only in the .fst file * But for now assuming a function *) assume val reify_steel_atomic_comp (#a:Type) (#framed:bool) (#opened_invariants:inames) (#g:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:unit -> SteelAtomicBase a framed opened_invariants g pre post req ens) : repr a framed opened_invariants g pre post req ens [@@warn_on_use "as_unobservable_atomic_action is a trusted primitive"] let as_atomic_o_action (#a:Type u#a) (#opened_invariants:inames) (#fp:slprop) (#fp': a -> slprop) (o:observability) (f:action_except a opened_invariants fp fp') : SteelAtomicBaseT a opened_invariants o (to_vprop fp) (fun x -> to_vprop (fp' x)) = SteelAtomicBaseT?.reflect f let with_invariant #a #fp #fp' #obs #opened #p i f = rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ()); let x = as_atomic_o_action obs (Steel.Memory.with_invariant #a #(hp_of fp) #(fun x -> hp_of (fp' x)) #opened #(hp_of p) i (reify_steel_atomic_comp f)) in rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ()); return x assume val reify_steel_ghost_comp (#a:Type) (#framed:bool) (#opened_invariants:inames) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:unit -> SteelGhostBase a framed opened_invariants Unobservable pre post req ens) : repr a framed opened_invariants Unobservable pre post req ens let with_invariant_g #a #fp #fp' #opened #p i f = rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ()); let x = as_atomic_unobservable_action (Steel.Memory.with_invariant #a #(hp_of fp) #(fun x -> hp_of (fp' x)) #opened #(hp_of p) i (reify_steel_ghost_comp f)) in rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ()); return (hide x) let intro_vrefine v p = let m = get () in let x : Ghost.erased (t_of v) = gget v in let x' : Ghost.erased (vrefine_t v p) = Ghost.hide (Ghost.reveal x) in change_slprop v (vrefine v p) x x' (fun m -> interp_vrefine_hp v p m; vrefine_sel_eq v p m ) let elim_vrefine v p = let h = get() in let x : Ghost.erased (vrefine_t v p) = gget (vrefine v p) in let x' : Ghost.erased (t_of v) = Ghost.hide (Ghost.reveal x) in change_slprop (vrefine v p) v x x' (fun m -> interp_vrefine_hp v p m; vrefine_sel_eq v p m ) let vdep_cond (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) : Tot prop = q == p (fst x1) let vdep_rel (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) (x2: (t_of (vdep v p))) : Tot prop = q == p (fst x1) /\ dfst (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == fst x1 /\ dsnd (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == snd x1 let intro_vdep_lemma (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (m: mem) : Lemma (requires ( interp (hp_of (v `star` q)) m /\ q == p (fst (sel_of (v `star` q) m)) )) (ensures ( interp (hp_of (v `star` q)) m /\ interp (hp_of (vdep v p)) m /\ vdep_rel v q p (sel_of (v `star` q) m) (sel_of (vdep v p) m) )) = Mem.interp_star (hp_of v) (hp_of q) m; interp_vdep_hp v p m; vdep_sel_eq v p m let intro_vdep v q p = reveal_star v q; change_slprop_rel_with_cond (v `star` q) (vdep v p) (vdep_cond v q p) (vdep_rel v q p) (fun m -> intro_vdep_lemma v q p m) let vdep_cond_recip (v: vprop) (p: (t_of v -> Tot vprop)) (q: vprop) (x2: t_of (vdep v p)) : Tot prop = q == p (dfst (x2 <: dtuple2 (t_of v) (vdep_payload v p))) let vdep_rel_recip (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x2: (t_of (vdep v p))) (x1: t_of (v `star` q)) : Tot prop = vdep_rel v q p x1 x2 let elim_vdep_lemma (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (m: mem) : Lemma (requires ( interp (hp_of (vdep v p)) m /\ q == p (dfst (sel_of (vdep v p) m <: dtuple2 (t_of v) (vdep_payload v p))) )) (ensures ( interp (hp_of (v `star` q)) m /\ interp (hp_of (vdep v p)) m /\ vdep_rel v q p (sel_of (v `star` q) m) (sel_of (vdep v p) m) )) = Mem.interp_star (hp_of v) (hp_of q) m; interp_vdep_hp v p m; vdep_sel_eq v p m let elim_vdep0 (#opened:inames) (v: vprop) (p: (t_of v -> Tot vprop)) (q: vprop) : SteelGhost unit opened (vdep v p) (fun _ -> v `star` q) (requires (fun h -> q == p (dfst (h (vdep v p))))) (ensures (fun h _ h' -> let fs = h' v in let sn = h' q in let x2 = h (vdep v p) in q == p fs /\ dfst x2 == fs /\ dsnd x2 == sn )) = change_slprop_rel_with_cond (vdep v p) (v `star` q) (vdep_cond_recip v p q) (vdep_rel_recip v q p) (fun m -> elim_vdep_lemma v q p m); reveal_star v q let elim_vdep v p = let r = gget (vdep v p) in let res = Ghost.hide (dfst #(t_of v) #(vdep_payload v p) (Ghost.reveal r)) in elim_vdep0 v p (p (Ghost.reveal res)); res let intro_vrewrite v #t f = let x : Ghost.erased (t_of v) = gget v in let x' : Ghost.erased t = Ghost.hide (f (Ghost.reveal x)) in change_slprop v (vrewrite v f) x x' (fun m -> vrewrite_sel_eq v f m ) let elim_vrewrite v #t f = change_slprop_rel (vrewrite v f) v (fun y x -> y == f x) (fun m -> vrewrite_sel_eq v f m) /// Deriving a selector-style vprop from an injective pts-to-style vprop let hp_of_pointwise (#t: Type) (p: t -> vprop) (x: t) : Tot slprop = hp_of (p x)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: (_: t -> Steel.Effect.Common.vprop) -> Steel.Memory.slprop
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Memory.h_exists", "Steel.Effect.Atomic.hp_of_pointwise", "Steel.Memory.slprop" ]
[]
false
false
false
true
false
let mk_selector_vprop_hp p =
Steel.Memory.h_exists (hp_of_pointwise p)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.change_slprop_rel_with_cond0
val change_slprop_rel_with_cond0 (#opened: inames) (p q: vprop) (cond: (t_of p -> prop)) (rel: ((t_of p) -> (t_of q) -> prop)) (proof: (m: mem -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m) ))) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q))
val change_slprop_rel_with_cond0 (#opened: inames) (p q: vprop) (cond: (t_of p -> prop)) (rel: ((t_of p) -> (t_of q) -> prop)) (proof: (m: mem -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m) ))) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q))
let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 69, "end_line": 507, "start_col": 0, "start_line": 484 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> cond: (_: Steel.Effect.Common.t_of p -> Prims.prop) -> rel: (_: Steel.Effect.Common.t_of p -> _: Steel.Effect.Common.t_of q -> Prims.prop) -> proof: (m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of p) m /\ cond (Steel.Effect.Common.sel_of p m)) (ensures Steel.Memory.interp (Steel.Effect.Common.hp_of p) m /\ Steel.Memory.interp (Steel.Effect.Common.hp_of q) m /\ rel (Steel.Effect.Common.sel_of p m) (Steel.Effect.Common.sel_of q m))) -> Steel.Effect.Atomic.repr Prims.unit false opened Steel.Effect.Common.Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q))
Prims.Tot
[ "total" ]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Prims.prop", "Steel.Memory.mem", "Prims.unit", "Prims.l_and", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Steel.Effect.Common.sel_of", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Memory.slprop", "Steel.Memory.star_associative", "Steel.Memory.locks_invariant", "Steel.Effect.Atomic.intro_star", "Steel.Memory.star", "FStar.Ghost.hide", "Steel.Memory.core_mem", "Steel.Effect.Common.reveal_mk_rmem", "Steel.Effect.Common.rmem'", "Steel.Effect.Common.valid_rmem", "Steel.Effect.Common.mk_rmem", "FStar.Classical.forall_intro_3", "Steel.Effect.Common.hmem", "Steel.Effect.Common.can_be_split", "Prims.eq2", "Steel.Effect.Common.normal", "Steel.Memory.full_mem", "FStar.NMSTTotal.get", "Steel.Memory.mem_evolves", "Steel.Effect.Atomic.repr", "Steel.Effect.Common.Unobservable", "Steel.Effect.Common.rmem" ]
[]
false
false
false
false
false
let change_slprop_rel_with_cond0 (#opened: inames) (p q: vprop) (cond: (t_of p -> prop)) (rel: ((t_of p) -> (t_of q) -> prop)) (proof: (m: mem -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m) ))) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) =
fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` (locks_invariant opened m)) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.change_slprop_2
val change_slprop_2 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : SteelGhost unit opened p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq)
val change_slprop_2 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : SteelGhost unit opened p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq)
let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 78, "end_line": 457, "start_col": 0, "start_line": 457 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> vq: FStar.Ghost.erased (Steel.Effect.Common.t_of q) -> l: (m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of p) m) (ensures Steel.Memory.interp (Steel.Effect.Common.hp_of q) m /\ Steel.Effect.Common.sel_of q m == FStar.Ghost.reveal vq)) -> Steel.Effect.Atomic.SteelGhost Prims.unit
Steel.Effect.Atomic.SteelGhost
[]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "FStar.Ghost.erased", "Steel.Effect.Common.t_of", "Steel.Memory.mem", "Prims.unit", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Prims.squash", "Prims.l_and", "Prims.eq2", "Steel.Effect.Common.sel_of", "FStar.Ghost.reveal", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Effect.Atomic.change_slprop_20", "Steel.Effect.Common.rmem", "Prims.l_True", "Steel.Effect.Common.normal" ]
[]
false
true
false
false
false
let change_slprop_2 p q vq l =
SteelGhost?.reflect (change_slprop_20 p q vq l)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.change_slprop_rel
val change_slprop_rel (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : SteelGhost unit opened p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q))
val change_slprop_rel (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : SteelGhost unit opened p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q))
let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 92, "end_line": 482, "start_col": 0, "start_line": 482 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> rel: ( _: Steel.Effect.Common.normal (Steel.Effect.Common.t_of p) -> _: Steel.Effect.Common.normal (Steel.Effect.Common.t_of q) -> Prims.prop) -> l: (m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of p) m) (ensures Steel.Memory.interp (Steel.Effect.Common.hp_of q) m /\ rel (Steel.Effect.Common.sel_of p m) (Steel.Effect.Common.sel_of q m))) -> Steel.Effect.Atomic.SteelGhost Prims.unit
Steel.Effect.Atomic.SteelGhost
[]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Prims.prop", "Steel.Memory.mem", "Prims.unit", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Prims.squash", "Prims.l_and", "Steel.Effect.Common.sel_of", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Effect.Atomic.change_slprop_rel0", "Steel.Effect.Common.rmem", "Prims.l_True" ]
[]
false
true
false
false
false
let change_slprop_rel p q rel proof =
SteelGhost?.reflect (change_slprop_rel0 p q rel proof)
false
Pulse.PP.fst
Pulse.PP.from_show
val from_show (#a: _) {| d: tac_showable a |} : printable a
val from_show (#a: _) {| d: tac_showable a |} : printable a
let from_show #a {| d : tac_showable a |} : printable a = { pp = (fun x -> arbitrary_string (show x)); }
{ "file_name": "lib/steel/pulse/Pulse.PP.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 1, "end_line": 55, "start_col": 0, "start_line": 53 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.PP include FStar.Stubs.Pprint open FStar.Tactics open FStar.Tactics.Typeclasses open FStar.Stubs.Pprint open Pulse.Typing open Pulse.Syntax.Base open Pulse.Syntax.Printer open Pulse.Show (* A helper to create wrapped text *) val text : string -> FStar.Stubs.Pprint.document let text (s:string) : FStar.Stubs.Pprint.document = flow (break_ 1) (words s) (* Nests a document 2 levels deep, as a block. It inserts a hardline before the doc, so if you want to format something as hdr subdoc tail you should write hdr ^^ indent (subdoc) ^/^ tail. Note the ^^ vs ^/^. *) val indent : document -> document let indent d = nest 2 (hardline ^^ align d) class printable (a:Type) = { pp : a -> Tac document; }
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.Base.fsti.checked", "Pulse.Show.fst.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Stubs.Pprint.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Pulse.PP.fst" }
[ { "abbrev": false, "full_module": "Pulse.Show", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Printer", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Pprint", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Typeclasses", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Pprint", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
{| d: Pulse.Show.tac_showable a |} -> Pulse.PP.printable a
Prims.Tot
[ "total" ]
[]
[ "Pulse.Show.tac_showable", "Pulse.PP.Mkprintable", "FStar.Stubs.Pprint.arbitrary_string", "FStar.Stubs.Pprint.document", "Prims.string", "Pulse.Show.show", "Pulse.PP.printable" ]
[]
false
false
false
true
false
let from_show #a {| d: tac_showable a |} : printable a =
{ pp = (fun x -> arbitrary_string (show x)) }
false
Pulse.PP.fst
Pulse.PP.indent
val indent : document -> document
val indent : document -> document
let indent d = nest 2 (hardline ^^ align d)
{ "file_name": "lib/steel/pulse/Pulse.PP.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 30, "end_line": 46, "start_col": 0, "start_line": 45 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.PP include FStar.Stubs.Pprint open FStar.Tactics open FStar.Tactics.Typeclasses open FStar.Stubs.Pprint open Pulse.Typing open Pulse.Syntax.Base open Pulse.Syntax.Printer open Pulse.Show (* A helper to create wrapped text *) val text : string -> FStar.Stubs.Pprint.document let text (s:string) : FStar.Stubs.Pprint.document = flow (break_ 1) (words s) (* Nests a document 2 levels deep, as a block. It inserts a hardline before the doc, so if you want to format something as hdr subdoc tail you should write hdr ^^ indent (subdoc) ^/^ tail. Note the ^^ vs ^/^. *)
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.Base.fsti.checked", "Pulse.Show.fst.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Stubs.Pprint.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Pulse.PP.fst" }
[ { "abbrev": false, "full_module": "Pulse.Show", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Printer", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Pprint", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Typeclasses", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Pprint", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: FStar.Stubs.Pprint.document -> FStar.Stubs.Pprint.document
Prims.Tot
[ "total" ]
[]
[ "FStar.Stubs.Pprint.document", "FStar.Stubs.Pprint.nest", "FStar.Stubs.Pprint.op_Hat_Hat", "FStar.Stubs.Pprint.hardline", "FStar.Stubs.Pprint.align" ]
[]
false
false
false
true
false
let indent d =
nest 2 (hardline ^^ align d)
false
Pulse.PP.fst
Pulse.PP.text
val text : string -> FStar.Stubs.Pprint.document
val text : string -> FStar.Stubs.Pprint.document
let text (s:string) : FStar.Stubs.Pprint.document = flow (break_ 1) (words s)
{ "file_name": "lib/steel/pulse/Pulse.PP.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 27, "end_line": 33, "start_col": 0, "start_line": 32 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.PP include FStar.Stubs.Pprint open FStar.Tactics open FStar.Tactics.Typeclasses open FStar.Stubs.Pprint open Pulse.Typing open Pulse.Syntax.Base open Pulse.Syntax.Printer open Pulse.Show (* A helper to create wrapped text *)
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.Base.fsti.checked", "Pulse.Show.fst.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Stubs.Pprint.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Pulse.PP.fst" }
[ { "abbrev": false, "full_module": "Pulse.Show", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Printer", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Pprint", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Typeclasses", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Pprint", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Prims.string -> FStar.Stubs.Pprint.document
