file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.print_basetype | val print_basetype : t: Vale.Arch.HeapTypes_s.base_typ -> Prims.string | let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR" | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 23,
"end_line": 23,
"start_col": 0,
"start_line": 18
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t" | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Vale.Arch.HeapTypes_s.base_typ -> Prims.string | Prims.Tot | [
"total"
] | [] | [
"Vale.Arch.HeapTypes_s.base_typ",
"Prims.string"
] | [] | false | false | false | true | false | let print_basetype (t: base_typ) =
| match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR" | false |
|
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.print_ins | val print_ins (ins: ins) (p: P.printer) : string | val print_ins (ins: ins) (p: P.printer) : string | let print_ins (ins:ins) (p:P.printer) : string =
match ins with
| Instr _ _ (AnnotateComment s) -> " // " ^ s
| Instr _ _ (AnnotateLargeComment s) -> "\n /////// " ^ s ^ " ////// \n"
| Instr _ _ (AnnotateSpace n) -> print_spaces n
| _ -> " \"" ^ P.print_ins ins p ^ ";\"" | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 45,
"end_line": 256,
"start_col": 0,
"start_line": 251
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr
// If the register in which an arg is passed is not modified, we should specify it as `"r" (name)`
let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1)
// Get a list of strings corresponding to modified inputs
let rec get_nonmodified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string)
= match args with
| [] -> [], reg_names, counter
| a::q ->
let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in
let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in
input @ inputs, reg_names, counter
let print_nonmodified_inputs
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in
aux inputs, input_reg_names, counter
// Print the list of modified registers, + memory and cc
let print_modified_registers
(n:nat)
(ret_val:option string)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_args:reg_64 -> bool)
(args:list td) =
// This register was already specified as output
let output_register a = Some? ret_val && a = rRax in
let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) =
if i >= n then false
else
a = of_arg i // This register was already specified for the i-th argument
|| input_register (i+1) a
in
let rec aux = function
| [] -> "\"memory\", \"cc\"\n"
| a::q ->
// This register is not modified, or was already specified as input or output: we skip it
if not (regs_mod a) || input_register 0 a || output_register a then aux q
// Register not modified or already specified in inputs, we add it
else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q
in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15]
// Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n"
let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
let ty = match a with
| TD_Base _ -> "uint64_t "
| _ -> "uint64_t *"
in
if reserved (of_arg i) then
// If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions
true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n"
else false, ""
let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
match args with
| [] -> false, ""
| a::q ->
let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in
let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in
was_explicit || are_explicit, explicit_str ^ rest_str
// If we have a return parameter with a reserved register, print "register uint64_t [name] __asm__("rax");\n"
let print_register_ret (reserved:reg_64 -> bool) = function
| None -> ""
| Some name -> if reserved rRax then " register uint64_t " ^ name ^ " __asm__(\"rax\");\n" else " uint64_t " ^ name ^ ";\n"
(* This is a copy from X64.Print_s, and should remain in sync. The difference is that
each line should be in quotes, and end by a semicolon in inline assembly *)
let print_cmp (c:ocmp) (counter:int) (p:P.printer) : string =
let print_ops (o1:operand64) (o2:operand64) : string =
let first, second = p.P.op_order (P.print_operand o1 p) (P.print_operand o2 p) in
" cmp " ^ first ^ ", " ^ second ^ "\n"
in
match c with
| OEq o1 o2 -> " \"" ^ print_ops o1 o2 ^ " je " ^ "L" ^ string_of_int counter ^ ";\"\n"
| ONe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jne "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jbe "^ "L" ^ string_of_int counter ^ ";\"\n"
| OGe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jae "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jb " ^ "L" ^ string_of_int counter ^ ";\"\n"
| OGt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " ja " ^ "L" ^ string_of_int counter ^ ";\"\n"
let rec print_spaces (n:nat) : string =
match n with
| 0 -> ""
| n -> " " ^ print_spaces (n-1) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ins: Vale.X64.Machine_Semantics_s.ins -> p: Vale.X64.Print_s.printer -> Prims.string | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.Machine_Semantics_s.ins",
"Vale.X64.Print_s.printer",
"Vale.X64.Instruction_s.instr_t_record",
"Vale.X64.Instruction_s.instr_operands_t",
"Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__outs",
"Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__args",
"Prims.string",
"Prims.eq2",
"Vale.X64.Instruction_s.InstrTypeRecord",
"Prims.Nil",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_Comment",
"Prims.op_Hat",
"Vale.X64.Instructions_s.ins_LargeComment",
"Prims.nat",
"Vale.X64.Instructions_s.ins_Space",
"Vale.X64.Print_Inline_s.print_spaces",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.X64.Print_s.print_ins"
] | [] | false | false | false | true | false | let print_ins (ins: ins) (p: P.printer) : string =
| match ins with
| Instr _ _ (AnnotateComment s) -> " // " ^ s
| Instr _ _ (AnnotateLargeComment s) -> "\n /////// " ^ s ^ " ////// \n"
| Instr _ _ (AnnotateSpace n) -> print_spaces n
| _ -> " \"" ^ P.print_ins ins p ^ ";\"" | false |
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.build_reserved_args_outs | val build_reserved_args_outs (l: list instr_out) (reserved: (reg_64 -> bool))
: Tot (reg_64 -> bool) (decreases l) | val build_reserved_args_outs (l: list instr_out) (reserved: (reg_64 -> bool))
: Tot (reg_64 -> bool) (decreases l) | let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 45,
"end_line": 50,
"start_col": 0,
"start_line": 36
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
l: Prims.list Vale.X64.Instruction_s.instr_out ->
reserved: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool)
-> Prims.Tot (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) | Prims.Tot | [
"total",
""
] | [] | [
"Prims.list",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Machine_s.reg_64",
"Prims.bool",
"Vale.X64.Instruction_s.instr_operand_inout",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Print_Inline_s.build_reserved_args_outs",
"Prims.op_Equality"
] | [
"recursion"
] | false | false | false | false | false | let rec build_reserved_args_outs (l: list instr_out) (reserved: (reg_64 -> bool))
: Tot (reg_64 -> bool) (decreases l) =
| fun r ->
match l with
| [] -> reserved r
| hd :: tl ->
let _, op = hd in
let reserved:(reg_64 -> bool) =
(fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) -> if r = reg then true else reserved r
| _ -> reserved r)
in
build_reserved_args_outs tl reserved r | false |
Steel.Effect.Atomic.fst | Steel.Effect.Atomic.elim_vdep | val elim_vdep (#opened:inames)
(v: vprop)
(p: (t_of v -> Tot vprop))
: SteelGhost (Ghost.erased (t_of v)) opened
(vdep v p)
(fun res -> v `star` p (Ghost.reveal res))
(requires (fun _ -> True))
(ensures (fun h res h' ->
let fs = h' v in
let sn : t_of (p (Ghost.reveal res)) = h' (p (Ghost.reveal res)) in
let x2 = h (vdep v p) in
Ghost.reveal res == fs /\
dfst x2 == fs /\
dsnd x2 == sn
)) | val elim_vdep (#opened:inames)
(v: vprop)
(p: (t_of v -> Tot vprop))
: SteelGhost (Ghost.erased (t_of v)) opened
(vdep v p)
(fun res -> v `star` p (Ghost.reveal res))
(requires (fun _ -> True))
(ensures (fun h res h' ->
let fs = h' v in
let sn : t_of (p (Ghost.reveal res)) = h' (p (Ghost.reveal res)) in
let x2 = h (vdep v p) in
Ghost.reveal res == fs /\
dfst x2 == fs /\
dsnd x2 == sn
)) | let elim_vdep
v p
= let r = gget (vdep v p) in
let res = Ghost.hide (dfst #(t_of v) #(vdep_payload v p) (Ghost.reveal r)) in
elim_vdep0 v p (p (Ghost.reveal res));
res | {
"file_name": "lib/steel/Steel.Effect.Atomic.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 840,
"start_col": 0,
"start_line": 835
} | (*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Effect.Atomic
open Steel.Effect
friend Steel.Effect
#set-options "--warn_error -330" //turn off the experimental feature warning
let _ : squash (forall (pre:pre_t) (m0:mem{interp (hp_of pre) m0}) (m1:mem{disjoint m0 m1}).
mk_rmem pre m0 == mk_rmem pre (join m0 m1)) = Classical.forall_intro rmem_depends_only_on
let req_to_act_req (#pre:vprop) (req:req_t pre) : mprop (hp_of pre) =
fun m ->
rmem_depends_only_on pre;
interp (hp_of pre) m /\ req (mk_rmem pre m)
unfold
let to_post (#a:Type) (post:post_t a) = fun x -> (hp_of (post x))
let ens_to_act_ens (#pre:pre_t) (#a:Type) (#post:post_t a) (ens:ens_t pre a post)
: mprop2 (hp_of pre) (to_post post)
= fun m0 x m1 -> interp (hp_of pre) m0 /\ interp (hp_of (post x)) m1 /\
ens (mk_rmem pre m0) x (mk_rmem (post x) m1)
let repr a framed opened f pre post req ens =
action_except_full a opened (hp_of pre) (to_post post)
(req_to_act_req req) (ens_to_act_ens ens)
let return_ a x opened #p = fun _ ->
let m0:full_mem = NMSTTotal.get () in
let h0 = mk_rmem (p x) (core_mem m0) in
lemma_frame_equalities_refl (p x) h0;
x
#push-options "--fuel 0 --ifuel 0"
#push-options "--z3rlimit 20 --fuel 1 --ifuel 1"
val frame00 (#a:Type)
(#framed:bool)
(#opened:inames)
(#obs:observability)
(#pre:pre_t)
(#post:post_t a)
(#req:req_t pre)
(#ens:ens_t pre a post)
($f:repr a framed opened obs pre post req ens)
(frame:vprop)
: repr a
true
opened
obs
(pre `star` frame)
(fun x -> post x `star` frame)
(fun h -> req (focus_rmem h pre))
(fun h0 r h1 -> req (focus_rmem h0 pre) /\ ens (focus_rmem h0 pre) r (focus_rmem h1 (post r)) /\
frame_opaque frame (focus_rmem h0 frame) (focus_rmem h1 frame))
module Sem = Steel.Semantics.Hoare.MST
module Mem = Steel.Memory
let equiv_middle_left_assoc (a b c d:slprop)
: Lemma (((a `Mem.star` b) `Mem.star` c `Mem.star` d) `Mem.equiv`
(a `Mem.star` (b `Mem.star` c) `Mem.star` d))
= let open Steel.Memory in
star_associative a b c;
star_congruence ((a `star` b) `star` c) d (a `star` (b `star` c)) d
let frame00 #a #framed #opened #obs #pre #post #req #ens f frame =
fun frame' ->
let m0:full_mem = NMSTTotal.get () in
let snap:rmem frame = mk_rmem frame (core_mem m0) in
// Need to define it with type annotation, although unused, for it to trigger
// the pattern on the framed ensures in the def of MstTot
let aux:mprop (hp_of frame `Mem.star` frame') = req_frame frame snap in
focus_is_restrict_mk_rmem (pre `star` frame) pre (core_mem m0);
assert (interp (hp_of (pre `star` frame) `Mem.star` frame' `Mem.star` locks_invariant opened m0) m0);
equiv_middle_left_assoc (hp_of pre) (hp_of frame) frame' (locks_invariant opened m0);
assert (interp (hp_of pre `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m0) m0);
let x = f (hp_of frame `Mem.star` frame') in
let m1:full_mem = NMSTTotal.get () in
assert (interp (hp_of (post x) `Mem.star` (hp_of frame `Mem.star` frame') `Mem.star` locks_invariant opened m1) m1);
equiv_middle_left_assoc (hp_of (post x)) (hp_of frame) frame' (locks_invariant opened m1);
assert (interp ((hp_of (post x) `Mem.star` hp_of frame)
`Mem.star` frame' `Mem.star` locks_invariant opened m1) m1);
focus_is_restrict_mk_rmem (pre `star` frame) frame (core_mem m0);
focus_is_restrict_mk_rmem (post x `star` frame) frame (core_mem m1);
let h0:rmem (pre `star` frame) = mk_rmem (pre `star` frame) (core_mem m0) in
let h1:rmem (post x `star` frame) = mk_rmem (post x `star` frame) (core_mem m1) in
assert (focus_rmem h0 frame == focus_rmem h1 frame);
focus_is_restrict_mk_rmem (post x `star` frame) (post x) (core_mem m1);
lemma_frame_opaque_refl frame (focus_rmem h0 frame);
x
unfold
let bind_req_opaque (#a:Type)
(#pre_f:pre_t) (#post_f:post_t a)
(req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f)
(#pre_g:a -> pre_t)
(#pr:a -> prop)
(req_g:(x:a -> req_t (pre_g x)))
(frame_f:vprop) (frame_g:a -> vprop)
(_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x)))
: req_t (pre_f `star` frame_f)
= fun m0 ->
req_f (focus_rmem m0 pre_f) /\
(forall (x:a) (h1:hmem (post_f x `star` frame_f)).
(ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\
frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f))
==> pr x /\
(can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x);
(req_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x))))
unfold
let bind_ens_opaque (#a:Type) (#b:Type)
(#pre_f:pre_t) (#post_f:post_t a)
(req_f:req_t pre_f) (ens_f:ens_t pre_f a post_f)
(#pre_g:a -> pre_t) (#post_g:a -> post_t b)
(#pr:a -> prop)
(ens_g:(x:a -> ens_t (pre_g x) b (post_g x)))
(frame_f:vprop) (frame_g:a -> vprop)
(post:post_t b)
(_:squash (can_be_split_forall_dep pr (fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x)))
(_:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post))
: ens_t (pre_f `star` frame_f) b post
= fun m0 y m2 ->
req_f (focus_rmem m0 pre_f) /\
(exists (x:a) (h1:hmem (post_f x `star` frame_f)).
pr x /\
(
can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x);
can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x);
can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y);
can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x);
frame_opaque frame_f (focus_rmem m0 frame_f) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) frame_f) /\
frame_opaque (frame_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (frame_g x)) (focus_rmem m2 (frame_g x)) /\
ens_f (focus_rmem m0 pre_f) x (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (post_f x)) /\
(ens_g x) (focus_rmem (mk_rmem (post_f x `star` frame_f) h1) (pre_g x)) y (focus_rmem m2 (post_g x y))))
val bind_opaque (a:Type) (b:Type)
(opened_invariants:inames)
(o1:eqtype_as_type observability)
(o2:eqtype_as_type observability)
(#framed_f:eqtype_as_type bool)
(#framed_g:eqtype_as_type bool)
(#pre_f:pre_t) (#post_f:post_t a)
(#req_f:req_t pre_f) (#ens_f:ens_t pre_f a post_f)
(#pre_g:a -> pre_t) (#post_g:a -> post_t b)
(#req_g:(x:a -> req_t (pre_g x))) (#ens_g:(x:a -> ens_t (pre_g x) b (post_g x)))
(#frame_f:vprop) (#frame_g:a -> vprop)
(#post:post_t b)
(# _ : squash (maybe_emp framed_f frame_f))
(# _ : squash (maybe_emp_dep framed_g frame_g))
(#pr:a -> prop)
(#p1:squash (can_be_split_forall_dep pr
(fun x -> post_f x `star` frame_f) (fun x -> pre_g x `star` frame_g x)))
(#p2:squash (can_be_split_post (fun x y -> post_g x y `star` frame_g x) post))
(f:repr a framed_f opened_invariants o1 pre_f post_f req_f ens_f)
(g:(x:a -> repr b framed_g opened_invariants o2 (pre_g x) (post_g x) (req_g x) (ens_g x)))
: Pure (repr b true opened_invariants (join_obs o1 o2)
(pre_f `star` frame_f)
post
(bind_req_opaque req_f ens_f req_g frame_f frame_g p1)
(bind_ens_opaque req_f ens_f ens_g frame_f frame_g post p1 p2)
)
(requires obs_at_most_one o1 o2)
(ensures fun _ -> True)
#push-options "--z3rlimit 20"
let bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g =
fun frame ->
let m0:full_mem = NMSTTotal.get () in
let h0 = mk_rmem (pre_f `star` frame_f) (core_mem m0) in
let x = frame00 f frame_f frame in
let m1:full_mem = NMSTTotal.get () in
let h1 = mk_rmem (post_f x `star` frame_f) (core_mem m1) in
let h1' = mk_rmem (pre_g x `star` frame_g x) (core_mem m1) in
can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x);
focus_is_restrict_mk_rmem
(post_f x `star` frame_f)
(pre_g x `star` frame_g x)
(core_mem m1);
focus_focus_is_focus
(post_f x `star` frame_f)
(pre_g x `star` frame_g x)
(pre_g x)
(core_mem m1);
assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x));
can_be_split_3_interp
(hp_of (post_f x `star` frame_f))
(hp_of (pre_g x `star` frame_g x))
frame (locks_invariant opened m1) m1;
let y = frame00 (g x) (frame_g x) frame in
let m2:full_mem = NMSTTotal.get () in
can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (pre_g x);
can_be_split_trans (post_f x `star` frame_f) (pre_g x `star` frame_g x) (frame_g x);
can_be_split_trans (post y) (post_g x y `star` frame_g x) (post_g x y);
can_be_split_trans (post y) (post_g x y `star` frame_g x) (frame_g x);
let h2' = mk_rmem (post_g x y `star` frame_g x) (core_mem m2) in
let h2 = mk_rmem (post y) (core_mem m2) in
// assert (focus_rmem h1' (pre_g x) == focus_rmem h1 (pre_g x));
focus_focus_is_focus
(post_f x `star` frame_f)
(pre_g x `star` frame_g x)
(frame_g x)
(core_mem m1);
focus_is_restrict_mk_rmem
(post_g x y `star` frame_g x)
(post y)
(core_mem m2);
focus_focus_is_focus
(post_g x y `star` frame_g x)
(post y)
(frame_g x)
(core_mem m2);
focus_focus_is_focus
(post_g x y `star` frame_g x)
(post y)
(post_g x y)
(core_mem m2);
can_be_split_3_interp
(hp_of (post_g x y `star` frame_g x))
(hp_of (post y))
frame (locks_invariant opened m2) m2;
y
let norm_repr (#a:Type) (#framed:bool) (#opened:inames) (#obs:observability)
(#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post)
(f:repr a framed opened obs pre post req ens)
: repr a framed opened obs pre post (fun h -> norm_opaque (req h)) (fun h0 x h1 -> norm_opaque (ens h0 x h1))
= f
let bind a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g
= norm_repr (bind_opaque a b opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #frame_f #frame_g #post #_ #_ #p #p2 f g)
val subcomp_opaque (a:Type)
(opened:inames)
(o1:eqtype_as_type observability)
(o2:eqtype_as_type observability)
(#framed_f:eqtype_as_type bool)
(#framed_g:eqtype_as_type bool)
(#[@@@ framing_implicit] pre_f:pre_t) (#[@@@ framing_implicit] post_f:post_t a)
(#[@@@ framing_implicit] req_f:req_t pre_f) (#[@@@ framing_implicit] ens_f:ens_t pre_f a post_f)
(#[@@@ framing_implicit] pre_g:pre_t) (#[@@@ framing_implicit] post_g:post_t a)
(#[@@@ framing_implicit] req_g:req_t pre_g) (#[@@@ framing_implicit] ens_g:ens_t pre_g a post_g)
(#[@@@ framing_implicit] frame:vprop)
(#[@@@ framing_implicit] pr : prop)
(#[@@@ framing_implicit] _ : squash (maybe_emp framed_f frame))
(#[@@@ framing_implicit] p1:squash (can_be_split_dep pr pre_g (pre_f `star` frame)))
(#[@@@ framing_implicit] p2:squash (equiv_forall post_g (fun x -> post_f x `star` frame)))
(f:repr a framed_f opened o1 pre_f post_f req_f ens_f)
: Pure (repr a framed_g opened o2 pre_g post_g req_g ens_g)
(requires (o1 = Unobservable || o2 = Observable) /\
subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2)
(ensures fun _ -> True)
let subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f =
fun frame ->
let m0:full_mem = NMSTTotal.get () in
let h0 = mk_rmem pre_g (core_mem m0) in
can_be_split_trans pre_g (pre_f `star` fr) pre_f;
can_be_split_trans pre_g (pre_f `star` fr) fr;
can_be_split_3_interp (hp_of pre_g) (hp_of (pre_f `star` fr)) frame (locks_invariant opened m0) m0;
focus_replace pre_g (pre_f `star` fr) pre_f (core_mem m0);
let x = frame00 f fr frame in
let m1:full_mem = NMSTTotal.get () in
let h1 = mk_rmem (post_g x) (core_mem m1) in
let h0' = mk_rmem (pre_f `star` fr) (core_mem m0) in
let h1' = mk_rmem (post_f x `star` fr) (core_mem m1) in
// From frame00
assert (frame_opaque fr (focus_rmem h0' fr) (focus_rmem h1' fr));
// Replace h0'/h1' by h0/h1
focus_replace pre_g (pre_f `star` fr) fr (core_mem m0);
focus_replace (post_g x) (post_f x `star` fr) fr (core_mem m1);
assert (frame_opaque fr (focus_rmem h0 fr) (focus_rmem h1 fr));
can_be_split_trans (post_g x) (post_f x `star` fr) (post_f x);
can_be_split_trans (post_g x) (post_f x `star` fr) fr;
can_be_split_3_interp (hp_of (post_f x `star` fr)) (hp_of (post_g x)) frame (locks_invariant opened m1) m1;
focus_replace (post_g x) (post_f x `star` fr) (post_f x) (core_mem m1);
x
let subcomp a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #_ #pr #p1 #p2 f =
lemma_subcomp_pre_opaque req_f ens_f req_g ens_g p1 p2;
subcomp_opaque a opened o1 o2 #framed_f #framed_g #pre_f #post_f #req_f #ens_f #pre_g #post_g #req_g #ens_g #fr #pr #_ #p1 #p2 f
#pop-options
let bind_pure_steela_ a b opened o #wp f g
= FStar.Monotonic.Pure.elim_pure_wp_monotonicity wp;
fun frame ->
let x = f () in
g x frame
let lift_ghost_atomic a o f = f
let lift_atomic_steel a o f = f
let as_atomic_action f = SteelAtomic?.reflect f
let as_atomic_action_ghost f = SteelGhost?.reflect f
let as_atomic_unobservable_action f = SteelAtomicU?.reflect f
(* Some helpers *)
let get0 (#opened:inames) (#p:vprop) (_:unit) : repr (erased (rmem p))
true opened Unobservable p (fun _ -> p)
(requires fun _ -> True)
(ensures fun h0 r h1 -> frame_equalities p h0 h1 /\ frame_equalities p r h1)
= fun frame ->
let m0:full_mem = NMSTTotal.get () in
let h0 = mk_rmem p (core_mem m0) in
lemma_frame_equalities_refl p h0;
h0
let get () = SteelGhost?.reflect (get0 ())
let intro_star (p q:vprop) (r:slprop) (vp:erased (t_of p)) (vq:erased (t_of q)) (m:mem)
(proof:(m:mem) -> Lemma
(requires interp (hp_of p) m /\ sel_of p m == reveal vp)
(ensures interp (hp_of q) m)
)
: Lemma
(requires interp ((hp_of p) `Mem.star` r) m /\ sel_of p m == reveal vp)
(ensures interp ((hp_of q) `Mem.star` r) m)
= let p = hp_of p in
let q = hp_of q in
let intro (ml mr:mem) : Lemma
(requires interp q ml /\ interp r mr /\ disjoint ml mr)
(ensures disjoint ml mr /\ interp (q `Mem.star` r) (Mem.join ml mr))
= Mem.intro_star q r ml mr
in
elim_star p r m;
Classical.forall_intro (Classical.move_requires proof);
Classical.forall_intro_2 (Classical.move_requires_2 intro)
#push-options "--z3rlimit 20 --fuel 1 --ifuel 0"
let rewrite_slprop0 (#opened:inames) (p q:vprop)
(proof:(m:mem) -> Lemma
(requires interp (hp_of p) m)
(ensures interp (hp_of q) m)
) : repr unit false opened Unobservable p (fun _ -> q)
(fun _ -> True) (fun _ _ _ -> True)
= fun frame ->
let m:full_mem = NMSTTotal.get () in
proof (core_mem m);
Classical.forall_intro (Classical.move_requires proof);
Mem.star_associative (hp_of p) frame (locks_invariant opened m);
intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) (sel_of q m) m proof;
Mem.star_associative (hp_of q) frame (locks_invariant opened m)
#pop-options
let rewrite_slprop p q l = SteelGhost?.reflect (rewrite_slprop0 p q l)
#push-options "--z3rlimit 20 --fuel 1 --ifuel 0"
let change_slprop0 (#opened:inames) (p q:vprop) (vp:erased (t_of p)) (vq:erased (t_of q))
(proof:(m:mem) -> Lemma
(requires interp (hp_of p) m /\ sel_of p m == reveal vp)
(ensures interp (hp_of q) m /\ sel_of q m == reveal vq)
) : repr unit false opened Unobservable p (fun _ -> q) (fun h -> h p == reveal vp) (fun _ _ h1 -> h1 q == reveal vq)
= fun frame ->
let m:full_mem = NMSTTotal.get () in
Classical.forall_intro_3 reveal_mk_rmem;
proof (core_mem m);
Classical.forall_intro (Classical.move_requires proof);
Mem.star_associative (hp_of p) frame (locks_invariant opened m);
intro_star p q (frame `Mem.star` locks_invariant opened m) vp vq m proof;
Mem.star_associative (hp_of q) frame (locks_invariant opened m)
#pop-options
let change_slprop p q vp vq l = SteelGhost?.reflect (change_slprop0 p q vp vq l)
let change_equal_slprop
p q
= let m = get () in
let x : Ghost.erased (t_of p) = hide ((reveal m) p) in
let y : Ghost.erased (t_of q) = Ghost.hide (Ghost.reveal x) in
change_slprop
p
q
x
y
(fun _ -> ())
#push-options "--z3rlimit 20 --fuel 1 --ifuel 0"
let change_slprop_20 (#opened:inames) (p q:vprop) (vq:erased (t_of q))
(proof:(m:mem) -> Lemma
(requires interp (hp_of p) m)
(ensures interp (hp_of q) m /\ sel_of q m == reveal vq)
) : repr unit false opened Unobservable p (fun _ -> q)
(fun _ -> True) (fun _ _ h1 -> h1 q == reveal vq)
= fun frame ->
let m:full_mem = NMSTTotal.get () in
Classical.forall_intro_3 reveal_mk_rmem;
proof (core_mem m);
Classical.forall_intro (Classical.move_requires proof);
Mem.star_associative (hp_of p) frame (locks_invariant opened m);
intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p m) vq m proof;
Mem.star_associative (hp_of q) frame (locks_invariant opened m)
#pop-options
let change_slprop_2 p q vq l = SteelGhost?.reflect (change_slprop_20 p q vq l)
let change_slprop_rel0 (#opened:inames) (p q:vprop)
(rel : normal (t_of p) -> normal (t_of q) -> prop)
(proof:(m:mem) -> Lemma
(requires interp (hp_of p) m)
(ensures
interp (hp_of p) m /\
interp (hp_of q) m /\
rel (sel_of p m) (sel_of q m))
) : repr unit false opened Unobservable p (fun _ -> q)
(fun _ -> True) (fun h0 _ h1 -> rel (h0 p) (h1 q))
= fun frame ->
let m:full_mem = NMSTTotal.get () in
Classical.forall_intro_3 reveal_mk_rmem;
proof (core_mem m);
let h0 = mk_rmem p (core_mem m) in
let h1 = mk_rmem q (core_mem m) in
reveal_mk_rmem p (core_mem m) p;
reveal_mk_rmem q (core_mem m) q;
Mem.star_associative (hp_of p) frame (locks_invariant opened m);
intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof;
Mem.star_associative (hp_of q) frame (locks_invariant opened m)
let change_slprop_rel p q rel proof = SteelGhost?.reflect (change_slprop_rel0 p q rel proof)
let change_slprop_rel_with_cond0 (#opened:inames) (p q:vprop)
(cond: t_of p -> prop)
(rel : (t_of p) -> (t_of q) -> prop)
(proof:(m:mem) -> Lemma
(requires interp (hp_of p) m /\ cond (sel_of p m))
(ensures
interp (hp_of p) m /\
interp (hp_of q) m /\
rel (sel_of p m) (sel_of q m))
) : repr unit false opened Unobservable p (fun _ -> q)
(fun m -> cond (m p)) (fun h0 _ h1 -> rel (h0 p) (h1 q))
= fun frame ->
let m:full_mem = NMSTTotal.get () in
Classical.forall_intro_3 reveal_mk_rmem;
proof (core_mem m);
let h0 = mk_rmem p (core_mem m) in
let h1 = mk_rmem q (core_mem m) in
reveal_mk_rmem p (core_mem m) p;
reveal_mk_rmem q (core_mem m) q;
Mem.star_associative (hp_of p) frame (locks_invariant opened m);
intro_star p q (frame `Mem.star` locks_invariant opened m) (sel_of p (core_mem m)) (sel_of q (core_mem m)) m proof;
Mem.star_associative (hp_of q) frame (locks_invariant opened m)
let change_slprop_rel_with_cond p q cond rel proof
= SteelGhost?.reflect (change_slprop_rel_with_cond0 p q cond rel proof)
let extract_info0 (#opened:inames) (p:vprop) (vp:erased (normal (t_of p))) (fact:prop)
(l:(m:mem) -> Lemma
(requires interp (hp_of p) m /\ sel_of p m == reveal vp)
(ensures fact)
) : repr unit false opened Unobservable p (fun _ -> p)
(fun h -> h p == reveal vp)
(fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact)
= fun frame ->
let m0:full_mem = NMSTTotal.get () in
Classical.forall_intro_3 reveal_mk_rmem;
let h0 = mk_rmem p (core_mem m0) in
lemma_frame_equalities_refl p h0;
l (core_mem m0)
let extract_info p vp fact l = SteelGhost?.reflect (extract_info0 p vp fact l)
let extract_info_raw0 (#opened:inames) (p:vprop) (fact:prop)
(l:(m:mem) -> Lemma
(requires interp (hp_of p) m)
(ensures fact)
) : repr unit false opened Unobservable p (fun _ -> p)
(fun h -> True)
(fun h0 _ h1 -> frame_equalities p h0 h1 /\ fact)
= fun frame ->
let m0:full_mem = NMSTTotal.get () in
let h0 = mk_rmem p (core_mem m0) in
lemma_frame_equalities_refl p h0;
l (core_mem m0)
let extract_info_raw p fact l = SteelGhost?.reflect (extract_info_raw0 p fact l)
let noop _ = change_slprop_rel emp emp (fun _ _ -> True) (fun _ -> ())
let sladmit _ = SteelGhostF?.reflect (fun _ -> NMSTTotal.nmst_tot_admit ())
let slassert0 (#opened:inames) (p:vprop) : repr unit
false opened Unobservable p (fun _ -> p)
(requires fun _ -> True)
(ensures fun h0 r h1 -> frame_equalities p h0 h1)
= fun frame ->
let m0:full_mem = NMSTTotal.get () in
let h0 = mk_rmem p (core_mem m0) in
lemma_frame_equalities_refl p h0
let slassert p = SteelGhost?.reflect (slassert0 p)
let drop p = rewrite_slprop p emp
(fun m -> emp_unit (hp_of p); affine_star (hp_of p) Mem.emp m; reveal_emp())
let reveal_star0 (#opened:inames) (p1 p2:vprop)
: repr unit false opened Unobservable (p1 `star` p2) (fun _ -> p1 `star` p2)
(fun _ -> True)
(fun h0 _ h1 ->
h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\
h0 (p1 `star` p2) == (h0 p1, h0 p2) /\
h1 (p1 `star` p2) == (h1 p1, h1 p2)
)
= fun frame ->
let m:full_mem = NMSTTotal.get () in
Classical.forall_intro_3 reveal_mk_rmem
let reveal_star p1 p2 = SteelGhost?.reflect (reveal_star0 p1 p2)
let reveal_star_30 (#opened:inames) (p1 p2 p3:vprop)
: repr unit false opened Unobservable (p1 `star` p2 `star` p3) (fun _ -> p1 `star` p2 `star` p3)
(requires fun _ -> True)
(ensures fun h0 _ h1 ->
can_be_split (p1 `star` p2 `star` p3) p1 /\
can_be_split (p1 `star` p2 `star` p3) p2 /\
h0 p1 == h1 p1 /\ h0 p2 == h1 p2 /\ h0 p3 == h1 p3 /\
h0 (p1 `star` p2 `star` p3) == ((h0 p1, h0 p2), h0 p3) /\
h1 (p1 `star` p2 `star` p3) == ((h1 p1, h1 p2), h1 p3)
)
= fun frame ->
let m:full_mem = NMSTTotal.get () in
Classical.forall_intro_3 reveal_mk_rmem;
let h0 = mk_rmem (p1 `star` p2 `star` p3) (core_mem m) in
can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p1;
can_be_split_trans (p1 `star` p2 `star` p3) (p1 `star` p2) p2;
reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2 `star` p3);
reveal_mk_rmem (p1 `star` p2 `star` p3) m (p1 `star` p2);
reveal_mk_rmem (p1 `star` p2 `star` p3) m p3
let reveal_star_3 p1 p2 p3 = SteelGhost?.reflect (reveal_star_30 p1 p2 p3)
let intro_pure p = rewrite_slprop emp (pure p) (fun m -> pure_interp p m)
let elim_pure_aux #uses (p:prop)
: SteelGhostT (_:unit{p}) uses (pure p) (fun _ -> to_vprop Mem.emp)
= as_atomic_action_ghost (Steel.Memory.elim_pure #uses p)
let elim_pure #uses p =
let _ = elim_pure_aux p in
rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ())
let return #a #opened #p x = SteelAtomicBase?.reflect (return_ a x opened #p)
let intro_exists #a #opened x p =
rewrite_slprop (p x) (h_exists p) (fun m -> Steel.Memory.intro_h_exists x (h_exists_sl' p) m)
let intro_exists_erased #a #opened x p =
rewrite_slprop (p x) (h_exists p)
(fun m -> Steel.Memory.intro_h_exists (Ghost.reveal x) (h_exists_sl' p) m)
let witness_exists #a #u #p _ =
SteelGhost?.reflect (Steel.Memory.witness_h_exists #u (fun x -> hp_of (p x)))
let lift_exists #a #u p =
as_atomic_action_ghost (Steel.Memory.lift_h_exists #u (fun x -> hp_of (p x)))
let exists_equiv p q =
Classical.forall_intro_2 reveal_equiv;
h_exists_cong (h_exists_sl' p) (h_exists_sl' q)
let exists_cong p q =
rewrite_slprop (h_exists p) (h_exists q)
(fun m ->
reveal_equiv (h_exists p) (h_exists q);
exists_equiv p q)
let fresh_invariant #uses p ctxt =
rewrite_slprop p (to_vprop (hp_of p)) (fun _ -> ());
let i = as_atomic_unobservable_action (fresh_invariant uses (hp_of p) ctxt) in
rewrite_slprop (to_vprop Mem.emp) emp (fun _ -> reveal_emp ());
return i
let new_invariant #uses p = let i = fresh_invariant #uses p [] in return i
(*
* AR: SteelAtomic and SteelGhost are not marked reifiable since we intend to run Steel programs natively
* However to implement the with_inv combinators we need to reify their thunks to reprs
* We could implement it better by having support for reification only in the .fst file
* But for now assuming a function
*)
assume val reify_steel_atomic_comp
(#a:Type) (#framed:bool) (#opened_invariants:inames) (#g:observability)
(#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post)
($f:unit -> SteelAtomicBase a framed opened_invariants g pre post req ens)
: repr a framed opened_invariants g pre post req ens
[@@warn_on_use "as_unobservable_atomic_action is a trusted primitive"]
let as_atomic_o_action
(#a:Type u#a)
(#opened_invariants:inames)
(#fp:slprop)
(#fp': a -> slprop)
(o:observability)
(f:action_except a opened_invariants fp fp')
: SteelAtomicBaseT a opened_invariants o (to_vprop fp) (fun x -> to_vprop (fp' x))
= SteelAtomicBaseT?.reflect f
let with_invariant #a #fp #fp' #obs #opened #p i f =
rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ());
let x = as_atomic_o_action obs
(Steel.Memory.with_invariant
#a
#(hp_of fp)
#(fun x -> hp_of (fp' x))
#opened
#(hp_of p)
i
(reify_steel_atomic_comp f)) in
rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ());
return x
assume val reify_steel_ghost_comp
(#a:Type) (#framed:bool) (#opened_invariants:inames)
(#pre:pre_t) (#post:post_t a) (#req:req_t pre) (#ens:ens_t pre a post)
($f:unit -> SteelGhostBase a framed opened_invariants Unobservable pre post req ens)
: repr a framed opened_invariants Unobservable pre post req ens
let with_invariant_g #a #fp #fp' #opened #p i f =
rewrite_slprop fp (to_vprop (hp_of fp)) (fun _ -> ());
let x =
as_atomic_unobservable_action
(Steel.Memory.with_invariant #a #(hp_of fp) #(fun x -> hp_of (fp' x)) #opened #(hp_of p) i (reify_steel_ghost_comp f)) in
rewrite_slprop (to_vprop (hp_of (fp' x))) (fp' x) (fun _ -> ());
return (hide x)
let intro_vrefine v p =
let m = get () in
let x : Ghost.erased (t_of v) = gget v in
let x' : Ghost.erased (vrefine_t v p) = Ghost.hide (Ghost.reveal x) in
change_slprop
v
(vrefine v p)
x
x'
(fun m ->
interp_vrefine_hp v p m;
vrefine_sel_eq v p m
)
let elim_vrefine v p =
let h = get() in
let x : Ghost.erased (vrefine_t v p) = gget (vrefine v p) in
let x' : Ghost.erased (t_of v) = Ghost.hide (Ghost.reveal x) in
change_slprop
(vrefine v p)
v
x
x'
(fun m ->
interp_vrefine_hp v p m;
vrefine_sel_eq v p m
)
let vdep_cond
(v: vprop)
(q: vprop)
(p: (t_of v -> Tot vprop))
(x1: t_of (v `star` q))
: Tot prop
= q == p (fst x1)
let vdep_rel
(v: vprop)
(q: vprop)
(p: (t_of v -> Tot vprop))
(x1: t_of (v `star` q))
(x2: (t_of (vdep v p)))
: Tot prop
=
q == p (fst x1) /\
dfst (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == fst x1 /\
dsnd (x2 <: (dtuple2 (t_of v) (vdep_payload v p))) == snd x1
let intro_vdep_lemma
(v: vprop)
(q: vprop)
(p: (t_of v -> Tot vprop))
(m: mem)
: Lemma
(requires (
interp (hp_of (v `star` q)) m /\
q == p (fst (sel_of (v `star` q) m))
))
(ensures (
interp (hp_of (v `star` q)) m /\
interp (hp_of (vdep v p)) m /\
vdep_rel v q p (sel_of (v `star` q) m) (sel_of (vdep v p) m)
))
=
Mem.interp_star (hp_of v) (hp_of q) m;
interp_vdep_hp v p m;
vdep_sel_eq v p m
let intro_vdep
v q p
=
reveal_star v q;
change_slprop_rel_with_cond
(v `star` q)
(vdep v p)
(vdep_cond v q p)
(vdep_rel v q p)
(fun m -> intro_vdep_lemma v q p m)
let vdep_cond_recip
(v: vprop)
(p: (t_of v -> Tot vprop))
(q: vprop)
(x2: t_of (vdep v p))
: Tot prop
= q == p (dfst (x2 <: dtuple2 (t_of v) (vdep_payload v p)))
let vdep_rel_recip
(v: vprop)
(q: vprop)
(p: (t_of v -> Tot vprop))
(x2: (t_of (vdep v p)))
(x1: t_of (v `star` q))
: Tot prop
=
vdep_rel v q p x1 x2
let elim_vdep_lemma
(v: vprop)
(q: vprop)
(p: (t_of v -> Tot vprop))
(m: mem)
: Lemma
(requires (
interp (hp_of (vdep v p)) m /\
q == p (dfst (sel_of (vdep v p) m <: dtuple2 (t_of v) (vdep_payload v p)))
))
(ensures (
interp (hp_of (v `star` q)) m /\
interp (hp_of (vdep v p)) m /\
vdep_rel v q p (sel_of (v `star` q) m) (sel_of (vdep v p) m)
))
=
Mem.interp_star (hp_of v) (hp_of q) m;
interp_vdep_hp v p m;
vdep_sel_eq v p m
let elim_vdep0
(#opened:inames)
(v: vprop)
(p: (t_of v -> Tot vprop))
(q: vprop)
: SteelGhost unit opened
(vdep v p)
(fun _ -> v `star` q)
(requires (fun h -> q == p (dfst (h (vdep v p)))))
(ensures (fun h _ h' ->
let fs = h' v in
let sn = h' q in
let x2 = h (vdep v p) in
q == p fs /\
dfst x2 == fs /\
dsnd x2 == sn
))
= change_slprop_rel_with_cond
(vdep v p)
(v `star` q)
(vdep_cond_recip v p q)
(vdep_rel_recip v q p)
(fun m -> elim_vdep_lemma v q p m);
reveal_star v q | {
"checked_file": "/",
"dependencies": [
"Steel.Semantics.Hoare.MST.fst.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.fst.checked",
"Steel.Effect.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.NMSTTotal.fst.checked",
"FStar.Monotonic.Pure.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.Effect.Atomic.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Universe",
"short_module": "U"
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": true,
"full_module": "Steel.Memory",
"short_module": "Mem"
},
{
"abbrev": true,
"full_module": "Steel.Semantics.Hoare.MST",
"short_module": "Sem"
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Common",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 1,
"initial_ifuel": 1,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | v: Steel.Effect.Common.vprop -> p: (_: Steel.Effect.Common.t_of v -> Steel.Effect.Common.vprop)
-> Steel.Effect.Atomic.SteelGhost (FStar.Ghost.erased (Steel.Effect.Common.t_of v)) | Steel.Effect.Atomic.SteelGhost | [] | [] | [
"Steel.Memory.inames",
"Steel.Effect.Common.vprop",
"Steel.Effect.Common.t_of",
"FStar.Ghost.erased",
"Prims.unit",
"Steel.Effect.Atomic.elim_vdep0",
"FStar.Ghost.reveal",
"FStar.Ghost.hide",
"FStar.Pervasives.dfst",
"Steel.Effect.Common.vdep_payload",
"Steel.Effect.Common.vdep",
"Steel.Effect.Atomic.gget"
] | [] | false | true | false | false | false | let elim_vdep v p =
| let r = gget (vdep v p) in
let res = Ghost.hide (dfst #(t_of v) #(vdep_payload v p) (Ghost.reveal r)) in
elim_vdep0 v p (p (Ghost.reveal res));
res | false |
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.build_reserved_args_ins | val build_reserved_args_ins (l: list instr_operand) (reserved: (reg_64 -> bool))
: Tot (reg_64 -> bool) (decreases l) | val build_reserved_args_ins (l: list instr_operand) (reserved: (reg_64 -> bool))
: Tot (reg_64 -> bool) (decreases l) | let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 44,
"end_line": 65,
"start_col": 0,
"start_line": 52
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
l: Prims.list Vale.X64.Instruction_s.instr_operand ->
reserved: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool)
-> Prims.Tot (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) | Prims.Tot | [
"total",
""
] | [] | [
"Prims.list",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Machine_s.reg_64",
"Prims.bool",
"Vale.X64.Print_Inline_s.build_reserved_args_ins",
"Prims.op_Equality"
] | [
"recursion"
] | false | false | false | false | false | let rec build_reserved_args_ins (l: list instr_operand) (reserved: (reg_64 -> bool))
: Tot (reg_64 -> bool) (decreases l) =
| fun r ->
match l with
| [] -> reserved r
| hd :: tl ->
let reserved:(reg_64 -> bool) =
(fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) -> if r = reg then true else reserved r
| _ -> reserved r)
in
build_reserved_args_ins tl reserved r | false |
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.print_modified_input | val print_modified_input
(n: nat)
(a: td)
(i: nat{i < n})
(of_arg: (reg_nat n -> reg_64))
(regs_mod reserved_regs: (reg_64 -> bool))
(reg_names: (reg_64 -> string))
(counter: nat)
(arg_names: (nat -> string))
: list string & (reg_64 -> string) & nat | val print_modified_input
(n: nat)
(a: td)
(i: nat{i < n})
(of_arg: (reg_nat n -> reg_64))
(regs_mod reserved_regs: (reg_64 -> bool))
(reg_names: (reg_64 -> string))
(counter: nat)
(arg_names: (nat -> string))
: list string & (reg_64 -> string) & nat | let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter) | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 36,
"end_line": 117,
"start_col": 0,
"start_line": 110
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.nat ->
a: Vale.Interop.Base.td ->
i: Prims.nat{i < n} ->
of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) ->
regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
reserved_regs: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
reg_names: (_: Vale.X64.Machine_s.reg_64 -> Prims.string) ->
counter: Prims.nat ->
arg_names: (_: Prims.nat -> Prims.string)
-> (Prims.list Prims.string * (_: Vale.X64.Machine_s.reg_64 -> Prims.string)) * Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Vale.Interop.Base.td",
"Prims.b2t",
"Prims.op_LessThan",
"Vale.Interop.X64.reg_nat",
"Vale.X64.Machine_s.reg_64",
"Prims.bool",
"Prims.string",
"FStar.Pervasives.Native.Mktuple3",
"Prims.list",
"Prims.Cons",
"Prims.op_Hat",
"Prims.Nil",
"Prims.op_AmpAmp",
"Prims.op_Equality",
"Prims.op_Negation",
"Prims.string_of_int",
"Prims.op_Addition",
"FStar.Pervasives.Native.tuple3"
] | [] | false | false | false | false | false | let print_modified_input
(n: nat)
(a: td)
(i: nat{i < n})
(of_arg: (reg_nat n -> reg_64))
(regs_mod reserved_regs: (reg_64 -> bool))
(reg_names: (reg_64 -> string))
(counter: nat)
(arg_names: (nat -> string))
: list string & (reg_64 -> string) & nat =
| if regs_mod (of_arg i)
then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1)
else ([], reg_names, counter) | false |
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.print_nonmodified_input | val print_nonmodified_input
(n: nat)
(of_arg: (reg_nat n -> reg_64))
(regs_mod reserved_regs: (reg_64 -> bool))
(a: td)
(i: nat{i < n})
(reg_names: (reg_64 -> string))
(counter: nat)
(arg_names: (nat -> string))
: list string & (reg_64 -> string) & nat | val print_nonmodified_input
(n: nat)
(of_arg: (reg_nat n -> reg_64))
(regs_mod reserved_regs: (reg_64 -> bool))
(a: td)
(i: nat{i < n})
(reg_names: (reg_64 -> string))
(counter: nat)
(arg_names: (nat -> string))
: list string & (reg_64 -> string) & nat | let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1) | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 157,
"start_col": 0,
"start_line": 151
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.nat ->
of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) ->
regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
reserved_regs: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
a: Vale.Interop.Base.td ->
i: Prims.nat{i < n} ->
reg_names: (_: Vale.X64.Machine_s.reg_64 -> Prims.string) ->
counter: Prims.nat ->
arg_names: (_: Prims.nat -> Prims.string)
-> (Prims.list Prims.string * (_: Vale.X64.Machine_s.reg_64 -> Prims.string)) * Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Vale.Interop.X64.reg_nat",
"Vale.X64.Machine_s.reg_64",
"Prims.bool",
"Vale.Interop.Base.td",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.string",
"FStar.Pervasives.Native.Mktuple3",
"Prims.list",
"Prims.Nil",
"Prims.Cons",
"Prims.op_Hat",
"Prims.op_AmpAmp",
"Prims.op_Equality",
"Prims.op_Negation",
"Prims.string_of_int",
"Prims.op_Addition",
"FStar.Pervasives.Native.tuple3"
] | [] | false | false | false | false | false | let print_nonmodified_input
(n: nat)
(of_arg: (reg_nat n -> reg_64))
(regs_mod reserved_regs: (reg_64 -> bool))
(a: td)
(i: nat{i < n})
(reg_names: (reg_64 -> string))
(counter: nat)
(arg_names: (nat -> string))
: list string & (reg_64 -> string) & nat =
| if regs_mod (of_arg i)
then ([], reg_names, counter)
else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1) | false |
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.print_modified_inputs | val print_modified_inputs : n: Prims.nat ->
of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) ->
regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
reserved_regs: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
args: Prims.list Vale.Interop.Base.td {FStar.List.Tot.Base.length args <= n} ->
ret_val: FStar.Pervasives.Native.option Prims.string ->
reg_names: (_: Vale.X64.Machine_s.reg_64 -> Prims.string) ->
counter: Prims.nat ->
arg_names: (_: Prims.nat -> Prims.string)
-> (Prims.string * (_: Vale.X64.Machine_s.reg_64 -> Prims.string)) * Prims.nat | let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 43,
"end_line": 148,
"start_col": 0,
"start_line": 132
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.nat ->
of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) ->
regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
reserved_regs: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
args: Prims.list Vale.Interop.Base.td {FStar.List.Tot.Base.length args <= n} ->
ret_val: FStar.Pervasives.Native.option Prims.string ->