Prims.Tot
[ "total" ]
[]
[ "Prims.string", "FStar.Stubs.Pprint.flow", "FStar.Stubs.Pprint.break_", "FStar.Stubs.Pprint.words", "FStar.Stubs.Pprint.document" ]
[]
false
false
false
true
false
let text (s: string) : FStar.Stubs.Pprint.document =
flow (break_ 1) (words s)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.extract_info
val extract_info (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : SteelGhost unit opened p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact)
val extract_info (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : SteelGhost unit opened p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact)
let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 78, "end_line": 527, "start_col": 0, "start_line": 527 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> vp: FStar.Ghost.erased (Steel.Effect.Common.normal (Steel.Effect.Common.t_of p)) -> fact: Prims.prop -> l: (m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of p) m /\ Steel.Effect.Common.sel_of p m == FStar.Ghost.reveal vp) (ensures fact)) -> Steel.Effect.Atomic.SteelGhost Prims.unit
Steel.Effect.Atomic.SteelGhost
[]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "FStar.Ghost.erased", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Prims.prop", "Steel.Memory.mem", "Prims.unit", "Prims.l_and", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Prims.eq2", "Steel.Effect.Common.sel_of", "FStar.Ghost.reveal", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Effect.Atomic.extract_info0", "Steel.Effect.Common.rmem", "Steel.Effect.Common.frame_equalities" ]
[]
false
true
false
false
false
let extract_info p vp fact l =
SteelGhost?.reflect (extract_info0 p vp fact l)
false
Hacl.P256.PrecompTable.fst
Hacl.P256.PrecompTable.mk_proj_g_pow2_192
val mk_proj_g_pow2_192: unit -> StackInline (lbuffer uint64 12ul) (requires fun _ -> True) (ensures fun h0 b h1 -> live h1 b /\ stack_allocated b h0 h1 proj_g_pow2_192_lseq)
val mk_proj_g_pow2_192: unit -> StackInline (lbuffer uint64 12ul) (requires fun _ -> True) (ensures fun h0 b h1 -> live h1 b /\ stack_allocated b h0 h1 proj_g_pow2_192_lseq)
let mk_proj_g_pow2_192 () = createL proj_g_pow2_192_list
{ "file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 193, "start_col": 0, "start_line": 192 }
module Hacl.P256.PrecompTable open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LE = Lib.Exponentiation module SE = Spec.Exponentiation module SPT = Hacl.Spec.PrecompBaseTable module SPT256 = Hacl.Spec.PrecompBaseTable256 module SPTK = Hacl.Spec.P256.PrecompTable module S = Spec.P256 module SL = Spec.P256.Lemmas open Hacl.Impl.P256.Point include Hacl.Impl.P256.Group #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let proj_point_to_list p = SPTK.proj_point_to_list_lemma p; SPTK.proj_point_to_list p let lemma_refl x = SPTK.proj_point_to_list_lemma x //----------------- inline_for_extraction noextract let proj_g_pow2_64 : S.proj_point = [@inline_let] let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in [@inline_let] let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in [@inline_let] let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in (rX, rY, rZ) val lemma_proj_g_pow2_64_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops S.base_point 64 == proj_g_pow2_64) let lemma_proj_g_pow2_64_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops S.base_point 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64); let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_128 : S.proj_point = [@inline_let] let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in [@inline_let] let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in [@inline_let] let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in (rX, rY, rZ) val lemma_proj_g_pow2_128_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128) let lemma_proj_g_pow2_128_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64); let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) inline_for_extraction noextract let proj_g_pow2_192 : S.proj_point = [@inline_let] let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in [@inline_let] let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in [@inline_let] let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in (rX, rY, rZ) val lemma_proj_g_pow2_192_eval : unit -> Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192) let lemma_proj_g_pow2_192_eval () = SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64; let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) in normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64); let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in assert_norm (qX == rX /\ qY == rY /\ qZ == rZ) // let proj_g_pow2_64 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) // let proj_g_pow2_128 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) // let proj_g_pow2_192 : S.proj_point = // normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) inline_for_extraction noextract let proj_g_pow2_64_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_64) inline_for_extraction noextract let proj_g_pow2_128_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_128) inline_for_extraction noextract let proj_g_pow2_192_list : SPTK.point_list = normalize_term (SPTK.proj_point_to_list proj_g_pow2_192) let proj_g_pow2_64_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); Seq.seq_of_list proj_g_pow2_64_list let proj_g_pow2_128_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); Seq.seq_of_list proj_g_pow2_128_list let proj_g_pow2_192_lseq : LSeq.lseq uint64 12 = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192); Seq.seq_of_list proj_g_pow2_192_list val proj_g_pow2_64_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_64 == pow_point (pow2 64) g_aff) let proj_g_pow2_64_lemma () = lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_64_lemma S.mk_p256_concrete_ops S.base_point val proj_g_pow2_128_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_128 == pow_point (pow2 128) g_aff) let proj_g_pow2_128_lemma () = lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_128_lemma S.mk_p256_concrete_ops S.base_point val proj_g_pow2_192_lemma: unit -> Lemma (S.to_aff_point proj_g_pow2_192 == pow_point (pow2 192) g_aff) let proj_g_pow2_192_lemma () = lemma_proj_g_pow2_192_eval (); lemma_proj_g_pow2_128_eval (); lemma_proj_g_pow2_64_eval (); SPT256.a_pow2_192_lemma S.mk_p256_concrete_ops S.base_point let proj_g_pow2_64_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64); proj_g_pow2_64_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_64 let proj_g_pow2_128_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128); proj_g_pow2_128_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_128 let proj_g_pow2_192_lseq_lemma () = normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192); proj_g_pow2_192_lemma (); SPTK.proj_point_to_list_lemma proj_g_pow2_192 let mk_proj_g_pow2_64 () = createL proj_g_pow2_64_list let mk_proj_g_pow2_128 () = createL proj_g_pow2_128_list
{ "checked_file": "/", "dependencies": [ "Spec.P256.Lemmas.fsti.checked", "Spec.P256.fst.checked", "Spec.Exponentiation.fsti.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable256.fsti.checked", "Hacl.Spec.PrecompBaseTable.fsti.checked", "Hacl.Spec.P256.PrecompTable.fsti.checked", "Hacl.Impl.P256.Point.fsti.checked", "Hacl.Impl.P256.Group.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": true, "source_file": "Hacl.P256.PrecompTable.fst" }
[ { "abbrev": true, "full_module": "Spec.P256.Lemmas", "short_module": "SL" }, { "abbrev": true, "full_module": "Hacl.Spec.P256.PrecompTable", "short_module": "SPTK" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.P256.Point", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.P256.Montgomery", "short_module": "SM" }, { "abbrev": true, "full_module": "Spec.P256", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable", "short_module": "SPT" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation.Definitions", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation.Definition", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "Hacl.P256", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.HyperStack.ST.StackInline (Lib.Buffer.lbuffer Lib.IntTypes.uint64 12ul)
FStar.HyperStack.ST.StackInline
[]
[]
[ "Prims.unit", "Lib.Buffer.createL", "Lib.IntTypes.uint64", "Hacl.P256.PrecompTable.proj_g_pow2_192_list", "Lib.Buffer.lbuffer", "Lib.IntTypes.size", "FStar.Pervasives.normalize_term", "Lib.IntTypes.size_nat", "FStar.List.Tot.Base.length", "FStar.UInt32.__uint_to_t" ]
[]
false
true
false
false
false
let mk_proj_g_pow2_192 () =
createL proj_g_pow2_192_list
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.reveal_star0
val reveal_star0 (#opened: inames) (p1 p2: vprop) : repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2) (fun _ -> True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2))
val reveal_star0 (#opened: inames) (p1 p2: vprop) : repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2) (fun _ -> True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2))
let reveal_star0 (#opened:inames) (p1 p2:vprop) : repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2) (fun _ -> True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 44, "end_line": 572, "start_col": 0, "start_line": 562 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ()) let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ()) let slassert0 (#opened:inames) (p:vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0 let slassert p = SteelGhost?.reflect (slassert0 p) let drop p = rewrite_slprop p emp (fun m -> emp_unit (hp_of p); affine_star (hp_of p) Mem.emp m; reveal_emp())
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p1: Steel.Effect.Common.vprop -> p2: Steel.Effect.Common.vprop -> Steel.Effect.Atomic.repr Prims.unit false opened Steel.Effect.Common.Unobservable (Steel.Effect.Common.star p1 p2) (fun _ -> Steel.Effect.Common.star p1 p2) (fun _ -> Prims.l_True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (Steel.Effect.Common.star p1 p2) == (h0 p1, h0 p2) /\ h1 (Steel.Effect.Common.star p1 p2) == (h1 p1, h1 p2))
Prims.Tot
[ "total" ]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Steel.Memory.slprop", "FStar.Classical.forall_intro_3", "Steel.Effect.Common.hmem", "Steel.Effect.Common.can_be_split", "Prims.eq2", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Steel.Effect.Common.mk_rmem", "Steel.Effect.Common.sel_of", "Steel.Effect.Common.reveal_mk_rmem", "Prims.unit", "Steel.Memory.full_mem", "FStar.NMSTTotal.get", "Steel.Memory.mem_evolves", "Steel.Effect.Atomic.repr", "Steel.Effect.Common.Unobservable", "Steel.Effect.Common.star", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.l_and", "FStar.Pervasives.Native.tuple2", "Steel.Effect.Common.vprop'", "Steel.Effect.Common.__proj__Mkvprop'__item__t", "FStar.Pervasives.Native.Mktuple2" ]
[]
false
false
false
false
false
let reveal_star0 (#opened: inames) (p1 p2: vprop) : repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2) (fun _ -> True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2)) =
fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem
false
Pulse.PP.fst
Pulse.PP.showable_list
[@@ FStar.Tactics.Typeclasses.tcinstance] val showable_list: a: Type -> printable a -> printable (list a)
[@@ FStar.Tactics.Typeclasses.tcinstance] val showable_list: a: Type -> printable a -> printable (list a)
instance showable_list (a:Type) (_ : printable a) : printable (list a) = { pp = (fun l -> brackets (separate_map comma pp l)) }
{ "file_name": "lib/steel/pulse/Pulse.PP.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 1, "end_line": 79, "start_col": 0, "start_line": 77 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.PP include FStar.Stubs.Pprint open FStar.Tactics open FStar.Tactics.Typeclasses open FStar.Stubs.Pprint open Pulse.Typing open Pulse.Syntax.Base open Pulse.Syntax.Printer open Pulse.Show (* A helper to create wrapped text *) val text : string -> FStar.Stubs.Pprint.document let text (s:string) : FStar.Stubs.Pprint.document = flow (break_ 1) (words s) (* Nests a document 2 levels deep, as a block. It inserts a hardline before the doc, so if you want to format something as hdr subdoc tail you should write hdr ^^ indent (subdoc) ^/^ tail. Note the ^^ vs ^/^. *) val indent : document -> document let indent d = nest 2 (hardline ^^ align d) class printable (a:Type) = { pp : a -> Tac document; } (* Repurposing a show instance *) let from_show #a {| d : tac_showable a |} : printable a = { pp = (fun x -> arbitrary_string (show x)); } instance _ : printable string = from_show instance _ : printable unit = from_show instance _ : printable bool = from_show instance _ : printable int = from_show instance _ : printable ctag = from_show instance printable_option (a:Type) (_ : printable a) : printable (option a) = { pp = (function None -> doc_of_string "None" | Some v -> doc_of_string "Some" ^/^ pp v); } // Cannot use Pprint.separate_map, it takes a pure func private let rec separate_map (sep: document) (f : 'a -> Tac document) (l : list 'a) : Tac document = match l with | [] -> empty | [x] -> f x | x::xs -> f x ^^ sep ^/^ separate_map sep f xs
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.Base.fsti.checked", "Pulse.Show.fst.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Stubs.Pprint.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Pulse.PP.fst" }
[ { "abbrev": false, "full_module": "Pulse.Show", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Printer", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Pprint", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Typeclasses", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Pprint", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> _: Pulse.PP.printable a -> Pulse.PP.printable (Prims.list a)
Prims.Tot
[ "total" ]
[]
[ "Pulse.PP.printable", "Pulse.PP.Mkprintable", "Prims.list", "FStar.Stubs.Pprint.brackets", "FStar.Stubs.Pprint.document", "Pulse.PP.separate_map", "FStar.Stubs.Pprint.comma", "Pulse.PP.pp" ]
[]
false
false
false
true
false
[@@ FStar.Tactics.Typeclasses.tcinstance] let showable_list (a: Type) (_: printable a) : printable (list a) =
{ pp = (fun l -> brackets (separate_map comma pp l)) }
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.change_slprop_rel_with_cond
val change_slprop_rel_with_cond (#opened:inames) (p q:vprop) (cond: (t_of p) -> prop) (rel : (t_of p) -> (t_of q) -> prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : SteelGhost unit opened p (fun _ -> q) (fun h0 -> cond (h0 p)) (fun h0 _ h1 -> rel (h0 p) (h1 q))
val change_slprop_rel_with_cond (#opened:inames) (p q:vprop) (cond: (t_of p) -> prop) (rel : (t_of p) -> (t_of q) -> prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : SteelGhost unit opened p (fun _ -> q) (fun h0 -> cond (h0 p)) (fun h0 _ h1 -> rel (h0 p) (h1 q))
let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 73, "end_line": 510, "start_col": 0, "start_line": 509 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> cond: (_: Steel.Effect.Common.t_of p -> Prims.prop) -> rel: (_: Steel.Effect.Common.t_of p -> _: Steel.Effect.Common.t_of q -> Prims.prop) -> l: (m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of p) m /\ cond (Steel.Effect.Common.sel_of p m)) (ensures Steel.Memory.interp (Steel.Effect.Common.hp_of q) m /\ rel (Steel.Effect.Common.sel_of p m) (Steel.Effect.Common.sel_of q m))) -> Steel.Effect.Atomic.SteelGhost Prims.unit
Steel.Effect.Atomic.SteelGhost
[]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Prims.prop", "Steel.Memory.mem", "Prims.unit", "Prims.l_and", "Steel.Memory.interp", "Steel.Effect.Common.hp_of", "Steel.Effect.Common.sel_of", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Steel.Effect.Atomic.change_slprop_rel_with_cond0", "Steel.Effect.Common.rmem" ]