reg_names: (_: Vale.X64.Machine_s.reg_64 -> Prims.string) ->
counter: Prims.nat ->
arg_names: (_: Prims.nat -> Prims.string)
-> (Prims.string * (_: Vale.X64.Machine_s.reg_64 -> Prims.string)) * Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Vale.Interop.X64.reg_nat",
"Vale.X64.Machine_s.reg_64",
"Prims.bool",
"Prims.list",
"Vale.Interop.Base.td",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.List.Tot.Base.length",
"FStar.Pervasives.Native.option",
"Prims.string",
"FStar.Pervasives.Native.Mktuple3",
"FStar.Pervasives.Native.tuple3",
"Vale.X64.Print_Inline_s.get_modified_input_strings",
"Prims.op_Hat"
] | [] | false | false | false | false | false | let print_modified_inputs
(n: nat)
(of_arg: (reg_nat n -> reg_64))
(regs_mod reserved_regs: (reg_64 -> bool))
(args: list td {List.Tot.length args <= n})
(ret_val: option string)
(reg_names: (reg_64 -> string))
(counter: nat)
(arg_names: (nat -> string))
=
| let rec aux =
function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr =
get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter
arg_names
in
aux outputs, output_reg_names, output_nbr | false |
|
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.build_reserved_args_block | val build_reserved_args_block (l: list code) (reserved: (reg_64 -> bool))
: Tot (reg_64 -> bool) (decreases l) | val build_reserved_args_block (l: list code) (reserved: (reg_64 -> bool))
: Tot (reg_64 -> bool) (decreases l) | let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
) | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 98,
"start_col": 0,
"start_line": 69
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers. | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
l: Prims.list Vale.X64.Machine_Semantics_s.code ->
reserved: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool)
-> Prims.Tot (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) | Prims.Tot | [
"total",
""
] | [
"build_reserved_args",
"build_reserved_args_block"
] | [
"Prims.list",
"Vale.X64.Machine_Semantics_s.code",
"Vale.X64.Machine_s.reg_64",
"Prims.bool",
"Vale.X64.Print_Inline_s.build_reserved_args_block",
"Vale.X64.Print_Inline_s.build_reserved_args"
] | [
"mutual recursion"
] | false | false | false | false | false | let rec build_reserved_args_block (l: list code) (reserved: (reg_64 -> bool))
: Tot (reg_64 -> bool) (decreases l) =
| fun r ->
(match l with
| [] -> reserved r
| hd :: tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r) | false |
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.get_modified_input_strings | val get_modified_input_strings
(n: nat)
(of_arg: (reg_nat n -> reg_64))
(regs_mod reserved_regs: (reg_64 -> bool))
(args: list td)
(i: nat{i + List.Tot.length args <= n})
(ret_val: option string)
(reg_names: (reg_64 -> string))
(counter: nat)
(arg_names: (nat -> string))
: list string & (reg_64 -> string) & nat | val get_modified_input_strings
(n: nat)
(of_arg: (reg_nat n -> reg_64))
(regs_mod reserved_regs: (reg_64 -> bool))
(args: list td)
(i: nat{i + List.Tot.length args <= n})
(ret_val: option string)
(reg_names: (reg_64 -> string))
(counter: nat)
(arg_names: (nat -> string))
: list string & (reg_64 -> string) & nat | let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 42,
"end_line": 129,
"start_col": 0,
"start_line": 120
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.nat ->
of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) ->
regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
reserved_regs: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
args: Prims.list Vale.Interop.Base.td ->
i: Prims.nat{i + FStar.List.Tot.Base.length args <= n} ->
ret_val: FStar.Pervasives.Native.option Prims.string ->
reg_names: (_: Vale.X64.Machine_s.reg_64 -> Prims.string) ->
counter: Prims.nat ->
arg_names: (_: Prims.nat -> Prims.string)
-> (Prims.list Prims.string * (_: Vale.X64.Machine_s.reg_64 -> Prims.string)) * Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Vale.Interop.X64.reg_nat",
"Vale.X64.Machine_s.reg_64",
"Prims.bool",
"Prims.list",
"Vale.Interop.Base.td",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"FStar.List.Tot.Base.length",
"FStar.Pervasives.Native.option",
"Prims.string",
"Vale.X64.Print_Inline_s.print_output_ret",
"FStar.Pervasives.Native.Mktuple3",
"FStar.List.Tot.Base.op_At",
"FStar.Pervasives.Native.tuple3",
"Vale.X64.Print_Inline_s.get_modified_input_strings",
"Vale.X64.Print_Inline_s.print_modified_input"
] | [
"recursion"
] | false | false | false | false | false | let rec get_modified_input_strings
(n: nat)
(of_arg: (reg_nat n -> reg_64))
(regs_mod reserved_regs: (reg_64 -> bool))
(args: list td)
(i: nat{i + List.Tot.length args <= n})
(ret_val: option string)
(reg_names: (reg_64 -> string))
(counter: nat)
(arg_names: (nat -> string))
: list string & (reg_64 -> string) & nat =
| match args with
| [] -> print_output_ret ret_val reg_names counter
| a :: q ->
let output, reg_names, counter =
print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names
in
let outputs, reg_names, counter =
get_modified_input_strings n of_arg regs_mod reserved_regs q (i + 1) ret_val reg_names counter
arg_names
in
output @ outputs, reg_names, counter | false |
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.build_reserved_args | val build_reserved_args (c: code) (reserved: (reg_64 -> bool)) : Tot (reg_64 -> bool) (decreases c) | val build_reserved_args (c: code) (reserved: (reg_64 -> bool)) : Tot (reg_64 -> bool) (decreases c) | let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
) | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 98,
"start_col": 0,
"start_line": 69
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers. | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Vale.X64.Machine_Semantics_s.code -> reserved: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool)
-> Prims.Tot (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) | Prims.Tot | [
"total",
""
] | [
"build_reserved_args",
"build_reserved_args_block"
] | [
"Vale.X64.Machine_Semantics_s.code",
"Vale.X64.Machine_s.reg_64",
"Prims.bool",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.X64.Instruction_s.instr_t_record",
"Vale.X64.Instruction_s.instr_operands_t",
"Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__outs",
"Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__args",
"Vale.X64.Print_Inline_s.build_reserved_args_ins",
"Vale.X64.Print_Inline_s.build_reserved_args_outs",
"Prims.list",
"Vale.X64.Machine_s.precode",
"Vale.X64.Bytes_Code_s.ocmp",
"Vale.X64.Print_Inline_s.build_reserved_args_block",
"Vale.X64.Print_Inline_s.build_reserved_args"
] | [
"mutual recursion"
] | false | false | false | false | false | let rec build_reserved_args (c: code) (reserved: (reg_64 -> bool))
: Tot (reg_64 -> bool) (decreases c) =
| fun r ->
(match c with
| Ins ins ->
(match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r)
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r) | false |
Hacl.P256.PrecompTable.fst | Hacl.P256.PrecompTable.precomp_g_pow2_64_table_list_w4 | val precomp_g_pow2_64_table_list_w4:x: list uint64 {FStar.List.Tot.length x = 192} | val precomp_g_pow2_64_table_list_w4:x: list uint64 {FStar.List.Tot.length x = 192} | let precomp_g_pow2_64_table_list_w4: x:list uint64{FStar.List.Tot.length x = 192} =
normalize_term (SPT.precomp_base_table_list mk_p256_precomp_base_table proj_g_pow2_64 15) | {
"file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 91,
"end_line": 220,
"start_col": 0,
"start_line": 219
} | module Hacl.P256.PrecompTable
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module SPT = Hacl.Spec.PrecompBaseTable
module SPT256 = Hacl.Spec.PrecompBaseTable256
module SPTK = Hacl.Spec.P256.PrecompTable
module S = Spec.P256
module SL = Spec.P256.Lemmas
open Hacl.Impl.P256.Point
include Hacl.Impl.P256.Group
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let proj_point_to_list p =
SPTK.proj_point_to_list_lemma p;
SPTK.proj_point_to_list p
let lemma_refl x =
SPTK.proj_point_to_list_lemma x
//-----------------
inline_for_extraction noextract
let proj_g_pow2_64 : S.proj_point =
[@inline_let]
let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in
[@inline_let]
let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in
[@inline_let]
let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in
(rX, rY, rZ)
val lemma_proj_g_pow2_64_eval : unit ->
Lemma (SE.exp_pow2 S.mk_p256_concrete_ops S.base_point 64 == proj_g_pow2_64)
let lemma_proj_g_pow2_64_eval () =
SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops S.base_point 64;
let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) in
normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64);
let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in
let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in
let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in
assert_norm (qX == rX /\ qY == rY /\ qZ == rZ)
inline_for_extraction noextract
let proj_g_pow2_128 : S.proj_point =
[@inline_let]
let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in
[@inline_let]
let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in
[@inline_let]
let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in
(rX, rY, rZ)
val lemma_proj_g_pow2_128_eval : unit ->
Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128)
let lemma_proj_g_pow2_128_eval () =
SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64;
let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) in
normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64);
let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in
let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in
let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in
assert_norm (qX == rX /\ qY == rY /\ qZ == rZ)
inline_for_extraction noextract
let proj_g_pow2_192 : S.proj_point =
[@inline_let]
let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in
[@inline_let]
let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in
[@inline_let]
let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in
(rX, rY, rZ)
val lemma_proj_g_pow2_192_eval : unit ->
Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192)
let lemma_proj_g_pow2_192_eval () =
SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64;
let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) in
normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64);
let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in
let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in
let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in
assert_norm (qX == rX /\ qY == rY /\ qZ == rZ)
// let proj_g_pow2_64 : S.proj_point =
// normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64)
// let proj_g_pow2_128 : S.proj_point =
// normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64)
// let proj_g_pow2_192 : S.proj_point =
// normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64)
inline_for_extraction noextract
let proj_g_pow2_64_list : SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_64)
inline_for_extraction noextract
let proj_g_pow2_128_list : SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_128)
inline_for_extraction noextract
let proj_g_pow2_192_list : SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_192)
let proj_g_pow2_64_lseq : LSeq.lseq uint64 12 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64);
Seq.seq_of_list proj_g_pow2_64_list
let proj_g_pow2_128_lseq : LSeq.lseq uint64 12 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128);
Seq.seq_of_list proj_g_pow2_128_list
let proj_g_pow2_192_lseq : LSeq.lseq uint64 12 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192);
Seq.seq_of_list proj_g_pow2_192_list
val proj_g_pow2_64_lemma: unit ->
Lemma (S.to_aff_point proj_g_pow2_64 == pow_point (pow2 64) g_aff)
let proj_g_pow2_64_lemma () =
lemma_proj_g_pow2_64_eval ();
SPT256.a_pow2_64_lemma S.mk_p256_concrete_ops S.base_point
val proj_g_pow2_128_lemma: unit ->
Lemma (S.to_aff_point proj_g_pow2_128 == pow_point (pow2 128) g_aff)
let proj_g_pow2_128_lemma () =
lemma_proj_g_pow2_128_eval ();
lemma_proj_g_pow2_64_eval ();
SPT256.a_pow2_128_lemma S.mk_p256_concrete_ops S.base_point
val proj_g_pow2_192_lemma: unit ->
Lemma (S.to_aff_point proj_g_pow2_192 == pow_point (pow2 192) g_aff)
let proj_g_pow2_192_lemma () =
lemma_proj_g_pow2_192_eval ();
lemma_proj_g_pow2_128_eval ();
lemma_proj_g_pow2_64_eval ();
SPT256.a_pow2_192_lemma S.mk_p256_concrete_ops S.base_point
let proj_g_pow2_64_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64);
proj_g_pow2_64_lemma ();
SPTK.proj_point_to_list_lemma proj_g_pow2_64
let proj_g_pow2_128_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128);
proj_g_pow2_128_lemma ();
SPTK.proj_point_to_list_lemma proj_g_pow2_128
let proj_g_pow2_192_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192);
proj_g_pow2_192_lemma ();
SPTK.proj_point_to_list_lemma proj_g_pow2_192
let mk_proj_g_pow2_64 () =
createL proj_g_pow2_64_list
let mk_proj_g_pow2_128 () =
createL proj_g_pow2_128_list
let mk_proj_g_pow2_192 () =
createL proj_g_pow2_192_list
//----------------
/// window size = 4; precomputed table = [[0]G, [1]G, ..., [15]G]
inline_for_extraction noextract
let precomp_basepoint_table_list_w4: x:list uint64{FStar.List.Tot.length x = 192} =
normalize_term (SPT.precomp_base_table_list mk_p256_precomp_base_table S.base_point 15)
let precomp_basepoint_table_lseq_w4 : LSeq.lseq uint64 192 =
normalize_term_spec (SPT.precomp_base_table_list mk_p256_precomp_base_table S.base_point 15);
Seq.seq_of_list precomp_basepoint_table_list_w4
let precomp_basepoint_table_lemma_w4 () =
normalize_term_spec (SPT.precomp_base_table_list mk_p256_precomp_base_table S.base_point 15);
SPT.precomp_base_table_lemma mk_p256_precomp_base_table S.base_point 16 precomp_basepoint_table_lseq_w4
let precomp_basepoint_table_w4:
x:glbuffer uint64 192ul{witnessed x precomp_basepoint_table_lseq_w4 /\ recallable x} =
createL_global precomp_basepoint_table_list_w4
/// window size = 4; precomputed table = [[0]([pow2 64]G), [1]([pow2 64]G), ..., [15]([pow2 64]G)] | {
"checked_file": "/",
"dependencies": [
"Spec.P256.Lemmas.fsti.checked",
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.PrecompBaseTable256.fsti.checked",
"Hacl.Spec.PrecompBaseTable.fsti.checked",
"Hacl.Spec.P256.PrecompTable.fsti.checked",
"Hacl.Impl.P256.Point.fsti.checked",
"Hacl.Impl.P256.Group.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.P256.PrecompTable.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Group",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Point",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.P256.Lemmas",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.PrecompTable",
"short_module": "SPTK"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable256",
"short_module": "SPT256"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable",
"short_module": "SPT"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Group",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Point",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable",
"short_module": "SPT"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation.Definitions",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x:
Prims.list (Lib.IntTypes.int_t Lib.IntTypes.U64 Lib.IntTypes.SEC)
{FStar.List.Tot.Base.length x = 192} | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.normalize_term",
"Prims.list",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.List.Tot.Base.length",
"Hacl.Spec.PrecompBaseTable.precomp_base_table_list",
"Spec.P256.PointOps.proj_point",
"FStar.UInt32.uint_to_t",
"Hacl.P256.PrecompTable.mk_p256_precomp_base_table",
"Hacl.P256.PrecompTable.proj_g_pow2_64"
] | [] | false | false | false | false | false | let precomp_g_pow2_64_table_list_w4:x: list uint64 {FStar.List.Tot.length x = 192} =
| normalize_term (SPT.precomp_base_table_list mk_p256_precomp_base_table proj_g_pow2_64 15) | false |
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.print_spaces | val print_spaces (n: nat) : string | val print_spaces (n: nat) : string | let rec print_spaces (n:nat) : string =
match n with
| 0 -> ""
| n -> " " ^ print_spaces (n-1) | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 33,
"end_line": 248,
"start_col": 0,
"start_line": 245
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr
// If the register in which an arg is passed is not modified, we should specify it as `"r" (name)`
let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1)
// Get a list of strings corresponding to modified inputs
let rec get_nonmodified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string)
= match args with
| [] -> [], reg_names, counter
| a::q ->
let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in
let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in
input @ inputs, reg_names, counter
let print_nonmodified_inputs
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in
aux inputs, input_reg_names, counter
// Print the list of modified registers, + memory and cc
let print_modified_registers
(n:nat)
(ret_val:option string)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_args:reg_64 -> bool)
(args:list td) =
// This register was already specified as output
let output_register a = Some? ret_val && a = rRax in
let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) =
if i >= n then false
else
a = of_arg i // This register was already specified for the i-th argument
|| input_register (i+1) a
in
let rec aux = function
| [] -> "\"memory\", \"cc\"\n"
| a::q ->
// This register is not modified, or was already specified as input or output: we skip it
if not (regs_mod a) || input_register 0 a || output_register a then aux q
// Register not modified or already specified in inputs, we add it
else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q
in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15]
// Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n"
let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
let ty = match a with
| TD_Base _ -> "uint64_t "
| _ -> "uint64_t *"
in
if reserved (of_arg i) then
// If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions
true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n"
else false, ""
let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
match args with
| [] -> false, ""
| a::q ->
let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in
let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in
was_explicit || are_explicit, explicit_str ^ rest_str
// If we have a return parameter with a reserved register, print "register uint64_t [name] __asm__("rax");\n"
let print_register_ret (reserved:reg_64 -> bool) = function
| None -> ""
| Some name -> if reserved rRax then " register uint64_t " ^ name ^ " __asm__(\"rax\");\n" else " uint64_t " ^ name ^ ";\n"
(* This is a copy from X64.Print_s, and should remain in sync. The difference is that
each line should be in quotes, and end by a semicolon in inline assembly *)
let print_cmp (c:ocmp) (counter:int) (p:P.printer) : string =
let print_ops (o1:operand64) (o2:operand64) : string =
let first, second = p.P.op_order (P.print_operand o1 p) (P.print_operand o2 p) in
" cmp " ^ first ^ ", " ^ second ^ "\n"
in
match c with
| OEq o1 o2 -> " \"" ^ print_ops o1 o2 ^ " je " ^ "L" ^ string_of_int counter ^ ";\"\n"
| ONe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jne "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jbe "^ "L" ^ string_of_int counter ^ ";\"\n"
| OGe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jae "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jb " ^ "L" ^ string_of_int counter ^ ";\"\n"
| OGt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " ja " ^ "L" ^ string_of_int counter ^ ";\"\n" | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> Prims.string | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.int",
"Prims.op_Hat",
"Vale.X64.Print_Inline_s.print_spaces",
"Prims.op_Subtraction",
"Prims.string"
] | [
"recursion"
] | false | false | false | true | false | let rec print_spaces (n: nat) : string =
| match n with
| 0 -> ""
| n -> " " ^ print_spaces (n - 1) | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.max | val max : x: Prims.int -> y: Prims.int -> z: Prims.int{(x >= y ==> z = x) /\ (x < y ==> z = y)} | let max = FStar.Math.Lib.max | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 35,
"end_line": 6,
"start_col": 7,
"start_line": 6
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> y: Prims.int -> z: Prims.int{(x >= y ==> z = x) /\ (x < y ==> z = y)} | Prims.Tot | [
"total"
] | [] | [
"FStar.Math.Lib.max"
] | [] | false | false | false | false | false | let max =
| FStar.Math.Lib.max | false |
|
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.get_nonmodified_input_strings | val get_nonmodified_input_strings : n: Prims.nat ->
of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) ->
regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
reserved_regs: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
args: Prims.list Vale.Interop.Base.td ->
i: Prims.nat{FStar.List.Tot.Base.length args + i <= n} ->
reg_names: (_: Vale.X64.Machine_s.reg_64 -> Prims.string) ->
counter: Prims.nat ->
arg_names: (_: Prims.nat -> Prims.string)
-> (Prims.list Prims.string * (_: Vale.X64.Machine_s.reg_64 -> Prims.string)) * Prims.nat | let rec get_nonmodified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string)
= match args with
| [] -> [], reg_names, counter
| a::q ->
let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in
let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in
input @ inputs, reg_names, counter | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 38,
"end_line": 168,
"start_col": 0,
"start_line": 160
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr
// If the register in which an arg is passed is not modified, we should specify it as `"r" (name)`
let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.nat ->
of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) ->
regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
reserved_regs: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
args: Prims.list Vale.Interop.Base.td ->
i: Prims.nat{FStar.List.Tot.Base.length args + i <= n} ->
reg_names: (_: Vale.X64.Machine_s.reg_64 -> Prims.string) ->
counter: Prims.nat ->
arg_names: (_: Prims.nat -> Prims.string)
-> (Prims.list Prims.string * (_: Vale.X64.Machine_s.reg_64 -> Prims.string)) * Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Vale.Interop.X64.reg_nat",
"Vale.X64.Machine_s.reg_64",
"Prims.bool",
"Prims.list",
"Vale.Interop.Base.td",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"FStar.List.Tot.Base.length",
"Prims.string",
"FStar.Pervasives.Native.Mktuple3",
"Prims.Nil",
"FStar.List.Tot.Base.op_At",
"FStar.Pervasives.Native.tuple3",
"Vale.X64.Print_Inline_s.get_nonmodified_input_strings",
"Vale.X64.Print_Inline_s.print_nonmodified_input"
] | [
"recursion"
] | false | false | false | false | false | let rec get_nonmodified_input_strings
(n: nat)
(of_arg: (reg_nat n -> reg_64))
(regs_mod reserved_regs: (reg_64 -> bool))
(args: list td)
(i: nat{List.Tot.length args + i <= n})
(reg_names: (reg_64 -> string))
(counter: nat)
(arg_names: (nat -> string))
=
| match args with
| [] -> [], reg_names, counter
| a :: q ->
let input, reg_names, counter =
print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names
in
let inputs, reg_names, counter =
get_nonmodified_input_strings n
of_arg
regs_mod
reserved_regs
q
(i + 1)
reg_names
counter
arg_names
in
input @ inputs, reg_names, counter | false |
|
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.poly_equal | val poly_equal (a b: poly) : prop0 | val poly_equal (a b: poly) : prop0 | let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i]) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 59,
"end_line": 11,
"start_col": 0,
"start_line": 10
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10" | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> Vale.Def.Prop_s.prop0 | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"Prims.l_Forall",
"Prims.nat",
"Prims.eq2",
"Prims.bool",
"Vale.Math.Poly2.Defs_s.op_String_Access",
"Vale.Def.Prop_s.prop0"
] | [] | false | false | false | true | false | let poly_equal (a b: poly) : prop0 =
| (forall (i: nat). {:pattern a.[ i ]\/b.[ i ]} a.[ i ] == b.[ i ]) | false |
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.print_register_ret | val print_register_ret : reserved: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
_: FStar.Pervasives.Native.option Prims.string
-> Prims.string | let print_register_ret (reserved:reg_64 -> bool) = function
| None -> ""
| Some name -> if reserved rRax then " register uint64_t " ^ name ^ " __asm__(\"rax\");\n" else " uint64_t " ^ name ^ ";\n" | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 127,
"end_line": 228,
"start_col": 0,
"start_line": 226
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr
// If the register in which an arg is passed is not modified, we should specify it as `"r" (name)`
let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1)
// Get a list of strings corresponding to modified inputs
let rec get_nonmodified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string)
= match args with
| [] -> [], reg_names, counter
| a::q ->
let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in
let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in
input @ inputs, reg_names, counter
let print_nonmodified_inputs
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in
aux inputs, input_reg_names, counter
// Print the list of modified registers, + memory and cc
let print_modified_registers
(n:nat)
(ret_val:option string)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_args:reg_64 -> bool)
(args:list td) =
// This register was already specified as output
let output_register a = Some? ret_val && a = rRax in
let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) =
if i >= n then false
else
a = of_arg i // This register was already specified for the i-th argument
|| input_register (i+1) a
in
let rec aux = function
| [] -> "\"memory\", \"cc\"\n"
| a::q ->
// This register is not modified, or was already specified as input or output: we skip it
if not (regs_mod a) || input_register 0 a || output_register a then aux q
// Register not modified or already specified in inputs, we add it
else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q
in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15]
// Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n"
let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
let ty = match a with
| TD_Base _ -> "uint64_t "
| _ -> "uint64_t *"
in
if reserved (of_arg i) then
// If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions
true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n"
else false, ""
let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
match args with
| [] -> false, ""
| a::q ->
let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in
let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in
was_explicit || are_explicit, explicit_str ^ rest_str | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
reserved: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
_: FStar.Pervasives.Native.option Prims.string
-> Prims.string | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.Machine_s.reg_64",
"Prims.bool",
"FStar.Pervasives.Native.option",
"Prims.string",
"Vale.X64.Machine_s.rRax",
"Prims.op_Hat"
] | [] | false | false | false | true | false | let print_register_ret (reserved: (reg_64 -> bool)) =
| function
| None -> ""
| Some name ->
if reserved rRax
then " register uint64_t " ^ name ^ " __asm__(\"rax\");\n"
else " uint64_t " ^ name ^ ";\n" | false |
|
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.print_nonmodified_inputs | val print_nonmodified_inputs : n: Prims.nat ->
of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) ->
regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
reserved_regs: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
args: Prims.list Vale.Interop.Base.td {FStar.List.Tot.Base.length args <= n} ->
reg_names: (_: Vale.X64.Machine_s.reg_64 -> Prims.string) ->
counter: Prims.nat ->
arg_names: (_: Prims.nat -> Prims.string)
-> (Prims.string * (_: Vale.X64.Machine_s.reg_64 -> Prims.string)) * Prims.nat | let print_nonmodified_inputs
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in
aux inputs, input_reg_names, counter | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 38,
"end_line": 179,
"start_col": 0,
"start_line": 170
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr
// If the register in which an arg is passed is not modified, we should specify it as `"r" (name)`
let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1)
// Get a list of strings corresponding to modified inputs
let rec get_nonmodified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string)
= match args with
| [] -> [], reg_names, counter
| a::q ->
let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in
let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in
input @ inputs, reg_names, counter | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.nat ->
of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) ->
regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
reserved_regs: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
args: Prims.list Vale.Interop.Base.td {FStar.List.Tot.Base.length args <= n} ->
reg_names: (_: Vale.X64.Machine_s.reg_64 -> Prims.string) ->
counter: Prims.nat ->
arg_names: (_: Prims.nat -> Prims.string)
-> (Prims.string * (_: Vale.X64.Machine_s.reg_64 -> Prims.string)) * Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Vale.Interop.X64.reg_nat",
"Vale.X64.Machine_s.reg_64",
"Prims.bool",
"Prims.list",
"Vale.Interop.Base.td",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.List.Tot.Base.length",
"Prims.string",
"FStar.Pervasives.Native.Mktuple3",
"FStar.Pervasives.Native.tuple3",
"Vale.X64.Print_Inline_s.get_nonmodified_input_strings",
"Prims.op_Hat"
] | [] | false | false | false | false | false | let print_nonmodified_inputs
(n: nat)
(of_arg: (reg_nat n -> reg_64))
(regs_mod reserved_regs: (reg_64 -> bool))
(args: list td {List.Tot.length args <= n})
(reg_names: (reg_64 -> string))
(counter: nat)
(arg_names: (nat -> string))
=
| let rec aux =
function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let inputs, input_reg_names, counter =
get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names
in
aux inputs, input_reg_names, counter | false |
|
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.print_explicit_register_args | val print_explicit_register_args : n: Prims.nat ->
args: Prims.list Vale.Interop.Base.td ->
i: Prims.nat{i + FStar.List.Tot.Base.length args = n} ->
of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) ->
reserved: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
names: (_: Prims.nat -> Prims.string)
-> Prims.bool * Prims.string | let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
match args with
| [] -> false, ""
| a::q ->
let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in
let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in
was_explicit || are_explicit, explicit_str ^ rest_str | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 57,
"end_line": 223,
"start_col": 0,
"start_line": 217
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr
// If the register in which an arg is passed is not modified, we should specify it as `"r" (name)`
let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1)
// Get a list of strings corresponding to modified inputs
let rec get_nonmodified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string)
= match args with
| [] -> [], reg_names, counter
| a::q ->
let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in
let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in
input @ inputs, reg_names, counter
let print_nonmodified_inputs
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in
aux inputs, input_reg_names, counter
// Print the list of modified registers, + memory and cc
let print_modified_registers
(n:nat)
(ret_val:option string)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_args:reg_64 -> bool)
(args:list td) =
// This register was already specified as output
let output_register a = Some? ret_val && a = rRax in
let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) =
if i >= n then false
else
a = of_arg i // This register was already specified for the i-th argument
|| input_register (i+1) a
in
let rec aux = function
| [] -> "\"memory\", \"cc\"\n"
| a::q ->
// This register is not modified, or was already specified as input or output: we skip it
if not (regs_mod a) || input_register 0 a || output_register a then aux q
// Register not modified or already specified in inputs, we add it
else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q
in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15]
// Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n"
let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
let ty = match a with
| TD_Base _ -> "uint64_t "
| _ -> "uint64_t *"
in
if reserved (of_arg i) then
// If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions
true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n"
else false, "" | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.nat ->
args: Prims.list Vale.Interop.Base.td ->
i: Prims.nat{i + FStar.List.Tot.Base.length args = n} ->
of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) ->
reserved: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
names: (_: Prims.nat -> Prims.string)
-> Prims.bool * Prims.string | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.list",
"Vale.Interop.Base.td",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Addition",
"FStar.List.Tot.Base.length",
"Vale.Interop.X64.reg_nat",
"Vale.X64.Machine_s.reg_64",
"Prims.bool",
"Prims.string",
"FStar.Pervasives.Native.Mktuple2",
"Prims.op_BarBar",
"Prims.op_Hat",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.Print_Inline_s.print_explicit_register_args",
"Vale.X64.Print_Inline_s.print_explicit_register_arg"
] | [
"recursion"
] | false | false | false | false | false | let rec print_explicit_register_args
(n: nat)
(args: list td)
(i: nat{i + List.length args = n})
(of_arg: (reg_nat n -> reg_64))
(reserved: (reg_64 -> bool))
(names: (nat -> string))
=
| match args with
| [] -> false, ""
| a :: q ->
let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in
let are_explicit, rest_str = print_explicit_register_args n q (i + 1) of_arg reserved names in
was_explicit || are_explicit, explicit_str ^ rest_str | false |
|
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.print_modified_registers | val print_modified_registers : n: Prims.nat ->
ret_val: FStar.Pervasives.Native.option Prims.string ->
of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) ->
regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
reserved_args: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
args: Prims.list Vale.Interop.Base.td
-> Prims.string | let print_modified_registers
(n:nat)
(ret_val:option string)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_args:reg_64 -> bool)
(args:list td) =
// This register was already specified as output
let output_register a = Some? ret_val && a = rRax in
let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) =
if i >= n then false
else
a = of_arg i // This register was already specified for the i-th argument
|| input_register (i+1) a
in
let rec aux = function
| [] -> "\"memory\", \"cc\"\n"
| a::q ->
// This register is not modified, or was already specified as input or output: we skip it
if not (regs_mod a) || input_register 0 a || output_register a then aux q
// Register not modified or already specified in inputs, we add it
else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q
in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15] | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 103,
"end_line": 204,
"start_col": 0,
"start_line": 182
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr
// If the register in which an arg is passed is not modified, we should specify it as `"r" (name)`
let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1)
// Get a list of strings corresponding to modified inputs
let rec get_nonmodified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string)
= match args with
| [] -> [], reg_names, counter
| a::q ->
let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in
let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in
input @ inputs, reg_names, counter
let print_nonmodified_inputs
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in
aux inputs, input_reg_names, counter | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.nat ->
ret_val: FStar.Pervasives.Native.option Prims.string ->
of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64) ->
regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
reserved_args: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
args: Prims.list Vale.Interop.Base.td
-> Prims.string | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.Pervasives.Native.option",
"Prims.string",
"Vale.Interop.X64.reg_nat",
"Vale.X64.Machine_s.reg_64",
"Prims.bool",
"Prims.list",
"Vale.Interop.Base.td",
"Prims.Cons",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Machine_s.rRbx",
"Vale.X64.Machine_s.rRcx",
"Vale.X64.Machine_s.rRdx",
"Vale.X64.Machine_s.rRsi",
"Vale.X64.Machine_s.rRdi",
"Vale.X64.Machine_s.rRbp",
"Vale.X64.Machine_s.rRsp",
"Vale.X64.Machine_s.rR8",
"Vale.X64.Machine_s.rR9",
"Vale.X64.Machine_s.rR10",
"Vale.X64.Machine_s.rR11",
"Vale.X64.Machine_s.rR12",
"Vale.X64.Machine_s.rR13",
"Vale.X64.Machine_s.rR14",
"Vale.X64.Machine_s.rR15",
"Prims.Nil",
"Prims.op_BarBar",
"Prims.op_Negation",
"Prims.op_Hat",
"Vale.X64.Print_s.print_reg_name",
"Prims.op_Subtraction",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Equality",
"Prims.op_Addition",
"Prims.op_AmpAmp",
"FStar.Pervasives.Native.uu___is_Some"
] | [] | false | false | false | false | false | let print_modified_registers
(n: nat)
(ret_val: option string)
(of_arg: (reg_nat n -> reg_64))
(regs_mod reserved_args: (reg_64 -> bool))
(args: list td)
=
| let output_register a = Some? ret_val && a = rRax in
let rec input_register (i: nat) (a: reg_64) : Tot bool (decreases (n - i)) =
if i >= n then false else a = of_arg i || input_register (i + 1) a
in
let rec aux =
function
| [] -> "\"memory\", \"cc\"\n"
| a :: q ->
if not (regs_mod a) || input_register 0 a || output_register a
then aux q
else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q
in
aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15] | false |
|
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.print_fn_comments | val print_fn_comments : _: Prims.list Prims.string -> Prims.string | let rec print_fn_comments = function
| [] -> ""
| hd::tl -> "// " ^ hd ^ "\n" ^ print_fn_comments tl | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 54,
"end_line": 302,
"start_col": 0,
"start_line": 300
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr
// If the register in which an arg is passed is not modified, we should specify it as `"r" (name)`
let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1)
// Get a list of strings corresponding to modified inputs
let rec get_nonmodified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string)
= match args with
| [] -> [], reg_names, counter
| a::q ->
let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in
let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in
input @ inputs, reg_names, counter
let print_nonmodified_inputs
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in
aux inputs, input_reg_names, counter
// Print the list of modified registers, + memory and cc
let print_modified_registers
(n:nat)
(ret_val:option string)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_args:reg_64 -> bool)
(args:list td) =
// This register was already specified as output
let output_register a = Some? ret_val && a = rRax in
let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) =
if i >= n then false
else
a = of_arg i // This register was already specified for the i-th argument
|| input_register (i+1) a
in
let rec aux = function
| [] -> "\"memory\", \"cc\"\n"
| a::q ->
// This register is not modified, or was already specified as input or output: we skip it
if not (regs_mod a) || input_register 0 a || output_register a then aux q
// Register not modified or already specified in inputs, we add it
else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q
in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15]
// Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n"
let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
let ty = match a with
| TD_Base _ -> "uint64_t "
| _ -> "uint64_t *"
in
if reserved (of_arg i) then
// If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions
true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n"
else false, ""
let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
match args with
| [] -> false, ""
| a::q ->
let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in
let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in
was_explicit || are_explicit, explicit_str ^ rest_str
// If we have a return parameter with a reserved register, print "register uint64_t [name] __asm__("rax");\n"
let print_register_ret (reserved:reg_64 -> bool) = function
| None -> ""
| Some name -> if reserved rRax then " register uint64_t " ^ name ^ " __asm__(\"rax\");\n" else " uint64_t " ^ name ^ ";\n"
(* This is a copy from X64.Print_s, and should remain in sync. The difference is that
each line should be in quotes, and end by a semicolon in inline assembly *)
let print_cmp (c:ocmp) (counter:int) (p:P.printer) : string =
let print_ops (o1:operand64) (o2:operand64) : string =
let first, second = p.P.op_order (P.print_operand o1 p) (P.print_operand o2 p) in
" cmp " ^ first ^ ", " ^ second ^ "\n"
in
match c with
| OEq o1 o2 -> " \"" ^ print_ops o1 o2 ^ " je " ^ "L" ^ string_of_int counter ^ ";\"\n"
| ONe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jne "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jbe "^ "L" ^ string_of_int counter ^ ";\"\n"
| OGe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jae "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jb " ^ "L" ^ string_of_int counter ^ ";\"\n"
| OGt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " ja " ^ "L" ^ string_of_int counter ^ ";\"\n"
let rec print_spaces (n:nat) : string =
match n with
| 0 -> ""
| n -> " " ^ print_spaces (n-1)
(* Overriding printer for formatting instructions *)
let print_ins (ins:ins) (p:P.printer) : string =
match ins with
| Instr _ _ (AnnotateComment s) -> " // " ^ s
| Instr _ _ (AnnotateLargeComment s) -> "\n /////// " ^ s ^ " ////// \n"
| Instr _ _ (AnnotateSpace n) -> print_spaces n
| _ -> " \"" ^ P.print_ins ins p ^ ";\""
let rec print_block (b:codes) (n:int) (p:P.printer) : string & int =
match b with
| Nil -> "", n
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins (Instr _ _ (AnnotateComment s)) :: tail ->
let head_str = " // " ^ s ^ "\n" in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins i :: tail ->
let head_str = print_ins i p in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateNewline _)) :: tail ->
let rest, n' = print_block tail n p in
"\n" ^ rest, n'
| head :: tail ->
let head_str, n' = print_code head n p in
let rest, n'' = print_block tail n' p in
head_str ^ rest, n''