[]
false
true
false
false
false
let change_slprop_rel_with_cond p q cond rel proof =
SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.drop
val drop (#opened:inames) (p:vprop) : SteelGhostT unit opened p (fun _ -> emp)
val drop (#opened:inames) (p:vprop) : SteelGhostT unit opened p (fun _ -> emp)
let drop p = rewrite_slprop p emp (fun m -> emp_unit (hp_of p); affine_star (hp_of p) Mem.emp m; reveal_emp())
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 78, "end_line": 560, "start_col": 0, "start_line": 559 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ()) let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ()) let slassert0 (#opened:inames) (p:vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0 let slassert p = SteelGhost?.reflect (slassert0 p)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> Steel.Effect.Atomic.SteelGhostT Prims.unit
Steel.Effect.Atomic.SteelGhostT
[]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Steel.Effect.Atomic.rewrite_slprop", "Steel.Effect.Common.emp", "Steel.Memory.mem", "Steel.Effect.Common.reveal_emp", "Prims.unit", "Steel.Memory.affine_star", "Steel.Effect.Common.hp_of", "Steel.Memory.emp", "Steel.Memory.emp_unit" ]
[]
false
true
false
false
false
let drop p =
rewrite_slprop p emp (fun m -> emp_unit (hp_of p); affine_star (hp_of p) Mem.emp m; reveal_emp ())
false
Steel.Channel.Simplex.fst
Steel.Channel.Simplex.send_available
val send_available: #p: sprot -> #q: _ -> cc: chan q -> x: msg_t p -> vs: chan_val -> vr: chan_val -> unit -> SteelT unit (send_pre_available p #q cc.chan_chan vs vr) (fun _ -> sender cc (step p x))
val send_available: #p: sprot -> #q: _ -> cc: chan q -> x: msg_t p -> vs: chan_val -> vr: chan_val -> unit -> SteelT unit (send_pre_available p #q cc.chan_chan vs vr) (fun _ -> sender cc (step p x))
let send_available (#p:sprot) #q (cc:chan q) (x:msg_t p) (vs vr:chan_val) (_:unit) : SteelT unit (send_pre_available p #q cc.chan_chan vs vr) (fun _ -> sender cc (step p x)) = Steel.Utils.extract_pure (vs == vr); Steel.Utils.rewrite #_ #(send_recv_in_sync cc.chan_chan.send p cc.chan_chan vs) vr vs; elim_pure (vs == vs); gather_r cc.chan_chan.send vs; let next_vs = update_channel cc.chan_chan x vs cc.chan_chan.send in H.share cc.chan_chan.send; intro_exists next_vs (fun (next_vs:chan_val) -> pts_to cc.chan_chan.send half next_vs `star` in_state_slprop (step p x) next_vs); intro_chan_inv_stepT cc.chan_chan next_vs vs; Steel.SpinLock.release cc.chan_lock
{ "file_name": "lib/steel/Steel.Channel.Simplex.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 39, "end_line": 293, "start_col": 0, "start_line": 283 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Channel.Simplex module P = Steel.Channel.Protocol open Steel.SpinLock open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.HigherReference open Steel.FractionalPermission module MRef = Steel.MonotonicHigherReference module H = Steel.HigherReference let sprot = p:prot { more p } noeq type chan_val = { chan_prot : sprot; chan_msg : msg_t chan_prot; chan_ctr : nat } let mref a p = MRef.ref a p let trace_ref (p:prot) = mref (partial_trace_of p) extended_to noeq type chan_t (p:prot) = { send: ref chan_val; recv: ref chan_val; trace: trace_ref p; } let half : perm = half_perm full_perm let step (s:sprot) (x:msg_t s) = step s x let chan_inv_step_p (vrecv vsend:chan_val) : prop = (vsend.chan_prot == step vrecv.chan_prot vrecv.chan_msg /\ vsend.chan_ctr == vrecv.chan_ctr + 1) let chan_inv_step (vrecv vsend:chan_val) : vprop = pure (chan_inv_step_p vrecv vsend) let chan_inv_cond (vsend:chan_val) (vrecv:chan_val) : vprop = if vsend.chan_ctr = vrecv.chan_ctr then pure (vsend == vrecv) else chan_inv_step vrecv vsend let trace_until_prop #p (r:trace_ref p) (vr:chan_val) (tr: partial_trace_of p) : vprop = MRef.pts_to r full_perm tr `star` pure (until tr == step vr.chan_prot vr.chan_msg) let trace_until #p (r:trace_ref p) (vr:chan_val) = h_exists (trace_until_prop r vr) let chan_inv_recv #p (c:chan_t p) (vsend:chan_val) = h_exists (fun (vrecv:chan_val) -> pts_to c.recv half vrecv `star` trace_until c.trace vrecv `star` chan_inv_cond vsend vrecv) let chan_inv #p (c:chan_t p) : vprop = h_exists (fun (vsend:chan_val) -> pts_to c.send half vsend `star` chan_inv_recv c vsend) let intro_chan_inv_cond_eqT (vs vr:chan_val) : Steel unit emp (fun _ -> chan_inv_cond vs vr) (requires fun _ -> vs == vr) (ensures fun _ _ _ -> True) = intro_pure (vs == vs); rewrite_slprop (chan_inv_cond vs vs) (chan_inv_cond vs vr) (fun _ -> ()) let intro_chan_inv_cond_stepT (vs vr:chan_val) : SteelT unit (chan_inv_step vr vs) (fun _ -> chan_inv_cond vs vr) = Steel.Utils.extract_pure (chan_inv_step_p vr vs); rewrite_slprop (chan_inv_step vr vs) (chan_inv_cond vs vr) (fun _ -> ()) let intro_chan_inv_auxT #p (#vs : chan_val) (#vr : chan_val) (c:chan_t p) : SteelT unit (pts_to c.send half vs `star` pts_to c.recv half vr `star` trace_until c.trace vr `star` chan_inv_cond vs vr) (fun _ -> chan_inv c) = intro_exists _ (fun (vr:chan_val) -> pts_to c.recv half vr `star` trace_until c.trace vr `star` chan_inv_cond vs vr); intro_exists _ (fun (vs:chan_val) -> pts_to c.send half vs `star` chan_inv_recv c vs) let intro_chan_inv_stepT #p (c:chan_t p) (vs vr:chan_val) : SteelT unit (pts_to c.send half vs `star` pts_to c.recv half vr `star` trace_until c.trace vr `star` chan_inv_step vr vs) (fun _ -> chan_inv c) = intro_chan_inv_cond_stepT vs vr; intro_chan_inv_auxT c let intro_chan_inv_eqT #p (c:chan_t p) (vs vr:chan_val) : Steel unit (pts_to c.send half vs `star` pts_to c.recv half vr `star` trace_until c.trace vr) (fun _ -> chan_inv c) (requires fun _ -> vs == vr) (ensures fun _ _ _ -> True) = intro_chan_inv_cond_eqT vs vr; intro_chan_inv_auxT c noeq type chan p = { chan_chan : chan_t p; chan_lock : lock (chan_inv chan_chan) } let in_state_prop (p:prot) (vsend:chan_val) : prop = p == step vsend.chan_prot vsend.chan_msg irreducible let next_chan_val (#p:sprot) (x:msg_t p) (vs0:chan_val { in_state_prop p vs0 }) : Tot (vs:chan_val{in_state_prop (step p x) vs /\ chan_inv_step_p vs0 vs}) = { chan_prot = (step vs0.chan_prot vs0.chan_msg); chan_msg = x; chan_ctr = vs0.chan_ctr + 1 } [@@__reduce__] let in_state_slprop (p:prot) (vsend:chan_val) : vprop = pure (in_state_prop p vsend) let in_state (r:ref chan_val) (p:prot) = h_exists (fun (vsend:chan_val) -> pts_to r half vsend `star` in_state_slprop p vsend) let sender #q (c:chan q) (p:prot) = in_state c.chan_chan.send p let receiver #q (c:chan q) (p:prot) = in_state c.chan_chan.recv p let intro_chan_inv #p (c:chan_t p) (v:chan_val) : SteelT unit (pts_to c.send half v `star` pts_to c.recv half v `star` trace_until c.trace v) (fun _ -> chan_inv c) = intro_chan_inv_eqT c v v let chan_val_p (p:prot) = (vs0:chan_val { in_state_prop p vs0 }) let intro_in_state (r:ref chan_val) (p:prot) (v:chan_val_p p) : SteelT unit (pts_to r half v) (fun _ -> in_state r p) = intro_pure (in_state_prop p v); intro_exists v (fun (v:chan_val) -> pts_to r half v `star` in_state_slprop p v) let msg t p = Msg Send unit (fun _ -> p) let init_chan_val (p:prot) = v:chan_val {v.chan_prot == msg unit p} let initial_trace (p:prot) : (q:partial_trace_of p {until q == p}) = { to = p; tr=Waiting p} let intro_trace_until #q (r:trace_ref q) (tr:partial_trace_of q) (v:chan_val) : Steel unit (MRef.pts_to r full_perm tr) (fun _ -> trace_until r v) (requires fun _ -> until tr == step v.chan_prot v.chan_msg) (ensures fun _ _ _ -> True) = intro_pure (until tr == step v.chan_prot v.chan_msg); intro_exists tr (fun (tr:partial_trace_of q) -> MRef.pts_to r full_perm tr `star` pure (until tr == (step v.chan_prot v.chan_msg))); () let chan_t_sr (p:prot) (send recv:ref chan_val) = (c:chan_t p{c.send == send /\ c.recv == recv}) let intro_trace_until_init #p (c:chan_t p) (v:init_chan_val p) : SteelT unit (MRef.pts_to c.trace full_perm (initial_trace p)) (fun _ -> trace_until c.trace v) = intro_pure (until (initial_trace p) == step v.chan_prot v.chan_msg); //TODO: Not sure why I need this rewrite rewrite_slprop (MRef.pts_to c.trace full_perm (initial_trace p) `star` pure (until (initial_trace p) == step v.chan_prot v.chan_msg)) (MRef.pts_to c.trace full_perm (initial_trace p) `star` pure (until (initial_trace p) == step v.chan_prot v.chan_msg)) (fun _ -> ()); intro_exists (initial_trace p) (trace_until_prop c.trace v) let mk_chan (#p:prot) (send recv:ref chan_val) (v:init_chan_val p) : SteelT (chan_t_sr p send recv) (pts_to send half v `star` pts_to recv half v) (fun c -> chan_inv c) = let tr: trace_ref p = MRef.alloc (extended_to #p) (initial_trace p) in let c = Mkchan_t send recv tr in rewrite_slprop (MRef.pts_to tr full_perm (initial_trace p)) (MRef.pts_to c.trace full_perm (initial_trace p)) (fun _ -> ()); intro_trace_until_init c v; rewrite_slprop (pts_to send half v `star` pts_to recv half v) (pts_to c.send half v `star` pts_to c.recv half v) (fun _ -> ()); intro_chan_inv #p c v; let c' : chan_t_sr p send recv = c in rewrite_slprop (chan_inv c) (chan_inv c') (fun _ -> ()); return c' let new_chan (p:prot) : SteelT (chan p) emp (fun c -> sender c p `star` receiver c p) = let q = msg unit p in let v : chan_val = { chan_prot = q; chan_msg = (); chan_ctr = 0 } in let vp : init_chan_val p = v in let send = H.alloc v in let recv = H.alloc v in H.share recv; H.share send; (* TODO: use smt_fallback *) rewrite_slprop (pts_to send (half_perm full_perm) v `star` pts_to send (half_perm full_perm) v `star` pts_to recv (half_perm full_perm) v `star` pts_to recv (half_perm full_perm) v) (pts_to send half vp `star` pts_to send half vp `star` pts_to recv half vp `star` pts_to recv half vp) (fun _ -> ()); let c = mk_chan send recv vp in intro_in_state send p vp; intro_in_state recv p vp; let l = Steel.SpinLock.new_lock (chan_inv c) in let ch = { chan_chan = c; chan_lock = l } in rewrite_slprop (in_state send p) (sender ch p) (fun _ -> ()); rewrite_slprop (in_state recv p) (receiver ch p) (fun _ -> ()); return ch [@@__reduce__] let send_recv_in_sync (r:ref chan_val) (p:prot{more p}) #q (c:chan_t q) (vs vr:chan_val) : vprop = (pts_to c.send half vs `star` pts_to c.recv half vr `star` trace_until c.trace vr `star` pure (vs == vr) `star` in_state r p) [@@__reduce__] let sender_ahead (r:ref chan_val) (p:prot{more p}) #q (c:chan_t q) (vs vr:chan_val) : vprop = (pts_to c.send half vs `star` pts_to c.recv half vr `star` trace_until c.trace vr `star` chan_inv_step vr vs `star` in_state r p) let update_channel (#p:sprot) #q (c:chan_t q) (x:msg_t p) (vs:chan_val) (r:ref chan_val) : SteelT chan_val (pts_to r full_perm vs `star` in_state_slprop p vs) (fun vs' -> pts_to r full_perm vs' `star` (in_state_slprop (step p x) vs' `star` chan_inv_step vs vs')) = elim_pure (in_state_prop p vs); let vs' = next_chan_val x vs in H.write r vs'; intro_pure (in_state_prop (step p x) vs'); intro_pure (chan_inv_step_p vs vs'); return vs' [@@__reduce__] let send_pre_available (p:sprot) #q (c:chan_t q) (vs vr:chan_val) = send_recv_in_sync c.send p c vs vr let gather_r (#p:sprot) (r:ref chan_val) (v:chan_val) : SteelT unit (pts_to r half v `star` in_state r p) (fun _ -> pts_to r full_perm v `star` in_state_slprop p v) = let v' = witness_exists () in H.higher_ref_pts_to_injective_eq #_ #_ #_ #_ #v #_ r; H.gather #_ #_ #half #half #v #v r; rewrite_slprop (pts_to r (sum_perm half half) v) (pts_to r full_perm v) (fun _ -> ()); rewrite_slprop (in_state_slprop p v') (in_state_slprop p v) (fun _ -> ())
{ "checked_file": "/", "dependencies": [ "Steel.Utils.fst.checked", "Steel.SpinLock.fsti.checked", "Steel.MonotonicHigherReference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.HigherReference.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "Steel.Channel.Protocol.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.Channel.Simplex.fst" }
[ { "abbrev": true, "full_module": "Steel.HigherReference", "short_module": "H" }, { "abbrev": true, "full_module": "Steel.MonotonicHigherReference", "short_module": "MRef" }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.HigherReference", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.SpinLock", "short_module": null }, { "abbrev": true, "full_module": "Steel.Channel.Protocol", "short_module": "P" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Channel.Protocol", "short_module": null }, { "abbrev": false, "full_module": "Steel.Channel", "short_module": null }, { "abbrev": false, "full_module": "Steel.Channel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cc: Steel.Channel.Simplex.chan q -> x: Steel.Channel.Protocol.msg_t p -> vs: Steel.Channel.Simplex.chan_val -> vr: Steel.Channel.Simplex.chan_val -> _: Prims.unit -> Steel.Effect.SteelT Prims.unit
Steel.Effect.SteelT
[]
[]
[ "Steel.Channel.Simplex.sprot", "Steel.Channel.Simplex.prot", "Steel.Channel.Simplex.chan", "Steel.Channel.Protocol.msg_t", "Steel.Channel.Simplex.chan_val", "Prims.unit", "Steel.SpinLock.release", "Steel.Channel.Simplex.chan_inv", "Steel.Channel.Simplex.__proj__Mkchan__item__chan_chan", "Steel.Channel.Simplex.__proj__Mkchan__item__chan_lock", "Steel.Channel.Simplex.intro_chan_inv_stepT", "Steel.Effect.Atomic.intro_exists", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Effect.Common.star", "Steel.HigherReference.pts_to", "Steel.Channel.Simplex.__proj__Mkchan_t__item__send", "Steel.Channel.Simplex.half", "Steel.Channel.Simplex.in_state_slprop", "Steel.Channel.Simplex.step", "Steel.Effect.Common.vprop", "Steel.HigherReference.share", "Steel.FractionalPermission.full_perm", "Steel.Channel.Simplex.update_channel", "Steel.Channel.Simplex.gather_r", "Steel.Effect.Atomic.elim_pure", "Prims.eq2", "Steel.Utils.rewrite", "Steel.Channel.Simplex.send_recv_in_sync", "Steel.Utils.extract_pure", "Steel.Channel.Simplex.send_pre_available", "Steel.Channel.Simplex.sender" ]
[]
false
true
false
false
false
let send_available (#p: sprot) #q (cc: chan q) (x: msg_t p) (vs: chan_val) (vr: chan_val) (_: unit) : SteelT unit (send_pre_available p #q cc.chan_chan vs vr) (fun _ -> sender cc (step p x)) =
Steel.Utils.extract_pure (vs == vr); Steel.Utils.rewrite #_ #(send_recv_in_sync cc.chan_chan.send p cc.chan_chan vs) vr vs; elim_pure (vs == vs); gather_r cc.chan_chan.send vs; let next_vs = update_channel cc.chan_chan x vs cc.chan_chan.send in H.share cc.chan_chan.send; intro_exists next_vs (fun (next_vs: chan_val) -> (pts_to cc.chan_chan.send half next_vs) `star` (in_state_slprop (step p x) next_vs)); intro_chan_inv_stepT cc.chan_chan next_vs vs; Steel.SpinLock.release cc.chan_lock
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.noop
val noop (#opened:inames) (_:unit) : SteelGhost unit opened emp (fun _ -> emp) (requires fun _ -> True) (ensures fun _ _ _ -> True)
val noop (#opened:inames) (_:unit) : SteelGhost unit opened emp (fun _ -> emp) (requires fun _ -> True) (ensures fun _ _ _ -> True)
let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ())
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 70, "end_line": 544, "start_col": 0, "start_line": 544 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Steel.Effect.Atomic.SteelGhost Prims.unit
Steel.Effect.Atomic.SteelGhost
[]
[]
[ "Steel.Memory.inames", "Prims.unit", "Steel.Effect.Atomic.change_slprop_rel", "Steel.Effect.Common.emp", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "Prims.l_True", "Prims.prop", "Steel.Memory.mem" ]
[]
false
true
false
false
false
let noop _ =
change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ())
false
Pulse.PP.fst
Pulse.PP.pp_record
val pp_record (flds: list (string & document)) : Tac document
val pp_record (flds: list (string & document)) : Tac document
let pp_record (flds : list (string & document)) : Tac document = let flds_doc = separate_map (doc_of_string ";") (fun (s, d) -> group (doc_of_string s ^/^ equals ^/^ group d)) flds in braces (align flds_doc)
{ "file_name": "lib/steel/pulse/Pulse.PP.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 25, "end_line": 95, "start_col": 0, "start_line": 91 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.PP include FStar.Stubs.Pprint open FStar.Tactics open FStar.Tactics.Typeclasses open FStar.Stubs.Pprint open Pulse.Typing open Pulse.Syntax.Base open Pulse.Syntax.Printer open Pulse.Show (* A helper to create wrapped text *) val text : string -> FStar.Stubs.Pprint.document let text (s:string) : FStar.Stubs.Pprint.document = flow (break_ 1) (words s) (* Nests a document 2 levels deep, as a block. It inserts a hardline before the doc, so if you want to format something as hdr subdoc tail you should write hdr ^^ indent (subdoc) ^/^ tail. Note the ^^ vs ^/^. *) val indent : document -> document let indent d = nest 2 (hardline ^^ align d) class printable (a:Type) = { pp : a -> Tac document; } (* Repurposing a show instance *) let from_show #a {| d : tac_showable a |} : printable a = { pp = (fun x -> arbitrary_string (show x)); } instance _ : printable string = from_show instance _ : printable unit = from_show instance _ : printable bool = from_show instance _ : printable int = from_show instance _ : printable ctag = from_show instance printable_option (a:Type) (_ : printable a) : printable (option a) = { pp = (function None -> doc_of_string "None" | Some v -> doc_of_string "Some" ^/^ pp v); } // Cannot use Pprint.separate_map, it takes a pure func private let rec separate_map (sep: document) (f : 'a -> Tac document) (l : list 'a) : Tac document = match l with | [] -> empty | [x] -> f x | x::xs -> f x ^^ sep ^/^ separate_map sep f xs instance showable_list (a:Type) (_ : printable a) : printable (list a) = { pp = (fun l -> brackets (separate_map comma pp l)) } instance _ : printable term = from_show instance _ : printable universe = from_show instance _ : printable comp = from_show instance _ : printable env = { pp = Pulse.Typing.Env.env_to_doc; } instance pp_effect_annot : printable effect_annot = from_show
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.Base.fsti.checked", "Pulse.Show.fst.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Stubs.Pprint.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Pulse.PP.fst" }
[ { "abbrev": false, "full_module": "Pulse.Show", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Printer", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Pprint", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Typeclasses", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Pprint", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
flds: Prims.list (Prims.string * FStar.Stubs.Pprint.document) -> FStar.Tactics.Effect.Tac FStar.Stubs.Pprint.document
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.string", "FStar.Stubs.Pprint.document", "FStar.Stubs.Pprint.braces", "FStar.Stubs.Pprint.align", "Pulse.PP.separate_map", "FStar.Stubs.Pprint.doc_of_string", "FStar.Stubs.Pprint.group", "FStar.Stubs.Pprint.op_Hat_Slash_Hat", "FStar.Stubs.Pprint.equals" ]
[]
false
true
false
false
false
let pp_record (flds: list (string & document)) : Tac document =
let flds_doc = separate_map (doc_of_string ";") (fun (s, d) -> group (doc_of_string s ^/^ equals ^/^ group d)) flds in braces (align flds_doc)
false
Pulse.PP.fst
Pulse.PP.pp_effect_annot
[@@ FStar.Tactics.Typeclasses.tcinstance] val pp_effect_annot:printable effect_annot
[@@ FStar.Tactics.Typeclasses.tcinstance] val pp_effect_annot:printable effect_annot
instance pp_effect_annot : printable effect_annot = from_show
{ "file_name": "lib/steel/pulse/Pulse.PP.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 61, "end_line": 89, "start_col": 0, "start_line": 89 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.PP include FStar.Stubs.Pprint open FStar.Tactics open FStar.Tactics.Typeclasses open FStar.Stubs.Pprint open Pulse.Typing open Pulse.Syntax.Base open Pulse.Syntax.Printer open Pulse.Show (* A helper to create wrapped text *) val text : string -> FStar.Stubs.Pprint.document let text (s:string) : FStar.Stubs.Pprint.document = flow (break_ 1) (words s) (* Nests a document 2 levels deep, as a block. It inserts a hardline before the doc, so if you want to format something as hdr subdoc tail you should write hdr ^^ indent (subdoc) ^/^ tail. Note the ^^ vs ^/^. *) val indent : document -> document let indent d = nest 2 (hardline ^^ align d) class printable (a:Type) = { pp : a -> Tac document; } (* Repurposing a show instance *) let from_show #a {| d : tac_showable a |} : printable a = { pp = (fun x -> arbitrary_string (show x)); } instance _ : printable string = from_show instance _ : printable unit = from_show instance _ : printable bool = from_show instance _ : printable int = from_show instance _ : printable ctag = from_show instance printable_option (a:Type) (_ : printable a) : printable (option a) = { pp = (function None -> doc_of_string "None" | Some v -> doc_of_string "Some" ^/^ pp v); } // Cannot use Pprint.separate_map, it takes a pure func private let rec separate_map (sep: document) (f : 'a -> Tac document) (l : list 'a) : Tac document = match l with | [] -> empty | [x] -> f x | x::xs -> f x ^^ sep ^/^ separate_map sep f xs instance showable_list (a:Type) (_ : printable a) : printable (list a) = { pp = (fun l -> brackets (separate_map comma pp l)) } instance _ : printable term = from_show instance _ : printable universe = from_show instance _ : printable comp = from_show instance _ : printable env = { pp = Pulse.Typing.Env.env_to_doc; }
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.Base.fsti.checked", "Pulse.Show.fst.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Stubs.Pprint.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Pulse.PP.fst" }
[ { "abbrev": false, "full_module": "Pulse.Show", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Printer", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Pprint", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Typeclasses", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Pprint", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Pulse.PP.printable Pulse.Syntax.Base.effect_annot
Prims.Tot
[ "total" ]
[]
[ "Pulse.PP.from_show", "Pulse.Syntax.Base.effect_annot", "Pulse.Show.uu___37" ]
[]
false
false
false
true
false
[@@ FStar.Tactics.Typeclasses.tcinstance] let pp_effect_annot:printable effect_annot =
from_show
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.bind_pure_steela_
val bind_pure_steela_ (a:Type) (b:Type) (opened_invariants:inames) (o:eqtype_as_type observability) (#[@@@ framing_implicit] wp:pure_wp a) (#framed: eqtype_as_type bool) (#[@@@ framing_implicit] pre:pre_t) (#[@@@ framing_implicit] post:post_t b) (#[@@@ framing_implicit] req:a -> req_t pre) (#[@@@ framing_implicit] ens:a -> ens_t pre b post) (f:eqtype_as_type unit -> PURE a wp) (g:(x:a -> repr b framed opened_invariants o pre post (req x) (ens x))) : repr b framed opened_invariants o pre post (bind_pure_steel__req wp req) (bind_pure_steel__ens wp ens)
val bind_pure_steela_ (a:Type) (b:Type) (opened_invariants:inames) (o:eqtype_as_type observability) (#[@@@ framing_implicit] wp:pure_wp a) (#framed: eqtype_as_type bool) (#[@@@ framing_implicit] pre:pre_t) (#[@@@ framing_implicit] post:post_t b) (#[@@@ framing_implicit] req:a -> req_t pre) (#[@@@ framing_implicit] ens:a -> ens_t pre b post) (f:eqtype_as_type unit -> PURE a wp) (g:(x:a -> repr b framed opened_invariants o pre post (req x) (ens x))) : repr b framed opened_invariants o pre post (bind_pure_steel__req wp req) (bind_pure_steel__ens wp ens)
let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 15, "end_line": 349, "start_col": 0, "start_line": 345 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> b: Type -> opened_invariants: Steel.Memory.inames -> o: FStar.Pervasives.eqtype_as_type Steel.Effect.Common.observability -> f: (_: FStar.Pervasives.eqtype_as_type Prims.unit -> Prims.PURE a) -> g: (x: a -> Steel.Effect.Atomic.repr b framed opened_invariants o pre post (req x) (ens x)) -> Steel.Effect.Atomic.repr b framed opened_invariants o pre post (Steel.Effect.Atomic.bind_pure_steel__req wp req) (Steel.Effect.Atomic.bind_pure_steel__ens wp ens)
Prims.Tot
[ "total" ]
[]
[ "Steel.Memory.inames", "FStar.Pervasives.eqtype_as_type", "Steel.Effect.Common.observability", "Prims.pure_wp", "Prims.bool", "Steel.Effect.Common.pre_t", "Steel.Effect.Common.post_t", "Steel.Effect.Common.req_t", "Steel.Effect.Common.ens_t", "Prims.unit", "Steel.Effect.Atomic.repr", "Steel.Memory.slprop", "FStar.Monotonic.Pure.elim_pure_wp_monotonicity", "Steel.Effect.Atomic.bind_pure_steel__req", "Steel.Effect.Atomic.bind_pure_steel__ens" ]
[]
false
false
false
false
false
let bind_pure_steela_ a b opened o #wp f g =
FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.intro_vdep_lemma
val intro_vdep_lemma (v q: vprop) (p: (t_of v -> Tot vprop)) (m: mem) : Lemma (requires (interp (hp_of (v `star` q)) m /\ q == p (fst (sel_of (v `star` q) m)))) (ensures (interp (hp_of (v `star` q)) m /\ interp (hp_of (vdep v p)) m /\ vdep_rel v q p (sel_of (v `star` q) m) (sel_of (vdep v p) m)))
val intro_vdep_lemma (v q: vprop) (p: (t_of v -> Tot vprop)) (m: mem) : Lemma (requires (interp (hp_of (v `star` q)) m /\ q == p (fst (sel_of (v `star` q) m)))) (ensures (interp (hp_of (v `star` q)) m /\ interp (hp_of (vdep v p)) m /\ vdep_rel v q p (sel_of (v `star` q) m) (sel_of (vdep v p) m)))
let intro_vdep_lemma (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (m: mem) : Lemma (requires ( interp (hp_of (v `star` q)) m /\ q == p (fst (sel_of (v `star` q) m)) )) (ensures ( interp (hp_of (v `star` q)) m /\ interp (hp_of (vdep v p)) m /\ vdep_rel v q p (sel_of (v `star` q) m) (sel_of (vdep v p) m) )) = Mem.interp_star (hp_of v) (hp_of q) m; interp_vdep_hp v p m; vdep_sel_eq v p m
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 19, "end_line": 759, "start_col": 0, "start_line": 741 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ()) let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ()) let slassert0 (#opened:inames) (p:vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0 let slassert p = SteelGhost?.reflect (slassert0 p) let drop p = rewrite_slprop p emp (fun m -> emp_unit (hp_of p); affine_star (hp_of p) Mem.emp m; reveal_emp()) let reveal_star0 (#opened:inames) (p1 p2:vprop) : repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2) (fun _ -> True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem let reveal_star p1 p2 = SteelGhost?.reflect (reveal_star0 p1 p2) let reveal_star_30 (#opened:inames) (p1 p2 p3:vprop) : repr unit false opened Unobservable (p1 `star` p2 `star` p3) (fun _ -> p1 `star` p2 `star` p3) (requires fun _ -> True) (ensures fun h0 _ h1 -> can_be_split (p1 `star` p2 `star` p3) p1 /\ can_be_split (p1 `star` p2 `star` p3) p2 /\ h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 p3 == h1 p3 /\ h0 (p1 `star` p2 `star` p3) == ((h0 p1, h0 p2), h0 p3) /\ h1 (p1 `star` p2 `star` p3) == ((h1 p1, h1 p2), h1 p3) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem (p1 `star` p2 `star` p3) (core_mem m) in can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p1; can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p2; reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2 `star` p3); reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2); reveal_mk_rmem (p1 `star` p2 `star` p3) m p3 let reveal_star_3 p1 p2 p3 = SteelGhost?.reflect (reveal_star_30 p1 p2 p3) let intro_pure p = rewrite_slprop emp (pure p) (fun m -> pure_interp p m) let elim_pure_aux #uses (p:prop) : SteelGhostT (_:unit{p}) uses (pure p) (fun _ -> to_vprop Mem.emp) = as_atomic_action_ghost (Steel.Memory.elim_pure #uses p) let elim_pure #uses p = let _ = elim_pure_aux p in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ()) let return #a #opened #p x = SteelAtomicBase?.reflect (return_ a x opened #p) let intro_exists #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists x (h_exists_sl' p) m) let intro_exists_erased #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists (Ghost.reveal x) (h_exists_sl' p) m) let witness_exists #a #u #p _ = SteelGhost?.reflect (Steel.Memory.witness_h_exists #u (fun x -> hp_of (p x))) let lift_exists #a #u p = as_atomic_action_ghost (Steel.Memory.lift_h_exists #u (fun x -> hp_of (p x))) let exists_equiv p q = Classical.forall_intro_2 reveal_equiv; h_exists_cong (h_exists_sl' p) (h_exists_sl' q) let exists_cong p q = rewrite_slprop (h_exists p) (h_exists q) (fun m -> reveal_equiv (h_exists p) (h_exists q); exists_equiv p q) let fresh_invariant #uses p ctxt = rewrite_slprop p (to_vprop (hp_of p)) (fun _ -> ()); let i = as_atomic_unobservable_action (fresh_invariant uses (hp_of p) ctxt) in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ()); return i let new_invariant #uses p = let i = fresh_invariant #uses p [] in return i (* * AR: SteelAtomic and SteelGhost are not marked reifiable since we intend to run Steel programs natively * However to implement the with_inv combinators we need to reify their thunks to reprs * We could implement it better by having support for reification only in the .fst file * But for now assuming a function *) assume val reify_steel_atomic_comp (#a:Type) (#framed:bool) (#opened_invariants:inames) (#g:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:unit -> SteelAtomicBase a framed opened_invariants g pre post req ens) : repr a framed opened_invariants g pre post req ens [@@warn_on_use "as_unobservable_atomic_action is a trusted primitive"] let as_atomic_o_action (#a:Type u#a) (#opened_invariants:inames) (#fp:slprop) (#fp': a -> slprop) (o:observability) (f:action_except a opened_invariants fp fp') : SteelAtomicBaseT a opened_invariants o (to_vprop fp) (fun x -> to_vprop (fp' x)) = SteelAtomicBaseT?.reflect f let with_invariant #a #fp #fp' #obs #opened #p i f = rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ()); let x = as_atomic_o_action obs (Steel.Memory.with_invariant #a #(hp_of fp) #(fun x -> hp_of (fp' x)) #opened #(hp_of p) i (reify_steel_atomic_comp f)) in rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ()); return x assume val reify_steel_ghost_comp (#a:Type) (#framed:bool) (#opened_invariants:inames) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:unit -> SteelGhostBase a framed opened_invariants Unobservable pre post req ens) : repr a framed opened_invariants Unobservable pre post req ens let with_invariant_g #a #fp #fp' #opened #p i f = rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ()); let x = as_atomic_unobservable_action (Steel.Memory.with_invariant #a #(hp_of fp) #(fun x -> hp_of (fp' x)) #opened #(hp_of p) i (reify_steel_ghost_comp f)) in rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ()); return (hide x) let intro_vrefine v p = let m = get () in let x : Ghost.erased (t_of v) = gget v in let x' : Ghost.erased (vrefine_t v p) = Ghost.hide (Ghost.reveal x) in change_slprop v (vrefine v p) x x' (fun m -> interp_vrefine_hp v p m; vrefine_sel_eq v p m ) let elim_vrefine v p = let h = get() in let x : Ghost.erased (vrefine_t v p) = gget (vrefine v p) in let x' : Ghost.erased (t_of v) = Ghost.hide (Ghost.reveal x) in change_slprop (vrefine v p) v x x' (fun m -> interp_vrefine_hp v p m; vrefine_sel_eq v p m ) let vdep_cond (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) : Tot prop = q == p (fst x1) let vdep_rel (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) (x2: (t_of (vdep v p))) : Tot prop = q == p (fst x1) /\ dfst (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == fst x1 /\ dsnd (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == snd x1