and print_code (c:code) (n:int) (p:P.printer) : string & int =
match c with
| Ins ins -> (print_ins ins p ^ "\n", n)
| Block b -> print_block b n p
| IfElse cond true_code false_code ->
let n1 = n in
let n2 = n + 1 in
let cmp = print_cmp (P.cmp_not cond) n1 p in
let true_str, n' = print_code true_code (n + 2) p in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"L" ^ string_of_int n1 ^ ":\"\n" in
let false_str, n' = print_code false_code n' p in
let label2 = " \"L" ^ string_of_int n2 ^ ":\"\n" in
cmp ^ true_str ^ jmp ^ label1 ^ false_str ^ label2, n'
| While cond body ->
let n1 = n in
let n2 = n + 1 in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n1 ^ ":\"\n" in
let body_str, n' = print_code body (n + 2) p in
let label2 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n2 ^ ":\"\n" in
let cmp = print_cmp cond n1 p in
jmp ^ label1 ^ body_str ^ label2 ^ cmp, n' | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.list Prims.string -> Prims.string | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Prims.string",
"Prims.op_Hat",
"Vale.X64.Print_Inline_s.print_fn_comments"
] | [
"recursion"
] | false | false | false | true | false | let rec print_fn_comments =
| function
| [] -> ""
| hd :: tl -> "// " ^ hd ^ "\n" ^ print_fn_comments tl | false |
|
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_pointwise_equal | val lemma_pointwise_equal (a b: poly) (pf: (i: int -> Lemma (a.[ i ] == b.[ i ]))) : Lemma (a == b) | val lemma_pointwise_equal (a b: poly) (pf: (i: int -> Lemma (a.[ i ] == b.[ i ]))) : Lemma (a == b) | let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 27,
"end_line": 33,
"start_col": 0,
"start_line": 31
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Vale.Math.Poly2.Defs_s.poly ->
b: Vale.Math.Poly2.Defs_s.poly ->
pf: (i: Prims.int -> FStar.Pervasives.Lemma (ensures a.[ i ] == b.[ i ]))
-> FStar.Pervasives.Lemma (ensures a == b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"Prims.int",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.bool",
"Vale.Math.Poly2.Defs_s.op_String_Access",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Vale.Math.Poly2.Defs.lemma_poly_equal_elim",
"FStar.Classical.forall_intro"
] | [] | false | false | true | false | false | let lemma_pointwise_equal (a b: poly) (pf: (i: int -> Lemma (a.[ i ] == b.[ i ]))) : Lemma (a == b) =
| FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_sum_of_zero | val lemma_sum_of_zero (j k: int) (f: (int -> bool))
: Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j)) | val lemma_sum_of_zero (j k: int) (f: (int -> bool))
: Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j)) | let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 45,
"end_line": 64,
"start_col": 0,
"start_line": 59
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
() | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | j: Prims.int -> k: Prims.int -> f: (_: Prims.int -> Prims.bool)
-> FStar.Pervasives.Lemma
(requires forall (i: Prims.int). {:pattern f i} j <= i /\ i < k ==> Prims.op_Negation (f i))
(ensures Prims.op_Negation (Vale.Math.Poly2.Defs_s.sum_of_bools j k f))
(decreases k - j) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.int",
"Prims.bool",
"Prims.op_LessThan",
"Vale.Math.Poly2.Defs.lemma_sum_of_zero",
"Prims.op_Subtraction",
"Prims.unit",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Negation",
"Prims.squash",
"Vale.Math.Poly2.Defs_s.sum_of_bools",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_sum_of_zero (j k: int) (f: (int -> bool))
: Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j)) =
| if j < k then lemma_sum_of_zero j (k - 1) f | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_add_move | val lemma_add_move (a b: poly) : Lemma (ensures a == (a +. b) +. b) | val lemma_add_move (a b: poly) : Lemma (ensures a == (a +. b) +. b) | let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 47,
"start_col": 0,
"start_line": 44
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = () | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly
-> FStar.Pervasives.Lemma (ensures a == a +. b +. b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"Vale.Math.Poly2.Defs.lemma_add_zero",
"Prims.unit",
"Vale.Math.Poly2.Defs.lemma_add_cancel",
"Vale.Math.Poly2.Defs.lemma_add_associate",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Vale.Math.Poly2.Defs.op_Plus_Dot",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_add_move (a b: poly) : Lemma (ensures a == (a +. b) +. b) =
| lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_poly_equal_elim | val lemma_poly_equal_elim (a b: poly)
: Lemma (requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)] | val lemma_poly_equal_elim (a b: poly)
: Lemma (requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)] | let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 20,
"end_line": 29,
"start_col": 0,
"start_line": 19
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly
-> FStar.Pervasives.Lemma (requires a =. b)
(ensures a == b)
(decreases FStar.Seq.Base.length a + FStar.Seq.Base.length b)
[SMTPat (Vale.Math.Poly2.Defs.poly_equal a b)] | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"Prims._assert",
"FStar.Seq.Base.equal",
"Prims.bool",
"Prims.unit",
"Prims.l_Forall",
"Prims.nat",
"Prims.eq2",
"Vale.Math.Poly2.Defs_s.op_String_Access",
"FStar.Seq.Base.index",
"FStar.Seq.Base.length",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_GreaterThan",
"Prims.op_Subtraction",
"Prims.int",
"Prims.l_and",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Equality",
"Prims.op_LessThan",
"Vale.Math.Poly2.Defs.max",
"Prims.op_Addition",
"Vale.Math.Poly2.Defs.op_Equals_Dot",
"Prims.squash",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Vale.Def.Prop_s.prop0",
"Vale.Math.Poly2.Defs.poly_equal",
"Prims.Nil"
] | [] | false | false | true | false | false | let lemma_poly_equal_elim (a b: poly)
: Lemma (requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)] =
| let len = max (length a) (length b) in
assert (len > 0 ==> a.[ len - 1 ] == b.[ len - 1 ]);
assert (length a == length b);
assert (forall (i: nat). {:pattern (index a i)\/(index b i)} a.[ i ] == b.[ i ]);
assert (equal a b) | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_sum_join | val lemma_sum_join (i j k: int) (f: (int -> bool))
: Lemma (requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j)) | val lemma_sum_join (i j k: int) (f: (int -> bool))
: Lemma (requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j)) | let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 44,
"end_line": 71,
"start_col": 0,
"start_line": 66
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Prims.int -> j: Prims.int -> k: Prims.int -> f: (_: Prims.int -> Prims.bool)
-> FStar.Pervasives.Lemma (requires i <= j /\ j <= k)
(ensures
Vale.Math.Poly2.Defs_s.sum_of_bools i k f ==
(Vale.Math.Poly2.Defs_s.sum_of_bools i j f <> Vale.Math.Poly2.Defs_s.sum_of_bools j k f))
(decreases k - j) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.int",
"Prims.bool",
"Prims.op_LessThan",
"Vale.Math.Poly2.Defs.lemma_sum_join",
"Prims.op_Subtraction",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.squash",
"Prims.eq2",
"Vale.Math.Poly2.Defs_s.sum_of_bools",
"Prims.op_disEquality",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_sum_join (i j k: int) (f: (int -> bool))
: Lemma (requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j)) =
| if j < k then lemma_sum_join i j (k - 1) f | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_mul_commute | val lemma_mul_commute (a b: poly) : Lemma ((a *. b) =. (b *. a)) | val lemma_mul_commute (a b: poly) : Lemma ((a *. b) =. (b *. a)) | let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) =
let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) =
lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k)
in
FStar.Classical.forall_intro f | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 246,
"start_col": 0,
"start_line": 242
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
)
// Corollary for lemma_mul_associate
let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
k > 0 /\
(forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x)
)
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
=
// Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap:
// 0
// 00
// /|\ 00#
// | 0##0
// y ###00
//
// x -->
let k' = k + k - 1 in
let lemma_f (x:nat) : Lemma
(ensures
(k <= x ==> not (f x)) /\
(x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))
)
=
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y:nat) : Lemma
(ensures
(k <= y ==> not (g y)) /\
(y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))
)
=
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
()
let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if j < k then
(
pf (k - 1);
lemma_sum_pointwise_equal j (k - 1) f g pf
)
// MULTIPLICATION
let lemma_mul_element (a b:poly) (k:int) : Lemma
(requires True)
(ensures (a *. b).[k] == mul_element a b k)
[SMTPat (a *. b).[k]]
=
if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k)
let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) =
let f (k:nat) : Lemma (not (mul_element a zero k)) =
lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k)
in
FStar.Classical.forall_intro f
let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) =
let f (k:nat) : Lemma (mul_element a one k == a.[k]) =
lemma_sum_of_zero 0 k (mul_element_fun a one k)
in
FStar.Classical.forall_intro f | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly
-> FStar.Pervasives.Lemma (ensures a *. b =. b *. a) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"FStar.Classical.forall_intro",
"Prims.nat",
"Prims.eq2",
"Prims.bool",
"Vale.Math.Poly2.Defs_s.mul_element",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Vale.Math.Poly2.Defs.lemma_sum_reverse",
"Prims.op_Addition",
"Vale.Math.Poly2.Defs_s.mul_element_fun",
"Vale.Math.Poly2.Defs.op_Equals_Dot",
"Vale.Math.Poly2.Defs.op_Star_Dot"
] | [] | false | false | true | false | false | let lemma_mul_commute (a b: poly) : Lemma ((a *. b) =. (b *. a)) =
| let f (k: nat) : Lemma (mul_element a b k == mul_element b a k) =
lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k)
in
FStar.Classical.forall_intro f | false |
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.print_cmp | val print_cmp (c: ocmp) (counter: int) (p: P.printer) : string | val print_cmp (c: ocmp) (counter: int) (p: P.printer) : string | let print_cmp (c:ocmp) (counter:int) (p:P.printer) : string =
let print_ops (o1:operand64) (o2:operand64) : string =
let first, second = p.P.op_order (P.print_operand o1 p) (P.print_operand o2 p) in
" cmp " ^ first ^ ", " ^ second ^ "\n"
in
match c with
| OEq o1 o2 -> " \"" ^ print_ops o1 o2 ^ " je " ^ "L" ^ string_of_int counter ^ ";\"\n"
| ONe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jne "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jbe "^ "L" ^ string_of_int counter ^ ";\"\n"
| OGe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jae "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jb " ^ "L" ^ string_of_int counter ^ ";\"\n"
| OGt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " ja " ^ "L" ^ string_of_int counter ^ ";\"\n" | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 93,
"end_line": 243,
"start_col": 0,
"start_line": 232
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr
// If the register in which an arg is passed is not modified, we should specify it as `"r" (name)`
let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1)
// Get a list of strings corresponding to modified inputs
let rec get_nonmodified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string)
= match args with
| [] -> [], reg_names, counter
| a::q ->
let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in
let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in
input @ inputs, reg_names, counter
let print_nonmodified_inputs
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in
aux inputs, input_reg_names, counter
// Print the list of modified registers, + memory and cc
let print_modified_registers
(n:nat)
(ret_val:option string)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_args:reg_64 -> bool)
(args:list td) =
// This register was already specified as output
let output_register a = Some? ret_val && a = rRax in
let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) =
if i >= n then false
else
a = of_arg i // This register was already specified for the i-th argument
|| input_register (i+1) a
in
let rec aux = function
| [] -> "\"memory\", \"cc\"\n"
| a::q ->
// This register is not modified, or was already specified as input or output: we skip it
if not (regs_mod a) || input_register 0 a || output_register a then aux q
// Register not modified or already specified in inputs, we add it
else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q
in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15]
// Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n"
let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
let ty = match a with
| TD_Base _ -> "uint64_t "
| _ -> "uint64_t *"
in
if reserved (of_arg i) then
// If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions
true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n"
else false, ""
let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
match args with
| [] -> false, ""
| a::q ->
let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in
let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in
was_explicit || are_explicit, explicit_str ^ rest_str
// If we have a return parameter with a reserved register, print "register uint64_t [name] __asm__("rax");\n"
let print_register_ret (reserved:reg_64 -> bool) = function
| None -> ""
| Some name -> if reserved rRax then " register uint64_t " ^ name ^ " __asm__(\"rax\");\n" else " uint64_t " ^ name ^ ";\n"
(* This is a copy from X64.Print_s, and should remain in sync. The difference is that | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Vale.X64.Machine_Semantics_s.ocmp -> counter: Prims.int -> p: Vale.X64.Print_s.printer
-> Prims.string | Prims.Tot | [
"total"
] | [] | [
"Vale.X64.Machine_Semantics_s.ocmp",
"Prims.int",
"Vale.X64.Print_s.printer",
"Vale.X64.Machine_s.operand64",
"Prims.b2t",
"Prims.op_Negation",
"Prims.op_BarBar",
"Vale.X64.Machine_s.uu___is_OMem",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Vale.X64.Machine_s.uu___is_OStack",
"Prims.op_Hat",
"Prims.string_of_int",
"Prims.string",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.Print_s.__proj__Mkprinter__item__op_order",
"Vale.X64.Print_s.print_operand"
] | [] | false | false | false | true | false | let print_cmp (c: ocmp) (counter: int) (p: P.printer) : string =
| let print_ops (o1 o2: operand64) : string =
let first, second = p.P.op_order (P.print_operand o1 p) (P.print_operand o2 p) in
" cmp " ^ first ^ ", " ^ second ^ "\n"
in
match c with
| OEq o1 o2 -> " \"" ^ print_ops o1 o2 ^ " je " ^ "L" ^ string_of_int counter ^ ";\"\n"
| ONe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jne " ^ "L" ^ string_of_int counter ^ ";\"\n"
| OLe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jbe " ^ "L" ^ string_of_int counter ^ ";\"\n"
| OGe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jae " ^ "L" ^ string_of_int counter ^ ";\"\n"
| OLt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jb " ^ "L" ^ string_of_int counter ^ ";\"\n"
| OGt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " ja " ^ "L" ^ string_of_int counter ^ ";\"\n" | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_sum_extend | val lemma_sum_extend (j' j k k': int) (f: (int -> bool))
: Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i: int). {:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i: int). {:pattern (f i)} k <= i /\ i < k' ==> not (f i)))
(ensures sum_of_bools j' k' f == sum_of_bools j k f) | val lemma_sum_extend (j' j k k': int) (f: (int -> bool))
: Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i: int). {:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i: int). {:pattern (f i)} k <= i /\ i < k' ==> not (f i)))
(ensures sum_of_bools j' k' f == sum_of_bools j k f) | let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 26,
"end_line": 84,
"start_col": 0,
"start_line": 73
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | j': Prims.int -> j: Prims.int -> k: Prims.int -> k': Prims.int -> f: (_: Prims.int -> Prims.bool)
-> FStar.Pervasives.Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i: Prims.int). {:pattern f i} j' <= i /\ i < j ==> Prims.op_Negation (f i)) /\
(forall (i: Prims.int). {:pattern f i} k <= i /\ i < k' ==> Prims.op_Negation (f i)))
(ensures
Vale.Math.Poly2.Defs_s.sum_of_bools j' k' f == Vale.Math.Poly2.Defs_s.sum_of_bools j k f) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.int",
"Prims.bool",
"Vale.Math.Poly2.Defs.lemma_sum_join",
"Prims.unit",
"Vale.Math.Poly2.Defs.lemma_sum_of_zero",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.op_LessThan",
"Prims.op_Negation",
"Prims.squash",
"Prims.eq2",
"Vale.Math.Poly2.Defs_s.sum_of_bools",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_sum_extend (j' j k k': int) (f: (int -> bool))
: Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i: int). {:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i: int). {:pattern (f i)} k <= i /\ i < k' ==> not (f i)))
(ensures sum_of_bools j' k' f == sum_of_bools j k f) =
| lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_sum_shift | val lemma_sum_shift (j k shift: int) (f g: (int -> bool))
: Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j)) | val lemma_sum_shift (j k shift: int) (f g: (int -> bool))
: Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j)) | let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 51,
"end_line": 98,
"start_col": 0,
"start_line": 93
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
j: Prims.int ->
k: Prims.int ->
shift: Prims.int ->
f: (_: Prims.int -> Prims.bool) ->
g: (_: Prims.int -> Prims.bool)
-> FStar.Pervasives.Lemma
(requires forall (i: Prims.int). {:pattern f i} j <= i /\ i < k ==> f i == g (i + shift))
(ensures
Vale.Math.Poly2.Defs_s.sum_of_bools j k f ==
Vale.Math.Poly2.Defs_s.sum_of_bools (j + shift) (k + shift) g)
(decreases k - j) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.int",
"Prims.bool",
"Prims.op_LessThan",
"Vale.Math.Poly2.Defs.lemma_sum_shift",
"Prims.op_Subtraction",
"Prims.unit",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"Prims.op_Addition",
"Prims.squash",
"Vale.Math.Poly2.Defs_s.sum_of_bools",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_sum_shift (j k shift: int) (f g: (int -> bool))
: Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j)) =
| if j < k then lemma_sum_shift j (k - 1) shift f g | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_sum_mul | val lemma_sum_mul (j k: int) (b: bool) (f g: (int -> bool))
: Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j)) | val lemma_sum_mul (j k: int) (b: bool) (f g: (int -> bool))
: Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j)) | let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 45,
"end_line": 130,
"start_col": 0,
"start_line": 125
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f' | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
j: Prims.int ->
k: Prims.int ->
b: Prims.bool ->
f: (_: Prims.int -> Prims.bool) ->
g: (_: Prims.int -> Prims.bool)
-> FStar.Pervasives.Lemma
(requires forall (i: Prims.int). {:pattern f i} j <= i /\ i < k ==> f i == (b && g i))
(ensures
Vale.Math.Poly2.Defs_s.sum_of_bools j k f ==
(b && Vale.Math.Poly2.Defs_s.sum_of_bools j k g))
(decreases k - j) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.int",
"Prims.bool",
"Prims.op_LessThan",
"Vale.Math.Poly2.Defs.lemma_sum_mul",
"Prims.op_Subtraction",
"Prims.unit",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"Prims.op_AmpAmp",
"Prims.squash",
"Vale.Math.Poly2.Defs_s.sum_of_bools",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_sum_mul (j k: int) (b: bool) (f g: (int -> bool))
: Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j)) =
| if j < k then lemma_sum_mul j (k - 1) b f g | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_sum_of_pairs | val lemma_sum_of_pairs (j k: int) (f g h: (int -> bool))
: Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j)) | val lemma_sum_of_pairs (j k: int) (f g h: (int -> bool))
: Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j)) | let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 50,
"end_line": 91,
"start_col": 0,
"start_line": 86
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
j: Prims.int ->
k: Prims.int ->
f: (_: Prims.int -> Prims.bool) ->
g: (_: Prims.int -> Prims.bool) ->
h: (_: Prims.int -> Prims.bool)
-> FStar.Pervasives.Lemma
(requires forall (i: Prims.int). {:pattern f i} j <= i /\ i < k ==> f i == (g i <> h i))
(ensures
Vale.Math.Poly2.Defs_s.sum_of_bools j k f ==
(Vale.Math.Poly2.Defs_s.sum_of_bools j k g <> Vale.Math.Poly2.Defs_s.sum_of_bools j k h))
(decreases k - j) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.int",
"Prims.bool",
"Prims.op_LessThan",
"Vale.Math.Poly2.Defs.lemma_sum_of_pairs",
"Prims.op_Subtraction",
"Prims.unit",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"Prims.op_disEquality",
"Prims.squash",
"Vale.Math.Poly2.Defs_s.sum_of_bools",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_sum_of_pairs (j k: int) (f g h: (int -> bool))
: Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j)) =
| if j < k then lemma_sum_of_pairs j (k - 1) f g h | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_mul_element | val lemma_mul_element (a b: poly) (k: int)
: Lemma (requires True) (ensures (a *. b).[ k ] == mul_element a b k) [SMTPat (a *. b).[ k ]] | val lemma_mul_element (a b: poly) (k: int)
: Lemma (requires True) (ensures (a *. b).[ k ] == mul_element a b k) [SMTPat (a *. b).[ k ]] | let lemma_mul_element (a b:poly) (k:int) : Lemma
(requires True)
(ensures (a *. b).[k] == mul_element a b k)
[SMTPat (a *. b).[k]]
=
if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 86,
"end_line": 228,
"start_col": 0,
"start_line": 223
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
)
// Corollary for lemma_mul_associate
let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
k > 0 /\
(forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x)
)
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
=
// Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap:
// 0
// 00
// /|\ 00#
// | 0##0
// y ###00
//
// x -->
let k' = k + k - 1 in
let lemma_f (x:nat) : Lemma
(ensures
(k <= x ==> not (f x)) /\
(x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))
)
=
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y:nat) : Lemma
(ensures
(k <= y ==> not (g y)) /\
(y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))
)
=
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
()
let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if j < k then
(
pf (k - 1);
lemma_sum_pointwise_equal j (k - 1) f g pf
)
// MULTIPLICATION | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> k: Prims.int
-> FStar.Pervasives.Lemma (ensures (a *. b).[ k ] == Vale.Math.Poly2.Defs_s.mul_element a b k)
[SMTPat (a *. b).[ k ]] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"Prims.int",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Addition",
"FStar.Seq.Base.length",
"Prims.bool",
"Vale.Math.Poly2.Defs.lemma_sum_of_zero",
"Vale.Math.Poly2.Defs_s.mul_element_fun",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Vale.Math.Poly2.Defs_s.op_String_Access",
"Vale.Math.Poly2.Defs.op_Star_Dot",
"Vale.Math.Poly2.Defs_s.mul_element",
"Prims.Cons",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat",
"Prims.Nil"
] | [] | false | false | true | false | false | let lemma_mul_element (a b: poly) (k: int)
: Lemma (requires True) (ensures (a *. b).[ k ] == mul_element a b k) [SMTPat (a *. b).[ k ]] =
| if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k) | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_sum_invert | val lemma_sum_invert (j k: int) (f g: (int -> bool))
: Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (- i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) | val lemma_sum_invert (j k: int) (f g: (int -> bool))
: Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (- i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) | let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 46,
"end_line": 115,
"start_col": 0,
"start_line": 111
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | j: Prims.int -> k: Prims.int -> f: (_: Prims.int -> Prims.bool) -> g: (_: Prims.int -> Prims.bool)
-> FStar.Pervasives.Lemma
(requires forall (i: Prims.int). {:pattern f i} j <= i /\ i < k ==> f i == g (- i))
(ensures
Vale.Math.Poly2.Defs_s.sum_of_bools j k f ==
Vale.Math.Poly2.Defs_s.sum_of_bools (1 - k) (1 - j) g) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.int",
"Prims.bool",
"Prims.op_LessThan",
"Vale.Math.Poly2.Defs.lemma_sum_invert_rec",
"Prims.unit",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"Prims.op_Minus",
"Prims.squash",
"Vale.Math.Poly2.Defs_s.sum_of_bools",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_sum_invert (j k: int) (f g: (int -> bool))
: Lemma (requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (- i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g) =
| if j < k then lemma_sum_invert_rec j k k f g | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_sum_invert_rec | val lemma_sum_invert_rec (j m k: int) (f g: (int -> bool))
: Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (- i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j)) | val lemma_sum_invert_rec (j m k: int) (f g: (int -> bool))
: Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (- i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j)) | let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 52,
"end_line": 109,
"start_col": 0,
"start_line": 100
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
j: Prims.int ->
m: Prims.int ->
k: Prims.int ->
f: (_: Prims.int -> Prims.bool) ->
g: (_: Prims.int -> Prims.bool)
-> FStar.Pervasives.Lemma
(requires
j <= m /\ m <= k /\
Vale.Math.Poly2.Defs_s.sum_of_bools j k f ==
(Vale.Math.Poly2.Defs_s.sum_of_bools j m f <>
Vale.Math.Poly2.Defs_s.sum_of_bools (1 - k) (1 - m) g) /\
(forall (i: Prims.int). {:pattern f i} j <= i /\ i < k ==> f i == g (- i)))
(ensures
Vale.Math.Poly2.Defs_s.sum_of_bools j k f ==
Vale.Math.Poly2.Defs_s.sum_of_bools (1 - k) (1 - j) g)
(decreases m - j) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.int",
"Prims.bool",
"Prims.op_LessThan",
"Vale.Math.Poly2.Defs.lemma_sum_invert_rec",
"Prims.op_Subtraction",
"Prims.unit",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"Vale.Math.Poly2.Defs_s.sum_of_bools",
"Prims.op_disEquality",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.op_Minus",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_sum_invert_rec (j m k: int) (f g: (int -> bool))
: Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (- i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j)) =
| if j < m then lemma_sum_invert_rec j (m - 1) k f g | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_sum_pointwise_equal | val lemma_sum_pointwise_equal (j k: int) (f g: (int -> bool)) (pf: (i: int -> Lemma (f i == g i)))
: Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) | val lemma_sum_pointwise_equal (j k: int) (f g: (int -> bool)) (pf: (i: int -> Lemma (f i == g i)))
: Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) | let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if j < k then
(
pf (k - 1);
lemma_sum_pointwise_equal j (k - 1) f g pf
) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 218,
"start_col": 0,
"start_line": 210
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
)
// Corollary for lemma_mul_associate
let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
k > 0 /\
(forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x)
)
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
=
// Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap:
// 0
// 00
// /|\ 00#
// | 0##0
// y ###00
//
// x -->
let k' = k + k - 1 in
let lemma_f (x:nat) : Lemma
(ensures
(k <= x ==> not (f x)) /\
(x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))
)
=
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y:nat) : Lemma
(ensures
(k <= y ==> not (g y)) /\
(y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))
)
=
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
() | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
j: Prims.int ->
k: Prims.int ->
f: (_: Prims.int -> Prims.bool) ->
g: (_: Prims.int -> Prims.bool) ->
pf: (i: Prims.int -> FStar.Pervasives.Lemma (ensures f i == g i))
-> FStar.Pervasives.Lemma
(ensures
Vale.Math.Poly2.Defs_s.sum_of_bools j k f == Vale.Math.Poly2.Defs_s.sum_of_bools j k g)
(decreases k - j) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.int",
"Prims.bool",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims.op_LessThan",
"Vale.Math.Poly2.Defs.lemma_sum_pointwise_equal",
"Prims.op_Subtraction",
"Vale.Math.Poly2.Defs_s.sum_of_bools"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_sum_pointwise_equal
(j k: int)
(f g: (int -> bool))
(pf: (i: int -> Lemma (f i == g i)))
: Lemma (ensures sum_of_bools j k f == sum_of_bools j k g) (decreases (k - j)) =
| if j < k
then
(pf (k - 1);
lemma_sum_pointwise_equal j (k - 1) f g pf) | false |
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.remove_blanks | val remove_blanks (b: codes) : codes | val remove_blanks (b: codes) : codes | let rec remove_blank (c:code) : code =
match c with
| Ins _ -> c
| Block b -> Block (remove_blanks b)
| IfElse cond ct cf -> IfElse cond (remove_blank ct) (remove_blank cf)
| While cond cb -> While cond (remove_blank cb)
and remove_blanks (b:codes) : codes =
match b with
| [] -> []
| Ins (Instr _ _ (AnnotateGhost _)) :: cs -> remove_blanks cs
| Block b :: cs ->
(
match remove_blanks b with
| [] -> remove_blanks cs
| b -> Block b :: remove_blanks cs
)
| c :: cs -> c :: remove_blanks cs | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 36,
"end_line": 320,
"start_col": 0,
"start_line": 304
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr
// If the register in which an arg is passed is not modified, we should specify it as `"r" (name)`
let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1)
// Get a list of strings corresponding to modified inputs
let rec get_nonmodified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string)
= match args with
| [] -> [], reg_names, counter
| a::q ->
let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in
let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in
input @ inputs, reg_names, counter
let print_nonmodified_inputs
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in
aux inputs, input_reg_names, counter
// Print the list of modified registers, + memory and cc
let print_modified_registers
(n:nat)
(ret_val:option string)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_args:reg_64 -> bool)
(args:list td) =
// This register was already specified as output
let output_register a = Some? ret_val && a = rRax in
let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) =
if i >= n then false
else
a = of_arg i // This register was already specified for the i-th argument
|| input_register (i+1) a
in
let rec aux = function
| [] -> "\"memory\", \"cc\"\n"
| a::q ->
// This register is not modified, or was already specified as input or output: we skip it
if not (regs_mod a) || input_register 0 a || output_register a then aux q
// Register not modified or already specified in inputs, we add it
else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q
in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15]
// Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n"
let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
let ty = match a with
| TD_Base _ -> "uint64_t "
| _ -> "uint64_t *"
in
if reserved (of_arg i) then
// If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions
true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n"
else false, ""
let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
match args with
| [] -> false, ""
| a::q ->
let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in
let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in
was_explicit || are_explicit, explicit_str ^ rest_str
// If we have a return parameter with a reserved register, print "register uint64_t [name] __asm__("rax");\n"
let print_register_ret (reserved:reg_64 -> bool) = function
| None -> ""
| Some name -> if reserved rRax then " register uint64_t " ^ name ^ " __asm__(\"rax\");\n" else " uint64_t " ^ name ^ ";\n"
(* This is a copy from X64.Print_s, and should remain in sync. The difference is that
each line should be in quotes, and end by a semicolon in inline assembly *)
let print_cmp (c:ocmp) (counter:int) (p:P.printer) : string =
let print_ops (o1:operand64) (o2:operand64) : string =
let first, second = p.P.op_order (P.print_operand o1 p) (P.print_operand o2 p) in
" cmp " ^ first ^ ", " ^ second ^ "\n"
in
match c with
| OEq o1 o2 -> " \"" ^ print_ops o1 o2 ^ " je " ^ "L" ^ string_of_int counter ^ ";\"\n"
| ONe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jne "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jbe "^ "L" ^ string_of_int counter ^ ";\"\n"
| OGe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jae "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jb " ^ "L" ^ string_of_int counter ^ ";\"\n"
| OGt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " ja " ^ "L" ^ string_of_int counter ^ ";\"\n"
let rec print_spaces (n:nat) : string =
match n with
| 0 -> ""
| n -> " " ^ print_spaces (n-1)
(* Overriding printer for formatting instructions *)
let print_ins (ins:ins) (p:P.printer) : string =
match ins with
| Instr _ _ (AnnotateComment s) -> " // " ^ s
| Instr _ _ (AnnotateLargeComment s) -> "\n /////// " ^ s ^ " ////// \n"
| Instr _ _ (AnnotateSpace n) -> print_spaces n
| _ -> " \"" ^ P.print_ins ins p ^ ";\""
let rec print_block (b:codes) (n:int) (p:P.printer) : string & int =
match b with
| Nil -> "", n
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins (Instr _ _ (AnnotateComment s)) :: tail ->
let head_str = " // " ^ s ^ "\n" in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins i :: tail ->
let head_str = print_ins i p in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateNewline _)) :: tail ->
let rest, n' = print_block tail n p in
"\n" ^ rest, n'
| head :: tail ->
let head_str, n' = print_code head n p in
let rest, n'' = print_block tail n' p in
head_str ^ rest, n''
and print_code (c:code) (n:int) (p:P.printer) : string & int =
match c with
| Ins ins -> (print_ins ins p ^ "\n", n)
| Block b -> print_block b n p
| IfElse cond true_code false_code ->
let n1 = n in
let n2 = n + 1 in
let cmp = print_cmp (P.cmp_not cond) n1 p in
let true_str, n' = print_code true_code (n + 2) p in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"L" ^ string_of_int n1 ^ ":\"\n" in
let false_str, n' = print_code false_code n' p in
let label2 = " \"L" ^ string_of_int n2 ^ ":\"\n" in
cmp ^ true_str ^ jmp ^ label1 ^ false_str ^ label2, n'
| While cond body ->
let n1 = n in
let n2 = n + 1 in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n1 ^ ":\"\n" in
let body_str, n' = print_code body (n + 2) p in
let label2 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n2 ^ ":\"\n" in
let cmp = print_cmp cond n1 p in
jmp ^ label1 ^ body_str ^ label2 ^ cmp, n'
let rec print_fn_comments = function
| [] -> ""
| hd::tl -> "// " ^ hd ^ "\n" ^ print_fn_comments tl | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Vale.X64.Machine_Semantics_s.codes -> Vale.X64.Machine_Semantics_s.codes | Prims.Tot | [
"total"
] | [
"remove_blank",
"remove_blanks"
] | [
"Vale.X64.Machine_Semantics_s.codes",
"Prims.Nil",
"Vale.X64.Bytes_Code_s.code_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Vale.X64.Instruction_s.instr_t_record",
"Vale.X64.Instruction_s.instr_operands_t",
"Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__outs",
"Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__args",
"Vale.X64.Machine_Semantics_s.equals_instr",
"Vale.X64.Instruction_s.InstrTypeRecord",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_Ghost",
"Prims.list",
"Vale.X64.Print_Inline_s.remove_blanks",
"Vale.X64.Machine_s.precode",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Bytes_Code_s.ocmp",
"Prims.Cons",
"Vale.X64.Machine_s.Block"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec remove_blanks (b: codes) : codes =
| match b with
| [] -> []
| Ins (Instr _ _ (AnnotateGhost _)) :: cs -> remove_blanks cs
| Block b :: cs ->
(match remove_blanks b with
| [] -> remove_blanks cs
| b -> Block b :: remove_blanks cs)
| c :: cs -> c :: remove_blanks cs | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_sum_swap_mul_associate | val lemma_sum_swap_mul_associate (k: int) (ff gg: (int -> int -> bool)) (f g: (int -> bool))
: Lemma
(requires
k > 0 /\ (forall (x: nat). {:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y: nat). {:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x: int) (y: int). {:pattern (ff x y)}
ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x: int) (y: int). {:pattern (ff x y)\/(gg y x)} ff x y == gg y x))
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g) | val lemma_sum_swap_mul_associate (k: int) (ff gg: (int -> int -> bool)) (f g: (int -> bool))
: Lemma
(requires
k > 0 /\ (forall (x: nat). {:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y: nat). {:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x: int) (y: int). {:pattern (ff x y)}
ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x: int) (y: int). {:pattern (ff x y)\/(gg y x)} ff x y == gg y x))
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g) | let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
k > 0 /\
(forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x)
)
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
=
// Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap:
// 0
// 00
// /|\ 00#
// | 0##0
// y ###00
//
// x -->
let k' = k + k - 1 in
let lemma_f (x:nat) : Lemma
(ensures
(k <= x ==> not (f x)) /\
(x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))
)
=
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y:nat) : Lemma
(ensures
(k <= y ==> not (g y)) /\
(y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))
)
=
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
() | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 4,
"end_line": 208,
"start_col": 0,
"start_line": 161
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Prims.int ->
ff: (_: Prims.int -> _: Prims.int -> Prims.bool) ->
gg: (_: Prims.int -> _: Prims.int -> Prims.bool) ->
f: (_: Prims.int -> Prims.bool) ->
g: (_: Prims.int -> Prims.bool)
-> FStar.Pervasives.Lemma
(requires
k > 0 /\
(forall (x: Prims.nat). {:pattern f x}
f x == Vale.Math.Poly2.Defs_s.sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y: Prims.nat). {:pattern g y} g y == Vale.Math.Poly2.Defs_s.sum_of_bools y k (gg y)
) /\
(forall (x: Prims.int) (y: Prims.int). {:pattern ff x y}
ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x: Prims.int) (y: Prims.int). {:pattern ff x y\/gg y x} ff x y == gg y x))
(ensures
Vale.Math.Poly2.Defs_s.sum_of_bools 0 k f == Vale.Math.Poly2.Defs_s.sum_of_bools 0 k g) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.int",
"Prims.bool",
"Prims.unit",
"Vale.Math.Poly2.Defs.lemma_sum_extend",
"Vale.Math.Poly2.Defs.lemma_sum_swap",
"FStar.Classical.forall_intro",
"Prims.nat",
"Prims.l_and",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Negation",
"Prims.op_LessThan",
"Prims.eq2",
"Vale.Math.Poly2.Defs_s.sum_of_bools",
"Prims.op_Subtraction",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Vale.Math.Poly2.Defs.lemma_sum_of_zero",
"Prims.op_Addition",
"Vale.Math.Poly2.Defs.lemma_sum_join",
"Prims.op_GreaterThan",
"Prims.l_Forall"
] | [] | false | false | true | false | false | let lemma_sum_swap_mul_associate (k: int) (ff gg: (int -> int -> bool)) (f g: (int -> bool))
: Lemma
(requires
k > 0 /\ (forall (x: nat). {:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y: nat). {:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x: int) (y: int). {:pattern (ff x y)}
ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x: int) (y: int). {:pattern (ff x y)\/(gg y x)} ff x y == gg y x))
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g) =
| let k' = k + k - 1 in
let lemma_f (x: nat)
: Lemma (ensures (k <= x ==> not (f x)) /\ (x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))) =
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y: nat)
: Lemma (ensures (k <= y ==> not (g y)) /\ (y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))) =
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
() | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_mul_zero | val lemma_mul_zero (a: poly) : Lemma ((a *. zero) =. zero) | val lemma_mul_zero (a: poly) : Lemma ((a *. zero) =. zero) | let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) =
let f (k:nat) : Lemma (not (mul_element a zero k)) =
lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k)
in
FStar.Classical.forall_intro f | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 234,
"start_col": 0,
"start_line": 230
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
)
// Corollary for lemma_mul_associate
let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
k > 0 /\
(forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x)
)
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
=
// Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap:
// 0
// 00
// /|\ 00#
// | 0##0
// y ###00
//
// x -->
let k' = k + k - 1 in
let lemma_f (x:nat) : Lemma
(ensures
(k <= x ==> not (f x)) /\
(x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))
)
=
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y:nat) : Lemma
(ensures
(k <= y ==> not (g y)) /\
(y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))
)
=
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
()
let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if j < k then
(
pf (k - 1);
lemma_sum_pointwise_equal j (k - 1) f g pf
)
// MULTIPLICATION
let lemma_mul_element (a b:poly) (k:int) : Lemma
(requires True)
(ensures (a *. b).[k] == mul_element a b k)
[SMTPat (a *. b).[k]]
=
if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly
-> FStar.Pervasives.Lemma
(ensures a *. Vale.Math.Poly2.Defs_s.zero =. Vale.Math.Poly2.Defs_s.zero) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"FStar.Classical.forall_intro",
"Prims.nat",
"Prims.b2t",
"Prims.op_Negation",
"Vale.Math.Poly2.Defs_s.mul_element",
"Vale.Math.Poly2.Defs_s.zero",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Vale.Math.Poly2.Defs.lemma_sum_of_zero",
"Prims.op_Addition",
"Vale.Math.Poly2.Defs_s.mul_element_fun",
"Vale.Math.Poly2.Defs.op_Equals_Dot",
"Vale.Math.Poly2.Defs.op_Star_Dot"
] | [] | false | false | true | false | false | let lemma_mul_zero (a: poly) : Lemma ((a *. zero) =. zero) =
| let f (k: nat) : Lemma (not (mul_element a zero k)) =
lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k)
in
FStar.Classical.forall_intro f | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_sum_reverse | val lemma_sum_reverse (j k: int) (f g: (int -> bool))
: Lemma
(requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g) | val lemma_sum_reverse (j k: int) (f g: (int -> bool))
: Lemma
(requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g) | let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f' | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 123,
"start_col": 0,
"start_line": 117
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | j: Prims.int -> k: Prims.int -> f: (_: Prims.int -> Prims.bool) -> g: (_: Prims.int -> Prims.bool)
-> FStar.Pervasives.Lemma
(requires forall (i: Prims.int). {:pattern f i} j <= i /\ i < k ==> f i == g (k + j - i - 1))
(ensures
Vale.Math.Poly2.Defs_s.sum_of_bools j k f == Vale.Math.Poly2.Defs_s.sum_of_bools j k g) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.int",
"Prims.bool",
"Vale.Math.Poly2.Defs.lemma_sum_shift",
"Prims.op_Subtraction",
"Prims.op_Addition",
"Prims.unit",
"Vale.Math.Poly2.Defs.lemma_sum_invert",
"Prims.op_Minus",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.eq2",
"Prims.squash",
"Vale.Math.Poly2.Defs_s.sum_of_bools",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_sum_reverse (j k: int) (f g: (int -> bool))
: Lemma
(requires (forall (i: int). {:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g) =
| let f' (i: int) = f (- i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f' | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_mul_distribute | val lemma_mul_distribute (a b c: poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) | val lemma_mul_distribute (a b c: poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) | let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) =
let f (k:nat) : Lemma
(ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k))
=
lemma_sum_of_pairs 0 (k + 1)
(mul_element_fun a (b +. c) k)
(mul_element_fun a b k)
(mul_element_fun a c k)
in
FStar.Classical.forall_intro f | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 291,
"start_col": 0,
"start_line": 282
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
)
// Corollary for lemma_mul_associate
let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
k > 0 /\
(forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x)
)
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
=
// Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap:
// 0
// 00
// /|\ 00#
// | 0##0
// y ###00
//
// x -->
let k' = k + k - 1 in
let lemma_f (x:nat) : Lemma
(ensures
(k <= x ==> not (f x)) /\
(x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))
)
=
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y:nat) : Lemma
(ensures
(k <= y ==> not (g y)) /\
(y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))
)
=
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
()
let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if j < k then
(
pf (k - 1);
lemma_sum_pointwise_equal j (k - 1) f g pf
)
// MULTIPLICATION
let lemma_mul_element (a b:poly) (k:int) : Lemma
(requires True)
(ensures (a *. b).[k] == mul_element a b k)
[SMTPat (a *. b).[k]]
=
if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k)
let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) =
let f (k:nat) : Lemma (not (mul_element a zero k)) =
lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k)
in
FStar.Classical.forall_intro f
let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) =
let f (k:nat) : Lemma (mul_element a one k == a.[k]) =
lemma_sum_of_zero 0 k (mul_element_fun a one k)
in
FStar.Classical.forall_intro f
let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) =
let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) =
lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k)
in
FStar.Classical.forall_intro f
let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) =
let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) =
let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in
let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in
let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in
let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in
let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) =
lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i)
in
let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) =
lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j)
in
let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) =
lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j))
in
// mul_element (a *. b) c k
// sum[0 <= i <= k] (a *. b)[i] * c[k - i]
// sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i])
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1;
// sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i]
lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2;
// sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i]
lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2;
// sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i]
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3;
// sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i])
// sum[0 <= j <= k] (a[j] * (b *. c)[k - j])
// mul_element a (b *. c) k
()
in
FStar.Classical.forall_intro f | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> c: Vale.Math.Poly2.Defs_s.poly
-> FStar.Pervasives.Lemma (ensures a *. (b +. c) =. a *. b +. a *. c) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"FStar.Classical.forall_intro",
"Prims.nat",
"Prims.eq2",
"Prims.bool",
"Vale.Math.Poly2.Defs_s.mul_element",
"Vale.Math.Poly2.Defs.op_Plus_Dot",
"Prims.op_disEquality",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Vale.Math.Poly2.Defs_s.add",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Vale.Math.Poly2.Defs.lemma_sum_of_pairs",
"Prims.op_Addition",
"Vale.Math.Poly2.Defs_s.mul_element_fun",
"Vale.Math.Poly2.Defs.op_Equals_Dot",
"Vale.Math.Poly2.Defs.op_Star_Dot"
] | [] | false | false | true | false | false | let lemma_mul_distribute (a b c: poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) =
| let f (k: nat)
: Lemma (ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k)) =
lemma_sum_of_pairs 0
(k + 1)
(mul_element_fun a (b +. c) k)
(mul_element_fun a b k)
(mul_element_fun a c k)
in
FStar.Classical.forall_intro f | false |
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.print_block | val print_block (b: codes) (n: int) (p: P.printer) : string & int | val print_block (b: codes) (n: int) (p: P.printer) : string & int | let rec print_block (b:codes) (n:int) (p:P.printer) : string & int =
match b with
| Nil -> "", n
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins (Instr _ _ (AnnotateComment s)) :: tail ->
let head_str = " // " ^ s ^ "\n" in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins i :: tail ->
let head_str = print_ins i p in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateNewline _)) :: tail ->
let rest, n' = print_block tail n p in
"\n" ^ rest, n'
| head :: tail ->
let head_str, n' = print_code head n p in
let rest, n'' = print_block tail n' p in
head_str ^ rest, n''
and print_code (c:code) (n:int) (p:P.printer) : string & int =
match c with
| Ins ins -> (print_ins ins p ^ "\n", n)
| Block b -> print_block b n p
| IfElse cond true_code false_code ->
let n1 = n in
let n2 = n + 1 in
let cmp = print_cmp (P.cmp_not cond) n1 p in
let true_str, n' = print_code true_code (n + 2) p in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"L" ^ string_of_int n1 ^ ":\"\n" in
let false_str, n' = print_code false_code n' p in
let label2 = " \"L" ^ string_of_int n2 ^ ":\"\n" in
cmp ^ true_str ^ jmp ^ label1 ^ false_str ^ label2, n'
| While cond body ->
let n1 = n in
let n2 = n + 1 in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n1 ^ ":\"\n" in
let body_str, n' = print_code body (n + 2) p in
let label2 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n2 ^ ":\"\n" in
let cmp = print_cmp cond n1 p in
jmp ^ label1 ^ body_str ^ label2 ^ cmp, n' | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 46,
"end_line": 298,
"start_col": 0,
"start_line": 258
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr
// If the register in which an arg is passed is not modified, we should specify it as `"r" (name)`
let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1)
// Get a list of strings corresponding to modified inputs
let rec get_nonmodified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string)
= match args with
| [] -> [], reg_names, counter
| a::q ->
let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in
let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in
input @ inputs, reg_names, counter
let print_nonmodified_inputs
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in
aux inputs, input_reg_names, counter
// Print the list of modified registers, + memory and cc
let print_modified_registers
(n:nat)
(ret_val:option string)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_args:reg_64 -> bool)
(args:list td) =
// This register was already specified as output
let output_register a = Some? ret_val && a = rRax in
let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) =
if i >= n then false
else
a = of_arg i // This register was already specified for the i-th argument
|| input_register (i+1) a
in
let rec aux = function
| [] -> "\"memory\", \"cc\"\n"
| a::q ->
// This register is not modified, or was already specified as input or output: we skip it
if not (regs_mod a) || input_register 0 a || output_register a then aux q
// Register not modified or already specified in inputs, we add it
else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q
in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15]
// Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n"
let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
let ty = match a with
| TD_Base _ -> "uint64_t "
| _ -> "uint64_t *"
in
if reserved (of_arg i) then
// If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions
true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n"
else false, ""
let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
match args with
| [] -> false, ""
| a::q ->
let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in
let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in
was_explicit || are_explicit, explicit_str ^ rest_str
// If we have a return parameter with a reserved register, print "register uint64_t [name] __asm__("rax");\n"
let print_register_ret (reserved:reg_64 -> bool) = function
| None -> ""
| Some name -> if reserved rRax then " register uint64_t " ^ name ^ " __asm__(\"rax\");\n" else " uint64_t " ^ name ^ ";\n"
(* This is a copy from X64.Print_s, and should remain in sync. The difference is that
each line should be in quotes, and end by a semicolon in inline assembly *)
let print_cmp (c:ocmp) (counter:int) (p:P.printer) : string =
let print_ops (o1:operand64) (o2:operand64) : string =
let first, second = p.P.op_order (P.print_operand o1 p) (P.print_operand o2 p) in
" cmp " ^ first ^ ", " ^ second ^ "\n"
in
match c with
| OEq o1 o2 -> " \"" ^ print_ops o1 o2 ^ " je " ^ "L" ^ string_of_int counter ^ ";\"\n"
| ONe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jne "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jbe "^ "L" ^ string_of_int counter ^ ";\"\n"
| OGe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jae "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jb " ^ "L" ^ string_of_int counter ^ ";\"\n"
| OGt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " ja " ^ "L" ^ string_of_int counter ^ ";\"\n"
let rec print_spaces (n:nat) : string =
match n with
| 0 -> ""
| n -> " " ^ print_spaces (n-1)
(* Overriding printer for formatting instructions *)
let print_ins (ins:ins) (p:P.printer) : string =
match ins with
| Instr _ _ (AnnotateComment s) -> " // " ^ s
| Instr _ _ (AnnotateLargeComment s) -> "\n /////// " ^ s ^ " ////// \n"
| Instr _ _ (AnnotateSpace n) -> print_spaces n
| _ -> " \"" ^ P.print_ins ins p ^ ";\"" | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Vale.X64.Machine_Semantics_s.codes -> n: Prims.int -> p: Vale.X64.Print_s.printer
-> Prims.string * Prims.int | Prims.Tot | [
"total"
] | [
"print_block",
"print_code"
] | [
"Vale.X64.Machine_Semantics_s.codes",
"Prims.int",
"Vale.X64.Print_s.printer",
"FStar.Pervasives.Native.Mktuple2",
"Prims.string",
"Vale.X64.Instruction_s.instr_t_record",
"Vale.X64.Instruction_s.instr_operands_t",
"Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__outs",
"Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__args",
"Prims.nat",
"Prims.eq2",
"Vale.X64.Instruction_s.InstrTypeRecord",
"Prims.Nil",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_Space",
"Vale.X64.Instructions_s.ins_Comment",
"Prims.list",
"Vale.X64.Bytes_Code_s.code_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Prims.op_Hat",
"Vale.X64.Print_Inline_s.print_spaces",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.Print_Inline_s.print_block",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Print_Inline_s.print_ins",
"Vale.X64.Machine_Semantics_s.equals_instr",
"Vale.X64.Instructions_s.ins_Newline",
"Vale.X64.Print_Inline_s.print_code"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec print_block (b: codes) (n: int) (p: P.printer) : string & int =
| match b with
| Nil -> "", n
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins (Instr _ _ (AnnotateComment s)) :: tail ->
let head_str = " // " ^ s ^ "\n" in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins i :: tail ->
let head_str = print_ins i p in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateNewline _)) :: tail ->
let rest, n' = print_block tail n p in
"\n" ^ rest, n'
| head :: tail ->
let head_str, n' = print_code head n p in
let rest, n'' = print_block tail n' p in
head_str ^ rest, n'' | false |
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.uses_rax | val uses_rax : args: Prims.list Vale.Interop.Base.td ->
i: Prims.nat{i + FStar.List.Tot.Base.length args = n} ->
of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64)
-> Prims.bool | let rec uses_rax (#n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) =
match args with
| [] -> false
| a::q -> if of_arg i = rRax then true else uses_rax q (i+1) of_arg | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 69,
"end_line": 326,
"start_col": 0,
"start_line": 323
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr
// If the register in which an arg is passed is not modified, we should specify it as `"r" (name)`
let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1)
// Get a list of strings corresponding to modified inputs
let rec get_nonmodified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string)
= match args with
| [] -> [], reg_names, counter
| a::q ->
let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in
let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in
input @ inputs, reg_names, counter
let print_nonmodified_inputs
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in
aux inputs, input_reg_names, counter
// Print the list of modified registers, + memory and cc
let print_modified_registers
(n:nat)
(ret_val:option string)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_args:reg_64 -> bool)
(args:list td) =
// This register was already specified as output
let output_register a = Some? ret_val && a = rRax in
let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) =
if i >= n then false
else
a = of_arg i // This register was already specified for the i-th argument
|| input_register (i+1) a
in
let rec aux = function
| [] -> "\"memory\", \"cc\"\n"
| a::q ->
// This register is not modified, or was already specified as input or output: we skip it
if not (regs_mod a) || input_register 0 a || output_register a then aux q
// Register not modified or already specified in inputs, we add it
else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q
in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15]
// Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n"
let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
let ty = match a with
| TD_Base _ -> "uint64_t "
| _ -> "uint64_t *"
in
if reserved (of_arg i) then
// If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions
true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n"
else false, ""
let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
match args with
| [] -> false, ""
| a::q ->
let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in
let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in
was_explicit || are_explicit, explicit_str ^ rest_str
// If we have a return parameter with a reserved register, print "register uint64_t [name] __asm__("rax");\n"
let print_register_ret (reserved:reg_64 -> bool) = function
| None -> ""
| Some name -> if reserved rRax then " register uint64_t " ^ name ^ " __asm__(\"rax\");\n" else " uint64_t " ^ name ^ ";\n"
(* This is a copy from X64.Print_s, and should remain in sync. The difference is that
each line should be in quotes, and end by a semicolon in inline assembly *)
let print_cmp (c:ocmp) (counter:int) (p:P.printer) : string =
let print_ops (o1:operand64) (o2:operand64) : string =
let first, second = p.P.op_order (P.print_operand o1 p) (P.print_operand o2 p) in
" cmp " ^ first ^ ", " ^ second ^ "\n"
in
match c with
| OEq o1 o2 -> " \"" ^ print_ops o1 o2 ^ " je " ^ "L" ^ string_of_int counter ^ ";\"\n"
| ONe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jne "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jbe "^ "L" ^ string_of_int counter ^ ";\"\n"
| OGe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jae "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jb " ^ "L" ^ string_of_int counter ^ ";\"\n"
| OGt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " ja " ^ "L" ^ string_of_int counter ^ ";\"\n"
let rec print_spaces (n:nat) : string =
match n with
| 0 -> ""
| n -> " " ^ print_spaces (n-1)
(* Overriding printer for formatting instructions *)
let print_ins (ins:ins) (p:P.printer) : string =
match ins with
| Instr _ _ (AnnotateComment s) -> " // " ^ s
| Instr _ _ (AnnotateLargeComment s) -> "\n /////// " ^ s ^ " ////// \n"
| Instr _ _ (AnnotateSpace n) -> print_spaces n
| _ -> " \"" ^ P.print_ins ins p ^ ";\""
let rec print_block (b:codes) (n:int) (p:P.printer) : string & int =
match b with
| Nil -> "", n
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins (Instr _ _ (AnnotateComment s)) :: tail ->
let head_str = " // " ^ s ^ "\n" in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins i :: tail ->
let head_str = print_ins i p in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateNewline _)) :: tail ->
let rest, n' = print_block tail n p in
"\n" ^ rest, n'
| head :: tail ->
let head_str, n' = print_code head n p in
let rest, n'' = print_block tail n' p in
head_str ^ rest, n''
and print_code (c:code) (n:int) (p:P.printer) : string & int =
match c with
| Ins ins -> (print_ins ins p ^ "\n", n)
| Block b -> print_block b n p
| IfElse cond true_code false_code ->
let n1 = n in
let n2 = n + 1 in
let cmp = print_cmp (P.cmp_not cond) n1 p in
let true_str, n' = print_code true_code (n + 2) p in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"L" ^ string_of_int n1 ^ ":\"\n" in
let false_str, n' = print_code false_code n' p in
let label2 = " \"L" ^ string_of_int n2 ^ ":\"\n" in
cmp ^ true_str ^ jmp ^ label1 ^ false_str ^ label2, n'
| While cond body ->
let n1 = n in
let n2 = n + 1 in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n1 ^ ":\"\n" in
let body_str, n' = print_code body (n + 2) p in
let label2 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n2 ^ ":\"\n" in
let cmp = print_cmp cond n1 p in
jmp ^ label1 ^ body_str ^ label2 ^ cmp, n'
let rec print_fn_comments = function
| [] -> ""
| hd::tl -> "// " ^ hd ^ "\n" ^ print_fn_comments tl
let rec remove_blank (c:code) : code =
match c with
| Ins _ -> c
| Block b -> Block (remove_blanks b)
| IfElse cond ct cf -> IfElse cond (remove_blank ct) (remove_blank cf)
| While cond cb -> While cond (remove_blank cb)
and remove_blanks (b:codes) : codes =
match b with
| [] -> []
| Ins (Instr _ _ (AnnotateGhost _)) :: cs -> remove_blanks cs
| Block b :: cs ->
(
match remove_blanks b with
| [] -> remove_blanks cs
| b -> Block b :: remove_blanks cs
)
| c :: cs -> c :: remove_blanks cs | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
args: Prims.list Vale.Interop.Base.td ->
i: Prims.nat{i + FStar.List.Tot.Base.length args = n} ->
of_arg: (_: Vale.Interop.X64.reg_nat n -> Vale.X64.Machine_s.reg_64)
-> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.list",
"Vale.Interop.Base.td",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Addition",
"FStar.List.Tot.Base.length",
"Vale.Interop.X64.reg_nat",
"Vale.X64.Machine_s.reg_64",
"Vale.X64.Machine_s.rRax",
"Prims.bool",
"Vale.X64.Print_Inline_s.uses_rax"
] | [
"recursion"
] | false | false | false | false | false | let rec uses_rax
(#n: nat)
(args: list td)
(i: nat{i + List.length args = n})
(of_arg: (reg_nat n -> reg_64))
=
| match args with
| [] -> false
| a :: q -> if of_arg i = rRax then true else uses_rax q (i + 1) of_arg | false |
|
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_mul_one | val lemma_mul_one (a: poly) : Lemma ((a *. one) =. a) | val lemma_mul_one (a: poly) : Lemma ((a *. one) =. a) | let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) =
let f (k:nat) : Lemma (mul_element a one k == a.[k]) =
lemma_sum_of_zero 0 k (mul_element_fun a one k)
in
FStar.Classical.forall_intro f | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 240,
"start_col": 0,
"start_line": 236
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
)
// Corollary for lemma_mul_associate
let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
k > 0 /\
(forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x)
)
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
=
// Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap:
// 0
// 00
// /|\ 00#
// | 0##0
// y ###00
//
// x -->
let k' = k + k - 1 in
let lemma_f (x:nat) : Lemma
(ensures
(k <= x ==> not (f x)) /\
(x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))
)
=
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y:nat) : Lemma
(ensures
(k <= y ==> not (g y)) /\
(y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))
)
=
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
()
let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if j < k then
(
pf (k - 1);
lemma_sum_pointwise_equal j (k - 1) f g pf
)
// MULTIPLICATION
let lemma_mul_element (a b:poly) (k:int) : Lemma
(requires True)
(ensures (a *. b).[k] == mul_element a b k)
[SMTPat (a *. b).[k]]
=
if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k)
let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) =
let f (k:nat) : Lemma (not (mul_element a zero k)) =
lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k)
in
FStar.Classical.forall_intro f | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly
-> FStar.Pervasives.Lemma (ensures a *. Vale.Math.Poly2.Defs_s.one =. a) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"FStar.Classical.forall_intro",
"Prims.nat",
"Prims.eq2",
"Prims.bool",
"Vale.Math.Poly2.Defs_s.mul_element",
"Vale.Math.Poly2.Defs_s.one",
"Vale.Math.Poly2.Defs_s.op_String_Access",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Vale.Math.Poly2.Defs_s.poly_index",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Vale.Math.Poly2.Defs.lemma_sum_of_zero",
"Vale.Math.Poly2.Defs_s.mul_element_fun",
"Vale.Math.Poly2.Defs.op_Equals_Dot",
"Vale.Math.Poly2.Defs.op_Star_Dot"
] | [] | false | false | true | false | false | let lemma_mul_one (a: poly) : Lemma ((a *. one) =. a) =
| let f (k: nat) : Lemma (mul_element a one k == a.[ k ]) =
lemma_sum_of_zero 0 k (mul_element_fun a one k)
in
FStar.Classical.forall_intro f | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_div_degree | val lemma_div_degree (a b: poly)
: Lemma (requires length b > 0)
(ensures degree (a /. b) == (if degree a < degree b then - 1 else degree a - degree b))
(decreases (length a)) | val lemma_div_degree (a b: poly)
: Lemma (requires length b > 0)
(ensures degree (a /. b) == (if degree a < degree b then - 1 else degree a - degree b))
(decreases (length a)) | let rec lemma_div_degree (a b:poly) : Lemma
(requires length b > 0)
(ensures degree (a /. b) == (if degree a < degree b then -1 else degree a - degree b))
(decreases (length a))
=
if length a >= length b then
(
let _ = assert (a.[length a - 1]) in
let n = length a - length b in
let a' = add a (shift b n) in
lemma_div_degree a' b;
assert ((a /. b).[degree a - degree b]);
()
) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 418,
"start_col": 0,
"start_line": 405
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
)
// Corollary for lemma_mul_associate
let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
k > 0 /\
(forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x)
)
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
=
// Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap:
// 0
// 00
// /|\ 00#
// | 0##0
// y ###00
//
// x -->
let k' = k + k - 1 in
let lemma_f (x:nat) : Lemma
(ensures
(k <= x ==> not (f x)) /\
(x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))
)
=
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y:nat) : Lemma
(ensures
(k <= y ==> not (g y)) /\
(y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))
)
=
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
()
let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if j < k then
(
pf (k - 1);
lemma_sum_pointwise_equal j (k - 1) f g pf
)
// MULTIPLICATION
let lemma_mul_element (a b:poly) (k:int) : Lemma
(requires True)
(ensures (a *. b).[k] == mul_element a b k)
[SMTPat (a *. b).[k]]
=
if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k)
let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) =
let f (k:nat) : Lemma (not (mul_element a zero k)) =
lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k)
in
FStar.Classical.forall_intro f
let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) =
let f (k:nat) : Lemma (mul_element a one k == a.[k]) =
lemma_sum_of_zero 0 k (mul_element_fun a one k)
in
FStar.Classical.forall_intro f
let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) =
let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) =
lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k)
in
FStar.Classical.forall_intro f
let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) =
let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) =
let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in
let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in
let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in
let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in
let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) =
lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i)
in
let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) =
lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j)
in
let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) =
lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j))
in
// mul_element (a *. b) c k
// sum[0 <= i <= k] (a *. b)[i] * c[k - i]
// sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i])
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1;
// sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i]
lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2;
// sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i]
lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2;
// sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i]
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3;
// sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i])
// sum[0 <= j <= k] (a[j] * (b *. c)[k - j])
// mul_element a (b *. c) k
()
in
FStar.Classical.forall_intro f
let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) =
let f (k:nat) : Lemma
(ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k))
=
lemma_sum_of_pairs 0 (k + 1)
(mul_element_fun a (b +. c) k)
(mul_element_fun a b k)
(mul_element_fun a c k)
in
FStar.Classical.forall_intro f
let lemma_mul_distribute_left (a b c:poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) =
lemma_mul_commute (a +. b) c;
lemma_mul_commute a c;
lemma_mul_commute b c;
lemma_mul_distribute c a b
let lemma_shift_is_mul (a:poly) (n:nat) : Lemma (shift a n =. a *. (monomial n)) =
let an = shift a n in
let b = monomial n in
let lem (k:nat) : Lemma (an.[k] == mul_element a b k) =
if k < n then
lemma_sum_of_zero 0 k (mul_element_fun a b k)
else
lemma_sum_extend 0 (k - n) (k - n + 1) (k + 1) (mul_element_fun a b k)
in
FStar.Classical.forall_intro lem
let lemma_mul_degree (a b:poly) : Lemma
(degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else -1))
=
if degree a >= 0 && degree b >= 0 then
(
let len = length a + length b in
lemma_sum_of_zero 0 len (mul_element_fun a b (len - 1));
lemma_sum_extend 0 (length a - 1) (length a) (len - 1) (mul_element_fun a b (len - 2));
assert (not (a *. b).[len - 1]);
assert ((a *. b).[len - 2]);
()
)
else if degree a < 0 then
(
assert (a =. zero);
lemma_mul_zero b;
lemma_mul_commute b zero;
()
)
else
(
assert (b =. zero);
lemma_mul_zero a;
()
)
let lemma_mul_reverse (a b:poly) (n:nat) : Lemma
(requires degree a <= n /\ degree b <= n)
(ensures reverse (a *. b) (n + n) =. reverse a n *. reverse b n)
=
let ab = a *. b in
let rab = reverse ab (n + n) in
let ra = reverse a n in
let rb = reverse b n in
lemma_mul_degree a b;
lemma_mul_degree ra rb;
let f (k:int) : Lemma (rab.[k] == (ra *. rb).[k]) =
if 0 <= k && k <= n + n then
(
let f0 = mul_element_fun ra rb k in
let f1 (i:int) : bool = a.[n + i] && b.[n - k - i] in
let f2 = mul_element_fun a b (n + n - k) in
// mul_element a b (n + n - k) == sum_of_bools 0 (n + n + 1 - k) f2
// mul_element ra rb k == sum_of_bools 0 (k + 1) f0
lemma_sum_invert 0 (k + 1) f0 f1;
// mul_element ra rb k == sum_of_bools (-k) 1 f1
lemma_sum_shift (-k) 1 n f1 f2;
// mul_element ra rb k == sum_of_bools (n - k) (n + 1) f2
let lo = min (n - k) 0 in
let hi = max (n + 1) (n + n + 1 - k) in
lemma_sum_extend lo 0 (n + n + 1 - k) hi f2;
lemma_sum_extend lo (n - k) (n + 1) hi f2;
()
)
in
lemma_pointwise_equal rab (ra *. rb) f
// DIVISION, MOD
let rec lemma_div_mod (a b:poly) : Lemma
(requires length b > 0)
(ensures a =. (a /. b) *. b +. (a %. b))
(decreases (length a))
=
if length a < length b then
(
lemma_mul_zero b;
lemma_mul_commute b zero;
()
)
else
(
let _ = assert (a.[length a - 1]) in
let n = length a - length b in
let a' = a +. (shift b n) in
let xn = monomial n in
lemma_shift_is_mul b n;
lemma_mul_commute b xn;
// a' == a +. xn *. b
// (a /. b == a' /. b +. xn);
lemma_add_move (a' /. b) xn;
// (a' /. b == a /. b +. xn);
lemma_div_mod a' b;
// a' == (a' /. b) *. b +. (a' %. b)
// a +. xn * b == (a /. b + xn) *. b +. (a %. b))
lemma_mul_distribute_left (a /. b) xn b;
// a +. xn *. b == (a /. b) *. b +. xn *. b +. (a %. b)
// a == (a /. b) *. b +. (a %. b)
()
) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly
-> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b > 0)
(ensures
Vale.Math.Poly2.Defs_s.degree (a /. b) ==
(match Vale.Math.Poly2.Defs_s.degree a < Vale.Math.Poly2.Defs_s.degree b with
| true -> - 1
| _ -> Vale.Math.Poly2.Defs_s.degree a - Vale.Math.Poly2.Defs_s.degree b))
(decreases FStar.Seq.Base.length a) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"Prims.op_GreaterThanOrEqual",
"FStar.Seq.Base.length",
"Prims.bool",
"Prims.unit",
"Prims._assert",
"Prims.b2t",
"Vale.Math.Poly2.Defs_s.op_String_Access",
"Vale.Math.Poly2.Defs.op_Slash_Dot",
"Prims.op_Subtraction",
"Vale.Math.Poly2.Defs_s.degree",
"Vale.Math.Poly2.Defs.lemma_div_degree",
"Vale.Math.Poly2.Defs_s.add",
"Vale.Math.Poly2.Defs_s.shift",
"Prims.int",
"Prims.op_GreaterThan",
"Prims.squash",
"Prims.eq2",
"Prims.op_LessThan",
"Prims.op_Minus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_div_degree (a b: poly)
: Lemma (requires length b > 0)
(ensures degree (a /. b) == (if degree a < degree b then - 1 else degree a - degree b))
(decreases (length a)) =
| if length a >= length b
then
(let _ = assert (a.[ length a - 1 ]) in
let n = length a - length b in
let a' = add a (shift b n) in
lemma_div_degree a' b;
assert ((a /. b).[ degree a - degree b ]);
()) | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_mul_degree | val lemma_mul_degree (a b: poly)
: Lemma
(degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else - 1)) | val lemma_mul_degree (a b: poly)
: Lemma
(degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else - 1)) | let lemma_mul_degree (a b:poly) : Lemma
(degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else -1))
=
if degree a >= 0 && degree b >= 0 then
(
let len = length a + length b in
lemma_sum_of_zero 0 len (mul_element_fun a b (len - 1));
lemma_sum_extend 0 (length a - 1) (length a) (len - 1) (mul_element_fun a b (len - 2));
assert (not (a *. b).[len - 1]);
assert ((a *. b).[len - 2]);
()
)
else if degree a < 0 then
(
assert (a =. zero);
lemma_mul_zero b;
lemma_mul_commute b zero;
()
)
else
(
assert (b =. zero);
lemma_mul_zero a;
()
) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 334,
"start_col": 0,
"start_line": 310
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
)
// Corollary for lemma_mul_associate
let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
k > 0 /\
(forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x)
)
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
=
// Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap:
// 0
// 00
// /|\ 00#
// | 0##0
// y ###00
//
// x -->
let k' = k + k - 1 in
let lemma_f (x:nat) : Lemma
(ensures
(k <= x ==> not (f x)) /\
(x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))
)
=
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y:nat) : Lemma
(ensures
(k <= y ==> not (g y)) /\
(y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))
)
=
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
()
let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if j < k then
(
pf (k - 1);
lemma_sum_pointwise_equal j (k - 1) f g pf
)
// MULTIPLICATION
let lemma_mul_element (a b:poly) (k:int) : Lemma
(requires True)
(ensures (a *. b).[k] == mul_element a b k)
[SMTPat (a *. b).[k]]
=
if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k)
let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) =
let f (k:nat) : Lemma (not (mul_element a zero k)) =
lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k)
in
FStar.Classical.forall_intro f
let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) =
let f (k:nat) : Lemma (mul_element a one k == a.[k]) =
lemma_sum_of_zero 0 k (mul_element_fun a one k)
in
FStar.Classical.forall_intro f
let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) =
let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) =
lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k)
in
FStar.Classical.forall_intro f
let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) =
let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) =
let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in
let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in
let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in
let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in
let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) =
lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i)
in
let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) =
lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j)
in
let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) =
lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j))
in
// mul_element (a *. b) c k
// sum[0 <= i <= k] (a *. b)[i] * c[k - i]
// sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i])
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1;
// sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i]
lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2;
// sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i]
lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2;
// sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i]
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3;
// sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i])
// sum[0 <= j <= k] (a[j] * (b *. c)[k - j])
// mul_element a (b *. c) k
()
in
FStar.Classical.forall_intro f
let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) =
let f (k:nat) : Lemma
(ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k))
=
lemma_sum_of_pairs 0 (k + 1)
(mul_element_fun a (b +. c) k)
(mul_element_fun a b k)
(mul_element_fun a c k)
in
FStar.Classical.forall_intro f
let lemma_mul_distribute_left (a b c:poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) =
lemma_mul_commute (a +. b) c;
lemma_mul_commute a c;
lemma_mul_commute b c;
lemma_mul_distribute c a b
let lemma_shift_is_mul (a:poly) (n:nat) : Lemma (shift a n =. a *. (monomial n)) =
let an = shift a n in
let b = monomial n in
let lem (k:nat) : Lemma (an.[k] == mul_element a b k) =
if k < n then
lemma_sum_of_zero 0 k (mul_element_fun a b k)
else
lemma_sum_extend 0 (k - n) (k - n + 1) (k + 1) (mul_element_fun a b k)
in
FStar.Classical.forall_intro lem | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly
-> FStar.Pervasives.Lemma
(ensures
Vale.Math.Poly2.Defs_s.degree (a *. b) ==
(match Vale.Math.Poly2.Defs_s.degree a >= 0 && Vale.Math.Poly2.Defs_s.degree b >= 0 with
| true -> Vale.Math.Poly2.Defs_s.degree a + Vale.Math.Poly2.Defs_s.degree b
| _ -> - 1)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"Prims.op_AmpAmp",
"Prims.op_GreaterThanOrEqual",
"Vale.Math.Poly2.Defs_s.degree",
"Prims.unit",
"Prims._assert",
"Prims.b2t",
"Vale.Math.Poly2.Defs_s.op_String_Access",
"Vale.Math.Poly2.Defs.op_Star_Dot",
"Prims.op_Subtraction",
"Prims.op_Negation",
"Vale.Math.Poly2.Defs.lemma_sum_extend",
"FStar.Seq.Base.length",
"Prims.bool",
"Vale.Math.Poly2.Defs_s.mul_element_fun",
"Vale.Math.Poly2.Defs.lemma_sum_of_zero",
"Prims.int",
"Prims.op_Addition",
"Prims.op_LessThan",
"Vale.Math.Poly2.Defs.lemma_mul_commute",
"Vale.Math.Poly2.Defs_s.zero",
"Vale.Math.Poly2.Defs.lemma_mul_zero",
"Vale.Math.Poly2.Defs.op_Equals_Dot",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.op_Minus",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_mul_degree (a b: poly)
: Lemma
(degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else - 1)) =
| if degree a >= 0 && degree b >= 0
then
(let len = length a + length b in
lemma_sum_of_zero 0 len (mul_element_fun a b (len - 1));
lemma_sum_extend 0 (length a - 1) (length a) (len - 1) (mul_element_fun a b (len - 2));
assert (not (a *. b).[ len - 1 ]);
assert ((a *. b).[ len - 2 ]);
())
else
if degree a < 0
then
(assert (a =. zero);
lemma_mul_zero b;
lemma_mul_commute b zero;
())
else
(assert (b =. zero);
lemma_mul_zero a;
()) | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_mul_associate | val lemma_mul_associate (a b c: poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) | val lemma_mul_associate (a b c: poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) | let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) =
let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) =
let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in
let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in
let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in
let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in
let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) =
lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i)
in
let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) =
lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j)
in
let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) =
lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j))
in
// mul_element (a *. b) c k
// sum[0 <= i <= k] (a *. b)[i] * c[k - i]
// sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i])
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1;
// sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i]
lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2;
// sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i]
lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2;
// sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i]
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3;
// sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i])
// sum[0 <= j <= k] (a[j] * (b *. c)[k - j])
// mul_element a (b *. c) k
()
in
FStar.Classical.forall_intro f | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 280,
"start_col": 0,
"start_line": 248
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
)
// Corollary for lemma_mul_associate
let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
k > 0 /\
(forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x)
)
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
=
// Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap:
// 0
// 00
// /|\ 00#
// | 0##0
// y ###00
//
// x -->
let k' = k + k - 1 in
let lemma_f (x:nat) : Lemma
(ensures
(k <= x ==> not (f x)) /\
(x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))
)
=
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y:nat) : Lemma
(ensures
(k <= y ==> not (g y)) /\
(y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))
)
=
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
()
let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if j < k then
(
pf (k - 1);
lemma_sum_pointwise_equal j (k - 1) f g pf
)
// MULTIPLICATION
let lemma_mul_element (a b:poly) (k:int) : Lemma
(requires True)
(ensures (a *. b).[k] == mul_element a b k)
[SMTPat (a *. b).[k]]
=
if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k)
let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) =
let f (k:nat) : Lemma (not (mul_element a zero k)) =
lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k)
in
FStar.Classical.forall_intro f
let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) =
let f (k:nat) : Lemma (mul_element a one k == a.[k]) =
lemma_sum_of_zero 0 k (mul_element_fun a one k)
in
FStar.Classical.forall_intro f
let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) =
let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) =
lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k)
in
FStar.Classical.forall_intro f | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> c: Vale.Math.Poly2.Defs_s.poly
-> FStar.Pervasives.Lemma (ensures a *. (b *. c) =. a *. b *. c) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"FStar.Classical.forall_intro",
"Prims.nat",
"Prims.eq2",
"Prims.bool",
"Vale.Math.Poly2.Defs_s.mul_element",
"Vale.Math.Poly2.Defs.op_Star_Dot",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Vale.Math.Poly2.Defs_s.mul",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Vale.Math.Poly2.Defs.lemma_sum_pointwise_equal",
"Prims.op_Addition",
"Vale.Math.Poly2.Defs_s.mul_element_fun",
"Vale.Math.Poly2.Defs.lemma_sum_swap_mul_associate",
"Prims.int",
"Vale.Math.Poly2.Defs.lemma_sum_mul",
"Prims.op_Subtraction",
"Vale.Math.Poly2.Defs_s.op_String_Access",
"Vale.Math.Poly2.Defs.lemma_sum_shift",
"Vale.Math.Poly2.Defs_s.sum_of_bools",
"Prims.op_AmpAmp",
"Vale.Math.Poly2.Defs.op_Equals_Dot"
] | [] | false | false | true | false | false | let lemma_mul_associate (a b c: poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) =
| let f (k: nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) =
let abc1 (i j: int) = a.[ j ] && b.[ i - j ] && c.[ k - i ] in
let abc2 (j i: int) = a.[ j ] && b.[ i - j ] && c.[ k - i ] in
let abc3 (j i: int) = a.[ j ] && b.[ i ] && c.[ k - j - i ] in
let sum_abc1 (i: int) = sum_of_bools 0 (i + 1) (abc1 i) in
let sum_abc2 (j: int) = sum_of_bools j (k + 1) (abc2 j) in
let sum_abc3 (j: int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in
let l1 (i: int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) =