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> p: (_: Steel.Effect.Common.t_of v -> Steel.Effect.Common.vprop) -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of (Steel.Effect.Common.star v q)) m /\ q == p (FStar.Pervasives.Native.fst (Steel.Effect.Common.sel_of (Steel.Effect.Common.star v q) m) )) (ensures Steel.Memory.interp (Steel.Effect.Common.hp_of (Steel.Effect.Common.star v q)) m /\ Steel.Memory.interp (Steel.Effect.Common.hp_of (Steel.Effect.Common.vdep v p)) m /\ Steel.Effect.Atomic.vdep_rel v q p (Steel.Effect.Common.sel_of (Steel.Effect.Common.star v q) m) (Steel.Effect.Common.sel_of (Steel.Effect.Common.vdep v p) m))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Steel.Memory.mem", "Steel.Effect.Common.vdep_sel_eq", "Prims.unit", "Steel.Effect.Common.interp_vdep_hp", "Steel.Memory.interp_star", "Steel.Effect.Common.hp_of", "Prims.l_and", "Steel.Memory.interp", "Steel.Effect.Common.star", "Prims.eq2", "FStar.Pervasives.Native.fst", "Steel.Effect.Common.sel_of", "Prims.squash", "Steel.Effect.Common.vdep", "Steel.Effect.Atomic.vdep_rel", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let intro_vdep_lemma (v q: vprop) (p: (t_of v -> Tot vprop)) (m: mem) : Lemma (requires (interp (hp_of (v `star` q)) m /\ q == p (fst (sel_of (v `star` q) m)))) (ensures (interp (hp_of (v `star` q)) m /\ interp (hp_of (vdep v p)) m /\ vdep_rel v q p (sel_of (v `star` q) m) (sel_of (vdep v p) m))) =
Mem.interp_star (hp_of v) (hp_of q) m; interp_vdep_hp v p m; vdep_sel_eq v p m
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.vdep_rel
val vdep_rel (v q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) (x2: (t_of (vdep v p))) : Tot prop
val vdep_rel (v q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) (x2: (t_of (vdep v p))) : Tot prop
let vdep_rel (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) (x2: (t_of (vdep v p))) : Tot prop = q == p (fst x1) /\ dfst (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == fst x1 /\ dsnd (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == snd x1
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 62, "end_line": 739, "start_col": 0, "start_line": 729 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ()) let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ()) let slassert0 (#opened:inames) (p:vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0 let slassert p = SteelGhost?.reflect (slassert0 p) let drop p = rewrite_slprop p emp (fun m -> emp_unit (hp_of p); affine_star (hp_of p) Mem.emp m; reveal_emp()) let reveal_star0 (#opened:inames) (p1 p2:vprop) : repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2) (fun _ -> True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem let reveal_star p1 p2 = SteelGhost?.reflect (reveal_star0 p1 p2) let reveal_star_30 (#opened:inames) (p1 p2 p3:vprop) : repr unit false opened Unobservable (p1 `star` p2 `star` p3) (fun _ -> p1 `star` p2 `star` p3) (requires fun _ -> True) (ensures fun h0 _ h1 -> can_be_split (p1 `star` p2 `star` p3) p1 /\ can_be_split (p1 `star` p2 `star` p3) p2 /\ h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 p3 == h1 p3 /\ h0 (p1 `star` p2 `star` p3) == ((h0 p1, h0 p2), h0 p3) /\ h1 (p1 `star` p2 `star` p3) == ((h1 p1, h1 p2), h1 p3) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem (p1 `star` p2 `star` p3) (core_mem m) in can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p1; can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p2; reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2 `star` p3); reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2); reveal_mk_rmem (p1 `star` p2 `star` p3) m p3 let reveal_star_3 p1 p2 p3 = SteelGhost?.reflect (reveal_star_30 p1 p2 p3) let intro_pure p = rewrite_slprop emp (pure p) (fun m -> pure_interp p m) let elim_pure_aux #uses (p:prop) : SteelGhostT (_:unit{p}) uses (pure p) (fun _ -> to_vprop Mem.emp) = as_atomic_action_ghost (Steel.Memory.elim_pure #uses p) let elim_pure #uses p = let _ = elim_pure_aux p in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ()) let return #a #opened #p x = SteelAtomicBase?.reflect (return_ a x opened #p) let intro_exists #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists x (h_exists_sl' p) m) let intro_exists_erased #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists (Ghost.reveal x) (h_exists_sl' p) m) let witness_exists #a #u #p _ = SteelGhost?.reflect (Steel.Memory.witness_h_exists #u (fun x -> hp_of (p x))) let lift_exists #a #u p = as_atomic_action_ghost (Steel.Memory.lift_h_exists #u (fun x -> hp_of (p x))) let exists_equiv p q = Classical.forall_intro_2 reveal_equiv; h_exists_cong (h_exists_sl' p) (h_exists_sl' q) let exists_cong p q = rewrite_slprop (h_exists p) (h_exists q) (fun m -> reveal_equiv (h_exists p) (h_exists q); exists_equiv p q) let fresh_invariant #uses p ctxt = rewrite_slprop p (to_vprop (hp_of p)) (fun _ -> ()); let i = as_atomic_unobservable_action (fresh_invariant uses (hp_of p) ctxt) in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ()); return i let new_invariant #uses p = let i = fresh_invariant #uses p [] in return i (* * AR: SteelAtomic and SteelGhost are not marked reifiable since we intend to run Steel programs natively * However to implement the with_inv combinators we need to reify their thunks to reprs * We could implement it better by having support for reification only in the .fst file * But for now assuming a function *) assume val reify_steel_atomic_comp (#a:Type) (#framed:bool) (#opened_invariants:inames) (#g:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:unit -> SteelAtomicBase a framed opened_invariants g pre post req ens) : repr a framed opened_invariants g pre post req ens [@@warn_on_use "as_unobservable_atomic_action is a trusted primitive"] let as_atomic_o_action (#a:Type u#a) (#opened_invariants:inames) (#fp:slprop) (#fp': a -> slprop) (o:observability) (f:action_except a opened_invariants fp fp') : SteelAtomicBaseT a opened_invariants o (to_vprop fp) (fun x -> to_vprop (fp' x)) = SteelAtomicBaseT?.reflect f let with_invariant #a #fp #fp' #obs #opened #p i f = rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ()); let x = as_atomic_o_action obs (Steel.Memory.with_invariant #a #(hp_of fp) #(fun x -> hp_of (fp' x)) #opened #(hp_of p) i (reify_steel_atomic_comp f)) in rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ()); return x assume val reify_steel_ghost_comp (#a:Type) (#framed:bool) (#opened_invariants:inames) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:unit -> SteelGhostBase a framed opened_invariants Unobservable pre post req ens) : repr a framed opened_invariants Unobservable pre post req ens let with_invariant_g #a #fp #fp' #opened #p i f = rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ()); let x = as_atomic_unobservable_action (Steel.Memory.with_invariant #a #(hp_of fp) #(fun x -> hp_of (fp' x)) #opened #(hp_of p) i (reify_steel_ghost_comp f)) in rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ()); return (hide x) let intro_vrefine v p = let m = get () in let x : Ghost.erased (t_of v) = gget v in let x' : Ghost.erased (vrefine_t v p) = Ghost.hide (Ghost.reveal x) in change_slprop v (vrefine v p) x x' (fun m -> interp_vrefine_hp v p m; vrefine_sel_eq v p m ) let elim_vrefine v p = let h = get() in let x : Ghost.erased (vrefine_t v p) = gget (vrefine v p) in let x' : Ghost.erased (t_of v) = Ghost.hide (Ghost.reveal x) in change_slprop (vrefine v p) v x x' (fun m -> interp_vrefine_hp v p m; vrefine_sel_eq v p m ) let vdep_cond (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) : Tot prop = q == p (fst x1)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> p: (_: Steel.Effect.Common.t_of v -> Steel.Effect.Common.vprop) -> x1: Steel.Effect.Common.t_of (Steel.Effect.Common.star v q) -> x2: Steel.Effect.Common.t_of (Steel.Effect.Common.vdep v p) -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Steel.Effect.Common.star", "Steel.Effect.Common.vdep", "Prims.l_and", "Prims.eq2", "FStar.Pervasives.Native.fst", "FStar.Pervasives.dfst", "Steel.Effect.Common.vdep_payload", "Prims.dtuple2", "FStar.Pervasives.dsnd", "FStar.Pervasives.Native.snd", "Prims.prop" ]
[]
false
false
false
false
true
let vdep_rel (v q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) (x2: (t_of (vdep v p))) : Tot prop =
q == p (fst x1) /\ dfst (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == fst x1 /\ dsnd (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == snd x1
false
Pulse.PP.fst
Pulse.PP.printable_fstar_term
[@@ FStar.Tactics.Typeclasses.tcinstance] val printable_fstar_term:printable Reflection.V2.term
[@@ FStar.Tactics.Typeclasses.tcinstance] val printable_fstar_term:printable Reflection.V2.term
instance printable_fstar_term : printable Reflection.V2.term = { pp = (fun t -> doc_of_string (Tactics.V2.term_to_string t)) }
{ "file_name": "lib/steel/pulse/Pulse.PP.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 1, "end_line": 109, "start_col": 0, "start_line": 107 }
(* Copyright 2023 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Pulse.PP include FStar.Stubs.Pprint open FStar.Tactics open FStar.Tactics.Typeclasses open FStar.Stubs.Pprint open Pulse.Typing open Pulse.Syntax.Base open Pulse.Syntax.Printer open Pulse.Show (* A helper to create wrapped text *) val text : string -> FStar.Stubs.Pprint.document let text (s:string) : FStar.Stubs.Pprint.document = flow (break_ 1) (words s) (* Nests a document 2 levels deep, as a block. It inserts a hardline before the doc, so if you want to format something as hdr subdoc tail you should write hdr ^^ indent (subdoc) ^/^ tail. Note the ^^ vs ^/^. *) val indent : document -> document let indent d = nest 2 (hardline ^^ align d) class printable (a:Type) = { pp : a -> Tac document; } (* Repurposing a show instance *) let from_show #a {| d : tac_showable a |} : printable a = { pp = (fun x -> arbitrary_string (show x)); } instance _ : printable string = from_show instance _ : printable unit = from_show instance _ : printable bool = from_show instance _ : printable int = from_show instance _ : printable ctag = from_show instance printable_option (a:Type) (_ : printable a) : printable (option a) = { pp = (function None -> doc_of_string "None" | Some v -> doc_of_string "Some" ^/^ pp v); } // Cannot use Pprint.separate_map, it takes a pure func private let rec separate_map (sep: document) (f : 'a -> Tac document) (l : list 'a) : Tac document = match l with | [] -> empty | [x] -> f x | x::xs -> f x ^^ sep ^/^ separate_map sep f xs instance showable_list (a:Type) (_ : printable a) : printable (list a) = { pp = (fun l -> brackets (separate_map comma pp l)) } instance _ : printable term = from_show instance _ : printable universe = from_show instance _ : printable comp = from_show instance _ : printable env = { pp = Pulse.Typing.Env.env_to_doc; } instance pp_effect_annot : printable effect_annot = from_show let pp_record (flds : list (string & document)) : Tac document = let flds_doc = separate_map (doc_of_string ";") (fun (s, d) -> group (doc_of_string s ^/^ equals ^/^ group d)) flds in braces (align flds_doc) instance _ : printable post_hint_t = { pp = (fun (h:post_hint_t) -> pp_record [ "g", pp h.g ; "effect_annot", pp h.effect_annot ; "ret_ty", pp h.ret_ty ; "u", pp h.u ; "post", pp h.post ]); }
{ "checked_file": "/", "dependencies": [ "Pulse.Typing.Env.fsti.checked", "Pulse.Typing.fst.checked", "Pulse.Syntax.Printer.fsti.checked", "Pulse.Syntax.Base.fsti.checked", "Pulse.Show.fst.checked", "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Typeclasses.fsti.checked", "FStar.Tactics.fst.checked", "FStar.Stubs.Pprint.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Pulse.PP.fst" }
[ { "abbrev": false, "full_module": "Pulse.Show", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Printer", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Syntax.Base", "short_module": null }, { "abbrev": false, "full_module": "Pulse.Typing", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Pprint", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Typeclasses", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Stubs.Pprint", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "Pulse", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Pulse.PP.printable FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "Pulse.PP.Mkprintable", "FStar.Stubs.Reflection.Types.term", "FStar.Stubs.Pprint.doc_of_string", "FStar.Stubs.Pprint.document", "Prims.string", "FStar.Stubs.Tactics.V2.Builtins.term_to_string" ]
[]
false
false
false
true
false
[@@ FStar.Tactics.Typeclasses.tcinstance] let printable_fstar_term:printable Reflection.V2.term =
{ pp = (fun t -> doc_of_string (Tactics.V2.term_to_string t)) }
false
FStar.Seq.Permutation.fst
FStar.Seq.Permutation.reveal_is_permutation_pats
val reveal_is_permutation_pats (#a: Type) (s0 s1: seq a) (f: index_fun s0) : Lemma (is_permutation s0 s1 f <==> Seq.length s0 == Seq.length s1 /\ (forall x y. {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i: nat{i < Seq.length s0}). {:pattern (Seq.index s0 i)} Seq.index s0 i == Seq.index s1 (f i)))
val reveal_is_permutation_pats (#a: Type) (s0 s1: seq a) (f: index_fun s0) : Lemma (is_permutation s0 s1 f <==> Seq.length s0 == Seq.length s1 /\ (forall x y. {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i: nat{i < Seq.length s0}). {:pattern (Seq.index s0 i)} Seq.index s0 i == Seq.index s1 (f i)))
let reveal_is_permutation_pats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> Seq.length s0 == Seq.length s1 /\ (forall x y. {:pattern f x; f y } x <> y ==> f x <> f y) /\ (forall (i:nat{i < Seq.length s0}). {:pattern (Seq.index s0 i)} Seq.index s0 i == Seq.index s1 (f i))) = reveal_is_permutation s0 s1 f
{ "file_name": "ulib/FStar.Seq.Permutation.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 96, "start_col": 0, "start_line": 87 }
(* Copyright 2021-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Authors: N. Swamy, A. Rastogi, A. Rozanov *) module FStar.Seq.Permutation open FStar.Seq open FStar.Calc [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = Seq.length s0 == Seq.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < Seq.length s0}). // {:pattern (Seq.index s1 (f i))} Seq.index s0 i == Seq.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> Seq.length s0 == Seq.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < Seq.length s0}). Seq.index s0 i == Seq.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < Seq.length (Seq.append s0 s1)) (ensures ( let s = Seq.append s0 (Seq.cons x s1) in let s' = Seq.append s0 s1 in let n = Seq.length s0 in if j < n then Seq.index s' j == Seq.index s j else Seq.index s' j == Seq.index s (j + 1) )) = let n = Seq.length (Seq.append s0 s1) in if j < n then () else () #push-options "--fuel 2 --ifuel 0 --z3rlimit_factor 2" let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = Seq.append (fst frags) (snd frags) in let n = Seq.length (fst frags) in s `Seq.equal` Seq.append (fst frags) (Seq.cons x (snd frags)) }) (decreases (Seq.length s)) = if Seq.head s = x then Seq.empty, Seq.tail s else ( let pfx, sfx = find x (Seq.tail s) in assert (Seq.equal (Seq.tail s) (Seq.append pfx (Seq.cons x sfx))); assert (Seq.equal s (Seq.cons (Seq.head s) (Seq.tail s))); Seq.cons (Seq.head s) pfx, sfx ) #pop-options let introduce_is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) (_:squash (Seq.length s0 == Seq.length s1)) (_:squash (forall x y. x <> y ==> f x <> f y)) (_:squash (forall (i:nat{i < Seq.length s0}). Seq.index s0 i == Seq.index s1 (f i))) : Lemma (ensures is_permutation s0 s1 f) = reveal_is_permutation_nopats s0 s1 f