lemma_sum_mul 0 (i + 1) c.[ k - i ] (abc1 i) (mul_element_fun a b i)
in
let l2 (j: int) : Lemma (sum_abc2 j == sum_abc3 j) =
lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j)
in
let l3 (j: int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) =
lemma_sum_mul 0 (k + 1 - j) a.[ j ] (abc3 j) (mul_element_fun b c (k - j))
in
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1;
lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2;
lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2;
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3;
()
in
FStar.Classical.forall_intro f | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_sum_swap | val lemma_sum_swap (j k: int) (ff gg: (int -> int -> bool)) (f g: (int -> bool))
: Lemma
(requires
(forall (x: int). {:pattern (f x)}
j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y: int). {:pattern (g y)}
j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x: int) (y: int). {:pattern (ff x y)} ff x y == gg y x))
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j)) | val lemma_sum_swap (j k: int) (ff gg: (int -> int -> bool)) (f g: (int -> bool))
: Lemma
(requires
(forall (x: int). {:pattern (f x)}
j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y: int). {:pattern (g y)}
j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x: int) (y: int). {:pattern (ff x y)} ff x y == gg y x))
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j)) | let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 158,
"start_col": 0,
"start_line": 132
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
j: Prims.int ->
k: Prims.int ->
ff: (_: Prims.int -> _: Prims.int -> Prims.bool) ->
gg: (_: Prims.int -> _: Prims.int -> Prims.bool) ->
f: (_: Prims.int -> Prims.bool) ->
g: (_: Prims.int -> Prims.bool)
-> FStar.Pervasives.Lemma
(requires
(forall (x: Prims.int). {:pattern f x}
j <= x /\ x < k ==> f x == Vale.Math.Poly2.Defs_s.sum_of_bools j (j + k - x) (ff x)) /\
(forall (y: Prims.int). {:pattern g y}
j <= y /\ y < k ==> g y == Vale.Math.Poly2.Defs_s.sum_of_bools j (j + k - y) (gg y)) /\
(forall (x: Prims.int) (y: Prims.int). {:pattern ff x y} ff x y == gg y x))
(ensures
Vale.Math.Poly2.Defs_s.sum_of_bools j k f == Vale.Math.Poly2.Defs_s.sum_of_bools j k g)
(decreases k - j) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.int",
"Prims.bool",
"Prims.op_LessThan",
"Vale.Math.Poly2.Defs.lemma_sum_of_pairs",
"Prims.unit",
"Vale.Math.Poly2.Defs.lemma_sum_swap",
"Vale.Math.Poly2.Defs.lemma_sum_reverse",
"Prims.op_Subtraction",
"Prims.op_Addition",
"Vale.Math.Poly2.Defs_s.sum_of_bools",
"Prims.l_and",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.eq2",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_sum_swap (j k: int) (ff gg: (int -> int -> bool)) (f g: (int -> bool))
: Lemma
(requires
(forall (x: int). {:pattern (f x)}
j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y: int). {:pattern (g y)}
j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x: int) (y: int). {:pattern (ff x y)} ff x y == gg y x))
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j)) =
| if (j < k)
then
(let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g';
lemma_sum_swap j k1 ff gg f1 g1;
lemma_sum_of_pairs j k1 f f1 f';
lemma_sum_of_pairs j k1 g g1 g') | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_mul_distribute_left | val lemma_mul_distribute_left (a b c: poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) | val lemma_mul_distribute_left (a b c: poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) | let lemma_mul_distribute_left (a b c:poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) =
lemma_mul_commute (a +. b) c;
lemma_mul_commute a c;
lemma_mul_commute b c;
lemma_mul_distribute c a b | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 297,
"start_col": 0,
"start_line": 293
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
)
// Corollary for lemma_mul_associate
let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
k > 0 /\
(forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x)
)
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
=
// Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap:
// 0
// 00
// /|\ 00#
// | 0##0
// y ###00
//
// x -->
let k' = k + k - 1 in
let lemma_f (x:nat) : Lemma
(ensures
(k <= x ==> not (f x)) /\
(x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))
)
=
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y:nat) : Lemma
(ensures
(k <= y ==> not (g y)) /\
(y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))
)
=
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
()
let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if j < k then
(
pf (k - 1);
lemma_sum_pointwise_equal j (k - 1) f g pf
)
// MULTIPLICATION
let lemma_mul_element (a b:poly) (k:int) : Lemma
(requires True)
(ensures (a *. b).[k] == mul_element a b k)
[SMTPat (a *. b).[k]]
=
if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k)
let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) =
let f (k:nat) : Lemma (not (mul_element a zero k)) =
lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k)
in
FStar.Classical.forall_intro f
let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) =
let f (k:nat) : Lemma (mul_element a one k == a.[k]) =
lemma_sum_of_zero 0 k (mul_element_fun a one k)
in
FStar.Classical.forall_intro f
let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) =
let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) =
lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k)
in
FStar.Classical.forall_intro f
let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) =
let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) =
let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in
let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in
let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in
let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in
let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) =
lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i)
in
let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) =
lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j)
in
let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) =
lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j))
in
// mul_element (a *. b) c k
// sum[0 <= i <= k] (a *. b)[i] * c[k - i]
// sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i])
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1;
// sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i]
lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2;
// sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i]
lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2;
// sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i]
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3;
// sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i])
// sum[0 <= j <= k] (a[j] * (b *. c)[k - j])
// mul_element a (b *. c) k
()
in
FStar.Classical.forall_intro f
let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) =
let f (k:nat) : Lemma
(ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k))
=
lemma_sum_of_pairs 0 (k + 1)
(mul_element_fun a (b +. c) k)
(mul_element_fun a b k)
(mul_element_fun a c k)
in
FStar.Classical.forall_intro f | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> c: Vale.Math.Poly2.Defs_s.poly
-> FStar.Pervasives.Lemma (ensures (a +. b) *. c =. a *. c +. b *. c) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"Vale.Math.Poly2.Defs.lemma_mul_distribute",
"Prims.unit",
"Vale.Math.Poly2.Defs.lemma_mul_commute",
"Vale.Math.Poly2.Defs.op_Plus_Dot",
"Prims.l_True",
"Prims.squash",
"Vale.Math.Poly2.Defs.op_Equals_Dot",
"Vale.Math.Poly2.Defs.op_Star_Dot",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | true | false | true | false | false | let lemma_mul_distribute_left (a b c: poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) =
| lemma_mul_commute (a +. b) c;
lemma_mul_commute a c;
lemma_mul_commute b c;
lemma_mul_distribute c a b | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_mod_degree | val lemma_mod_degree (a b: poly)
: Lemma (requires length b > 0) (ensures degree (a %. b) < degree b) (decreases (length a)) | val lemma_mod_degree (a b: poly)
: Lemma (requires length b > 0) (ensures degree (a %. b) < degree b) (decreases (length a)) | let rec lemma_mod_degree (a b:poly) : Lemma
(requires length b > 0)
(ensures degree (a %. b) < degree b)
(decreases (length a))
=
if length a >= length b then
(
let _ = assert (a.[length a - 1]) in
let n = length a - length b in
let a' = add a (shift b n) in
lemma_mod_degree a' b
) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 431,
"start_col": 0,
"start_line": 420
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
)
// Corollary for lemma_mul_associate
let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
k > 0 /\
(forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x)
)
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
=
// Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap:
// 0
// 00
// /|\ 00#
// | 0##0
// y ###00
//
// x -->
let k' = k + k - 1 in
let lemma_f (x:nat) : Lemma
(ensures
(k <= x ==> not (f x)) /\
(x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))
)
=
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y:nat) : Lemma
(ensures
(k <= y ==> not (g y)) /\
(y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))
)
=
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
()
let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if j < k then
(
pf (k - 1);
lemma_sum_pointwise_equal j (k - 1) f g pf
)
// MULTIPLICATION
let lemma_mul_element (a b:poly) (k:int) : Lemma
(requires True)
(ensures (a *. b).[k] == mul_element a b k)
[SMTPat (a *. b).[k]]
=
if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k)
let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) =
let f (k:nat) : Lemma (not (mul_element a zero k)) =
lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k)
in
FStar.Classical.forall_intro f
let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) =
let f (k:nat) : Lemma (mul_element a one k == a.[k]) =
lemma_sum_of_zero 0 k (mul_element_fun a one k)
in
FStar.Classical.forall_intro f
let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) =
let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) =
lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k)
in
FStar.Classical.forall_intro f
let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) =
let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) =
let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in
let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in
let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in
let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in
let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) =
lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i)
in
let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) =
lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j)
in
let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) =
lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j))
in
// mul_element (a *. b) c k
// sum[0 <= i <= k] (a *. b)[i] * c[k - i]
// sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i])
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1;
// sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i]
lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2;
// sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i]
lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2;
// sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i]
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3;
// sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i])
// sum[0 <= j <= k] (a[j] * (b *. c)[k - j])
// mul_element a (b *. c) k
()
in
FStar.Classical.forall_intro f
let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) =
let f (k:nat) : Lemma
(ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k))
=
lemma_sum_of_pairs 0 (k + 1)
(mul_element_fun a (b +. c) k)
(mul_element_fun a b k)
(mul_element_fun a c k)
in
FStar.Classical.forall_intro f
let lemma_mul_distribute_left (a b c:poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) =
lemma_mul_commute (a +. b) c;
lemma_mul_commute a c;
lemma_mul_commute b c;
lemma_mul_distribute c a b
let lemma_shift_is_mul (a:poly) (n:nat) : Lemma (shift a n =. a *. (monomial n)) =
let an = shift a n in
let b = monomial n in
let lem (k:nat) : Lemma (an.[k] == mul_element a b k) =
if k < n then
lemma_sum_of_zero 0 k (mul_element_fun a b k)
else
lemma_sum_extend 0 (k - n) (k - n + 1) (k + 1) (mul_element_fun a b k)
in
FStar.Classical.forall_intro lem
let lemma_mul_degree (a b:poly) : Lemma
(degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else -1))
=
if degree a >= 0 && degree b >= 0 then
(
let len = length a + length b in
lemma_sum_of_zero 0 len (mul_element_fun a b (len - 1));
lemma_sum_extend 0 (length a - 1) (length a) (len - 1) (mul_element_fun a b (len - 2));
assert (not (a *. b).[len - 1]);
assert ((a *. b).[len - 2]);
()
)
else if degree a < 0 then
(
assert (a =. zero);
lemma_mul_zero b;
lemma_mul_commute b zero;
()
)
else
(
assert (b =. zero);
lemma_mul_zero a;
()
)
let lemma_mul_reverse (a b:poly) (n:nat) : Lemma
(requires degree a <= n /\ degree b <= n)
(ensures reverse (a *. b) (n + n) =. reverse a n *. reverse b n)
=
let ab = a *. b in
let rab = reverse ab (n + n) in
let ra = reverse a n in
let rb = reverse b n in
lemma_mul_degree a b;
lemma_mul_degree ra rb;
let f (k:int) : Lemma (rab.[k] == (ra *. rb).[k]) =
if 0 <= k && k <= n + n then
(
let f0 = mul_element_fun ra rb k in
let f1 (i:int) : bool = a.[n + i] && b.[n - k - i] in
let f2 = mul_element_fun a b (n + n - k) in
// mul_element a b (n + n - k) == sum_of_bools 0 (n + n + 1 - k) f2
// mul_element ra rb k == sum_of_bools 0 (k + 1) f0
lemma_sum_invert 0 (k + 1) f0 f1;
// mul_element ra rb k == sum_of_bools (-k) 1 f1
lemma_sum_shift (-k) 1 n f1 f2;
// mul_element ra rb k == sum_of_bools (n - k) (n + 1) f2
let lo = min (n - k) 0 in
let hi = max (n + 1) (n + n + 1 - k) in
lemma_sum_extend lo 0 (n + n + 1 - k) hi f2;
lemma_sum_extend lo (n - k) (n + 1) hi f2;
()
)
in
lemma_pointwise_equal rab (ra *. rb) f
// DIVISION, MOD
let rec lemma_div_mod (a b:poly) : Lemma
(requires length b > 0)
(ensures a =. (a /. b) *. b +. (a %. b))
(decreases (length a))
=
if length a < length b then
(
lemma_mul_zero b;
lemma_mul_commute b zero;
()
)
else
(
let _ = assert (a.[length a - 1]) in
let n = length a - length b in
let a' = a +. (shift b n) in
let xn = monomial n in
lemma_shift_is_mul b n;
lemma_mul_commute b xn;
// a' == a +. xn *. b
// (a /. b == a' /. b +. xn);
lemma_add_move (a' /. b) xn;
// (a' /. b == a /. b +. xn);
lemma_div_mod a' b;
// a' == (a' /. b) *. b +. (a' %. b)
// a +. xn * b == (a /. b + xn) *. b +. (a %. b))
lemma_mul_distribute_left (a /. b) xn b;
// a +. xn *. b == (a /. b) *. b +. xn *. b +. (a %. b)
// a == (a /. b) *. b +. (a %. b)
()
)
let rec lemma_div_degree (a b:poly) : Lemma
(requires length b > 0)
(ensures degree (a /. b) == (if degree a < degree b then -1 else degree a - degree b))
(decreases (length a))
=
if length a >= length b then
(
let _ = assert (a.[length a - 1]) in
let n = length a - length b in
let a' = add a (shift b n) in
lemma_div_degree a' b;
assert ((a /. b).[degree a - degree b]);
()
) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly
-> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b > 0)
(ensures Vale.Math.Poly2.Defs_s.degree (a %. b) < Vale.Math.Poly2.Defs_s.degree b)
(decreases FStar.Seq.Base.length a) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"Prims.op_GreaterThanOrEqual",
"FStar.Seq.Base.length",
"Prims.bool",
"Vale.Math.Poly2.Defs.lemma_mod_degree",
"Vale.Math.Poly2.Defs_s.add",
"Vale.Math.Poly2.Defs_s.shift",
"Prims.int",
"Prims.op_Subtraction",
"Prims.unit",
"Prims._assert",
"Prims.b2t",
"Vale.Math.Poly2.Defs_s.op_String_Access",
"Prims.op_GreaterThan",
"Prims.squash",
"Prims.op_LessThan",
"Vale.Math.Poly2.Defs_s.degree",
"Vale.Math.Poly2.Defs.op_Percent_Dot",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_mod_degree (a b: poly)
: Lemma (requires length b > 0) (ensures degree (a %. b) < degree b) (decreases (length a)) =
| if length a >= length b
then
(let _ = assert (a.[ length a - 1 ]) in
let n = length a - length b in
let a' = add a (shift b n) in
lemma_mod_degree a' b) | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_shift_is_mul | val lemma_shift_is_mul (a: poly) (n: nat) : Lemma (shift a n =. a *. (monomial n)) | val lemma_shift_is_mul (a: poly) (n: nat) : Lemma (shift a n =. a *. (monomial n)) | let lemma_shift_is_mul (a:poly) (n:nat) : Lemma (shift a n =. a *. (monomial n)) =
let an = shift a n in
let b = monomial n in
let lem (k:nat) : Lemma (an.[k] == mul_element a b k) =
if k < n then
lemma_sum_of_zero 0 k (mul_element_fun a b k)
else
lemma_sum_extend 0 (k - n) (k - n + 1) (k + 1) (mul_element_fun a b k)
in
FStar.Classical.forall_intro lem | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 308,
"start_col": 0,
"start_line": 299
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
)
// Corollary for lemma_mul_associate
let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
k > 0 /\
(forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x)
)
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
=
// Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap:
// 0
// 00
// /|\ 00#
// | 0##0
// y ###00
//
// x -->
let k' = k + k - 1 in
let lemma_f (x:nat) : Lemma
(ensures
(k <= x ==> not (f x)) /\
(x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))
)
=
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y:nat) : Lemma
(ensures
(k <= y ==> not (g y)) /\
(y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))
)
=
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
()
let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if j < k then
(
pf (k - 1);
lemma_sum_pointwise_equal j (k - 1) f g pf
)
// MULTIPLICATION
let lemma_mul_element (a b:poly) (k:int) : Lemma
(requires True)
(ensures (a *. b).[k] == mul_element a b k)
[SMTPat (a *. b).[k]]
=
if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k)
let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) =
let f (k:nat) : Lemma (not (mul_element a zero k)) =
lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k)
in
FStar.Classical.forall_intro f
let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) =
let f (k:nat) : Lemma (mul_element a one k == a.[k]) =
lemma_sum_of_zero 0 k (mul_element_fun a one k)
in
FStar.Classical.forall_intro f
let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) =
let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) =
lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k)
in
FStar.Classical.forall_intro f
let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) =
let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) =
let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in
let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in
let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in
let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in
let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) =
lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i)
in
let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) =
lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j)
in
let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) =
lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j))
in
// mul_element (a *. b) c k
// sum[0 <= i <= k] (a *. b)[i] * c[k - i]
// sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i])
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1;
// sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i]
lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2;
// sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i]
lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2;
// sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i]
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3;
// sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i])
// sum[0 <= j <= k] (a[j] * (b *. c)[k - j])
// mul_element a (b *. c) k
()
in
FStar.Classical.forall_intro f
let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) =
let f (k:nat) : Lemma
(ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k))
=
lemma_sum_of_pairs 0 (k + 1)
(mul_element_fun a (b +. c) k)
(mul_element_fun a b k)
(mul_element_fun a c k)
in
FStar.Classical.forall_intro f
let lemma_mul_distribute_left (a b c:poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) =
lemma_mul_commute (a +. b) c;
lemma_mul_commute a c;
lemma_mul_commute b c;
lemma_mul_distribute c a b | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly -> n: Prims.nat
-> FStar.Pervasives.Lemma
(ensures Vale.Math.Poly2.Defs_s.shift a n =. a *. Vale.Math.Poly2.Defs_s.monomial n) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"Prims.nat",
"FStar.Classical.forall_intro",
"Prims.eq2",
"Prims.bool",
"Vale.Math.Poly2.Defs_s.op_String_Access",
"Vale.Math.Poly2.Defs_s.mul_element",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Vale.Math.Poly2.Defs_s.poly_index",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims.op_LessThan",
"Vale.Math.Poly2.Defs.lemma_sum_of_zero",
"Vale.Math.Poly2.Defs_s.mul_element_fun",
"Vale.Math.Poly2.Defs.lemma_sum_extend",
"Prims.op_Subtraction",
"Prims.op_Addition",
"Vale.Math.Poly2.Defs_s.monomial",
"Vale.Math.Poly2.Defs_s.shift",
"Vale.Math.Poly2.Defs.op_Equals_Dot",
"Vale.Math.Poly2.Defs.op_Star_Dot"
] | [] | false | false | true | false | false | let lemma_shift_is_mul (a: poly) (n: nat) : Lemma (shift a n =. a *. (monomial n)) =
| let an = shift a n in
let b = monomial n in
let lem (k: nat) : Lemma (an.[ k ] == mul_element a b k) =
if k < n
then lemma_sum_of_zero 0 k (mul_element_fun a b k)
else lemma_sum_extend 0 (k - n) (k - n + 1) (k + 1) (mul_element_fun a b k)
in
FStar.Classical.forall_intro lem | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_div_mod | val lemma_div_mod (a b: poly)
: Lemma (requires length b > 0) (ensures a =. (a /. b) *. b +. (a %. b)) (decreases (length a)) | val lemma_div_mod (a b: poly)
: Lemma (requires length b > 0) (ensures a =. (a /. b) *. b +. (a %. b)) (decreases (length a)) | let rec lemma_div_mod (a b:poly) : Lemma
(requires length b > 0)
(ensures a =. (a /. b) *. b +. (a %. b))
(decreases (length a))
=
if length a < length b then
(
lemma_mul_zero b;
lemma_mul_commute b zero;
()
)
else
(
let _ = assert (a.[length a - 1]) in
let n = length a - length b in
let a' = a +. (shift b n) in
let xn = monomial n in
lemma_shift_is_mul b n;
lemma_mul_commute b xn;
// a' == a +. xn *. b
// (a /. b == a' /. b +. xn);
lemma_add_move (a' /. b) xn;
// (a' /. b == a /. b +. xn);
lemma_div_mod a' b;
// a' == (a' /. b) *. b +. (a' %. b)
// a +. xn * b == (a /. b + xn) *. b +. (a %. b))
lemma_mul_distribute_left (a /. b) xn b;
// a +. xn *. b == (a /. b) *. b +. xn *. b +. (a %. b)
// a == (a /. b) *. b +. (a %. b)
()
) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 403,
"start_col": 0,
"start_line": 373
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
)
// Corollary for lemma_mul_associate
let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
k > 0 /\
(forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x)
)
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
=
// Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap:
// 0
// 00
// /|\ 00#
// | 0##0
// y ###00
//
// x -->
let k' = k + k - 1 in
let lemma_f (x:nat) : Lemma
(ensures
(k <= x ==> not (f x)) /\
(x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))
)
=
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y:nat) : Lemma
(ensures
(k <= y ==> not (g y)) /\
(y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))
)
=
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
()
let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if j < k then
(
pf (k - 1);
lemma_sum_pointwise_equal j (k - 1) f g pf
)
// MULTIPLICATION
let lemma_mul_element (a b:poly) (k:int) : Lemma
(requires True)
(ensures (a *. b).[k] == mul_element a b k)
[SMTPat (a *. b).[k]]
=
if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k)
let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) =
let f (k:nat) : Lemma (not (mul_element a zero k)) =
lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k)
in
FStar.Classical.forall_intro f
let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) =
let f (k:nat) : Lemma (mul_element a one k == a.[k]) =
lemma_sum_of_zero 0 k (mul_element_fun a one k)
in
FStar.Classical.forall_intro f
let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) =
let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) =
lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k)
in
FStar.Classical.forall_intro f
let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) =
let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) =
let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in
let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in
let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in
let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in
let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) =
lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i)
in
let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) =
lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j)
in
let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) =
lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j))
in
// mul_element (a *. b) c k
// sum[0 <= i <= k] (a *. b)[i] * c[k - i]
// sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i])
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1;
// sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i]
lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2;
// sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i]
lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2;
// sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i]
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3;
// sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i])
// sum[0 <= j <= k] (a[j] * (b *. c)[k - j])
// mul_element a (b *. c) k
()
in
FStar.Classical.forall_intro f
let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) =
let f (k:nat) : Lemma
(ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k))
=
lemma_sum_of_pairs 0 (k + 1)
(mul_element_fun a (b +. c) k)
(mul_element_fun a b k)
(mul_element_fun a c k)
in
FStar.Classical.forall_intro f
let lemma_mul_distribute_left (a b c:poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) =
lemma_mul_commute (a +. b) c;
lemma_mul_commute a c;
lemma_mul_commute b c;
lemma_mul_distribute c a b
let lemma_shift_is_mul (a:poly) (n:nat) : Lemma (shift a n =. a *. (monomial n)) =
let an = shift a n in
let b = monomial n in
let lem (k:nat) : Lemma (an.[k] == mul_element a b k) =
if k < n then
lemma_sum_of_zero 0 k (mul_element_fun a b k)
else
lemma_sum_extend 0 (k - n) (k - n + 1) (k + 1) (mul_element_fun a b k)
in
FStar.Classical.forall_intro lem
let lemma_mul_degree (a b:poly) : Lemma
(degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else -1))
=
if degree a >= 0 && degree b >= 0 then
(
let len = length a + length b in
lemma_sum_of_zero 0 len (mul_element_fun a b (len - 1));
lemma_sum_extend 0 (length a - 1) (length a) (len - 1) (mul_element_fun a b (len - 2));
assert (not (a *. b).[len - 1]);
assert ((a *. b).[len - 2]);
()
)
else if degree a < 0 then
(
assert (a =. zero);
lemma_mul_zero b;
lemma_mul_commute b zero;
()
)
else
(
assert (b =. zero);
lemma_mul_zero a;
()
)
let lemma_mul_reverse (a b:poly) (n:nat) : Lemma
(requires degree a <= n /\ degree b <= n)
(ensures reverse (a *. b) (n + n) =. reverse a n *. reverse b n)
=
let ab = a *. b in
let rab = reverse ab (n + n) in
let ra = reverse a n in
let rb = reverse b n in
lemma_mul_degree a b;
lemma_mul_degree ra rb;
let f (k:int) : Lemma (rab.[k] == (ra *. rb).[k]) =
if 0 <= k && k <= n + n then
(
let f0 = mul_element_fun ra rb k in
let f1 (i:int) : bool = a.[n + i] && b.[n - k - i] in
let f2 = mul_element_fun a b (n + n - k) in
// mul_element a b (n + n - k) == sum_of_bools 0 (n + n + 1 - k) f2
// mul_element ra rb k == sum_of_bools 0 (k + 1) f0
lemma_sum_invert 0 (k + 1) f0 f1;
// mul_element ra rb k == sum_of_bools (-k) 1 f1
lemma_sum_shift (-k) 1 n f1 f2;
// mul_element ra rb k == sum_of_bools (n - k) (n + 1) f2
let lo = min (n - k) 0 in
let hi = max (n + 1) (n + n + 1 - k) in
lemma_sum_extend lo 0 (n + n + 1 - k) hi f2;
lemma_sum_extend lo (n - k) (n + 1) hi f2;
()
)
in
lemma_pointwise_equal rab (ra *. rb) f
// DIVISION, MOD | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly
-> FStar.Pervasives.Lemma (requires FStar.Seq.Base.length b > 0)
(ensures a =. a /. b *. b +. a %. b)
(decreases FStar.Seq.Base.length a) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"Prims.op_LessThan",
"FStar.Seq.Base.length",
"Prims.bool",
"Prims.unit",
"Vale.Math.Poly2.Defs.lemma_mul_commute",
"Vale.Math.Poly2.Defs_s.zero",
"Vale.Math.Poly2.Defs.lemma_mul_zero",
"Vale.Math.Poly2.Defs.lemma_mul_distribute_left",
"Vale.Math.Poly2.Defs.op_Slash_Dot",
"Vale.Math.Poly2.Defs.lemma_div_mod",
"Vale.Math.Poly2.Defs.lemma_add_move",
"Vale.Math.Poly2.Defs.lemma_shift_is_mul",
"Vale.Math.Poly2.Defs_s.monomial",
"Vale.Math.Poly2.Defs.op_Plus_Dot",
"Vale.Math.Poly2.Defs_s.shift",
"Prims.int",
"Prims.op_Subtraction",
"Prims._assert",
"Prims.b2t",
"Vale.Math.Poly2.Defs_s.op_String_Access",
"Prims.op_GreaterThan",
"Prims.squash",
"Vale.Math.Poly2.Defs.op_Equals_Dot",
"Vale.Math.Poly2.Defs.op_Star_Dot",
"Vale.Math.Poly2.Defs.op_Percent_Dot",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec lemma_div_mod (a b: poly)
: Lemma (requires length b > 0) (ensures a =. (a /. b) *. b +. (a %. b)) (decreases (length a)) =
| if length a < length b
then
(lemma_mul_zero b;
lemma_mul_commute b zero;
())
else
(let _ = assert (a.[ length a - 1 ]) in
let n = length a - length b in
let a' = a +. (shift b n) in
let xn = monomial n in
lemma_shift_is_mul b n;
lemma_mul_commute b xn;
lemma_add_move (a' /. b) xn;
lemma_div_mod a' b;
lemma_mul_distribute_left (a /. b) xn b;
()) | false |
Vale.Math.Poly2.Defs.fst | Vale.Math.Poly2.Defs.lemma_mul_reverse | val lemma_mul_reverse (a b: poly) (n: nat)
: Lemma (requires degree a <= n /\ degree b <= n)
(ensures reverse (a *. b) (n + n) =. reverse a n *. reverse b n) | val lemma_mul_reverse (a b: poly) (n: nat)
: Lemma (requires degree a <= n /\ degree b <= n)
(ensures reverse (a *. b) (n + n) =. reverse a n *. reverse b n) | let lemma_mul_reverse (a b:poly) (n:nat) : Lemma
(requires degree a <= n /\ degree b <= n)
(ensures reverse (a *. b) (n + n) =. reverse a n *. reverse b n)
=
let ab = a *. b in
let rab = reverse ab (n + n) in
let ra = reverse a n in
let rb = reverse b n in
lemma_mul_degree a b;
lemma_mul_degree ra rb;
let f (k:int) : Lemma (rab.[k] == (ra *. rb).[k]) =
if 0 <= k && k <= n + n then
(
let f0 = mul_element_fun ra rb k in
let f1 (i:int) : bool = a.[n + i] && b.[n - k - i] in
let f2 = mul_element_fun a b (n + n - k) in
// mul_element a b (n + n - k) == sum_of_bools 0 (n + n + 1 - k) f2
// mul_element ra rb k == sum_of_bools 0 (k + 1) f0
lemma_sum_invert 0 (k + 1) f0 f1;
// mul_element ra rb k == sum_of_bools (-k) 1 f1
lemma_sum_shift (-k) 1 n f1 f2;
// mul_element ra rb k == sum_of_bools (n - k) (n + 1) f2
let lo = min (n - k) 0 in
let hi = max (n + 1) (n + n + 1 - k) in
lemma_sum_extend lo 0 (n + n + 1 - k) hi f2;
lemma_sum_extend lo (n - k) (n + 1) hi f2;
()
)
in
lemma_pointwise_equal rab (ra *. rb) f | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Defs.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 367,
"start_col": 0,
"start_line": 336
} | module Vale.Math.Poly2.Defs
open FStar.Mul
open Vale.Def.Prop_s
open FStar.Seq
open Vale.Math.Poly2.Defs_s
unfold let max = FStar.Math.Lib.max
#reset-options "--z3rlimit 10"
let poly_equal (a b:poly) : prop0 =
(forall (i:nat).{:pattern a.[i] \/ b.[i]} a.[i] == b.[i])
unfold let ( =. ) = poly_equal
unfold let ( +. ) = add
unfold let ( *. ) = mul
unfold let ( /. ) = div
unfold let ( %. ) = mod
let lemma_poly_equal_elim (a b:poly) : Lemma
(requires a =. b)
(ensures a == b)
(decreases (length a + length b))
[SMTPat (poly_equal a b)]
=
let len = max (length a) (length b) in
assert (len > 0 ==> a.[len - 1] == b.[len - 1]);
assert (length a == length b);
assert (forall (i:nat).{:pattern (index a i) \/ (index b i)} a.[i] == b.[i]);
assert (equal a b)
let lemma_pointwise_equal (a b:poly) (pf:(i:int -> Lemma (a.[i] == b.[i]))) : Lemma (a == b) =
FStar.Classical.forall_intro pf;
lemma_poly_equal_elim a b
// ADDITION
let lemma_add_zero (a:poly) : Lemma ((a +. zero) =. a) = ()
let lemma_add_cancel (a:poly) : Lemma ((a +. a) =. zero) = ()
let lemma_add_cancel_eq (a b:poly) : Lemma (requires (a +. b) == zero) (ensures a =. b) = ()
let lemma_add_commute (a b:poly) : Lemma ((a +. b) =. (b +. a)) = ()
let lemma_add_associate (a b c:poly) : Lemma ((a +. (b +. c)) =. ((a +. b) +. c)) = ()
let lemma_add_move (a b:poly) : Lemma (ensures a == (a +. b) +. b) =
lemma_add_associate a b b;
lemma_add_cancel b;
lemma_add_zero a
// SUMMATION
let lemma_sum_empty (j:int) (f:int -> bool) : Lemma
(requires True)
(ensures not (sum_of_bools j j f))
[SMTPat (sum_of_bools j j f)]
=
()
let rec lemma_sum_of_zero (j k:int) (f:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> not (f i)))
(ensures not (sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_of_zero j (k - 1) f
let rec lemma_sum_join (i j k:int) (f:int -> bool) : Lemma
(requires i <= j /\ j <= k)
(ensures sum_of_bools i k f == (sum_of_bools i j f <> sum_of_bools j k f))
(decreases (k - j))
=
if j < k then lemma_sum_join i j (k - 1) f
let lemma_sum_extend (j' j k k':int) (f:int -> bool) : Lemma
(requires
j' <= j /\ j <= k /\ k <= k' /\
(forall (i:int).{:pattern (f i)} j' <= i /\ i < j ==> not (f i)) /\
(forall (i:int).{:pattern (f i)} k <= i /\ i < k' ==> not (f i))
)
(ensures sum_of_bools j' k' f == sum_of_bools j k f)
=
lemma_sum_of_zero j' j f;
lemma_sum_of_zero k k' f;
lemma_sum_join j' j k f;
lemma_sum_join j' k k' f
let rec lemma_sum_of_pairs (j k:int) (f g h:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (g i <> h i)))
(ensures sum_of_bools j k f == (sum_of_bools j k g <> sum_of_bools j k h))
(decreases (k - j))
=
if j < k then lemma_sum_of_pairs j (k - 1) f g h
let rec lemma_sum_shift (j k:int) (shift:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (i + shift)))
(ensures sum_of_bools j k f == sum_of_bools (j + shift) (k + shift) g)
(decreases (k - j))
=
if j < k then lemma_sum_shift j (k - 1) shift f g
let rec lemma_sum_invert_rec (j m k:int) (f g:int -> bool) : Lemma
(requires
j <= m /\ m <= k /\
sum_of_bools j k f == (sum_of_bools j m f <> sum_of_bools (1 - k) (1 - m) g) /\
(forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i))
)
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
(decreases (m - j))
=
if j < m then lemma_sum_invert_rec j (m - 1) k f g
let lemma_sum_invert (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (-i)))
(ensures sum_of_bools j k f == sum_of_bools (1 - k) (1 - j) g)
=
if j < k then lemma_sum_invert_rec j k k f g
let lemma_sum_reverse (j k:int) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == g (k + j - i - 1)))
(ensures sum_of_bools j k f == sum_of_bools j k g)
=
let f' (i:int) = f (-i) in
lemma_sum_invert j k f f';
lemma_sum_shift j k (1 - (k + j)) g f'
let rec lemma_sum_mul (j k:int) (b:bool) (f g:int -> bool) : Lemma
(requires (forall (i:int).{:pattern (f i)} j <= i /\ i < k ==> f i == (b && g i)))
(ensures sum_of_bools j k f == (b && sum_of_bools j k g))
(decreases (k - j))
=
if j < k then lemma_sum_mul j (k - 1) b f g
let rec lemma_sum_swap (j k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
(forall (x:int).{:pattern (f x)} j <= x /\ x < k ==> f x == sum_of_bools j (j + k - x) (ff x)) /\
(forall (y:int).{:pattern (g y)} j <= y /\ y < k ==> g y == sum_of_bools j (j + k - y) (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y == gg y x)
)
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if (j < k) then
(
let k1 = k - 1 in
let f1 x = sum_of_bools j (j + k1 - x) (ff x) in
let g1 y = sum_of_bools j (j + k1 - y) (gg y) in
let f' x = ff x (j + k1 - x) in
let g' y = gg y (j + k1 - y) in
lemma_sum_reverse j k f' g'; // summing f' and g' gives same answer, computed in reverse order
// sum_of_bools j k f' == sum_of_bools j k g'
// sum_of_bools j k1 f' + ff k1 j == sum_of_bools j k1 g' + gg k1 j
lemma_sum_swap j k1 ff gg f1 g1; // by induction: sum_of_bools j k1 f1 == sum_of_bools j k1 g1
// sum_of_bools j k1 f1 + (sum_of_bools j k1 f' + ff k1 j) == sum_of_bools j k1 g1 + (sum_of_bools j k1 g' + gg k1 j)
// (sum_of_bools j k1 f1 + sum_of_bools j k1 f') + ff k1 j == (sum_of_bools j k1 g1 + sum_of_bools j k1 g') + gg k1 j
lemma_sum_of_pairs j k1 f f1 f'; // sum_of_bools j k1 f1 + sum_of_bools j k1 f' == sum_of_bools j k1 f
lemma_sum_of_pairs j k1 g g1 g' // sum_of_bools j k1 g1 + sum_of_bools j k1 g' == sum_of_bools j k1 g
// sum_of_bools j k1 f + ff k1 j == sum_of_bools j k1 g + gg k1 j
// sum_of_bools j k f == sum_of_bools j k g
)
// Corollary for lemma_mul_associate
let lemma_sum_swap_mul_associate (k:int) (ff gg:int -> int -> bool) (f g:int -> bool) : Lemma
(requires
k > 0 /\
(forall (x:nat).{:pattern (f x)} f x == sum_of_bools 0 (x + 1) (ff x)) /\
(forall (y:nat).{:pattern (g y)} g y == sum_of_bools y k (gg y)) /\
(forall (x y:int).{:pattern (ff x y)} ff x y ==> 0 <= x /\ x < k /\ 0 <= y /\ y <= x) /\
(forall (x y:int).{:pattern (ff x y) \/ (gg y x)} ff x y == gg y x)
)
(ensures sum_of_bools 0 k f == sum_of_bools 0 k g)
=
// Example: k = 3, k' = 5, '#' shows non-zero elements of ff, '0'/'#' shows input to lemma_sum_swap:
// 0
// 00
// /|\ 00#
// | 0##0
// y ###00
//
// x -->
let k' = k + k - 1 in
let lemma_f (x:nat) : Lemma
(ensures
(k <= x ==> not (f x)) /\
(x < k' ==> f x == sum_of_bools 0 (k' - x) (ff x))
)
=
(if k <= x then lemma_sum_of_zero 0 (x + 1) (ff x));
lemma_sum_of_zero (if x < k then x + 1 else 0) (k' - x) (ff x);
(if x < k then lemma_sum_join 0 (x + 1) (k' - x) (ff x));
()
in
let lemma_g (y:nat) : Lemma
(ensures
(k <= y ==> not (g y)) /\
(y < k' ==> g y == sum_of_bools 0 (k' - y) (gg y))
)
=
(if k <= y then lemma_sum_of_zero 0 (y + 1) (gg y));
(if y < k then lemma_sum_of_zero 0 y (gg y));
lemma_sum_of_zero (if y < k then k else 0) (k' - y) (gg y);
(if y < k then lemma_sum_extend 0 y k (k' - y) (gg y));
()
in
FStar.Classical.forall_intro lemma_f;
FStar.Classical.forall_intro lemma_g;
lemma_sum_swap 0 k' ff gg f g;
lemma_sum_extend 0 0 k k' f;
lemma_sum_extend 0 0 k k' g;
()
let rec lemma_sum_pointwise_equal (j k:int) (f g:int -> bool) (pf:(i:int -> Lemma (f i == g i))) : Lemma
(ensures sum_of_bools j k f == sum_of_bools j k g)
(decreases (k - j))
=
if j < k then
(
pf (k - 1);
lemma_sum_pointwise_equal j (k - 1) f g pf
)
// MULTIPLICATION
let lemma_mul_element (a b:poly) (k:int) : Lemma
(requires True)
(ensures (a *. b).[k] == mul_element a b k)
[SMTPat (a *. b).[k]]
=
if k >= length a + length b then lemma_sum_of_zero 0 (k + 1) (mul_element_fun a b k)
let lemma_mul_zero (a:poly) : Lemma ((a *. zero) =. zero) =
let f (k:nat) : Lemma (not (mul_element a zero k)) =
lemma_sum_of_zero 0 (k + 1) (mul_element_fun a zero k)
in
FStar.Classical.forall_intro f
let lemma_mul_one (a:poly) : Lemma ((a *. one) =. a) =
let f (k:nat) : Lemma (mul_element a one k == a.[k]) =
lemma_sum_of_zero 0 k (mul_element_fun a one k)
in
FStar.Classical.forall_intro f
let lemma_mul_commute (a b:poly) : Lemma ((a *. b) =. (b *. a)) =
let f (k:nat) : Lemma (mul_element a b k == mul_element b a k) =
lemma_sum_reverse 0 (k + 1) (mul_element_fun a b k) (mul_element_fun b a k)
in
FStar.Classical.forall_intro f
let lemma_mul_associate (a b c:poly) : Lemma (a *. (b *. c) =. (a *. b) *. c) =
let f (k:nat) : Lemma (mul_element a (b *. c) k == mul_element (a *. b) c k) =
let abc1 (i:int) (j:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc2 (j:int) (i:int) = a.[j] && b.[i - j] && c.[k - i] in
let abc3 (j:int) (i:int) = a.[j] && b.[i] && c.[k - j - i] in
let sum_abc1 (i:int) = sum_of_bools 0 (i + 1) (abc1 i) in
let sum_abc2 (j:int) = sum_of_bools j (k + 1) (abc2 j) in
let sum_abc3 (j:int) = sum_of_bools 0 (k + 1 - j) (abc3 j) in
let l1 (i:int) : Lemma (mul_element_fun (a *. b) c k i == sum_abc1 i) =
lemma_sum_mul 0 (i + 1) c.[k - i] (abc1 i) (mul_element_fun a b i)
in
let l2 (j:int) : Lemma (sum_abc2 j == sum_abc3 j) =
lemma_sum_shift 0 (k + 1 - j) j (abc3 j) (abc2 j)
in
let l3 (j:int) : Lemma (mul_element_fun a (b *. c) k j == sum_abc3 j) =
lemma_sum_mul 0 (k + 1 - j) a.[j] (abc3 j) (mul_element_fun b c (k - j))
in
// mul_element (a *. b) c k
// sum[0 <= i <= k] (a *. b)[i] * c[k - i]
// sum[0 <= i <= k] (sum[0 <= j <= i] a[j] * b[i - j]) * c[k - i])
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun (a *. b) c k) sum_abc1 l1;
// sum[0 <= i <= k] sum[0 <= j <= i] a[j] * b[i - j] * c[k - i]
lemma_sum_swap_mul_associate (k + 1) abc1 abc2 sum_abc1 sum_abc2;
// sum[0 <= j <= k] sum[j <= i <= k] a[j] * b[i - j] * c[k - i]
lemma_sum_pointwise_equal 0 (k + 1) sum_abc2 sum_abc3 l2;
// sum[0 <= j <= k] sum[0 <= i <= k - j] a[j] * b[i] * c[k - j - i]
lemma_sum_pointwise_equal 0 (k + 1) (mul_element_fun a (b *. c) k) sum_abc3 l3;
// sum[0 <= j <= k] a[j] * (sum[0 <= i <= k - j] b[i] * c[k - j - i])
// sum[0 <= j <= k] (a[j] * (b *. c)[k - j])
// mul_element a (b *. c) k
()
in
FStar.Classical.forall_intro f
let lemma_mul_distribute (a b c:poly) : Lemma (a *. (b +. c) =. (a *. b) +. (a *. c)) =
let f (k:nat) : Lemma
(ensures mul_element a (b +. c) k == (mul_element a b k <> mul_element a c k))
=
lemma_sum_of_pairs 0 (k + 1)
(mul_element_fun a (b +. c) k)
(mul_element_fun a b k)
(mul_element_fun a c k)
in
FStar.Classical.forall_intro f
let lemma_mul_distribute_left (a b c:poly) : Lemma ((a +. b) *. c =. (a *. c) +. (b *. c)) =
lemma_mul_commute (a +. b) c;
lemma_mul_commute a c;
lemma_mul_commute b c;
lemma_mul_distribute c a b
let lemma_shift_is_mul (a:poly) (n:nat) : Lemma (shift a n =. a *. (monomial n)) =
let an = shift a n in
let b = monomial n in
let lem (k:nat) : Lemma (an.[k] == mul_element a b k) =
if k < n then
lemma_sum_of_zero 0 k (mul_element_fun a b k)
else
lemma_sum_extend 0 (k - n) (k - n + 1) (k + 1) (mul_element_fun a b k)
in
FStar.Classical.forall_intro lem
let lemma_mul_degree (a b:poly) : Lemma
(degree (a *. b) == (if degree a >= 0 && degree b >= 0 then degree a + degree b else -1))
=
if degree a >= 0 && degree b >= 0 then
(
let len = length a + length b in
lemma_sum_of_zero 0 len (mul_element_fun a b (len - 1));
lemma_sum_extend 0 (length a - 1) (length a) (len - 1) (mul_element_fun a b (len - 2));
assert (not (a *. b).[len - 1]);
assert ((a *. b).[len - 2]);
()
)
else if degree a < 0 then
(
assert (a =. zero);
lemma_mul_zero b;
lemma_mul_commute b zero;
()
)
else
(
assert (b =. zero);
lemma_mul_zero a;
()
) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2.Defs_s.fst.checked",
"Vale.Def.Prop_s.fst.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lib.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Defs.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Defs_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Prop_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2.Defs_s.poly -> b: Vale.Math.Poly2.Defs_s.poly -> n: Prims.nat
-> FStar.Pervasives.Lemma
(requires Vale.Math.Poly2.Defs_s.degree a <= n /\ Vale.Math.Poly2.Defs_s.degree b <= n)
(ensures
Vale.Math.Poly2.Defs_s.reverse (a *. b) (n + n) =.
Vale.Math.Poly2.Defs_s.reverse a n *. Vale.Math.Poly2.Defs_s.reverse b n) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.Math.Poly2.Defs_s.poly",
"Prims.nat",
"Vale.Math.Poly2.Defs.lemma_pointwise_equal",
"Vale.Math.Poly2.Defs.op_Star_Dot",
"Prims.int",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.eq2",
"Prims.bool",
"Vale.Math.Poly2.Defs_s.poly_index",
"Vale.Math.Poly2.Defs_s.mul",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims.op_AmpAmp",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Vale.Math.Poly2.Defs.lemma_sum_extend",
"Prims.op_Subtraction",
"Prims.l_and",
"Prims.l_imp",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.op_Equality",
"Prims.op_LessThan",
"Vale.Math.Poly2.Defs.max",
"Prims.min",
"Vale.Math.Poly2.Defs.lemma_sum_shift",
"Prims.op_Minus",
"Vale.Math.Poly2.Defs.lemma_sum_invert",
"Vale.Math.Poly2.Defs_s.mul_element_fun",
"Vale.Math.Poly2.Defs_s.op_String_Access",
"Vale.Math.Poly2.Defs.lemma_mul_degree",
"Vale.Math.Poly2.Defs_s.reverse",
"Vale.Math.Poly2.Defs_s.degree",
"Vale.Math.Poly2.Defs.op_Equals_Dot"
] | [] | false | false | true | false | false | let lemma_mul_reverse (a b: poly) (n: nat)
: Lemma (requires degree a <= n /\ degree b <= n)
(ensures reverse (a *. b) (n + n) =. reverse a n *. reverse b n) =
| let ab = a *. b in
let rab = reverse ab (n + n) in
let ra = reverse a n in
let rb = reverse b n in
lemma_mul_degree a b;
lemma_mul_degree ra rb;
let f (k: int) : Lemma (rab.[ k ] == (ra *. rb).[ k ]) =
if 0 <= k && k <= n + n
then
(let f0 = mul_element_fun ra rb k in
let f1 (i: int) : bool = a.[ n + i ] && b.[ n - k - i ] in
let f2 = mul_element_fun a b (n + n - k) in
lemma_sum_invert 0 (k + 1) f0 f1;
lemma_sum_shift (- k) 1 n f1 f2;
let lo = min (n - k) 0 in
let hi = max (n + 1) (n + n + 1 - k) in
lemma_sum_extend lo 0 (n + n + 1 - k) hi f2;
lemma_sum_extend lo (n - k) (n + 1) hi f2;
())
in
lemma_pointwise_equal rab (ra *. rb) f | false |
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.print_code | val print_code (c: code) (n: int) (p: P.printer) : string & int | val print_code (c: code) (n: int) (p: P.printer) : string & int | let rec print_block (b:codes) (n:int) (p:P.printer) : string & int =
match b with
| Nil -> "", n
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins (Instr _ _ (AnnotateComment s)) :: tail ->
let head_str = " // " ^ s ^ "\n" in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins i :: tail ->
let head_str = print_ins i p in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateNewline _)) :: tail ->
let rest, n' = print_block tail n p in
"\n" ^ rest, n'
| head :: tail ->
let head_str, n' = print_code head n p in
let rest, n'' = print_block tail n' p in
head_str ^ rest, n''
and print_code (c:code) (n:int) (p:P.printer) : string & int =
match c with
| Ins ins -> (print_ins ins p ^ "\n", n)
| Block b -> print_block b n p
| IfElse cond true_code false_code ->
let n1 = n in
let n2 = n + 1 in
let cmp = print_cmp (P.cmp_not cond) n1 p in
let true_str, n' = print_code true_code (n + 2) p in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"L" ^ string_of_int n1 ^ ":\"\n" in
let false_str, n' = print_code false_code n' p in
let label2 = " \"L" ^ string_of_int n2 ^ ":\"\n" in
cmp ^ true_str ^ jmp ^ label1 ^ false_str ^ label2, n'
| While cond body ->
let n1 = n in
let n2 = n + 1 in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n1 ^ ":\"\n" in
let body_str, n' = print_code body (n + 2) p in
let label2 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n2 ^ ":\"\n" in
let cmp = print_cmp cond n1 p in
jmp ^ label1 ^ body_str ^ label2 ^ cmp, n' | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 46,
"end_line": 298,
"start_col": 0,
"start_line": 258
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr
// If the register in which an arg is passed is not modified, we should specify it as `"r" (name)`
let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1)
// Get a list of strings corresponding to modified inputs
let rec get_nonmodified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string)
= match args with
| [] -> [], reg_names, counter
| a::q ->
let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in
let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in
input @ inputs, reg_names, counter
let print_nonmodified_inputs
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in
aux inputs, input_reg_names, counter
// Print the list of modified registers, + memory and cc
let print_modified_registers
(n:nat)
(ret_val:option string)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_args:reg_64 -> bool)
(args:list td) =
// This register was already specified as output
let output_register a = Some? ret_val && a = rRax in
let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) =
if i >= n then false
else
a = of_arg i // This register was already specified for the i-th argument
|| input_register (i+1) a
in
let rec aux = function
| [] -> "\"memory\", \"cc\"\n"
| a::q ->
// This register is not modified, or was already specified as input or output: we skip it
if not (regs_mod a) || input_register 0 a || output_register a then aux q
// Register not modified or already specified in inputs, we add it
else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q
in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15]
// Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n"
let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
let ty = match a with
| TD_Base _ -> "uint64_t "
| _ -> "uint64_t *"
in
if reserved (of_arg i) then
// If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions
true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n"
else false, ""
let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
match args with
| [] -> false, ""
| a::q ->
let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in
let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in
was_explicit || are_explicit, explicit_str ^ rest_str
// If we have a return parameter with a reserved register, print "register uint64_t [name] __asm__("rax");\n"
let print_register_ret (reserved:reg_64 -> bool) = function
| None -> ""
| Some name -> if reserved rRax then " register uint64_t " ^ name ^ " __asm__(\"rax\");\n" else " uint64_t " ^ name ^ ";\n"
(* This is a copy from X64.Print_s, and should remain in sync. The difference is that
each line should be in quotes, and end by a semicolon in inline assembly *)
let print_cmp (c:ocmp) (counter:int) (p:P.printer) : string =
let print_ops (o1:operand64) (o2:operand64) : string =
let first, second = p.P.op_order (P.print_operand o1 p) (P.print_operand o2 p) in
" cmp " ^ first ^ ", " ^ second ^ "\n"
in
match c with
| OEq o1 o2 -> " \"" ^ print_ops o1 o2 ^ " je " ^ "L" ^ string_of_int counter ^ ";\"\n"
| ONe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jne "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jbe "^ "L" ^ string_of_int counter ^ ";\"\n"
| OGe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jae "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jb " ^ "L" ^ string_of_int counter ^ ";\"\n"
| OGt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " ja " ^ "L" ^ string_of_int counter ^ ";\"\n"
let rec print_spaces (n:nat) : string =
match n with
| 0 -> ""
| n -> " " ^ print_spaces (n-1)
(* Overriding printer for formatting instructions *)
let print_ins (ins:ins) (p:P.printer) : string =
match ins with
| Instr _ _ (AnnotateComment s) -> " // " ^ s
| Instr _ _ (AnnotateLargeComment s) -> "\n /////// " ^ s ^ " ////// \n"
| Instr _ _ (AnnotateSpace n) -> print_spaces n
| _ -> " \"" ^ P.print_ins ins p ^ ";\"" | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Vale.X64.Machine_Semantics_s.code -> n: Prims.int -> p: Vale.X64.Print_s.printer
-> Prims.string * Prims.int | Prims.Tot | [
"total"
] | [
"print_block",
"print_code"
] | [
"Vale.X64.Machine_Semantics_s.code",
"Prims.int",
"Vale.X64.Print_s.printer",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"FStar.Pervasives.Native.Mktuple2",
"Prims.string",
"Prims.op_Hat",
"Vale.X64.Print_Inline_s.print_ins",
"Prims.list",
"Vale.X64.Machine_s.precode",
"Vale.X64.Bytes_Code_s.ocmp",
"Vale.X64.Print_Inline_s.print_block",
"Prims.string_of_int",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.Print_Inline_s.print_code",
"Prims.op_Addition",
"Vale.X64.Print_Inline_s.print_cmp",
"Vale.X64.Print_s.cmp_not",
"Vale.X64.Print_s.__proj__Mkprinter__item__align"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec print_code (c: code) (n: int) (p: P.printer) : string & int =
| match c with
| Ins ins -> (print_ins ins p ^ "\n", n)
| Block b -> print_block b n p
| IfElse cond true_code false_code ->
let n1 = n in
let n2 = n + 1 in
let cmp = print_cmp (P.cmp_not cond) n1 p in
let true_str, n' = print_code true_code (n + 2) p in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"L" ^ string_of_int n1 ^ ":\"\n" in
let false_str, n' = print_code false_code n' p in
let label2 = " \"L" ^ string_of_int n2 ^ ":\"\n" in
cmp ^ true_str ^ jmp ^ label1 ^ false_str ^ label2, n'
| While cond body ->
let n1 = n in
let n2 = n + 1 in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"" ^ p.P.align () ^ " 16\nL" ^ string_of_int n1 ^ ":\"\n" in
let body_str, n' = print_code body (n + 2) p in
let label2 = " \"" ^ p.P.align () ^ " 16\nL" ^ string_of_int n2 ^ ":\"\n" in
let cmp = print_cmp cond n1 p in
jmp ^ label1 ^ body_str ^ label2 ^ cmp, n' | false |
AuxPredicate.fst | AuxPredicate.my_inv | val my_inv (b: bool) (r: R.ref int) : vprop | val my_inv (b: bool) (r: R.ref int) : vprop | let my_inv (b:bool) (r:R.ref int) : vprop
= exists* v.
R.pts_to r v **
pure ( (v==0 \/ v == 1) /\ b == (v = 0) ) | {
"file_name": "share/steel/examples/pulse/AuxPredicate.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 47,
"end_line": 31,
"start_col": 0,
"start_line": 28
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module AuxPredicate
open Pulse.Lib.Pervasives
module R = Pulse.Lib.Reference
(* This example illustrates how to work with auxiliary predicates.
The style is quite explicit, with folds and unfolds.
It could be improved by automated support for foldig & unfolding
in the prover *)
// Defining a vprop using F* syntax. We do not yet allow | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Reference.fsti.checked",
"Pulse.Lib.Pervasives.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "AuxPredicate.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.Lib.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Prims.bool -> r: Pulse.Lib.Reference.ref Prims.int -> Pulse.Lib.Core.vprop | Prims.Tot | [
"total"
] | [] | [
"Prims.bool",
"Pulse.Lib.Reference.ref",
"Prims.int",
"Pulse.Lib.Core.op_exists_Star",
"Pulse.Lib.Core.op_Star_Star",
"Pulse.Lib.Reference.pts_to",
"PulseCore.FractionalPermission.full_perm",
"Pulse.Lib.Core.pure",
"Prims.l_and",
"Prims.l_or",
"Prims.eq2",
"Prims.op_Equality",
"Pulse.Lib.Core.vprop"
] | [] | false | false | false | true | false | let my_inv (b: bool) (r: R.ref int) : vprop =
| exists* v. R.pts_to r v ** pure ((v == 0 \/ v == 1) /\ b == (v = 0)) | false |
Hacl.Chacha20Poly1305_128.fst | Hacl.Chacha20Poly1305_128.poly1305_do_128 | val poly1305_do_128 : Hacl.Meta.Chacha20Poly1305.chacha20poly1305_poly1305_do_higher_t Prims.l_True | let poly1305_do_128 = chacha20poly1305_poly1305_do_higher #M128 True poly1305_finish poly1305_init poly1305_padded_128 | {
"file_name": "code/chacha20poly1305/Hacl.Chacha20Poly1305_128.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 118,
"end_line": 16,
"start_col": 0,
"start_line": 16
} | module Hacl.Chacha20Poly1305_128
open Hacl.Meta.Chacha20Poly1305
open Hacl.Impl.Chacha20Poly1305
open Hacl.Impl.Poly1305.Fields
open Hacl.Poly1305_128
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
[@CInline]
private
let poly1305_padded_128 = Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded #M128
[@CInline] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Hacl.Poly1305_128.fsti.checked",
"Hacl.Meta.Chacha20Poly1305.fst.checked",
"Hacl.Impl.Poly1305.Fields.fst.checked",
"Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked",
"Hacl.Impl.Chacha20Poly1305.fst.checked",
"Hacl.Chacha20.Vec128.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Chacha20Poly1305_128.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Poly1305_128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Chacha20Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Meta.Chacha20Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Meta.Chacha20Poly1305.chacha20poly1305_poly1305_do_higher_t Prims.l_True | Prims.Tot | [
"total"
] | [] | [
"Hacl.Meta.Chacha20Poly1305.chacha20poly1305_poly1305_do_higher",
"Hacl.Impl.Poly1305.Fields.M128",
"Prims.l_True",
"Hacl.Poly1305_128.poly1305_finish",
"Hacl.Poly1305_128.poly1305_init",
"Hacl.Chacha20Poly1305_128.poly1305_padded_128"
] | [] | false | false | false | true | false | let poly1305_do_128 =
| chacha20poly1305_poly1305_do_higher #M128 True poly1305_finish poly1305_init poly1305_padded_128 | false |
|
Hacl.Chacha20Poly1305_128.fst | Hacl.Chacha20Poly1305_128.poly1305_padded_128 | val poly1305_padded_128 : Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded_st Hacl.Impl.Poly1305.Fields.M128 | let poly1305_padded_128 = Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded #M128 | {
"file_name": "code/chacha20poly1305/Hacl.Chacha20Poly1305_128.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 83,
"end_line": 13,
"start_col": 0,
"start_line": 13
} | module Hacl.Chacha20Poly1305_128
open Hacl.Meta.Chacha20Poly1305
open Hacl.Impl.Chacha20Poly1305
open Hacl.Impl.Poly1305.Fields
open Hacl.Poly1305_128
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
[@CInline] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Hacl.Poly1305_128.fsti.checked",
"Hacl.Meta.Chacha20Poly1305.fst.checked",
"Hacl.Impl.Poly1305.Fields.fst.checked",
"Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked",
"Hacl.Impl.Chacha20Poly1305.fst.checked",
"Hacl.Chacha20.Vec128.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Chacha20Poly1305_128.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Poly1305_128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Chacha20Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Meta.Chacha20Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded_st Hacl.Impl.Poly1305.Fields.M128 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded",
"Hacl.Impl.Poly1305.Fields.M128"
] | [] | false | false | false | true | false | let poly1305_padded_128 =
| Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded #M128 | false |
|
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.remove_blank | val remove_blank (c: code) : code | val remove_blank (c: code) : code | let rec remove_blank (c:code) : code =
match c with
| Ins _ -> c
| Block b -> Block (remove_blanks b)
| IfElse cond ct cf -> IfElse cond (remove_blank ct) (remove_blank cf)
| While cond cb -> While cond (remove_blank cb)
and remove_blanks (b:codes) : codes =
match b with
| [] -> []
| Ins (Instr _ _ (AnnotateGhost _)) :: cs -> remove_blanks cs
| Block b :: cs ->
(
match remove_blanks b with
| [] -> remove_blanks cs
| b -> Block b :: remove_blanks cs
)
| c :: cs -> c :: remove_blanks cs | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 36,
"end_line": 320,
"start_col": 0,
"start_line": 304
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr
// If the register in which an arg is passed is not modified, we should specify it as `"r" (name)`
let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1)
// Get a list of strings corresponding to modified inputs
let rec get_nonmodified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string)
= match args with
| [] -> [], reg_names, counter
| a::q ->
let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in
let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in
input @ inputs, reg_names, counter
let print_nonmodified_inputs
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in
aux inputs, input_reg_names, counter
// Print the list of modified registers, + memory and cc
let print_modified_registers
(n:nat)
(ret_val:option string)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_args:reg_64 -> bool)
(args:list td) =
// This register was already specified as output
let output_register a = Some? ret_val && a = rRax in
let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) =
if i >= n then false
else
a = of_arg i // This register was already specified for the i-th argument
|| input_register (i+1) a
in
let rec aux = function
| [] -> "\"memory\", \"cc\"\n"
| a::q ->
// This register is not modified, or was already specified as input or output: we skip it
if not (regs_mod a) || input_register 0 a || output_register a then aux q
// Register not modified or already specified in inputs, we add it
else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q
in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15]
// Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n"
let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
let ty = match a with
| TD_Base _ -> "uint64_t "
| _ -> "uint64_t *"
in
if reserved (of_arg i) then
// If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions
true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n"
else false, ""
let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
match args with
| [] -> false, ""
| a::q ->
let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in
let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in
was_explicit || are_explicit, explicit_str ^ rest_str
// If we have a return parameter with a reserved register, print "register uint64_t [name] __asm__("rax");\n"
let print_register_ret (reserved:reg_64 -> bool) = function
| None -> ""
| Some name -> if reserved rRax then " register uint64_t " ^ name ^ " __asm__(\"rax\");\n" else " uint64_t " ^ name ^ ";\n"
(* This is a copy from X64.Print_s, and should remain in sync. The difference is that
each line should be in quotes, and end by a semicolon in inline assembly *)
let print_cmp (c:ocmp) (counter:int) (p:P.printer) : string =
let print_ops (o1:operand64) (o2:operand64) : string =
let first, second = p.P.op_order (P.print_operand o1 p) (P.print_operand o2 p) in
" cmp " ^ first ^ ", " ^ second ^ "\n"
in
match c with
| OEq o1 o2 -> " \"" ^ print_ops o1 o2 ^ " je " ^ "L" ^ string_of_int counter ^ ";\"\n"
| ONe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jne "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jbe "^ "L" ^ string_of_int counter ^ ";\"\n"
| OGe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jae "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jb " ^ "L" ^ string_of_int counter ^ ";\"\n"
| OGt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " ja " ^ "L" ^ string_of_int counter ^ ";\"\n"
let rec print_spaces (n:nat) : string =
match n with
| 0 -> ""
| n -> " " ^ print_spaces (n-1)
(* Overriding printer for formatting instructions *)
let print_ins (ins:ins) (p:P.printer) : string =
match ins with
| Instr _ _ (AnnotateComment s) -> " // " ^ s
| Instr _ _ (AnnotateLargeComment s) -> "\n /////// " ^ s ^ " ////// \n"
| Instr _ _ (AnnotateSpace n) -> print_spaces n
| _ -> " \"" ^ P.print_ins ins p ^ ";\""
let rec print_block (b:codes) (n:int) (p:P.printer) : string & int =
match b with
| Nil -> "", n
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins (Instr _ _ (AnnotateComment s)) :: tail ->
let head_str = " // " ^ s ^ "\n" in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins i :: tail ->
let head_str = print_ins i p in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateNewline _)) :: tail ->
let rest, n' = print_block tail n p in
"\n" ^ rest, n'
| head :: tail ->
let head_str, n' = print_code head n p in
let rest, n'' = print_block tail n' p in
head_str ^ rest, n''
and print_code (c:code) (n:int) (p:P.printer) : string & int =
match c with
| Ins ins -> (print_ins ins p ^ "\n", n)
| Block b -> print_block b n p
| IfElse cond true_code false_code ->
let n1 = n in
let n2 = n + 1 in
let cmp = print_cmp (P.cmp_not cond) n1 p in
let true_str, n' = print_code true_code (n + 2) p in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"L" ^ string_of_int n1 ^ ":\"\n" in
let false_str, n' = print_code false_code n' p in
let label2 = " \"L" ^ string_of_int n2 ^ ":\"\n" in
cmp ^ true_str ^ jmp ^ label1 ^ false_str ^ label2, n'
| While cond body ->
let n1 = n in
let n2 = n + 1 in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n1 ^ ":\"\n" in
let body_str, n' = print_code body (n + 2) p in
let label2 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n2 ^ ":\"\n" in
let cmp = print_cmp cond n1 p in
jmp ^ label1 ^ body_str ^ label2 ^ cmp, n'
let rec print_fn_comments = function
| [] -> ""
| hd::tl -> "// " ^ hd ^ "\n" ^ print_fn_comments tl | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: Vale.X64.Machine_Semantics_s.code -> Vale.X64.Machine_Semantics_s.code | Prims.Tot | [
"total"
] | [
"remove_blank",
"remove_blanks"
] | [
"Vale.X64.Machine_Semantics_s.code",
"Vale.X64.Bytes_Code_s.instruction_t",
"Vale.X64.Machine_Semantics_s.instr_annotation",
"Prims.list",
"Vale.X64.Machine_s.precode",
"Vale.X64.Bytes_Code_s.ocmp",
"Vale.X64.Machine_s.Block",
"Vale.X64.Print_Inline_s.remove_blanks",
"Vale.X64.Machine_s.IfElse",
"Vale.X64.Print_Inline_s.remove_blank",
"Vale.X64.Machine_s.While"
] | [
"mutual recursion"
] | false | false | false | true | false | let rec remove_blank (c: code) : code =
| match c with
| Ins _ -> c
| Block b -> Block (remove_blanks b)
| IfElse cond ct cf -> IfElse cond (remove_blank ct) (remove_blank cf)
| While cond cb -> While cond (remove_blank cb) | false |
Hacl.Chacha20Poly1305_128.fst | Hacl.Chacha20Poly1305_128.decrypt | val decrypt:aead_decrypt_st M128 | val decrypt:aead_decrypt_st M128 | let decrypt : aead_decrypt_st M128 =
chacha20poly1305_aead_decrypt_higher #M128 True Hacl.Chacha20.Vec128.chacha20_encrypt_128 poly1305_do_128 | {
"file_name": "code/chacha20poly1305/Hacl.Chacha20Poly1305_128.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 107,
"end_line": 53,
"start_col": 0,
"start_line": 52
} | module Hacl.Chacha20Poly1305_128
open Hacl.Meta.Chacha20Poly1305
open Hacl.Impl.Chacha20Poly1305
open Hacl.Impl.Poly1305.Fields
open Hacl.Poly1305_128
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
[@CInline]
private
let poly1305_padded_128 = Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded #M128
[@CInline]
private
let poly1305_do_128 = chacha20poly1305_poly1305_do_higher #M128 True poly1305_finish poly1305_init poly1305_padded_128
[@@ Comment "Encrypt a message `input` with key `key`.
The arguments `key`, `nonce`, `data`, and `data_len` are same in encryption/decryption.
Note: Encryption and decryption can be executed in-place, i.e., `input` and `output` can point to the same memory.
@param output Pointer to `input_len` bytes of memory where the ciphertext is written to.
@param tag Pointer to 16 bytes of memory where the mac is written to.
@param input Pointer to `input_len` bytes of memory where the message is read from.
@param input_len Length of the message.
@param data Pointer to `data_len` bytes of memory where the associated data is read from.
@param data_len Length of the associated data.
@param key Pointer to 32 bytes of memory where the AEAD key is read from.
@param nonce Pointer to 12 bytes of memory where the AEAD nonce is read from."]
let encrypt : aead_encrypt_st M128 =
chacha20poly1305_aead_encrypt_higher #M128 True poly1305_do_128 Hacl.Chacha20.Vec128.chacha20_encrypt_128
[@@ Comment "Decrypt a ciphertext `input` with key `key`.
The arguments `key`, `nonce`, `data`, and `data_len` are same in encryption/decryption.
Note: Encryption and decryption can be executed in-place, i.e., `input` and `output` can point to the same memory.
If decryption succeeds, the resulting plaintext is stored in `output` and the function returns the success code 0.
If decryption fails, the array `output` remains unchanged and the function returns the error code 1.
@param output Pointer to `input_len` bytes of memory where the message is written to.
@param input Pointer to `input_len` bytes of memory where the ciphertext is read from.
@param input_len Length of the ciphertext.
@param data Pointer to `data_len` bytes of memory where the associated data is read from.
@param data_len Length of the associated data.
@param key Pointer to 32 bytes of memory where the AEAD key is read from.
@param nonce Pointer to 12 bytes of memory where the AEAD nonce is read from.