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Permutation.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s0: FStar.Seq.Base.seq a -> s1: FStar.Seq.Base.seq a -> f: FStar.Seq.Permutation.index_fun s0 -> FStar.Pervasives.Lemma (ensures FStar.Seq.Permutation.is_permutation s0 s1 f <==> FStar.Seq.Base.length s0 == FStar.Seq.Base.length s1 /\ (forall (x: FStar.IntegerIntervals.under (FStar.Seq.Base.length s0)) (y: FStar.IntegerIntervals.under (FStar.Seq.Base.length s0)). {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i: Prims.nat{i < FStar.Seq.Base.length s0}). {:pattern FStar.Seq.Base.index s0 i} FStar.Seq.Base.index s0 i == FStar.Seq.Base.index s1 (f i)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Seq.Permutation.index_fun", "FStar.Seq.Permutation.reveal_is_permutation", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_iff", "FStar.Seq.Permutation.is_permutation", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Prims.l_Forall", "FStar.IntegerIntervals.under", "Prims.l_imp", "Prims.b2t", "Prims.op_disEquality", "Prims.op_LessThan", "FStar.Seq.Base.index", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let reveal_is_permutation_pats (#a: Type) (s0 s1: seq a) (f: index_fun s0) : Lemma (is_permutation s0 s1 f <==> Seq.length s0 == Seq.length s1 /\ (forall x y. {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i: nat{i < Seq.length s0}). {:pattern (Seq.index s0 i)} Seq.index s0 i == Seq.index s1 (f i))) =
reveal_is_permutation s0 s1 f
false
FStar.Seq.Permutation.fst
FStar.Seq.Permutation.reveal_is_permutation
val reveal_is_permutation (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> (* lengths of the sequences are the same *) Seq.length s0 == Seq.length s1 /\ (* f is injective *) (forall x y. {:pattern f x; f y} x <> y ==> f x <> f y) /\ (* and f relates equal items in s0 and s1 *) (forall (i:nat{i < Seq.length s0}).{:pattern (Seq.index s1 (f i))} Seq.index s0 i == Seq.index s1 (f i)))
val reveal_is_permutation (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> (* lengths of the sequences are the same *) Seq.length s0 == Seq.length s1 /\ (* f is injective *) (forall x y. {:pattern f x; f y} x <> y ==> f x <> f y) /\ (* and f relates equal items in s0 and s1 *) (forall (i:nat{i < Seq.length s0}).{:pattern (Seq.index s1 (f i))} Seq.index s0 i == Seq.index s1 (f i)))
let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f)
{ "file_name": "ulib/FStar.Seq.Permutation.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 61, "end_line": 31, "start_col": 0, "start_line": 30 }
(* Copyright 2021-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Authors: N. Swamy, A. Rastogi, A. Rozanov *) module FStar.Seq.Permutation open FStar.Seq open FStar.Calc [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = Seq.length s0 == Seq.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < Seq.length s0}). // {:pattern (Seq.index s1 (f i))} Seq.index s0 i == Seq.index s1 (f i))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Permutation.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s0: FStar.Seq.Base.seq a -> s1: FStar.Seq.Base.seq a -> f: FStar.Seq.Permutation.index_fun s0 -> FStar.Pervasives.Lemma (ensures FStar.Seq.Permutation.is_permutation s0 s1 f <==> FStar.Seq.Base.length s0 == FStar.Seq.Base.length s1 /\ (forall (x: FStar.IntegerIntervals.under (FStar.Seq.Base.length s0)) (y: FStar.IntegerIntervals.under (FStar.Seq.Base.length s0)). {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i: Prims.nat{i < FStar.Seq.Base.length s0}). {:pattern FStar.Seq.Base.index s1 (f i)} FStar.Seq.Base.index s0 i == FStar.Seq.Base.index s1 (f i)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Seq.Permutation.index_fun", "FStar.Pervasives.reveal_opaque", "Prims.prop", "FStar.Seq.Permutation.is_permutation", "Prims.unit" ]
[]
true
false
true
false
false
let reveal_is_permutation #a (s0: seq a) (s1: seq a) (f: index_fun s0) =
reveal_opaque (`%is_permutation) (is_permutation s0 s1 f)
false
FStar.Seq.Permutation.fst
FStar.Seq.Permutation.is_permutation
val is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) : prop
val is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) : prop
let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = Seq.length s0 == Seq.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < Seq.length s0}). // {:pattern (Seq.index s1 (f i))} Seq.index s0 i == Seq.index s1 (f i))
{ "file_name": "ulib/FStar.Seq.Permutation.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 28, "start_col": 0, "start_line": 23 }
(* Copyright 2021-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Authors: N. Swamy, A. Rastogi, A. Rozanov *) module FStar.Seq.Permutation open FStar.Seq open FStar.Calc
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Permutation.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s0: FStar.Seq.Base.seq a -> s1: FStar.Seq.Base.seq a -> f: FStar.Seq.Permutation.index_fun s0 -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Seq.Permutation.index_fun", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Prims.l_Forall", "FStar.IntegerIntervals.under", "Prims.l_imp", "Prims.b2t", "Prims.op_disEquality", "Prims.op_LessThan", "FStar.Seq.Base.index", "Prims.prop" ]
[]
false
false
false
false
true
let is_permutation (#a: Type) (s0 s1: seq a) (f: index_fun s0) =
Seq.length s0 == Seq.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i: nat{i < Seq.length s0}). Seq.index s0 i == Seq.index s1 (f i))
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.reveal_star
val reveal_star (#opened:inames) (p1 p2:vprop) : SteelGhost unit opened (p1 `star` p2) (fun _ -> p1 `star` p2) (requires fun _ -> True) (ensures fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2) )
val reveal_star (#opened:inames) (p1 p2:vprop) : SteelGhost unit opened (p1 `star` p2) (fun _ -> p1 `star` p2) (requires fun _ -> True) (ensures fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2) )
let reveal_star p1 p2 = SteelGhost?.reflect (reveal_star0 p1 p2)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 64, "end_line": 574, "start_col": 0, "start_line": 574 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ()) let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ()) let slassert0 (#opened:inames) (p:vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0 let slassert p = SteelGhost?.reflect (slassert0 p) let drop p = rewrite_slprop p emp (fun m -> emp_unit (hp_of p); affine_star (hp_of p) Mem.emp m; reveal_emp()) let reveal_star0 (#opened:inames) (p1 p2:vprop) : repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2) (fun _ -> True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p1: Steel.Effect.Common.vprop -> p2: Steel.Effect.Common.vprop -> Steel.Effect.Atomic.SteelGhost Prims.unit
Steel.Effect.Atomic.SteelGhost
[]
[]
[ "Steel.Memory.inames", "Steel.Effect.Common.vprop", "Steel.Effect.Atomic.reveal_star0", "Prims.unit", "Steel.Effect.Common.star", "Steel.Effect.Common.rmem", "Prims.l_True", "Prims.l_and", "Prims.eq2", "Steel.Effect.Common.normal", "Steel.Effect.Common.t_of", "FStar.Pervasives.Native.tuple2", "Steel.Effect.Common.vprop'", "Steel.Effect.Common.__proj__Mkvprop'__item__t", "FStar.Pervasives.Native.Mktuple2" ]
[]
false
true
false
false
false
let reveal_star p1 p2 =
SteelGhost?.reflect (reveal_star0 p1 p2)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.exists_equiv
val exists_equiv (#a:_) (p:a -> vprop) (q:a -> vprop {forall x. equiv (p x) (q x) }) : Lemma (h_exists p `equiv` h_exists q)
val exists_equiv (#a:_) (p:a -> vprop) (q:a -> vprop {forall x. equiv (p x) (q x) }) : Lemma (h_exists p `equiv` h_exists q)
let exists_equiv p q = Classical.forall_intro_2 reveal_equiv; h_exists_cong (h_exists_sl' p) (h_exists_sl' q)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 49, "end_line": 625, "start_col": 0, "start_line": 623 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ()) let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ()) let slassert0 (#opened:inames) (p:vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0 let slassert p = SteelGhost?.reflect (slassert0 p) let drop p = rewrite_slprop p emp (fun m -> emp_unit (hp_of p); affine_star (hp_of p) Mem.emp m; reveal_emp()) let reveal_star0 (#opened:inames) (p1 p2:vprop) : repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2) (fun _ -> True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem let reveal_star p1 p2 = SteelGhost?.reflect (reveal_star0 p1 p2) let reveal_star_30 (#opened:inames) (p1 p2 p3:vprop) : repr unit false opened Unobservable (p1 `star` p2 `star` p3) (fun _ -> p1 `star` p2 `star` p3) (requires fun _ -> True) (ensures fun h0 _ h1 -> can_be_split (p1 `star` p2 `star` p3) p1 /\ can_be_split (p1 `star` p2 `star` p3) p2 /\ h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 p3 == h1 p3 /\ h0 (p1 `star` p2 `star` p3) == ((h0 p1, h0 p2), h0 p3) /\ h1 (p1 `star` p2 `star` p3) == ((h1 p1, h1 p2), h1 p3) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem (p1 `star` p2 `star` p3) (core_mem m) in can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p1; can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p2; reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2 `star` p3); reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2); reveal_mk_rmem (p1 `star` p2 `star` p3) m p3 let reveal_star_3 p1 p2 p3 = SteelGhost?.reflect (reveal_star_30 p1 p2 p3) let intro_pure p = rewrite_slprop emp (pure p) (fun m -> pure_interp p m) let elim_pure_aux #uses (p:prop) : SteelGhostT (_:unit{p}) uses (pure p) (fun _ -> to_vprop Mem.emp) = as_atomic_action_ghost (Steel.Memory.elim_pure #uses p) let elim_pure #uses p = let _ = elim_pure_aux p in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ()) let return #a #opened #p x = SteelAtomicBase?.reflect (return_ a x opened #p) let intro_exists #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists x (h_exists_sl' p) m) let intro_exists_erased #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists (Ghost.reveal x) (h_exists_sl' p) m) let witness_exists #a #u #p _ = SteelGhost?.reflect (Steel.Memory.witness_h_exists #u (fun x -> hp_of (p x))) let lift_exists #a #u p = as_atomic_action_ghost (Steel.Memory.lift_h_exists #u (fun x -> hp_of (p x)))
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: (_: a -> Steel.Effect.Common.vprop) -> q: (_: a -> Steel.Effect.Common.vprop){forall (x: a). Steel.Effect.Common.equiv (p x) (q x)} -> FStar.Pervasives.Lemma (ensures Steel.Effect.Common.equiv (Steel.Effect.Atomic.h_exists p) (Steel.Effect.Atomic.h_exists q))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Prims.l_Forall", "Steel.Effect.Common.equiv", "Steel.Memory.h_exists_cong", "Steel.Effect.Atomic.h_exists_sl'", "Prims.unit", "FStar.Classical.forall_intro_2", "Prims.l_iff", "Steel.Memory.equiv", "Steel.Effect.Common.hp_of", "Steel.Effect.Common.reveal_equiv" ]
[]
false
false
true
false
false
let exists_equiv p q =
Classical.forall_intro_2 reveal_equiv; h_exists_cong (h_exists_sl' p) (h_exists_sl' q)
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.intro_pure
val intro_pure (#opened_invariants:_) (p:prop) : SteelGhost unit opened_invariants emp (fun _ -> pure p) (requires fun _ -> p) (ensures fun _ _ _ -> True)
val intro_pure (#opened_invariants:_) (p:prop) : SteelGhost unit opened_invariants emp (fun _ -> pure p) (requires fun _ -> p) (ensures fun _ _ _ -> True)
let intro_pure p = rewrite_slprop emp (pure p) (fun m -> pure_interp p m)
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 73, "end_line": 598, "start_col": 0, "start_line": 598 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ()) let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ()) let slassert0 (#opened:inames) (p:vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0 let slassert p = SteelGhost?.reflect (slassert0 p) let drop p = rewrite_slprop p emp (fun m -> emp_unit (hp_of p); affine_star (hp_of p) Mem.emp m; reveal_emp()) let reveal_star0 (#opened:inames) (p1 p2:vprop) : repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2) (fun _ -> True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem let reveal_star p1 p2 = SteelGhost?.reflect (reveal_star0 p1 p2) let reveal_star_30 (#opened:inames) (p1 p2 p3:vprop) : repr unit false opened Unobservable (p1 `star` p2 `star` p3) (fun _ -> p1 `star` p2 `star` p3) (requires fun _ -> True) (ensures fun h0 _ h1 -> can_be_split (p1 `star` p2 `star` p3) p1 /\ can_be_split (p1 `star` p2 `star` p3) p2 /\ h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 p3 == h1 p3 /\ h0 (p1 `star` p2 `star` p3) == ((h0 p1, h0 p2), h0 p3) /\ h1 (p1 `star` p2 `star` p3) == ((h1 p1, h1 p2), h1 p3) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem (p1 `star` p2 `star` p3) (core_mem m) in can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p1; can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p2; reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2 `star` p3); reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2); reveal_mk_rmem (p1 `star` p2 `star` p3) m p3 let reveal_star_3 p1 p2 p3 = SteelGhost?.reflect (reveal_star_30 p1 p2 p3)
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.prop -> Steel.Effect.Atomic.SteelGhost Prims.unit
Steel.Effect.Atomic.SteelGhost
[]
[]
[ "Steel.Memory.inames", "Prims.prop", "Steel.Effect.Atomic.rewrite_slprop", "Steel.Effect.Common.emp", "Steel.Effect.Common.pure", "Steel.Memory.mem", "Steel.Memory.pure_interp", "Prims.unit" ]
[]
false
true
false
false
false
let intro_pure p =
rewrite_slprop emp (pure p) (fun m -> pure_interp p m)
false
FStar.Seq.Permutation.fst
FStar.Seq.Permutation.adapt_index_fun
val adapt_index_fun (s: Seq.seq 'a {Seq.length s > 0}) (f: index_fun (Seq.tail s)) (n: nat{n < Seq.length s}) : index_fun s
val adapt_index_fun (s: Seq.seq 'a {Seq.length s > 0}) (f: index_fun (Seq.tail s)) (n: nat{n < Seq.length s}) : index_fun s
let adapt_index_fun (s:Seq.seq 'a { Seq.length s > 0 }) (f:index_fun (Seq.tail s)) (n:nat{n < Seq.length s}) : index_fun s = fun i -> if i = 0 then n else if f (i - 1) < n then f (i - 1) else f (i - 1) + 1
{ "file_name": "ulib/FStar.Seq.Permutation.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 106, "start_col": 0, "start_line": 98 }
(* Copyright 2021-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Authors: N. Swamy, A. Rastogi, A. Rozanov *) module FStar.Seq.Permutation open FStar.Seq open FStar.Calc [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = Seq.length s0 == Seq.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < Seq.length s0}). // {:pattern (Seq.index s1 (f i))} Seq.index s0 i == Seq.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> Seq.length s0 == Seq.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < Seq.length s0}). Seq.index s0 i == Seq.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < Seq.length (Seq.append s0 s1)) (ensures ( let s = Seq.append s0 (Seq.cons x s1) in let s' = Seq.append s0 s1 in let n = Seq.length s0 in if j < n then Seq.index s' j == Seq.index s j else Seq.index s' j == Seq.index s (j + 1) )) = let n = Seq.length (Seq.append s0 s1) in if j < n then () else () #push-options "--fuel 2 --ifuel 0 --z3rlimit_factor 2" let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = Seq.append (fst frags) (snd frags) in let n = Seq.length (fst frags) in s `Seq.equal` Seq.append (fst frags) (Seq.cons x (snd frags)) }) (decreases (Seq.length s)) = if Seq.head s = x then Seq.empty, Seq.tail s else ( let pfx, sfx = find x (Seq.tail s) in assert (Seq.equal (Seq.tail s) (Seq.append pfx (Seq.cons x sfx))); assert (Seq.equal s (Seq.cons (Seq.head s) (Seq.tail s))); Seq.cons (Seq.head s) pfx, sfx ) #pop-options let introduce_is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) (_:squash (Seq.length s0 == Seq.length s1)) (_:squash (forall x y. x <> y ==> f x <> f y)) (_:squash (forall (i:nat{i < Seq.length s0}). Seq.index s0 i == Seq.index s1 (f i))) : Lemma (ensures is_permutation s0 s1 f) = reveal_is_permutation_nopats s0 s1 f let reveal_is_permutation_pats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> Seq.length s0 == Seq.length s1 /\ (forall x y. {:pattern f x; f y } x <> y ==> f x <> f y) /\ (forall (i:nat{i < Seq.length s0}). {:pattern (Seq.index s0 i)} Seq.index s0 i == Seq.index s1 (f i))) = reveal_is_permutation s0 s1 f