@param tag Pointer to 16 bytes of memory where the mac is read from. | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Hacl.Poly1305_128.fsti.checked",
"Hacl.Meta.Chacha20Poly1305.fst.checked",
"Hacl.Impl.Poly1305.Fields.fst.checked",
"Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked",
"Hacl.Impl.Chacha20Poly1305.fst.checked",
"Hacl.Chacha20.Vec128.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Chacha20Poly1305_128.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Poly1305_128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Chacha20Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Meta.Chacha20Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Impl.Chacha20Poly1305.aead_decrypt_st Hacl.Impl.Poly1305.Fields.M128 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Meta.Chacha20Poly1305.chacha20poly1305_aead_decrypt_higher",
"Hacl.Impl.Poly1305.Fields.M128",
"Prims.l_True",
"Hacl.Chacha20.Vec128.chacha20_encrypt_128",
"Hacl.Chacha20Poly1305_128.poly1305_do_128"
] | [] | false | false | false | true | false | let decrypt:aead_decrypt_st M128 =
| chacha20poly1305_aead_decrypt_higher #M128
True
Hacl.Chacha20.Vec128.chacha20_encrypt_128
poly1305_do_128 | false |
Vale.Arch.BufferFriend.fsti | Vale.Arch.BufferFriend.le_to_n_indexed | val le_to_n_indexed (b: FE.bytes) : nat | val le_to_n_indexed (b: FE.bytes) : nat | let le_to_n_indexed (b:FE.bytes) : nat =
le_to_n_indexed_rec b (length b) | {
"file_name": "vale/code/arch/Vale.Arch.BufferFriend.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 89,
"start_col": 0,
"start_line": 88
} | module Vale.Arch.BufferFriend
module B = LowStar.Buffer
module LI = Lib.IntTypes
module BS = Lib.ByteSequence
module FE = FStar.Endianness
module HS = FStar.HyperStack
module DV = LowStar.BufferView.Down
module UV = LowStar.BufferView.Up
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.Mul
open FStar.Seq.Base
val to_bytes (s:seq UInt8.t) : Tot (b:BS.bytes{b === s /\ length b == length s})
val of_bytes (b:BS.bytes) : Tot (s:seq UInt8.t{b === s /\ length b == length s})
val lemma_to_bytes_slice (s:seq UInt8.t) (i j:nat) : Lemma
(requires i <= j /\ j <= length s)
(ensures to_bytes (slice s i j) == slice (to_bytes s) i j)
[SMTPat (to_bytes (slice s i j))]
val lemma_of_bytes_slice (b:BS.bytes) (i j:nat) : Lemma
(requires i <= j /\ j <= length b)
(ensures of_bytes (slice b i j) == slice (of_bytes b) i j)
[SMTPat (of_bytes (slice b i j))]
val lemma_up_as_seq_index (#b:_) (h:HS.mem) (vb:UV.buffer b) (i:nat) : Lemma
(requires i < length (UV.as_seq h vb) /\ UV.View?.n (UV.get_view vb) == 8) // TODO: generalize this beyond n = 8
(ensures (
let s0 = DV.as_seq h (UV.as_down_buffer vb) in
let v = UV.get_view vb in
let n = UV.View?.n v in
let start = i * n in
0 <= start /\ start + n <= length s0 /\
index (UV.as_seq h vb) i == UV.View?.get v (slice s0 start (start + n))
))
// TODO: this was copied out of Vale.SHA.Simplify_Sha.fst, but with the liveness requirement on b removed; we could consolidate the two versions
val same_seq_downview8 (b:B.buffer UInt8.t) (h:HS.mem) : Lemma
(DV.as_seq h (DV.mk_buffer_view b (Vale.Interop.Views.down_view8)) == B.as_seq h b)
val lemma_le_to_n_is_nat_from_bytes (s:FE.bytes) : Lemma
(ensures FE.le_to_n s == BS.nat_from_bytes_le (to_bytes s))
(decreases (length s))
val lemma_n_to_le_is_nat_to_bytes (len:nat) (n:nat) : Lemma
(requires n < pow2 (8 * len))
(ensures FE.n_to_le len n == of_bytes (BS.nat_to_bytes_le len n))
(decreases len)
val lemma_be_to_n_is_nat_from_bytes (s:FE.bytes) : Lemma
(ensures FE.be_to_n s == BS.nat_from_bytes_be (to_bytes s))
(decreases (length s))
val lemma_n_to_be_is_nat_to_bytes (len:nat) (n:nat) : Lemma
(requires n < pow2 (8 * len))
(ensures FE.n_to_be len n == of_bytes (BS.nat_to_bytes_be len n))
(decreases len)
val nat_from_bytes_le_is_four_to_nat (b:BS.bytes) : Lemma
(requires length b == 4)
(ensures
BS.nat_from_bytes_le b ==
Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Four_s.four_map LI.uint_v (Vale.Def.Words.Seq_s.seq_to_four_LE b))
)
val nat_from_bytes_le_is_le_bytes_to_nat32 (b:BS.bytes) : Lemma
(requires length b == 4)
(ensures
length (of_bytes b) == 4 /\
BS.nat_from_bytes_le b == le_bytes_to_nat32 (Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 (of_bytes b))
)
val nat_from_bytes_le_is_le_bytes_to_nat64 (b:BS.bytes) : Lemma
(requires length b == 8)
(ensures
length (of_bytes b) == 8 /\
BS.nat_from_bytes_le b == le_bytes_to_nat64 (Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 (of_bytes b))
)
// useful with norm_spec [iota; zeta; primops; delta_only [`%le_to_n_indexed_rec; `%pow2]]
let rec le_to_n_indexed_rec (b:FE.bytes) (i:nat{i <= length b}) : nat =
if i = 0 then 0
else UInt8.v (index b (length b - i)) + pow2 8 * le_to_n_indexed_rec b (i - 1) | {
"checked_file": "/",
"dependencies": [
"Vale.Interop.Views.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"prims.fst.checked",
"LowStar.BufferView.Up.fsti.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Arch.BufferFriend.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "FE"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BS"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "LI"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Endianness.bytes -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"FStar.Endianness.bytes",
"Vale.Arch.BufferFriend.le_to_n_indexed_rec",
"FStar.Seq.Base.length",
"FStar.UInt8.t",
"Prims.nat"
] | [] | false | false | false | true | false | let le_to_n_indexed (b: FE.bytes) : nat =
| le_to_n_indexed_rec b (length b) | false |
Vale.Arch.BufferFriend.fsti | Vale.Arch.BufferFriend.le_to_n_indexed_rec | val le_to_n_indexed_rec (b: FE.bytes) (i: nat{i <= length b}) : nat | val le_to_n_indexed_rec (b: FE.bytes) (i: nat{i <= length b}) : nat | let rec le_to_n_indexed_rec (b:FE.bytes) (i:nat{i <= length b}) : nat =
if i = 0 then 0
else UInt8.v (index b (length b - i)) + pow2 8 * le_to_n_indexed_rec b (i - 1) | {
"file_name": "vale/code/arch/Vale.Arch.BufferFriend.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 80,
"end_line": 86,
"start_col": 0,
"start_line": 84
} | module Vale.Arch.BufferFriend
module B = LowStar.Buffer
module LI = Lib.IntTypes
module BS = Lib.ByteSequence
module FE = FStar.Endianness
module HS = FStar.HyperStack
module DV = LowStar.BufferView.Down
module UV = LowStar.BufferView.Up
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.Mul
open FStar.Seq.Base
val to_bytes (s:seq UInt8.t) : Tot (b:BS.bytes{b === s /\ length b == length s})
val of_bytes (b:BS.bytes) : Tot (s:seq UInt8.t{b === s /\ length b == length s})
val lemma_to_bytes_slice (s:seq UInt8.t) (i j:nat) : Lemma
(requires i <= j /\ j <= length s)
(ensures to_bytes (slice s i j) == slice (to_bytes s) i j)
[SMTPat (to_bytes (slice s i j))]
val lemma_of_bytes_slice (b:BS.bytes) (i j:nat) : Lemma
(requires i <= j /\ j <= length b)
(ensures of_bytes (slice b i j) == slice (of_bytes b) i j)
[SMTPat (of_bytes (slice b i j))]
val lemma_up_as_seq_index (#b:_) (h:HS.mem) (vb:UV.buffer b) (i:nat) : Lemma
(requires i < length (UV.as_seq h vb) /\ UV.View?.n (UV.get_view vb) == 8) // TODO: generalize this beyond n = 8
(ensures (
let s0 = DV.as_seq h (UV.as_down_buffer vb) in
let v = UV.get_view vb in
let n = UV.View?.n v in
let start = i * n in
0 <= start /\ start + n <= length s0 /\
index (UV.as_seq h vb) i == UV.View?.get v (slice s0 start (start + n))
))
// TODO: this was copied out of Vale.SHA.Simplify_Sha.fst, but with the liveness requirement on b removed; we could consolidate the two versions
val same_seq_downview8 (b:B.buffer UInt8.t) (h:HS.mem) : Lemma
(DV.as_seq h (DV.mk_buffer_view b (Vale.Interop.Views.down_view8)) == B.as_seq h b)
val lemma_le_to_n_is_nat_from_bytes (s:FE.bytes) : Lemma
(ensures FE.le_to_n s == BS.nat_from_bytes_le (to_bytes s))
(decreases (length s))
val lemma_n_to_le_is_nat_to_bytes (len:nat) (n:nat) : Lemma
(requires n < pow2 (8 * len))
(ensures FE.n_to_le len n == of_bytes (BS.nat_to_bytes_le len n))
(decreases len)
val lemma_be_to_n_is_nat_from_bytes (s:FE.bytes) : Lemma
(ensures FE.be_to_n s == BS.nat_from_bytes_be (to_bytes s))
(decreases (length s))
val lemma_n_to_be_is_nat_to_bytes (len:nat) (n:nat) : Lemma
(requires n < pow2 (8 * len))
(ensures FE.n_to_be len n == of_bytes (BS.nat_to_bytes_be len n))
(decreases len)
val nat_from_bytes_le_is_four_to_nat (b:BS.bytes) : Lemma
(requires length b == 4)
(ensures
BS.nat_from_bytes_le b ==
Vale.Def.Words.Four_s.four_to_nat 8 (Vale.Def.Words.Four_s.four_map LI.uint_v (Vale.Def.Words.Seq_s.seq_to_four_LE b))
)
val nat_from_bytes_le_is_le_bytes_to_nat32 (b:BS.bytes) : Lemma
(requires length b == 4)
(ensures
length (of_bytes b) == 4 /\
BS.nat_from_bytes_le b == le_bytes_to_nat32 (Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 (of_bytes b))
)
val nat_from_bytes_le_is_le_bytes_to_nat64 (b:BS.bytes) : Lemma
(requires length b == 8)
(ensures
length (of_bytes b) == 8 /\
BS.nat_from_bytes_le b == le_bytes_to_nat64 (Vale.Def.Words.Seq_s.seq_uint8_to_seq_nat8 (of_bytes b))
) | {
"checked_file": "/",
"dependencies": [
"Vale.Interop.Views.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Seq_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"prims.fst.checked",
"LowStar.BufferView.Up.fsti.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Seq.Base.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.fst.checked",
"FStar.Endianness.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Arch.BufferFriend.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Seq.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "FStar.Endianness",
"short_module": "FE"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BS"
},
{
"abbrev": true,
"full_module": "Lib.IntTypes",
"short_module": "LI"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Endianness.bytes -> i: Prims.nat{i <= FStar.Seq.Base.length b} -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"FStar.Endianness.bytes",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Seq.Base.length",
"FStar.UInt8.t",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.op_Addition",
"FStar.UInt8.v",
"FStar.Seq.Base.index",
"Prims.op_Subtraction",
"FStar.Mul.op_Star",
"Prims.pow2",
"Vale.Arch.BufferFriend.le_to_n_indexed_rec"
] | [
"recursion"
] | false | false | false | false | false | let rec le_to_n_indexed_rec (b: FE.bytes) (i: nat{i <= length b}) : nat =
| if i = 0 then 0 else UInt8.v (index b (length b - i)) + pow2 8 * le_to_n_indexed_rec b (i - 1) | false |
Hacl.Chacha20Poly1305_128.fst | Hacl.Chacha20Poly1305_128.encrypt | val encrypt:aead_encrypt_st M128 | val encrypt:aead_encrypt_st M128 | let encrypt : aead_encrypt_st M128 =
chacha20poly1305_aead_encrypt_higher #M128 True poly1305_do_128 Hacl.Chacha20.Vec128.chacha20_encrypt_128 | {
"file_name": "code/chacha20poly1305/Hacl.Chacha20Poly1305_128.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 107,
"end_line": 32,
"start_col": 0,
"start_line": 31
} | module Hacl.Chacha20Poly1305_128
open Hacl.Meta.Chacha20Poly1305
open Hacl.Impl.Chacha20Poly1305
open Hacl.Impl.Poly1305.Fields
open Hacl.Poly1305_128
#set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0"
[@CInline]
private
let poly1305_padded_128 = Hacl.Impl.Chacha20Poly1305.PolyCore.poly1305_padded #M128
[@CInline]
private
let poly1305_do_128 = chacha20poly1305_poly1305_do_higher #M128 True poly1305_finish poly1305_init poly1305_padded_128
[@@ Comment "Encrypt a message `input` with key `key`.
The arguments `key`, `nonce`, `data`, and `data_len` are same in encryption/decryption.
Note: Encryption and decryption can be executed in-place, i.e., `input` and `output` can point to the same memory.
@param output Pointer to `input_len` bytes of memory where the ciphertext is written to.
@param tag Pointer to 16 bytes of memory where the mac is written to.
@param input Pointer to `input_len` bytes of memory where the message is read from.
@param input_len Length of the message.
@param data Pointer to `data_len` bytes of memory where the associated data is read from.
@param data_len Length of the associated data.
@param key Pointer to 32 bytes of memory where the AEAD key is read from. | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Hacl.Poly1305_128.fsti.checked",
"Hacl.Meta.Chacha20Poly1305.fst.checked",
"Hacl.Impl.Poly1305.Fields.fst.checked",
"Hacl.Impl.Chacha20Poly1305.PolyCore.fst.checked",
"Hacl.Impl.Chacha20Poly1305.fst.checked",
"Hacl.Chacha20.Vec128.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Chacha20Poly1305_128.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Poly1305_128",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Poly1305.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Chacha20Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Meta.Chacha20Poly1305",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Impl.Chacha20Poly1305.aead_encrypt_st Hacl.Impl.Poly1305.Fields.M128 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Meta.Chacha20Poly1305.chacha20poly1305_aead_encrypt_higher",
"Hacl.Impl.Poly1305.Fields.M128",
"Prims.l_True",
"Hacl.Chacha20Poly1305_128.poly1305_do_128",
"Hacl.Chacha20.Vec128.chacha20_encrypt_128"
] | [] | false | false | false | true | false | let encrypt:aead_encrypt_st M128 =
| chacha20poly1305_aead_encrypt_higher #M128
True
poly1305_do_128
Hacl.Chacha20.Vec128.chacha20_encrypt_128 | false |
Vale.X64.Print_Inline_s.fst | Vale.X64.Print_Inline_s.print_inline | val print_inline
(name: string)
(label: int)
(ret_val: option string)
(n: nat)
(args: list td {List.length args = n})
(arg_names: (nat -> string))
(code: code)
(of_arg: (reg_nat (List.length args) -> reg_64))
(regs_mod: (reg_64 -> bool))
(fn_comments: list string)
: FStar.All.ML int | val print_inline
(name: string)
(label: int)
(ret_val: option string)
(n: nat)
(args: list td {List.length args = n})
(arg_names: (nat -> string))
(code: code)
(of_arg: (reg_nat (List.length args) -> reg_64))
(regs_mod: (reg_64 -> bool))
(fn_comments: list string)
: FStar.All.ML int | let print_inline
(name:string)
(label:int)
(ret_val:option string)
(n:nat)
(args:list td{List.length args = n})
(arg_names:nat -> string)
(code:code)
(of_arg:reg_nat (List.length args) -> reg_64)
(regs_mod:reg_64 -> bool)
(fn_comments:list string)
: FStar.All.ML int =
let comments = print_fn_comments fn_comments in
let reserved_regs = build_reserved_args code (fun _ -> false) in
let inputs_use_rax = uses_rax args 0 of_arg in
if reserved_regs rRax && Some? ret_val then
FStar.All.failwith "We require the annotation register uint64_t result(rax), but it would be ignored by gcc < 9";
if inputs_use_rax && Some? ret_val then
FStar.All.failwith "inputs are not allowed to be passed in rax when there is a return argument";
// Signature: static inline (void | uint64_t) [name] (arg1, arg2???) {
let header = "static inline " ^ print_rettype ret_val ^ " " ^ name ^ " (" ^ print_args args 0 arg_names ^ ") \n{\n" in
// If we have a return value, declare a variable for it
let ret_reg = print_register_ret reserved_regs ret_val in
// Explicitly allocate registers when needed
let has_explicit, explicit_regs = print_explicit_register_args n args 0 of_arg reserved_regs arg_names in
// Start printing the code, need the __asm__ volatile header
let start_code = (if Some? ret_val || has_explicit then "\n" else "") ^ " __asm__ volatile(\n" in
// Initially, the register names are the same as in assembly
// This function will be modified to address arguments by their number instead of explicitly allocating them
let init_reg_names r = "%" ^ P.print_reg_name r in
// Each *modified* input should be specified as "+r" (name) in the output line
// If we have a return value, it should be written only and specified as "=r" (name)
let output_str, output_reg_names, output_nbr = print_modified_inputs n of_arg regs_mod reserved_regs args ret_val init_reg_names 0 arg_names in
let output_str = " : " ^ output_str in
// Each *non-modified* input should be specified as `"r" (name)` in the input line
let input_str, inlined_reg_names, _ = print_nonmodified_inputs n of_arg regs_mod reserved_regs args output_reg_names output_nbr arg_names in
let input_str = " : " ^ input_str in
// Propagating the "numbered", implicit registers to reg32 and small_reg
let inlined_reg32_names r =
if ("%" ^ P.print_reg_name r) = inlined_reg_names r then "%" ^ P.print_reg32_name r
// In this case, this register is replaced by a number.
// We add the "k" prefix for 32-bit operands
else "k" ^ inlined_reg_names r
in
let inlined_small_reg_names r =
if r > 3 then P.print_small_reg_name r else
if ("%" ^ P.print_reg_name r) = inlined_reg_names r then "%" ^ P.print_small_reg_name r
// In this case, this register is replaced by a number.
// We add the "b" prefix for bytes
else "b" ^ inlined_reg_names r
in
// In inline assembly, operands are prefixed by "%%" instead of "%" in regular GCC assembly
let printer = {P.gcc with
P.print_reg_name = inlined_reg_names;
P.print_reg32_name = inlined_reg32_names;
P.print_small_reg_name = inlined_small_reg_names } in
// The assembly should be compliant with gcc
let (code_str, final_label) = print_code (remove_blank code) label printer in
// Every modified register that wasn't used for the inputs/outputs should be specified in the modified line
let modified_str = " : " ^ print_modified_registers n ret_val of_arg regs_mod reserved_regs args in
let close_code = " );\n" ^ (if Some? ret_val then "\n return " ^ Some?.v ret_val ^ ";\n" else "") ^ "}\n\n" in
print_string (comments ^ header ^ ret_reg ^ explicit_regs ^ start_code ^ code_str ^ output_str ^ input_str ^ modified_str ^ close_code);
final_label | {
"file_name": "vale/specs/hardware/Vale.X64.Print_Inline_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 13,
"end_line": 407,
"start_col": 0,
"start_line": 328
} | module Vale.X64.Print_Inline_s
open FStar.Mul
open FStar.List.Tot
open Vale.X64.Machine_s
open Vale.X64.Bytes_Code_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Instruction_s
open FStar.IO
open Vale.Interop.Base
open Vale.Interop.X64
module P = Vale.X64.Print_s
let print_rettype (ret_val:option string) = match ret_val with
| None -> "void"
| Some _ -> "uint64_t"
let print_basetype (t:base_typ) = match t with
| TUInt8 -> "uint8_t"
| TUInt16 -> "uint16_t"
| TUInt32 -> "uint32_t"
| TUInt64 -> "uint64_t"
| TUInt128 -> "ERROR"
// Returns "uint8_t arg2" or "uint64_t* arg0" for instance
let print_arg (a:td) (i:nat) (names:nat -> string) = match a with
| TD_Base src -> print_basetype src ^ " " ^ names i
| TD_Buffer src _ _ | TD_ImmBuffer src _ _ -> print_basetype src ^ " *" ^ names i
// Prints a list of args with their types, separated by a comma
let rec print_args (args:list td) (i:nat) (names:nat -> string) = match args with
| [] -> ""
| [a] -> print_arg a i names
| a::q -> print_arg a i names ^ ", " ^ print_args q (i+1) names
let rec build_reserved_args_outs (l:list instr_out) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let (_, op) = hd in
let reserved : (reg_64 -> bool) = (fun r ->
match op with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_outs tl reserved r
let rec build_reserved_args_ins (l:list instr_operand) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r ->
match l with
| [] -> reserved r
| hd::tl ->
let reserved : (reg_64 -> bool) = (fun r ->
match hd with
| IOpIm (IOp64One (OReg reg)) ->
// Implicit register, adding it to "reserved" registers
if r = reg then true else reserved r
| _ -> reserved r)
in build_reserved_args_ins tl reserved r
// Traverses code, looking for instructions implicitly using registers.
// When found, mark such registers as reserved so that they are not used during implicit allocation
let rec build_reserved_args (c:code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases c) =
fun r ->
(match c with
| Ins ins -> begin
match ins with
| Instr i _ _ ->
let reserved = build_reserved_args_outs i.outs reserved in
let reserved = build_reserved_args_ins (InstrTypeRecord?.args i) reserved in
reserved r
| _ -> reserved r
end
| Block l -> (build_reserved_args_block l reserved) r
| IfElse cond ifTrue ifFalse ->
let reservedT = build_reserved_args ifTrue reserved in
build_reserved_args ifFalse reservedT r
| While cond body -> build_reserved_args body reserved r
)
and build_reserved_args_block (l:list code) (reserved:reg_64 -> bool)
: Tot (reg_64 -> bool)
(decreases l) =
fun r -> (
match l with
| [] -> reserved r
| hd::tl ->
let reserved = build_reserved_args hd reserved in
build_reserved_args_block tl reserved r
)
// Prints `"=&r" (name)` if an output is specified
let print_output_ret ret_val (reg_names:reg_64 -> string) (counter:nat) : list string & (reg_64 -> string) & nat
= match ret_val with
| None -> [], reg_names, counter
| Some name -> (["\"=&r\" (" ^ name ^ ")"],
// If r = rax then address it as current arg number
(fun r -> if r = 0 then string_of_int counter else reg_names r),
counter + 1)
// If the register in which a is passed is modified, we should specify `"+&r" (name)`
let print_modified_input
(n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then
(["\"+&r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1
) else ([], reg_names, counter)
// Get a list of strings corresponding to modified inputs
let rec get_modified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{i + List.Tot.length args <= n}) (ret_val:option string)
(reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat
= match args with
| [] -> print_output_ret ret_val reg_names counter
| a::q ->
let output, reg_names, counter = print_modified_input n a i of_arg regs_mod reserved_regs reg_names counter arg_names in
let outputs, reg_names, counter = get_modified_input_strings n of_arg regs_mod reserved_regs q (i+1) ret_val reg_names counter arg_names in
output @ outputs, reg_names, counter
// Print the list of modified inputs, separated by commas
let print_modified_inputs
(n:nat)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n})
(ret_val:option string)
(reg_names:reg_64 -> string)
(counter:nat)
(arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let outputs, output_reg_names, output_nbr = get_modified_input_strings n of_arg regs_mod reserved_regs args 0 ret_val reg_names counter arg_names in
aux outputs, output_reg_names, output_nbr
// If the register in which an arg is passed is not modified, we should specify it as `"r" (name)`
let print_nonmodified_input
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(a:td) (i:nat{i < n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) : list string & (reg_64 -> string) & nat =
if regs_mod (of_arg i) then ([], reg_names, counter) else
(["\"r\" (" ^ arg_names i ^ (if reserved_regs (of_arg i) then "_r)" else ")")],
(fun r -> if r = of_arg i && not (reserved_regs r) then string_of_int counter else reg_names r),
counter + 1)
// Get a list of strings corresponding to modified inputs
let rec get_nonmodified_input_strings
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td) (i:nat{List.Tot.length args + i <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string)
= match args with
| [] -> [], reg_names, counter
| a::q ->
let input, reg_names, counter = print_nonmodified_input n of_arg regs_mod reserved_regs a i reg_names counter arg_names in
let inputs, reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs q (i+1) reg_names counter arg_names in
input @ inputs, reg_names, counter
let print_nonmodified_inputs
(n:nat) (of_arg:reg_nat n -> reg_64) (regs_mod:reg_64 -> bool) (reserved_regs:reg_64 -> bool)
(args:list td{List.Tot.length args <= n}) (reg_names:reg_64 -> string) (counter:nat) (arg_names:nat -> string) =
let rec aux = function
| [] -> "\n"
| [a] -> a ^ "\n"
| a :: q -> a ^ ", " ^ aux q
in
let inputs, input_reg_names, counter = get_nonmodified_input_strings n of_arg regs_mod reserved_regs args 0 reg_names counter arg_names in
aux inputs, input_reg_names, counter
// Print the list of modified registers, + memory and cc
let print_modified_registers
(n:nat)
(ret_val:option string)
(of_arg:reg_nat n -> reg_64)
(regs_mod:reg_64 -> bool)
(reserved_args:reg_64 -> bool)
(args:list td) =
// This register was already specified as output
let output_register a = Some? ret_val && a = rRax in
let rec input_register (i:nat) (a:reg_64) : Tot bool (decreases (n-i)) =
if i >= n then false
else
a = of_arg i // This register was already specified for the i-th argument
|| input_register (i+1) a
in
let rec aux = function
| [] -> "\"memory\", \"cc\"\n"
| a::q ->
// This register is not modified, or was already specified as input or output: we skip it
if not (regs_mod a) || input_register 0 a || output_register a then aux q
// Register not modified or already specified in inputs, we add it
else "\"%" ^ P.print_reg_name a ^ "\", " ^ aux q
in aux [rRax; rRbx; rRcx; rRdx; rRsi; rRdi; rRbp; rRsp; rR8; rR9; rR10; rR11; rR12; rR13; rR14; rR15]
// Prints "register uint64_t *argi_r __asm__("[reg]") = argi;\n"
let print_explicit_register_arg (n:nat) (a:td) (i:nat{i < n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
let ty = match a with
| TD_Base _ -> "uint64_t "
| _ -> "uint64_t *"
in
if reserved (of_arg i) then
// If the associated register is reserved, we really this argument in it. For instance if it is Rdx and we have Mul(x) instructions
true, " register " ^ ty ^ names i ^ "_r __asm__(\"" ^ P.print_reg_name (of_arg i) ^ "\") = " ^ names i ^ ";\n"
else false, ""
let rec print_explicit_register_args (n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) (reserved:reg_64 -> bool) (names:nat -> string) =
match args with
| [] -> false, ""
| a::q ->
let was_explicit, explicit_str = print_explicit_register_arg n a i of_arg reserved names in
let are_explicit, rest_str = print_explicit_register_args n q (i+1) of_arg reserved names in
was_explicit || are_explicit, explicit_str ^ rest_str
// If we have a return parameter with a reserved register, print "register uint64_t [name] __asm__("rax");\n"
let print_register_ret (reserved:reg_64 -> bool) = function
| None -> ""
| Some name -> if reserved rRax then " register uint64_t " ^ name ^ " __asm__(\"rax\");\n" else " uint64_t " ^ name ^ ";\n"
(* This is a copy from X64.Print_s, and should remain in sync. The difference is that
each line should be in quotes, and end by a semicolon in inline assembly *)
let print_cmp (c:ocmp) (counter:int) (p:P.printer) : string =
let print_ops (o1:operand64) (o2:operand64) : string =
let first, second = p.P.op_order (P.print_operand o1 p) (P.print_operand o2 p) in
" cmp " ^ first ^ ", " ^ second ^ "\n"
in
match c with
| OEq o1 o2 -> " \"" ^ print_ops o1 o2 ^ " je " ^ "L" ^ string_of_int counter ^ ";\"\n"
| ONe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jne "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jbe "^ "L" ^ string_of_int counter ^ ";\"\n"
| OGe o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jae "^ "L" ^ string_of_int counter ^ ";\"\n"
| OLt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " jb " ^ "L" ^ string_of_int counter ^ ";\"\n"
| OGt o1 o2 -> " \"" ^ print_ops o1 o2 ^ " ja " ^ "L" ^ string_of_int counter ^ ";\"\n"
let rec print_spaces (n:nat) : string =
match n with
| 0 -> ""
| n -> " " ^ print_spaces (n-1)
(* Overriding printer for formatting instructions *)
let print_ins (ins:ins) (p:P.printer) : string =
match ins with
| Instr _ _ (AnnotateComment s) -> " // " ^ s
| Instr _ _ (AnnotateLargeComment s) -> "\n /////// " ^ s ^ " ////// \n"
| Instr _ _ (AnnotateSpace n) -> print_spaces n
| _ -> " \"" ^ P.print_ins ins p ^ ";\""
let rec print_block (b:codes) (n:int) (p:P.printer) : string & int =
match b with
| Nil -> "", n
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins (Instr _ _ (AnnotateComment s)) :: tail ->
let head_str = " // " ^ s ^ "\n" in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateSpace spaces)) :: Ins i :: tail ->
let head_str = print_ins i p in
let rest, n' = print_block tail n p in
print_spaces spaces ^ head_str ^ rest, n'
| Ins (Instr _ _ (AnnotateNewline _)) :: tail ->
let rest, n' = print_block tail n p in
"\n" ^ rest, n'
| head :: tail ->
let head_str, n' = print_code head n p in
let rest, n'' = print_block tail n' p in
head_str ^ rest, n''
and print_code (c:code) (n:int) (p:P.printer) : string & int =
match c with
| Ins ins -> (print_ins ins p ^ "\n", n)
| Block b -> print_block b n p
| IfElse cond true_code false_code ->
let n1 = n in
let n2 = n + 1 in
let cmp = print_cmp (P.cmp_not cond) n1 p in
let true_str, n' = print_code true_code (n + 2) p in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"L" ^ string_of_int n1 ^ ":\"\n" in
let false_str, n' = print_code false_code n' p in
let label2 = " \"L" ^ string_of_int n2 ^ ":\"\n" in
cmp ^ true_str ^ jmp ^ label1 ^ false_str ^ label2, n'
| While cond body ->
let n1 = n in
let n2 = n + 1 in
let jmp = " \" jmp L" ^ string_of_int n2 ^ ";\"\n" in
let label1 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n1 ^ ":\"\n" in
let body_str, n' = print_code body (n + 2) p in
let label2 = " \"" ^ p.P.align() ^ " 16\nL" ^ string_of_int n2 ^ ":\"\n" in
let cmp = print_cmp cond n1 p in
jmp ^ label1 ^ body_str ^ label2 ^ cmp, n'
let rec print_fn_comments = function
| [] -> ""
| hd::tl -> "// " ^ hd ^ "\n" ^ print_fn_comments tl
let rec remove_blank (c:code) : code =
match c with
| Ins _ -> c
| Block b -> Block (remove_blanks b)
| IfElse cond ct cf -> IfElse cond (remove_blank ct) (remove_blank cf)
| While cond cb -> While cond (remove_blank cb)
and remove_blanks (b:codes) : codes =
match b with
| [] -> []
| Ins (Instr _ _ (AnnotateGhost _)) :: cs -> remove_blanks cs
| Block b :: cs ->
(
match remove_blanks b with
| [] -> remove_blanks cs
| b -> Block b :: remove_blanks cs
)
| c :: cs -> c :: remove_blanks cs
// Check if any argument is passed in the rax register
let rec uses_rax (#n:nat) (args:list td) (i:nat{i + List.length args = n}) (of_arg:reg_nat n -> reg_64) =
match args with
| [] -> false
| a::q -> if of_arg i = rRax then true else uses_rax q (i+1) of_arg | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Vale.X64.Print_Inline_s.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.X64.Print_s",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Vale.Interop.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IO",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
name: Prims.string ->
label: Prims.int ->
ret_val: FStar.Pervasives.Native.option Prims.string ->
n: Prims.nat ->
args: Prims.list Vale.Interop.Base.td {FStar.List.Tot.Base.length args = n} ->
arg_names: (_: Prims.nat -> Prims.string) ->
code: Vale.X64.Machine_Semantics_s.code ->
of_arg:
(_: Vale.Interop.X64.reg_nat (FStar.List.Tot.Base.length args) -> Vale.X64.Machine_s.reg_64) ->
regs_mod: (_: Vale.X64.Machine_s.reg_64 -> Prims.bool) ->
fn_comments: Prims.list Prims.string
-> FStar.All.ML Prims.int | FStar.All.ML | [
"ml"
] | [] | [
"Prims.string",
"Prims.int",
"FStar.Pervasives.Native.option",
"Prims.nat",
"Prims.list",
"Vale.Interop.Base.td",
"Prims.b2t",
"Prims.op_Equality",
"FStar.List.Tot.Base.length",
"Vale.X64.Machine_Semantics_s.code",
"Vale.Interop.X64.reg_nat",
"Vale.X64.Machine_s.reg_64",
"Prims.bool",
"Prims.unit",
"FStar.IO.print_string",
"Prims.op_Hat",
"FStar.Pervasives.Native.uu___is_Some",
"FStar.Pervasives.Native.__proj__Some__item__v",
"Vale.X64.Print_Inline_s.print_modified_registers",
"FStar.Pervasives.Native.tuple2",
"Vale.X64.Print_Inline_s.print_code",
"Vale.X64.Print_Inline_s.remove_blank",
"Vale.X64.Print_s.printer",
"Vale.X64.Print_s.Mkprinter",
"Vale.X64.Print_s.__proj__Mkprinter__item__reg_prefix",
"Vale.X64.Print_s.gcc",
"Vale.X64.Print_s.__proj__Mkprinter__item__mem_prefix",
"Vale.X64.Print_s.__proj__Mkprinter__item__maddr",
"Vale.X64.Print_s.__proj__Mkprinter__item__const",
"Vale.X64.Print_s.__proj__Mkprinter__item__ins_name",
"Vale.X64.Print_s.__proj__Mkprinter__item__op_order",
"Vale.X64.Print_s.__proj__Mkprinter__item__align",
"Vale.X64.Print_s.__proj__Mkprinter__item__header",
"Vale.X64.Print_s.__proj__Mkprinter__item__footer",
"Vale.X64.Print_s.__proj__Mkprinter__item__proc_name",
"Vale.X64.Print_s.__proj__Mkprinter__item__ret",
"Vale.X64.Print_s.__proj__Mkprinter__item__sha256rnds2_explicit_xmm0",
"Prims.l_and",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThan",
"Prims.op_GreaterThan",
"Vale.X64.Print_s.print_small_reg_name",
"Vale.X64.Print_s.print_reg_name",
"Vale.X64.Print_s.print_reg32_name",
"FStar.Pervasives.Native.tuple3",
"Vale.X64.Print_Inline_s.print_nonmodified_inputs",
"Vale.X64.Print_Inline_s.print_modified_inputs",
"Prims.op_BarBar",
"Vale.X64.Print_Inline_s.print_explicit_register_args",
"Vale.X64.Print_Inline_s.print_register_ret",
"Vale.X64.Print_Inline_s.print_rettype",
"Vale.X64.Print_Inline_s.print_args",
"Prims.op_AmpAmp",
"FStar.All.failwith",
"Vale.X64.Machine_s.rRax",
"Vale.X64.Print_Inline_s.uses_rax",
"Vale.X64.Print_Inline_s.build_reserved_args",
"Vale.X64.Print_Inline_s.print_fn_comments"
] | [] | false | true | false | false | false | let print_inline
(name: string)
(label: int)
(ret_val: option string)
(n: nat)
(args: list td {List.length args = n})
(arg_names: (nat -> string))
(code: code)
(of_arg: (reg_nat (List.length args) -> reg_64))
(regs_mod: (reg_64 -> bool))
(fn_comments: list string)
: FStar.All.ML int =
| let comments = print_fn_comments fn_comments in
let reserved_regs = build_reserved_args code (fun _ -> false) in
let inputs_use_rax = uses_rax args 0 of_arg in
if reserved_regs rRax && Some? ret_val
then
FStar.All.failwith "We require the annotation register uint64_t result(rax), but it would be ignored by gcc < 9"
;
if inputs_use_rax && Some? ret_val
then FStar.All.failwith "inputs are not allowed to be passed in rax when there is a return argument";
let header =
"static inline " ^
print_rettype ret_val ^ " " ^ name ^ " (" ^ print_args args 0 arg_names ^ ") \n{\n"
in
let ret_reg = print_register_ret reserved_regs ret_val in
let has_explicit, explicit_regs =
print_explicit_register_args n args 0 of_arg reserved_regs arg_names
in
let start_code = (if Some? ret_val || has_explicit then "\n" else "") ^ " __asm__ volatile(\n" in
let init_reg_names r = "%" ^ P.print_reg_name r in
let output_str, output_reg_names, output_nbr =
print_modified_inputs n of_arg regs_mod reserved_regs args ret_val init_reg_names 0 arg_names
in
let output_str = " : " ^ output_str in
let input_str, inlined_reg_names, _ =
print_nonmodified_inputs n
of_arg
regs_mod
reserved_regs
args
output_reg_names
output_nbr
arg_names
in
let input_str = " : " ^ input_str in
let inlined_reg32_names r =
if ("%" ^ P.print_reg_name r) = inlined_reg_names r
then "%" ^ P.print_reg32_name r
else "k" ^ inlined_reg_names r
in
let inlined_small_reg_names r =
if r > 3
then P.print_small_reg_name r
else
if ("%" ^ P.print_reg_name r) = inlined_reg_names r
then "%" ^ P.print_small_reg_name r
else "b" ^ inlined_reg_names r
in
let printer =
{
P.gcc with
P.print_reg_name = inlined_reg_names;
P.print_reg32_name = inlined_reg32_names;
P.print_small_reg_name = inlined_small_reg_names
}
in
let code_str, final_label = print_code (remove_blank code) label printer in
let modified_str = " : " ^ print_modified_registers n ret_val of_arg regs_mod reserved_regs args in
let close_code =
" );\n" ^ (if Some? ret_val then "\n return " ^ Some?.v ret_val ^ ";\n" else "") ^ "}\n\n"
in
print_string (comments ^
header ^
ret_reg ^
explicit_regs ^ start_code ^ code_str ^ output_str ^ input_str ^ modified_str ^ close_code);
final_label | false |
Spec.RSAPSS.fst | Spec.RSAPSS.hash_is_supported | val hash_is_supported (a: Hash.hash_alg) : Tot bool | val hash_is_supported (a: Hash.hash_alg) : Tot bool | let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 14,
"end_line": 36,
"start_col": 0,
"start_line": 31
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Hash.Definitions.hash_alg -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.bool"
] | [] | false | false | false | true | false | let hash_is_supported (a: Hash.hash_alg) : Tot bool =
| match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false | false |
MiniParse.Impl.Int.fst | MiniParse.Impl.Int.parse_u16_impl | val parse_u16_impl:parser_impl parse_u16 | val parse_u16_impl:parser_impl parse_u16 | let parse_u16_impl : parser_impl parse_u16 = make_total_constant_size_parser_impl 2 2ul parse_u16_aux () (fun x ->
let lo = B.index x 0ul in
let hi = B.index x 1ul in
Aux.decode_u16 (lo, hi)
) | {
"file_name": "examples/miniparse/MiniParse.Impl.Int.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 1,
"end_line": 48,
"start_col": 0,
"start_line": 44
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module MiniParse.Impl.Int
include MiniParse.Spec.Int
include MiniParse.Impl.Combinators
module U16 = FStar.UInt16
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module Aux = MiniParse.Spec.Int.Aux
inline_for_extraction
let parse_u8_impl : parser_impl parse_u8 = make_total_constant_size_parser_impl 1 1ul (fun x -> Seq.index x 0) () (fun x -> B.index x 0ul)
inline_for_extraction
let serialize_u8_impl : serializer_impl serialize_u8 =
(fun output (len: U32.t { len == B.len output } ) x ->
let h = HST.get () in
if len `U32.lt` 1ul
then None
else begin
let output' = B.sub output 0ul 1ul in
B.upd output' 0ul x;
let h' = HST.get () in
assert (B.as_seq h' output' `Seq.equal` Seq.create 1 x);
Some 1ul
end) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MiniParse.Spec.Int.Aux.fst.checked",
"MiniParse.Spec.Int.fst.checked",
"MiniParse.Impl.Combinators.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked"
],
"interface_file": false,
"source_file": "MiniParse.Impl.Int.fst"
} | [
{
"abbrev": true,
"full_module": "MiniParse.Spec.Int.Aux",
"short_module": "Aux"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": false,
"full_module": "MiniParse.Impl.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | MiniParse.Impl.Base.parser_impl MiniParse.Spec.Int.parse_u16 | Prims.Tot | [
"total"
] | [] | [
"MiniParse.Impl.Combinators.make_total_constant_size_parser_impl",
"FStar.UInt32.__uint_to_t",
"FStar.UInt16.t",
"MiniParse.Spec.Int.parse_u16_aux",
"MiniParse.Impl.Base.buffer8",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.UInt8.t",
"LowStar.Buffer.trivial_preorder",
"MiniParse.Spec.Int.Aux.decode_u16",
"FStar.Pervasives.Native.Mktuple2",
"LowStar.Monotonic.Buffer.index"
] | [] | false | false | false | true | false | let parse_u16_impl:parser_impl parse_u16 =
| make_total_constant_size_parser_impl 2
2ul
parse_u16_aux
()
(fun x ->
let lo = B.index x 0ul in
let hi = B.index x 1ul in
Aux.decode_u16 (lo, hi)) | false |
MiniParse.Impl.Int.fst | MiniParse.Impl.Int.parse_u8_impl | val parse_u8_impl:parser_impl parse_u8 | val parse_u8_impl:parser_impl parse_u8 | let parse_u8_impl : parser_impl parse_u8 = make_total_constant_size_parser_impl 1 1ul (fun x -> Seq.index x 0) () (fun x -> B.index x 0ul) | {
"file_name": "examples/miniparse/MiniParse.Impl.Int.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 138,
"end_line": 27,
"start_col": 0,
"start_line": 27
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module MiniParse.Impl.Int
include MiniParse.Spec.Int
include MiniParse.Impl.Combinators
module U16 = FStar.UInt16
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module Aux = MiniParse.Spec.Int.Aux | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MiniParse.Spec.Int.Aux.fst.checked",
"MiniParse.Spec.Int.fst.checked",
"MiniParse.Impl.Combinators.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked"
],
"interface_file": false,
"source_file": "MiniParse.Impl.Int.fst"
} | [
{
"abbrev": true,
"full_module": "MiniParse.Spec.Int.Aux",
"short_module": "Aux"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": false,
"full_module": "MiniParse.Impl.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | MiniParse.Impl.Base.parser_impl MiniParse.Spec.Int.parse_u8 | Prims.Tot | [
"total"
] | [] | [
"MiniParse.Impl.Combinators.make_total_constant_size_parser_impl",
"FStar.UInt32.__uint_to_t",
"MiniParse.Spec.Base.byte",
"MiniParse.Spec.Base.bytes",
"Prims.eq2",
"Prims.nat",
"FStar.Seq.Base.length",
"FStar.Seq.Base.index",
"MiniParse.Impl.Base.buffer8",
"LowStar.Monotonic.Buffer.length",
"FStar.UInt8.t",
"LowStar.Buffer.trivial_preorder",
"LowStar.Monotonic.Buffer.index"
] | [] | false | false | false | true | false | let parse_u8_impl:parser_impl parse_u8 =
| make_total_constant_size_parser_impl 1 1ul (fun x -> Seq.index x 0) () (fun x -> B.index x 0ul) | false |
MiniParse.Impl.Int.fst | MiniParse.Impl.Int.serialize_bounded_u16_impl | val serialize_bounded_u16_impl (b: nat) : Tot (serializer_impl (serialize_bounded_u16 b)) | val serialize_bounded_u16_impl (b: nat) : Tot (serializer_impl (serialize_bounded_u16 b)) | let serialize_bounded_u16_impl (b: nat) : Tot (serializer_impl (serialize_bounded_u16 b)) =
fun output len x -> serialize_u16_impl output len x | {
"file_name": "examples/miniparse/MiniParse.Impl.Int.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 53,
"end_line": 87,
"start_col": 0,
"start_line": 86