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Permutation.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: FStar.Seq.Base.seq 'a {FStar.Seq.Base.length s > 0} -> f: FStar.Seq.Permutation.index_fun (FStar.Seq.Properties.tail s) -> n: Prims.nat{n < FStar.Seq.Base.length s} -> FStar.Seq.Permutation.index_fun s
Prims.Tot
[ "total" ]
[]
[ "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.Seq.Permutation.index_fun", "FStar.Seq.Properties.tail", "Prims.nat", "Prims.op_LessThan", "FStar.IntegerIntervals.under", "Prims.op_Equality", "Prims.int", "Prims.bool", "Prims.op_Subtraction", "Prims.op_Addition" ]
[]
false
false
false
false
false
let adapt_index_fun (s: Seq.seq 'a {Seq.length s > 0}) (f: index_fun (Seq.tail s)) (n: nat{n < Seq.length s}) : index_fun s =
fun i -> if i = 0 then n else if f (i - 1) < n then f (i - 1) else f (i - 1) + 1
false
FStar.Seq.Permutation.fst
FStar.Seq.Permutation.equal_counts_empty
val equal_counts_empty (#a: eqtype) (s0 s1: seq a) : Lemma (requires Seq.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures Seq.length s1 == 0)
val equal_counts_empty (#a: eqtype) (s0 s1: seq a) : Lemma (requires Seq.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures Seq.length s1 == 0)
let equal_counts_empty (#a:eqtype) (s0 s1:seq a) : Lemma (requires Seq.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures Seq.length s1 == 0) = if Seq.length s1 > 0 then assert (count (Seq.head s1) s1 > 0)
{ "file_name": "ulib/FStar.Seq.Permutation.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 119, "start_col": 0, "start_line": 114 }
(* Copyright 2021-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Authors: N. Swamy, A. Rastogi, A. Rozanov *) module FStar.Seq.Permutation open FStar.Seq open FStar.Calc [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = Seq.length s0 == Seq.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < Seq.length s0}). // {:pattern (Seq.index s1 (f i))} Seq.index s0 i == Seq.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f) let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> Seq.length s0 == Seq.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < Seq.length s0}). Seq.index s0 i == Seq.index s1 (f i))) = reveal_is_permutation s0 s1 f let split3_index (#a:eqtype) (s0:seq a) (x:a) (s1:seq a) (j:nat) : Lemma (requires j < Seq.length (Seq.append s0 s1)) (ensures ( let s = Seq.append s0 (Seq.cons x s1) in let s' = Seq.append s0 s1 in let n = Seq.length s0 in if j < n then Seq.index s' j == Seq.index s j else Seq.index s' j == Seq.index s (j + 1) )) = let n = Seq.length (Seq.append s0 s1) in if j < n then () else () #push-options "--fuel 2 --ifuel 0 --z3rlimit_factor 2" let rec find (#a:eqtype) (x:a) (s:seq a{ count x s > 0 }) : Tot (frags:(seq a & seq a) { let s' = Seq.append (fst frags) (snd frags) in let n = Seq.length (fst frags) in s `Seq.equal` Seq.append (fst frags) (Seq.cons x (snd frags)) }) (decreases (Seq.length s)) = if Seq.head s = x then Seq.empty, Seq.tail s else ( let pfx, sfx = find x (Seq.tail s) in assert (Seq.equal (Seq.tail s) (Seq.append pfx (Seq.cons x sfx))); assert (Seq.equal s (Seq.cons (Seq.head s) (Seq.tail s))); Seq.cons (Seq.head s) pfx, sfx ) #pop-options let introduce_is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) (_:squash (Seq.length s0 == Seq.length s1)) (_:squash (forall x y. x <> y ==> f x <> f y)) (_:squash (forall (i:nat{i < Seq.length s0}). Seq.index s0 i == Seq.index s1 (f i))) : Lemma (ensures is_permutation s0 s1 f) = reveal_is_permutation_nopats s0 s1 f let reveal_is_permutation_pats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> Seq.length s0 == Seq.length s1 /\ (forall x y. {:pattern f x; f y } x <> y ==> f x <> f y) /\ (forall (i:nat{i < Seq.length s0}). {:pattern (Seq.index s0 i)} Seq.index s0 i == Seq.index s1 (f i))) = reveal_is_permutation s0 s1 f let adapt_index_fun (s:Seq.seq 'a { Seq.length s > 0 }) (f:index_fun (Seq.tail s)) (n:nat{n < Seq.length s}) : index_fun s = fun i -> if i = 0 then n else if f (i - 1) < n then f (i - 1) else f (i - 1) + 1 let count_singleton_one (#a:eqtype) (x:a) : Lemma (count x (Seq.create 1 x) == 1) = () let count_singleton_zero (#a:eqtype) (x y:a) : Lemma (x =!= y ==> count x (Seq.create 1 y) == 0)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Permutation.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s0: FStar.Seq.Base.seq a -> s1: FStar.Seq.Base.seq a -> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length s0 == 0 /\ (forall (x: a). FStar.Seq.Properties.count x s0 == FStar.Seq.Properties.count x s1)) (ensures FStar.Seq.Base.length s1 == 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.eqtype", "FStar.Seq.Base.seq", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "Prims._assert", "Prims.b2t", "FStar.Seq.Properties.count", "FStar.Seq.Properties.head", "Prims.bool", "Prims.unit", "Prims.l_and", "Prims.eq2", "Prims.int", "Prims.l_Forall", "Prims.nat", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let equal_counts_empty (#a: eqtype) (s0 s1: seq a) : Lemma (requires Seq.length s0 == 0 /\ (forall x. count x s0 == count x s1)) (ensures Seq.length s1 == 0) =
if Seq.length s1 > 0 then assert (count (Seq.head s1) s1 > 0)
false
FStar.Seq.Permutation.fst
FStar.Seq.Permutation.reveal_is_permutation_nopats
val reveal_is_permutation_nopats (#a: Type) (s0 s1: seq a) (f: index_fun s0) : Lemma (is_permutation s0 s1 f <==> Seq.length s0 == Seq.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i: nat{i < Seq.length s0}). Seq.index s0 i == Seq.index s1 (f i)))
val reveal_is_permutation_nopats (#a: Type) (s0 s1: seq a) (f: index_fun s0) : Lemma (is_permutation s0 s1 f <==> Seq.length s0 == Seq.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i: nat{i < Seq.length s0}). Seq.index s0 i == Seq.index s1 (f i)))
let reveal_is_permutation_nopats (#a:Type) (s0 s1:seq a) (f:index_fun s0) : Lemma (is_permutation s0 s1 f <==> Seq.length s0 == Seq.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i:nat{i < Seq.length s0}). Seq.index s0 i == Seq.index s1 (f i))) = reveal_is_permutation s0 s1 f
{ "file_name": "ulib/FStar.Seq.Permutation.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 42, "start_col": 0, "start_line": 33 }
(* Copyright 2021-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Authors: N. Swamy, A. Rastogi, A. Rozanov *) module FStar.Seq.Permutation open FStar.Seq open FStar.Calc [@@"opaque_to_smt"] let is_permutation (#a:Type) (s0:seq a) (s1:seq a) (f:index_fun s0) = Seq.length s0 == Seq.length s1 /\ (forall x y. // {:pattern f x; f y} x <> y ==> f x <> f y) /\ (forall (i:nat{i < Seq.length s0}). // {:pattern (Seq.index s1 (f i))} Seq.index s0 i == Seq.index s1 (f i)) let reveal_is_permutation #a (s0 s1:seq a) (f:index_fun s0) = reveal_opaque (`%is_permutation) (is_permutation s0 s1 f)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Seq.Permutation.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s0: FStar.Seq.Base.seq a -> s1: FStar.Seq.Base.seq a -> f: FStar.Seq.Permutation.index_fun s0 -> FStar.Pervasives.Lemma (ensures FStar.Seq.Permutation.is_permutation s0 s1 f <==> FStar.Seq.Base.length s0 == FStar.Seq.Base.length s1 /\ (forall (x: FStar.IntegerIntervals.under (FStar.Seq.Base.length s0)) (y: FStar.IntegerIntervals.under (FStar.Seq.Base.length s0)). x <> y ==> f x <> f y) /\ (forall (i: Prims.nat{i < FStar.Seq.Base.length s0}). FStar.Seq.Base.index s0 i == FStar.Seq.Base.index s1 (f i)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "FStar.Seq.Permutation.index_fun", "FStar.Seq.Permutation.reveal_is_permutation", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_iff", "FStar.Seq.Permutation.is_permutation", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Seq.Base.length", "Prims.l_Forall", "FStar.IntegerIntervals.under", "Prims.l_imp", "Prims.b2t", "Prims.op_disEquality", "Prims.op_LessThan", "FStar.Seq.Base.index", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let reveal_is_permutation_nopats (#a: Type) (s0 s1: seq a) (f: index_fun s0) : Lemma (is_permutation s0 s1 f <==> Seq.length s0 == Seq.length s1 /\ (forall x y. x <> y ==> f x <> f y) /\ (forall (i: nat{i < Seq.length s0}). Seq.index s0 i == Seq.index s1 (f i))) =
reveal_is_permutation s0 s1 f
false
Steel.Effect.Atomic.fst
Steel.Effect.Atomic.elim_vdep_lemma
val elim_vdep_lemma (v q: vprop) (p: (t_of v -> Tot vprop)) (m: mem) : Lemma (requires (interp (hp_of (vdep v p)) m /\ q == p (dfst (sel_of (vdep v p) m <: dtuple2 (t_of v) (vdep_payload v p))))) (ensures (interp (hp_of (v `star` q)) m /\ interp (hp_of (vdep v p)) m /\ vdep_rel v q p (sel_of (v `star` q) m) (sel_of (vdep v p) m)))
val elim_vdep_lemma (v q: vprop) (p: (t_of v -> Tot vprop)) (m: mem) : Lemma (requires (interp (hp_of (vdep v p)) m /\ q == p (dfst (sel_of (vdep v p) m <: dtuple2 (t_of v) (vdep_payload v p))))) (ensures (interp (hp_of (v `star` q)) m /\ interp (hp_of (vdep v p)) m /\ vdep_rel v q p (sel_of (v `star` q) m) (sel_of (vdep v p) m)))
let elim_vdep_lemma (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (m: mem) : Lemma (requires ( interp (hp_of (vdep v p)) m /\ q == p (dfst (sel_of (vdep v p) m <: dtuple2 (t_of v) (vdep_payload v p))) )) (ensures ( interp (hp_of (v `star` q)) m /\ interp (hp_of (vdep v p)) m /\ vdep_rel v q p (sel_of (v `star` q) m) (sel_of (vdep v p) m) )) = Mem.interp_star (hp_of v) (hp_of q) m; interp_vdep_hp v p m; vdep_sel_eq v p m
{ "file_name": "lib/steel/Steel.Effect.Atomic.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 19, "end_line": 808, "start_col": 0, "start_line": 790 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Effect.Atomic open Steel.Effect friend Steel.Effect #set-options "--warn_error -330" //turn off the experimental feature warning let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}). mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) = fun m -> rmem_depends_only_on pre; interp (hp_of pre) m /\ req (mk_rmem pre m) unfold let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x)) let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post) : mprop2 (hp_of pre) (to_post post) = fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\ ens (mk_rmem pre m0) x (mk_rmem (post x) m1) let repr a framed opened f pre post req ens = action_except_full a opened (hp_of pre) (to_post post) (req_to_act_req req) (ens_to_act_ens ens) let return_ a x opened #p = fun _ -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (p x) (core_mem m0) in lemma_frame_equalities_refl (p x) h0; x #push-options "--fuel 0 --ifuel 0" #push-options "--z3rlimit 20 --fuel 1 --ifuel 1" val frame00 (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:repr a framed opened obs pre post req ens) (frame:vprop) : repr a true opened obs (pre `star` frame) (fun x -> post x `star` frame) (fun h -> req (focus_rmem h pre)) (fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\ frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame)) module Sem = Steel.Semantics.Hoare.MST module Mem = Steel.Memory let equiv_middle_left_assoc (a b c d:slprop) : Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv` (a `Mem.star` (b `Mem.star` c) `Mem.star` d)) = let open Steel.Memory in star_associative a b c; star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d let frame00 #a #framed #opened #obs #pre #post #req #ens f frame = fun frame' -> let m0:full_mem = NMSTTotal.get () in let snap:rmem frame = mk_rmem frame (core_mem m0) in // Need to define it with type annotation, although unused, for it to trigger // the pattern on the framed ensures in the def of MstTot let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0); assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0); equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0); assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0); let x = f (hp_of frame `Mem.star` frame') in let m1:full_mem = NMSTTotal.get () in assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1); equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1); assert (interp ((hp_of (post x) `Mem.star` hp_of frame) `Mem.star` frame' `Mem.star` locks_invariant opened m1) m1); focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0); focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1); let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in assert (focus_rmem h0 frame == focus_rmem h1 frame); focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1); lemma_frame_opaque_refl frame (focus_rmem h0 frame); x unfold let bind_req_opaque (#a:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#pr:a -> prop) (req_g:(x:a -> req_t (pre_g x))) (frame_f:vprop) (frame_g:a -> vprop) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) : req_t (pre_f `star` frame_f) = fun m0 -> req_f (focus_rmem m0 pre_f) /\ (forall (x:a) (h1:hmem (post_f x `star` frame_f)). (ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f)) ==> pr x /\ (can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); (req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)))) unfold let bind_ens_opaque (#a:Type) (#b:Type) (#pre_f:pre_t) (#post_f:post_t a) (req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#pr:a -> prop) (ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (frame_f:vprop) (frame_g:a -> vprop) (post:post_t b) (_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) : ens_t (pre_f `star` frame_f) b post = fun m0 y m2 -> req_f (focus_rmem m0 pre_f) /\ (exists (x:a) (h1:hmem (post_f x `star` frame_f)). pr x /\ ( can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\ frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\ ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\ (ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y)))) val bind_opaque (a:Type) (b:Type) (opened_invariants:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#pre_f:pre_t) (#post_f:post_t a) (#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f) (#pre_g:a -> pre_t) (#post_g:a -> post_t b) (#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x))) (#frame_f:vprop) (#frame_g:a -> vprop) (#post:post_t b) (# _ : squash (maybe_emp framed_f frame_f)) (# _ : squash (maybe_emp_dep framed_g frame_g)) (#pr:a -> prop) (#p1:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x))) (#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post)) (f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f) (g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x))) : Pure (repr b true opened_invariants (join_obs o1 o2) (pre_f `star` frame_f) post (bind_req_opaque req_f ens_f req_g frame_f frame_g p1) (bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2) ) (requires obs_at_most_one o1 o2) (ensures fun _ -> True) #push-options "--z3rlimit 20" let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in let x = frame00 f frame_f frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); focus_is_restrict_mk_rmem (post_f x `star` frame_f) (pre_g x `star` frame_g x) (core_mem m1); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x) (core_mem m1); assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); can_be_split_3_interp (hp_of (post_f x `star` frame_f)) (hp_of (pre_g x `star` frame_g x)) frame (locks_invariant opened m1) m1; let y = frame00 (g x) (frame_g x) frame in let m2:full_mem = NMSTTotal.get () in can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x); can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x); can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y); can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x); let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in let h2 = mk_rmem (post y) (core_mem m2) in // assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x)); focus_focus_is_focus (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x) (core_mem m1); focus_is_restrict_mk_rmem (post_g x y `star` frame_g x) (post y) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (frame_g x) (core_mem m2); focus_focus_is_focus (post_g x y `star` frame_g x) (post y) (post_g x y) (core_mem m2); can_be_split_3_interp (hp_of (post_g x y `star` frame_g x)) (hp_of (post y)) frame (locks_invariant opened m2) m2; y let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) (f:repr a framed opened obs pre post req ens) : repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1)) = f let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g = norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g) val subcomp_opaque (a:Type) (opened:inames) (o1:eqtype_as_type observability) (o2:eqtype_as_type observability) (#framed_f:eqtype_as_type bool) (#framed_g:eqtype_as_type bool) (#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a) (#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f) (#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a) (#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g) (#[@@@ framing_implicit] frame:vprop) (#[@@@ framing_implicit] pr : prop) (#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame)) (#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame))) (#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame))) (f:repr a framed_f opened o1 pre_f post_f req_f ens_f) : Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g) (requires (o1 = Unobservable || o2 = Observable) /\ subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2) (ensures fun _ -> True) let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem pre_g (core_mem m0) in can_be_split_trans pre_g (pre_f `star` fr) pre_f; can_be_split_trans pre_g (pre_f `star` fr) fr; can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0; focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0); let x = frame00 f fr frame in let m1:full_mem = NMSTTotal.get () in let h1 = mk_rmem (post_g x) (core_mem m1) in let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in // From frame00 assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr)); // Replace h0'/h1' by h0/h1 focus_replace pre_g (pre_f `star` fr) fr (core_mem m0); focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1); assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr)); can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x); can_be_split_trans (post_g x) (post_f x `star` fr) fr; can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1; focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1); x let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f = lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2; subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f #pop-options let bind_pure_steela_ a b opened o #wp f g = FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp; fun frame -> let x = f () in g x frame let lift_ghost_atomic a o f = f let lift_atomic_steel a o f = f let as_atomic_action f = SteelAtomic?.reflect f let as_atomic_action_ghost f = SteelGhost?.reflect f let as_atomic_unobservable_action f = SteelAtomicU?.reflect f (* Some helpers *) let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p)) true opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; h0 let get () = SteelGhost?.reflect (get0 ()) let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m) ) : Lemma (requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp) (ensures interp ((hp_of q) `Mem.star` r) m) = let p = hp_of p in let q = hp_of q in let intro (ml mr:mem) : Lemma (requires interp q ml /\ interp r mr /\ disjoint ml mr) (ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr)) = Mem.intro_star q r ml mr in elim_star p r m; Classical.forall_intro (Classical.move_requires proof); Classical.forall_intro_2 (Classical.move_requires_2 intro) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let rewrite_slprop0 (#opened:inames) (p q:vprop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ _ -> True) = fun frame -> let m:full_mem = NMSTTotal.get () in proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l) let change_equal_slprop p q = let m = get () in let x : Ghost.erased (t_of p) = hide ((reveal m) p) in let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in change_slprop p q x y (fun _ -> ()) #push-options "--z3rlimit 20 --fuel 1 --ifuel 0" let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q)) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ sel_of q m == reveal vq) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); Classical.forall_intro (Classical.move_requires proof); Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) #pop-options let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l) let change_slprop_rel0 (#opened:inames) (p q:vprop) (rel : normal (t_of p) -> normal (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof) let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop) (cond: t_of p -> prop) (rel : (t_of p) -> (t_of q) -> prop) (proof:(m:mem) -> Lemma (requires interp (hp_of p) m /\ cond (sel_of p m)) (ensures interp (hp_of p) m /\ interp (hp_of q) m /\ rel (sel_of p m) (sel_of q m)) ) : repr unit false opened Unobservable p (fun _ -> q) (fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q)) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; proof (core_mem m); let h0 = mk_rmem p (core_mem m) in let h1 = mk_rmem q (core_mem m) in reveal_mk_rmem p (core_mem m) p; reveal_mk_rmem q (core_mem m) q; Mem.star_associative (hp_of p) frame (locks_invariant opened m); intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof; Mem.star_associative (hp_of q) frame (locks_invariant opened m) let change_slprop_rel_with_cond p q cond rel proof = SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof) let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m /\ sel_of p m == reveal vp) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> h p == reveal vp) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l) let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop) (l:(m:mem) -> Lemma (requires interp (hp_of p) m) (ensures fact) ) : repr unit false opened Unobservable p (fun _ -> p) (fun h -> True) (fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0; l (core_mem m0) let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l) let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ()) let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ()) let slassert0 (#opened:inames) (p:vprop) : repr unit false opened Unobservable p (fun _ -> p) (requires fun _ -> True) (ensures fun h0 r h1 -> frame_equalities p h0 h1) = fun frame -> let m0:full_mem = NMSTTotal.get () in let h0 = mk_rmem p (core_mem m0) in lemma_frame_equalities_refl p h0 let slassert p = SteelGhost?.reflect (slassert0 p) let drop p = rewrite_slprop p emp (fun m -> emp_unit (hp_of p); affine_star (hp_of p) Mem.emp m; reveal_emp()) let reveal_star0 (#opened:inames) (p1 p2:vprop) : repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2) (fun _ -> True) (fun h0 _ h1 -> h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 (p1 `star` p2) == (h0 p1, h0 p2) /\ h1 (p1 `star` p2) == (h1 p1, h1 p2) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem let reveal_star p1 p2 = SteelGhost?.reflect (reveal_star0 p1 p2) let reveal_star_30 (#opened:inames) (p1 p2 p3:vprop) : repr unit false opened Unobservable (p1 `star` p2 `star` p3) (fun _ -> p1 `star` p2 `star` p3) (requires fun _ -> True) (ensures fun h0 _ h1 -> can_be_split (p1 `star` p2 `star` p3) p1 /\ can_be_split (p1 `star` p2 `star` p3) p2 /\ h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 p3 == h1 p3 /\ h0 (p1 `star` p2 `star` p3) == ((h0 p1, h0 p2), h0 p3) /\ h1 (p1 `star` p2 `star` p3) == ((h1 p1, h1 p2), h1 p3) ) = fun frame -> let m:full_mem = NMSTTotal.get () in Classical.forall_intro_3 reveal_mk_rmem; let h0 = mk_rmem (p1 `star` p2 `star` p3) (core_mem m) in can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p1; can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p2; reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2 `star` p3); reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2); reveal_mk_rmem (p1 `star` p2 `star` p3) m p3 let reveal_star_3 p1 p2 p3 = SteelGhost?.reflect (reveal_star_30 p1 p2 p3) let intro_pure p = rewrite_slprop emp (pure p) (fun m -> pure_interp p m) let elim_pure_aux #uses (p:prop) : SteelGhostT (_:unit{p}) uses (pure p) (fun _ -> to_vprop Mem.emp) = as_atomic_action_ghost (Steel.Memory.elim_pure #uses p) let elim_pure #uses p = let _ = elim_pure_aux p in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ()) let return #a #opened #p x = SteelAtomicBase?.reflect (return_ a x opened #p) let intro_exists #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists x (h_exists_sl' p) m) let intro_exists_erased #a #opened x p = rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists (Ghost.reveal x) (h_exists_sl' p) m) let witness_exists #a #u #p _ = SteelGhost?.reflect (Steel.Memory.witness_h_exists #u (fun x -> hp_of (p x))) let lift_exists #a #u p = as_atomic_action_ghost (Steel.Memory.lift_h_exists #u (fun x -> hp_of (p x))) let exists_equiv p q = Classical.forall_intro_2 reveal_equiv; h_exists_cong (h_exists_sl' p) (h_exists_sl' q) let exists_cong p q = rewrite_slprop (h_exists p) (h_exists q) (fun m -> reveal_equiv (h_exists p) (h_exists q); exists_equiv p q) let fresh_invariant #uses p ctxt = rewrite_slprop p (to_vprop (hp_of p)) (fun _ -> ()); let i = as_atomic_unobservable_action (fresh_invariant uses (hp_of p) ctxt) in rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ()); return i let new_invariant #uses p = let i = fresh_invariant #uses p [] in return i (* * AR: SteelAtomic and SteelGhost are not marked reifiable since we intend to run Steel programs natively * However to implement the with_inv combinators we need to reify their thunks to reprs * We could implement it better by having support for reification only in the .fst file * But for now assuming a function *) assume val reify_steel_atomic_comp (#a:Type) (#framed:bool) (#opened_invariants:inames) (#g:observability) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:unit -> SteelAtomicBase a framed opened_invariants g pre post req ens) : repr a framed opened_invariants g pre post req ens [@@warn_on_use "as_unobservable_atomic_action is a trusted primitive"] let as_atomic_o_action (#a:Type u#a) (#opened_invariants:inames) (#fp:slprop) (#fp': a -> slprop) (o:observability) (f:action_except a opened_invariants fp fp') : SteelAtomicBaseT a opened_invariants o (to_vprop fp) (fun x -> to_vprop (fp' x)) = SteelAtomicBaseT?.reflect f let with_invariant #a #fp #fp' #obs #opened #p i f = rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ()); let x = as_atomic_o_action obs (Steel.Memory.with_invariant #a #(hp_of fp) #(fun x -> hp_of (fp' x)) #opened #(hp_of p) i (reify_steel_atomic_comp f)) in rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ()); return x assume val reify_steel_ghost_comp (#a:Type) (#framed:bool) (#opened_invariants:inames) (#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post) ($f:unit -> SteelGhostBase a framed opened_invariants Unobservable pre post req ens) : repr a framed opened_invariants Unobservable pre post req ens let with_invariant_g #a #fp #fp' #opened #p i f = rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ()); let x = as_atomic_unobservable_action (Steel.Memory.with_invariant #a #(hp_of fp) #(fun x -> hp_of (fp' x)) #opened #(hp_of p) i (reify_steel_ghost_comp f)) in rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ()); return (hide x) let intro_vrefine v p = let m = get () in let x : Ghost.erased (t_of v) = gget v in let x' : Ghost.erased (vrefine_t v p) = Ghost.hide (Ghost.reveal x) in change_slprop v (vrefine v p) x x' (fun m -> interp_vrefine_hp v p m; vrefine_sel_eq v p m ) let elim_vrefine v p = let h = get() in let x : Ghost.erased (vrefine_t v p) = gget (vrefine v p) in let x' : Ghost.erased (t_of v) = Ghost.hide (Ghost.reveal x) in change_slprop (vrefine v p) v x x' (fun m -> interp_vrefine_hp v p m; vrefine_sel_eq v p m ) let vdep_cond (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) : Tot prop = q == p (fst x1) let vdep_rel (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x1: t_of (v `star` q)) (x2: (t_of (vdep v p))) : Tot prop = q == p (fst x1) /\ dfst (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == fst x1 /\ dsnd (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == snd x1 let intro_vdep_lemma (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (m: mem) : Lemma (requires ( interp (hp_of (v `star` q)) m /\ q == p (fst (sel_of (v `star` q) m)) )) (ensures ( interp (hp_of (v `star` q)) m /\ interp (hp_of (vdep v p)) m /\ vdep_rel v q p (sel_of (v `star` q) m) (sel_of (vdep v p) m) )) = Mem.interp_star (hp_of v) (hp_of q) m; interp_vdep_hp v p m; vdep_sel_eq v p m let intro_vdep v q p = reveal_star v q; change_slprop_rel_with_cond (v `star` q) (vdep v p) (vdep_cond v q p) (vdep_rel v q p) (fun m -> intro_vdep_lemma v q p m) let vdep_cond_recip (v: vprop) (p: (t_of v -> Tot vprop)) (q: vprop) (x2: t_of (vdep v p)) : Tot prop = q == p (dfst (x2 <: dtuple2 (t_of v) (vdep_payload v p))) let vdep_rel_recip (v: vprop) (q: vprop) (p: (t_of v -> Tot vprop)) (x2: (t_of (vdep v p))) (x1: t_of (v `star` q)) : Tot prop = vdep_rel v q p x1 x2
{ "checked_file": "/", "dependencies": [ "Steel.Semantics.Hoare.MST.fst.checked", "Steel.Memory.fsti.checked", "Steel.Effect.fst.checked", "Steel.Effect.fst.checked", "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.NMSTTotal.fst.checked", "FStar.Monotonic.Pure.fst.checked", "FStar.Ghost.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "Steel.Effect.Atomic.fst" }
[ { "abbrev": true, "full_module": "FStar.Universe", "short_module": "U" }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": true, "full_module": "Steel.Memory", "short_module": "Mem" }, { "abbrev": true, "full_module": "Steel.Semantics.Hoare.MST", "short_module": "Sem" }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Common", "short_module": null }, { "abbrev": true, "full_module": "FStar.Tactics", "short_module": "T" }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Steel.Effect.Common.vprop -> q: Steel.Effect.Common.vprop -> p: (_: Steel.Effect.Common.t_of v -> Steel.Effect.Common.vprop) -> m: Steel.Memory.mem -> FStar.Pervasives.Lemma (requires Steel.Memory.interp (Steel.Effect.Common.hp_of (Steel.Effect.Common.vdep v p)) m /\ q == p (FStar.Pervasives.dfst (Steel.Effect.Common.sel_of (Steel.Effect.Common.vdep v p) m)) ) (ensures Steel.Memory.interp (Steel.Effect.Common.hp_of (Steel.Effect.Common.star v q)) m /\ Steel.Memory.interp (Steel.Effect.Common.hp_of (Steel.Effect.Common.vdep v p)) m /\ Steel.Effect.Atomic.vdep_rel v q p (Steel.Effect.Common.sel_of (Steel.Effect.Common.star v q) m) (Steel.Effect.Common.sel_of (Steel.Effect.Common.vdep v p) m))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Common.t_of", "Steel.Memory.mem", "Steel.Effect.Common.vdep_sel_eq", "Prims.unit", "Steel.Effect.Common.interp_vdep_hp", "Steel.Memory.interp_star", "Steel.Effect.Common.hp_of", "Prims.l_and", "Steel.Memory.interp", "Steel.Effect.Common.vdep", "Prims.eq2", "FStar.Pervasives.dfst", "Steel.Effect.Common.vdep_payload", "Steel.Effect.Common.sel_of", "Prims.dtuple2", "Prims.squash", "Steel.Effect.Common.star", "Steel.Effect.Atomic.vdep_rel", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let elim_vdep_lemma (v q: vprop) (p: (t_of v -> Tot vprop)) (m: mem) : Lemma (requires (interp (hp_of (vdep v p)) m /\ q == p (dfst (sel_of (vdep v p) m <: dtuple2 (t_of v) (vdep_payload v p))))) (ensures (interp (hp_of (v `star` q)) m /\ interp (hp_of (vdep v p)) m /\ vdep_rel v q p (sel_of (v `star` q) m) (sel_of (vdep v p) m))) =
Mem.interp_star (hp_of v) (hp_of q) m; interp_vdep_hp v p m; vdep_sel_eq v p m
false