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module MiniParse.Impl.Int
include MiniParse.Spec.Int
include MiniParse.Impl.Combinators
module U16 = FStar.UInt16
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module Aux = MiniParse.Spec.Int.Aux
inline_for_extraction
let parse_u8_impl : parser_impl parse_u8 = make_total_constant_size_parser_impl 1 1ul (fun x -> Seq.index x 0) () (fun x -> B.index x 0ul)
inline_for_extraction
let serialize_u8_impl : serializer_impl serialize_u8 =
(fun output (len: U32.t { len == B.len output } ) x ->
let h = HST.get () in
if len `U32.lt` 1ul
then None
else begin
let output' = B.sub output 0ul 1ul in
B.upd output' 0ul x;
let h' = HST.get () in
assert (B.as_seq h' output' `Seq.equal` Seq.create 1 x);
Some 1ul
end)
inline_for_extraction
let parse_u16_impl : parser_impl parse_u16 = make_total_constant_size_parser_impl 2 2ul parse_u16_aux () (fun x ->
let lo = B.index x 0ul in
let hi = B.index x 1ul in
Aux.decode_u16 (lo, hi)
)
inline_for_extraction
let serialize_u16_impl : serializer_impl serialize_u16 =
fun output (len: U32.t { len == B.len output } ) x ->
if len `U32.lt` 2ul
then None
else begin
let (lo, hi) = Aux.encode_u16 x in
let output' = B.sub output 0ul 2ul in
B.upd output' 0ul lo;
B.upd output' 1ul hi;
let h' = HST.get () in
assert (B.as_seq h' output' `Seq.equal` Seq.append (Seq.create 1 lo) (Seq.create 1 hi));
Some 2ul
end
#set-options "--z3rlimit 64"
inline_for_extraction
let parse_bounded_u16_impl
(b: nat)
: Tot (parser_impl (parse_bounded_u16 b)) =
if b >= 65536
then (fun input len -> parse_synth_impl parse_u16_impl (fun x -> x <: bounded_u16 b) (fun x -> x <: bounded_u16 b) (fun x -> x) () input len)
else
[@@inline_let]
let b' = U16.uint_to_t b in
parse_synth_impl
(parse_filter_impl parse_u16_impl (fun x -> U16.v x < b) (fun x -> x `U16.lt` b'))
(fun x -> x <: bounded_u16 b)
(fun x -> x <: bounded_u16 b)
(fun x -> x)
()
#reset-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MiniParse.Spec.Int.Aux.fst.checked",
"MiniParse.Spec.Int.fst.checked",
"MiniParse.Impl.Combinators.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked"
],
"interface_file": false,
"source_file": "MiniParse.Impl.Int.fst"
} | [
{
"abbrev": true,
"full_module": "MiniParse.Spec.Int.Aux",
"short_module": "Aux"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": false,
"full_module": "MiniParse.Impl.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Prims.nat -> MiniParse.Impl.Base.serializer_impl (MiniParse.Spec.Int.serialize_bounded_u16 b) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"MiniParse.Impl.Base.buffer8",
"FStar.UInt32.t",
"Prims.eq2",
"LowStar.Monotonic.Buffer.len",
"FStar.UInt8.t",
"LowStar.Buffer.trivial_preorder",
"MiniParse.Spec.Int.bounded_u16",
"MiniParse.Impl.Int.serialize_u16_impl",
"FStar.Pervasives.Native.option",
"MiniParse.Impl.Base.serializer_impl",
"MiniParse.Spec.Int.parse_bounded_u16",
"MiniParse.Spec.Int.serialize_bounded_u16"
] | [] | false | false | false | false | false | let serialize_bounded_u16_impl (b: nat) : Tot (serializer_impl (serialize_bounded_u16 b)) =
| fun output len x -> serialize_u16_impl output len x | false |
Spec.RSAPSS.fst | Spec.RSAPSS.xor_bytes | val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) | val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len) | let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2 | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 57,
"end_line": 29,
"start_col": 0,
"start_line": 29
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1 | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b1: Lib.ByteSequence.lbytes len -> b2: Lib.ByteSequence.lbytes len -> Lib.ByteSequence.lbytes len | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_pos",
"Lib.ByteSequence.lbytes",
"Lib.Sequence.map2",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Hat_Dot"
] | [] | false | false | false | false | false | let xor_bytes #len b1 b2 =
| map2 (fun x y -> x ^. y) b1 b2 | false |
MiniParse.Impl.Int.fst | MiniParse.Impl.Int.serialize_u8_impl | val serialize_u8_impl:serializer_impl serialize_u8 | val serialize_u8_impl:serializer_impl serialize_u8 | let serialize_u8_impl : serializer_impl serialize_u8 =
(fun output (len: U32.t { len == B.len output } ) x ->
let h = HST.get () in
if len `U32.lt` 1ul
then None
else begin
let output' = B.sub output 0ul 1ul in
B.upd output' 0ul x;
let h' = HST.get () in
assert (B.as_seq h' output' `Seq.equal` Seq.create 1 x);
Some 1ul
end) | {
"file_name": "examples/miniparse/MiniParse.Impl.Int.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 8,
"end_line": 41,
"start_col": 0,
"start_line": 30
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module MiniParse.Impl.Int
include MiniParse.Spec.Int
include MiniParse.Impl.Combinators
module U16 = FStar.UInt16
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module Aux = MiniParse.Spec.Int.Aux
inline_for_extraction
let parse_u8_impl : parser_impl parse_u8 = make_total_constant_size_parser_impl 1 1ul (fun x -> Seq.index x 0) () (fun x -> B.index x 0ul) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MiniParse.Spec.Int.Aux.fst.checked",
"MiniParse.Spec.Int.fst.checked",
"MiniParse.Impl.Combinators.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked"
],
"interface_file": false,
"source_file": "MiniParse.Impl.Int.fst"
} | [
{
"abbrev": true,
"full_module": "MiniParse.Spec.Int.Aux",
"short_module": "Aux"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": false,
"full_module": "MiniParse.Impl.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | MiniParse.Impl.Base.serializer_impl MiniParse.Spec.Int.serialize_u8 | Prims.Tot | [
"total"
] | [] | [
"MiniParse.Impl.Base.buffer8",
"FStar.UInt32.t",
"Prims.eq2",
"LowStar.Monotonic.Buffer.len",
"FStar.UInt8.t",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.lt",
"FStar.UInt32.__uint_to_t",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option",
"Prims.bool",
"FStar.Pervasives.Native.Some",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.Seq.Base.create",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowStar.Monotonic.Buffer.upd",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.sub",
"FStar.Ghost.hide"
] | [] | false | false | false | true | false | let serialize_u8_impl:serializer_impl serialize_u8 =
| (fun output (len: U32.t{len == B.len output}) x ->
let h = HST.get () in
if len `U32.lt` 1ul
then None
else
let output' = B.sub output 0ul 1ul in
B.upd output' 0ul x;
let h' = HST.get () in
assert ((B.as_seq h' output') `Seq.equal` (Seq.create 1 x));
Some 1ul) | false |
Spec.RSAPSS.fst | Spec.RSAPSS.mgf_hash_a | val mgf_hash_a : len: Lib.IntTypes.size_nat{len + 4 <= Lib.IntTypes.max_size_t} ->
n: Prims.pos ->
i: Prims.nat{i <= n}
-> Type0 | let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4) | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 95,
"end_line": 52,
"start_col": 0,
"start_line": 52
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
len: Lib.IntTypes.size_nat{len + 4 <= Lib.IntTypes.max_size_t} ->
n: Prims.pos ->
i: Prims.nat{i <= n}
-> Type0 | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Prims.pos",
"Prims.nat",
"Lib.ByteSequence.lbytes"
] | [] | false | false | false | false | true | let mgf_hash_a (len: size_nat{len + 4 <= max_size_t}) (n: pos) (i: nat{i <= n}) =
| lbytes (len + 4) | false |
|
Vale.Transformers.MovbeElim.fst | Vale.Transformers.MovbeElim.movbe_elim_ph | val movbe_elim_ph : Vale.Transformers.PeepHole.pre_peephole | let movbe_elim_ph = {
ph = (function
| [Instr i oprs (AnnotateMovbe64 proof_of_movbe)] ->
let oprs:normal (instr_operands_t [out op64] [op64]) =
coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs in
let (dst, (src, ())) = oprs in
if OReg? dst then (
let mov = make_instr ins_Mov64 dst src in
let bswap = make_instr ins_Bswap64 dst in
Some [mov; bswap]
) else None
| _ -> None);
input_hint = 1;
} | {
"file_name": "vale/code/lib/transformers/Vale.Transformers.MovbeElim.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 1,
"end_line": 27,
"start_col": 0,
"start_line": 14
} | module Vale.Transformers.MovbeElim
open Vale.X64.Bytes_Code_s
open Vale.X64.Instruction_s
open Vale.X64.Instructions_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Machine_s
open Vale.X64.Print_s
open Vale.Transformers.InstructionReorder
open Vale.X64.InsLemmas
open Vale.Transformers.PeepHole | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Transformers.PeepHole.fsti.checked",
"Vale.Transformers.InstructionReorder.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Transformers.MovbeElim.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.Transformers.PeepHole",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Transformers.InstructionReorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Print_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instructions_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Transformers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Transformers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Vale.Transformers.PeepHole.pre_peephole | Prims.Tot | [
"total"
] | [] | [
"Vale.Transformers.PeepHole.Mkpre_peephole",
"Prims.list",
"Vale.X64.Machine_Semantics_s.ins",
"Vale.X64.Instruction_s.instr_t_record",
"Vale.X64.Instruction_s.instr_operands_t",
"Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__outs",
"Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__args",
"Vale.X64.Machine_Semantics_s.equals_instr",
"Vale.X64.Instruction_s.InstrTypeRecord",
"Prims.Cons",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.out",
"Vale.X64.Instruction_s.op64",
"Prims.Nil",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_MovBe64",
"Vale.X64.Machine_s.operand64",
"Vale.X64.Machine_s.uu___is_OReg",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"FStar.Pervasives.Native.Some",
"Vale.X64.InsLemmas.make_instr_t",
"Vale.X64.InsLemmas.make_instr",
"Vale.X64.Instruction_s.inOut",
"Vale.X64.Instructions_s.ins_Bswap64",
"Vale.X64.InsLemmas.make_instr_t_args",
"Vale.X64.Instructions_s.ins_Mov64",
"Prims.bool",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.norm",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.zeta",
"FStar.Pervasives.iota",
"FStar.Pervasives.delta_attr",
"Prims.string",
"FStar.Pervasives.Native.Mktuple2",
"Vale.X64.Instruction_s.instr_operand_inout",
"Vale.X64.Instruction_s.Out",
"Vale.X64.Instruction_s.IOpEx",
"Vale.X64.Instruction_s.IOp64",
"Vale.Transformers.PeepHole.coerce_to_normal"
] | [] | false | false | false | true | false | let movbe_elim_ph =
| {
ph
=
(function
| [Instr i oprs (AnnotateMovbe64 proof_of_movbe)] ->
let oprs:normal (instr_operands_t [out op64] [op64]) =
coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs
in
let dst, (src, ()) = oprs in
if OReg? dst
then
(let mov = make_instr ins_Mov64 dst src in
let bswap = make_instr ins_Bswap64 dst in
Some [mov; bswap])
else None
| _ -> None);
input_hint = 1
} | false |
|
Spec.RSAPSS.fst | Spec.RSAPSS.blocks | val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) | val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r}) | let blocks x m = (x - 1) / m + 1 | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 26,
"start_col": 0,
"start_line": 26
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
/// | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Lib.IntTypes.size_pos -> m: Lib.IntTypes.size_pos -> r: Lib.IntTypes.size_pos{x <= m * r} | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_pos",
"Prims.op_Addition",
"Prims.op_Division",
"Prims.op_Subtraction",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star"
] | [] | false | false | false | false | false | let blocks x m =
| (x - 1) / m + 1 | false |
Spec.RSAPSS.fst | Spec.RSAPSS.i2osp | val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) | val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len) | let i2osp len n = nat_to_intseq_be len n | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 76,
"start_col": 0,
"start_line": 76
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen)
let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen
(* Bignum convert functions *)
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
let os2ip #len b = nat_from_bytes_be b | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Lib.IntTypes.size_nat -> n: Prims.nat{n < Prims.pow2 (8 * len)} -> Lib.ByteSequence.lbytes len | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_nat",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Lib.ByteSequence.nat_to_intseq_be",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.ByteSequence.lbytes"
] | [] | false | false | false | false | false | let i2osp len n =
| nat_to_intseq_be len n | false |
MiniParse.Impl.Int.fst | MiniParse.Impl.Int.serialize_u16_impl | val serialize_u16_impl:serializer_impl serialize_u16 | val serialize_u16_impl:serializer_impl serialize_u16 | let serialize_u16_impl : serializer_impl serialize_u16 =
fun output (len: U32.t { len == B.len output } ) x ->
if len `U32.lt` 2ul
then None
else begin
let (lo, hi) = Aux.encode_u16 x in
let output' = B.sub output 0ul 2ul in
B.upd output' 0ul lo;
B.upd output' 1ul hi;
let h' = HST.get () in
assert (B.as_seq h' output' `Seq.equal` Seq.append (Seq.create 1 lo) (Seq.create 1 hi));
Some 2ul
end | {
"file_name": "examples/miniparse/MiniParse.Impl.Int.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 7,
"end_line": 63,
"start_col": 0,
"start_line": 51
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module MiniParse.Impl.Int
include MiniParse.Spec.Int
include MiniParse.Impl.Combinators
module U16 = FStar.UInt16
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module Aux = MiniParse.Spec.Int.Aux
inline_for_extraction
let parse_u8_impl : parser_impl parse_u8 = make_total_constant_size_parser_impl 1 1ul (fun x -> Seq.index x 0) () (fun x -> B.index x 0ul)
inline_for_extraction
let serialize_u8_impl : serializer_impl serialize_u8 =
(fun output (len: U32.t { len == B.len output } ) x ->
let h = HST.get () in
if len `U32.lt` 1ul
then None
else begin
let output' = B.sub output 0ul 1ul in
B.upd output' 0ul x;
let h' = HST.get () in
assert (B.as_seq h' output' `Seq.equal` Seq.create 1 x);
Some 1ul
end)
inline_for_extraction
let parse_u16_impl : parser_impl parse_u16 = make_total_constant_size_parser_impl 2 2ul parse_u16_aux () (fun x ->
let lo = B.index x 0ul in
let hi = B.index x 1ul in
Aux.decode_u16 (lo, hi)
) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MiniParse.Spec.Int.Aux.fst.checked",
"MiniParse.Spec.Int.fst.checked",
"MiniParse.Impl.Combinators.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked"
],
"interface_file": false,
"source_file": "MiniParse.Impl.Int.fst"
} | [
{
"abbrev": true,
"full_module": "MiniParse.Spec.Int.Aux",
"short_module": "Aux"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": false,
"full_module": "MiniParse.Impl.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | MiniParse.Impl.Base.serializer_impl MiniParse.Spec.Int.serialize_u16 | Prims.Tot | [
"total"
] | [] | [
"MiniParse.Impl.Base.buffer8",
"FStar.UInt32.t",
"Prims.eq2",
"LowStar.Monotonic.Buffer.len",
"FStar.UInt8.t",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt16.t",
"FStar.UInt32.lt",
"FStar.UInt32.__uint_to_t",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option",
"Prims.bool",
"FStar.Pervasives.Native.Some",
"Prims.unit",
"Prims._assert",
"FStar.Seq.Base.equal",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.Seq.Base.append",
"FStar.Seq.Base.create",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"LowStar.Monotonic.Buffer.upd",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.sub",
"FStar.Ghost.hide",
"FStar.Pervasives.Native.tuple2",
"MiniParse.Spec.Int.Aux.encode_u16"
] | [] | false | false | false | true | false | let serialize_u16_impl:serializer_impl serialize_u16 =
| fun output (len: U32.t{len == B.len output}) x ->
if len `U32.lt` 2ul
then None
else
let lo, hi = Aux.encode_u16 x in
let output' = B.sub output 0ul 2ul in
B.upd output' 0ul lo;
B.upd output' 1ul hi;
let h' = HST.get () in
assert ((B.as_seq h' output') `Seq.equal` (Seq.append (Seq.create 1 lo) (Seq.create 1 hi)));
Some 2ul | false |
Spec.RSAPSS.fst | Spec.RSAPSS.os2ip | val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) | val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)}) | let os2ip #len b = nat_from_bytes_be b | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 38,
"end_line": 73,
"start_col": 0,
"start_line": 73
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen)
let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen
(* Bignum convert functions *) | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes len -> res: Prims.nat{res < Prims.pow2 (8 * len)} | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_nat",
"Lib.ByteSequence.lbytes",
"Lib.ByteSequence.nat_from_bytes_be",
"Lib.IntTypes.SEC",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star"
] | [] | false | false | false | false | false | let os2ip #len b =
| nat_from_bytes_be b | false |
Spec.RSAPSS.fst | Spec.RSAPSS.rsapss_verify | val rsapss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> pkey:rsapss_pkey modBits
-> sLen:size_nat
-> k:size_nat
-> sgnt:lbytes k
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
Tot bool | val rsapss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> pkey:rsapss_pkey modBits
-> sLen:size_nat
-> k:size_nat
-> sgnt:lbytes k
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
Tot bool | let rsapss_verify a modBits pkey sLen k sgnt msgLen msg =
let b =
sLen + Hash.hash_length a + 8 <= max_size_t &&
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a &&
msgLen `Hash.less_than_max_input_length` a &&
k = blocks modBits 8 in
if b then
rsapss_verify_ a modBits pkey sLen sgnt msgLen msg
else
false | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 9,
"end_line": 359,
"start_col": 0,
"start_line": 349
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen)
let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen
(* Bignum convert functions *)
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
let os2ip #len b = nat_from_bytes_be b
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len)
let i2osp len n = nat_to_intseq_be len n
///
/// RSA
///
type modBits_t = modBits:size_nat{1 < modBits}
noeq type rsapss_pkey (modBits:modBits_t) =
| Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits
noeq type rsapss_skey (modBits:modBits_t) =
| Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat ->
Pure (lbytes len)
(requires True)
(ensures fun res ->
(v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0])))
let db_zero #len db emBits =
let msBits = emBits % 8 in
if msBits > 0 then begin
let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in
Math.Lemmas.pow2_plus msBits (8 - msBits);
logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits;
r end
else db
val pss_encode:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} ->
Pure (lbytes (blocks emBits 8))
(requires True)
(ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)
let pss_encode a sLen salt msgLen msg emBits =
let mHash = Hash.hash a msg in
let hLen = Hash.hash_length a in
//m1 = [8 * 0x00; mHash; salt]
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash = Hash.hash a m1 in
//db = [0x00;..; 0x00; 0x01; salt]
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let db = create dbLen (u8 0) in
let last_before_salt = dbLen - sLen - 1 in
let db = db.[last_before_salt] <- u8 1 in
let db = update_sub db (last_before_salt + 1) sLen salt in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let maskedDB = xor_bytes db dbMask in
let maskedDB = db_zero maskedDB emBits in
//em = [maskedDB; m1Hash; 0xbc]
let em = create emLen (u8 0) in
let em = update_sub em 0 dbLen maskedDB in
let em = update_sub em dbLen hLen m1Hash in
assert (v em.[0] == v maskedDB.[0]);
em.[emLen - 1] <- u8 0xbc
val pss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8}
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify_ a sLen msgLen msg emBits em =
let hLen = Hash.hash_length a in
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let maskedDB = sub em 0 dbLen in
let m1Hash = sub em dbLen hLen in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let db = xor_bytes dbMask maskedDB in
let db = db_zero db emBits in
let padLen = emLen - sLen - hLen - 1 in
let pad2 = create padLen (u8 0) in
let pad2 = pad2.[padLen - 1] <- u8 0x01 in
let pad = sub db 0 padLen in
let salt = sub db padLen sLen in
if not (lbytes_eq pad pad2) then false
else begin
let mHash = Hash.hash a msg in
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash0 = Hash.hash a m1 in
lbytes_eq m1Hash0 m1Hash
end
val pss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify a sLen msgLen msg emBits em =
let emLen = blocks emBits 8 in
let msBits = emBits % 8 in
let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in
let em_last = em.[emLen - 1] in
if (emLen < sLen + Hash.hash_length a + 2) then false
else begin
if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) &&
FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy))
then false
else pss_verify_ a sLen msgLen msg emBits em end
val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma
(requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8))
(ensures os2ip #(blocks emBits 8) em < pow2 emBits)
let os2ip_lemma emBits em =
let emLen = blocks emBits 8 in
let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) =
assert ((emBits - 1) / 8 <= emBits / 8) in
if emBits % 8 > 0 then begin
nat_from_intseq_be_slice_lemma em 1;
nat_from_intseq_be_lemma0 (slice em 0 1);
assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]);
assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]);
calc (<=) {
pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0];
(==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) }
pow2 (8 * (emLen - 1)) * (1 + v em.[0]);
(<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) }
pow2 (8 * (emLen - 1)) * pow2 (emBits % 8);
(==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) }
pow2 (8 * ((emBits - 1) / 8) + emBits % 8);
(<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) }
pow2 emBits;
};
assert (nat_from_bytes_be em < pow2 emBits) end
else begin
assert (nat_from_bytes_be em < pow2 (emLen * 8));
assert (emBits == 8 * emLen) end
val rsapss_sign_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
tuple2 bool (lbytes (blocks modBits 8))
let rsapss_sign_ a modBits skey sLen salt msgLen msg =
let pkey = Mk_rsapss_skey?.pkey skey in
let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let d = Mk_rsapss_skey?.d skey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let em = pss_encode a sLen salt msgLen msg emBits in
let m = os2ip #emLen em in
os2ip_lemma emBits em;
let s = pow_mod #n m d in
let m' = pow_mod #n s e in
let eq_m = m = m' in
let s = if eq_m then s else 0 in
(eq_m, i2osp k s)
val rsapss_sign:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat
-> salt:lbytes sLen
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
option (lbytes (blocks modBits 8))
let rsapss_sign a modBits skey sLen salt msgLen msg =
let b =
sLen + Hash.hash_length a + 8 <= max_size_t &&
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a &&
msgLen `Hash.less_than_max_input_length` a &&
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 in
if b then begin
let (eq_m, sgnt) = rsapss_sign_ a modBits skey sLen salt msgLen msg in
if eq_m then Some sgnt else None end
else
None
val rsapss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> pkey:rsapss_pkey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> sgnt:lbytes (blocks modBits 8)
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
Tot bool
let rsapss_verify_ a modBits pkey sLen sgnt msgLen msg =
let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let s = os2ip #k sgnt in
if s < n then begin
let m = pow_mod #n s e in
if m < pow2 (emLen * 8) then
let em = i2osp emLen m in
pss_verify a sLen msgLen msg emBits em
else false end
else false
val rsapss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> pkey:rsapss_pkey modBits
-> sLen:size_nat
-> k:size_nat
-> sgnt:lbytes k
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
Tot bool | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} ->
modBits: Spec.RSAPSS.modBits_t ->
pkey: Spec.RSAPSS.rsapss_pkey modBits ->
sLen: Lib.IntTypes.size_nat ->
k: Lib.IntTypes.size_nat ->
sgnt: Lib.ByteSequence.lbytes k ->
msgLen: Prims.nat ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen}
-> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.b2t",
"Spec.RSAPSS.hash_is_supported",
"Spec.RSAPSS.modBits_t",
"Spec.RSAPSS.rsapss_pkey",
"Lib.IntTypes.size_nat",
"Lib.ByteSequence.lbytes",
"Prims.nat",
"Lib.ByteSequence.bytes",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.RSAPSS.rsapss_verify_",
"Prims.bool",
"Prims.op_AmpAmp",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Spec.Hash.Definitions.hash_length",
"Lib.IntTypes.max_size_t",
"Spec.Hash.Definitions.less_than_max_input_length",
"Prims.op_Equality",
"Prims.int",
"Prims.l_or",
"Prims.l_and",
"Prims.op_GreaterThanOrEqual",
"Prims.op_GreaterThan",
"FStar.Mul.op_Star",
"Spec.RSAPSS.blocks"
] | [] | false | false | false | false | false | let rsapss_verify a modBits pkey sLen k sgnt msgLen msg =
| let b =
sLen + Hash.hash_length a + 8 <= max_size_t &&
(sLen + Hash.hash_length a + 8)
`Hash.less_than_max_input_length`
a &&
msgLen
`Hash.less_than_max_input_length`
a &&
k = blocks modBits 8
in
if b then rsapss_verify_ a modBits pkey sLen sgnt msgLen msg else false | false |
Vale.Transformers.MovbeElim.fst | Vale.Transformers.MovbeElim.lemma_movbe_is_mov_bswap | val lemma_movbe_is_mov_bswap (dst src: operand64) (s: machine_state)
: Lemma (requires (OReg? dst))
(ensures
(let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in
let mov = make_instr ins_Mov64 dst src in
let bswap = make_instr ins_Bswap64 dst in
let s1 = machine_eval_ins movbe s in
let s2 = machine_eval_ins bswap (machine_eval_ins mov s) in
s1.ms_ok ==> equiv_states s1 s2)) | val lemma_movbe_is_mov_bswap (dst src: operand64) (s: machine_state)
: Lemma (requires (OReg? dst))
(ensures
(let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in
let mov = make_instr ins_Mov64 dst src in
let bswap = make_instr ins_Bswap64 dst in
let s1 = machine_eval_ins movbe s in
let s2 = machine_eval_ins bswap (machine_eval_ins mov s) in
s1.ms_ok ==> equiv_states s1 s2)) | let lemma_movbe_is_mov_bswap (dst src:operand64) (s:machine_state) :
Lemma
(requires (OReg? dst))
(ensures (
let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in
let mov = make_instr ins_Mov64 dst src in
let bswap = make_instr ins_Bswap64 dst in
let s1 = machine_eval_ins movbe s in
let s2 = machine_eval_ins bswap (machine_eval_ins mov s) in
s1.ms_ok ==> equiv_states s1 s2)) =
let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in
let mov = make_instr ins_Mov64 dst src in
let bswap = make_instr ins_Bswap64 dst in
let s_movbe = machine_eval_ins movbe s in
let s_mov = machine_eval_ins mov s in
let s_bswap = machine_eval_ins bswap s_mov in
if valid_src_operand64_and_taint src s && valid_dst_operand64 dst s then (
let src_v = eval_operand src s in
let dst_movbe_v = T.reverse_bytes_nat64 src_v in
let dst_mov_v = eval_operand dst s_mov in
let dst_bswap_v = T.reverse_bytes_nat64 dst_mov_v in
if s_movbe.ms_ok then (
assert (Vale.X64.CPU_Features_s.movbe_enabled);
assert (s_movbe == update_operand64_preserve_flags'' dst dst_movbe_v s s);
assert (s_mov == update_operand64_preserve_flags'' dst src_v s s);
lemma_update_to_valid_destination_keeps_it_as_valid_src dst s src_v;
assert (eval_operand dst s_mov == src_v);
assert (valid_src_operand64_and_taint dst s_mov);
assert (s_bswap == update_operand64_preserve_flags'' dst dst_bswap_v s_mov s_mov);
assert (src_v == dst_mov_v);
assert (dst_movbe_v == dst_bswap_v);
lemma_double_update_reg dst s s_mov s_bswap s_movbe src_v dst_bswap_v
) else ()
) else (
assert (s_movbe == {s with ms_ok = false});
assert (s_mov == {s with ms_ok = false});
assert (s_bswap.ms_ok == false)
) | {
"file_name": "vale/code/lib/transformers/Vale.Transformers.MovbeElim.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 70,
"start_col": 0,
"start_line": 33
} | module Vale.Transformers.MovbeElim
open Vale.X64.Bytes_Code_s
open Vale.X64.Instruction_s
open Vale.X64.Instructions_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Machine_s
open Vale.X64.Print_s
open Vale.Transformers.InstructionReorder
open Vale.X64.InsLemmas
open Vale.Transformers.PeepHole
let movbe_elim_ph = {
ph = (function
| [Instr i oprs (AnnotateMovbe64 proof_of_movbe)] ->
let oprs:normal (instr_operands_t [out op64] [op64]) =
coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs in
let (dst, (src, ())) = oprs in
if OReg? dst then (
let mov = make_instr ins_Mov64 dst src in
let bswap = make_instr ins_Bswap64 dst in
Some [mov; bswap]
) else None
| _ -> None);
input_hint = 1;
}
module T = Vale.Def.Types_s
module H = Vale.Arch.Heap | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Transformers.PeepHole.fsti.checked",
"Vale.Transformers.InstructionReorder.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Transformers.MovbeElim.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Arch.Heap",
"short_module": "H"
},
{
"abbrev": true,
"full_module": "Vale.Def.Types_s",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Vale.Transformers.PeepHole",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Transformers.InstructionReorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Print_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instructions_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Transformers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Transformers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 2,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
dst: Vale.X64.Machine_s.operand64 ->
src: Vale.X64.Machine_s.operand64 ->
s: Vale.X64.Machine_Semantics_s.machine_state
-> FStar.Pervasives.Lemma (requires OReg? dst)
(ensures
(let movbe =
Vale.X64.InsLemmas.make_instr_annotate Vale.X64.Instructions_s.ins_MovBe64
(Vale.X64.Machine_Semantics_s.AnnotateMovbe64 ())
dst
src
in
let mov = Vale.X64.InsLemmas.make_instr Vale.X64.Instructions_s.ins_Mov64 dst src in
let bswap = Vale.X64.InsLemmas.make_instr Vale.X64.Instructions_s.ins_Bswap64 dst in
let s1 = Vale.X64.Machine_Semantics_s.machine_eval_ins movbe s in
let s2 =
Vale.X64.Machine_Semantics_s.machine_eval_ins bswap
(Vale.X64.Machine_Semantics_s.machine_eval_ins mov s)
in
Mkmachine_state?.ms_ok s1 ==> Vale.Transformers.InstructionReorder.equiv_states s1 s2)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Vale.X64.Machine_s.operand64",
"Vale.X64.Machine_Semantics_s.machine_state",
"Prims.op_AmpAmp",
"Vale.X64.Machine_Semantics_s.valid_src_operand64_and_taint",
"Vale.X64.Machine_Semantics_s.valid_dst_operand64",
"Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_ok",
"Vale.Transformers.PeepHole.lemma_double_update_reg",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Vale.Def.Types_s.nat64",
"Vale.X64.Machine_Semantics_s.update_operand64_preserve_flags''",
"Prims.b2t",
"Vale.X64.Machine_Semantics_s.eval_operand",
"Vale.Transformers.PeepHole.lemma_update_to_valid_destination_keeps_it_as_valid_src",
"Vale.X64.CPU_Features_s.movbe_enabled",
"Prims.bool",
"Vale.Def.Words_s.nat64",
"Vale.Def.Types_s.reverse_bytes_nat64",
"Vale.X64.Machine_Semantics_s.Mkmachine_state",
"Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_regs",
"Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_flags",
"Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_heap",
"Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stack",
"Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_stackTaint",
"Vale.X64.Machine_Semantics_s.__proj__Mkmachine_state__item__ms_trace",
"Vale.X64.Machine_Semantics_s.machine_eval_ins",
"Vale.X64.InsLemmas.make_instr_t",
"Prims.Nil",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.InsLemmas.make_instr",
"Prims.Cons",
"Vale.X64.Instruction_s.inOut",
"Vale.X64.Instruction_s.op64",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_Bswap64",
"Vale.X64.InsLemmas.make_instr_t_args",
"Vale.X64.Instruction_s.out",
"Vale.X64.Instructions_s.ins_Mov64",
"Vale.X64.InsLemmas.make_instr_annotate",
"Vale.X64.Instructions_s.ins_MovBe64",
"Vale.X64.Machine_Semantics_s.AnnotateMovbe64",
"Vale.X64.Instruction_s.InstrTypeRecord",
"Vale.X64.Machine_s.uu___is_OReg",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Prims.squash",
"Prims.l_imp",
"Vale.Transformers.InstructionReorder.equiv_states",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let lemma_movbe_is_mov_bswap (dst src: operand64) (s: machine_state)
: Lemma (requires (OReg? dst))
(ensures
(let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in
let mov = make_instr ins_Mov64 dst src in
let bswap = make_instr ins_Bswap64 dst in
let s1 = machine_eval_ins movbe s in
let s2 = machine_eval_ins bswap (machine_eval_ins mov s) in
s1.ms_ok ==> equiv_states s1 s2)) =
| let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in
let mov = make_instr ins_Mov64 dst src in
let bswap = make_instr ins_Bswap64 dst in
let s_movbe = machine_eval_ins movbe s in
let s_mov = machine_eval_ins mov s in
let s_bswap = machine_eval_ins bswap s_mov in
if valid_src_operand64_and_taint src s && valid_dst_operand64 dst s
then
(let src_v = eval_operand src s in
let dst_movbe_v = T.reverse_bytes_nat64 src_v in
let dst_mov_v = eval_operand dst s_mov in
let dst_bswap_v = T.reverse_bytes_nat64 dst_mov_v in
if s_movbe.ms_ok
then
(assert (Vale.X64.CPU_Features_s.movbe_enabled);
assert (s_movbe == update_operand64_preserve_flags'' dst dst_movbe_v s s);
assert (s_mov == update_operand64_preserve_flags'' dst src_v s s);
lemma_update_to_valid_destination_keeps_it_as_valid_src dst s src_v;
assert (eval_operand dst s_mov == src_v);
assert (valid_src_operand64_and_taint dst s_mov);
assert (s_bswap == update_operand64_preserve_flags'' dst dst_bswap_v s_mov s_mov);
assert (src_v == dst_mov_v);
assert (dst_movbe_v == dst_bswap_v);
lemma_double_update_reg dst s s_mov s_bswap s_movbe src_v dst_bswap_v))
else
(assert (s_movbe == { s with ms_ok = false });
assert (s_mov == { s with ms_ok = false });
assert (s_bswap.ms_ok == false)) | false |
Spec.RSAPSS.fst | Spec.RSAPSS.db_zero | val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat ->
Pure (lbytes len)
(requires True)
(ensures fun res ->
(v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) | val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat ->
Pure (lbytes len)
(requires True)
(ensures fun res ->
(v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) | let db_zero #len db emBits =
let msBits = emBits % 8 in
if msBits > 0 then begin
let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in
Math.Lemmas.pow2_plus msBits (8 - msBits);
logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits;
r end
else db | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 9,
"end_line": 104,
"start_col": 0,
"start_line": 97
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen)
let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen
(* Bignum convert functions *)
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
let os2ip #len b = nat_from_bytes_be b
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len)
let i2osp len n = nat_to_intseq_be len n
///
/// RSA
///
type modBits_t = modBits:size_nat{1 < modBits}
noeq type rsapss_pkey (modBits:modBits_t) =
| Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits
noeq type rsapss_skey (modBits:modBits_t) =
| Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat ->
Pure (lbytes len)
(requires True)
(ensures fun res ->
(v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0]))) | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | db: Lib.ByteSequence.lbytes len -> emBits: Lib.IntTypes.size_nat
-> Prims.Pure (Lib.ByteSequence.lbytes len) | Prims.Pure | [] | [] | [
"Lib.IntTypes.size_pos",
"Lib.ByteSequence.lbytes",
"Lib.IntTypes.size_nat",
"Prims.op_GreaterThan",
"Prims.unit",
"Lib.IntTypes.logand_mask",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Lib.IntTypes.u8",
"Lib.IntTypes.size",
"Prims.op_Subtraction",
"FStar.Math.Lemmas.pow2_plus",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.upd",
"Lib.IntTypes.logand",
"Lib.Sequence.index",
"Lib.IntTypes.shift_right",
"Lib.IntTypes.mk_int",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Prims.l_Forall",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.pow2",
"Prims.l_imp",
"Prims.op_LessThan",
"Prims.op_disEquality",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.op_String_Assignment",
"Lib.IntTypes.op_Amp_Dot",
"Prims.bool",
"Prims.int",
"Prims.op_Modulus"
] | [] | false | false | false | false | false | let db_zero #len db emBits =
| let msBits = emBits % 8 in
if msBits > 0
then
let r = db.[ 0 ] <- db.[ 0 ] &. (u8 0xff >>. size (8 - msBits)) in
Math.Lemmas.pow2_plus msBits (8 - msBits);
logand_mask db.[ 0 ] (u8 0xff >>. size (8 - msBits)) msBits;
r
else db | false |
Spec.RSAPSS.fst | Spec.RSAPSS.mgf_hash_f | val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a) | val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a) | let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 24,
"end_line": 50,
"start_col": 0,
"start_line": 46
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a) | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} ->
len:
Lib.IntTypes.size_nat
{ len + 4 <= Lib.IntTypes.max_size_t /\
Spec.Hash.Definitions.less_than_max_input_length (len + 4) a } ->
i: Lib.IntTypes.size_nat ->
mgfseed_counter: Lib.ByteSequence.lbytes (len + 4)
-> Lib.ByteSequence.lbytes (len + 4) *
Lib.ByteSequence.lbytes (Spec.Hash.Definitions.hash_length a) | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.b2t",
"Spec.RSAPSS.hash_is_supported",
"Lib.IntTypes.size_nat",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Spec.Hash.Definitions.less_than_max_input_length",
"Lib.ByteSequence.lbytes",
"FStar.Pervasives.Native.Mktuple2",
"Spec.Hash.Definitions.hash_length",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.Hash.Definitions.hash_length'",
"Spec.Agile.Hash.hash",
"Prims.eq2",
"Lib.Sequence.sub",
"Prims.l_Forall",
"Prims.nat",
"Prims.l_or",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index",
"Lib.Sequence.update_sub",
"Lib.IntTypes.uint_t",
"Lib.Sequence.seq",
"Lib.Sequence.length",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.ByteSequence.nat_from_intseq_be",
"Lib.ByteSequence.nat_to_intseq_be",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let mgf_hash_f a len i mgfseed_counter =
| let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block | false |
Spec.RSAPSS.fst | Spec.RSAPSS.rsapss_sign | val rsapss_sign:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat
-> salt:lbytes sLen
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
option (lbytes (blocks modBits 8)) | val rsapss_sign:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat
-> salt:lbytes sLen
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
option (lbytes (blocks modBits 8)) | let rsapss_sign a modBits skey sLen salt msgLen msg =
let b =
sLen + Hash.hash_length a + 8 <= max_size_t &&
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a &&
msgLen `Hash.less_than_max_input_length` a &&
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 in
if b then begin
let (eq_m, sgnt) = rsapss_sign_ a modBits skey sLen salt msgLen msg in
if eq_m then Some sgnt else None end
else
None | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 8,
"end_line": 304,
"start_col": 0,
"start_line": 293
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen)
let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen
(* Bignum convert functions *)
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
let os2ip #len b = nat_from_bytes_be b
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len)
let i2osp len n = nat_to_intseq_be len n
///
/// RSA
///
type modBits_t = modBits:size_nat{1 < modBits}
noeq type rsapss_pkey (modBits:modBits_t) =
| Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits
noeq type rsapss_skey (modBits:modBits_t) =
| Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat ->
Pure (lbytes len)
(requires True)
(ensures fun res ->
(v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0])))
let db_zero #len db emBits =
let msBits = emBits % 8 in
if msBits > 0 then begin
let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in
Math.Lemmas.pow2_plus msBits (8 - msBits);
logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits;
r end
else db
val pss_encode:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} ->
Pure (lbytes (blocks emBits 8))
(requires True)
(ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)
let pss_encode a sLen salt msgLen msg emBits =
let mHash = Hash.hash a msg in
let hLen = Hash.hash_length a in
//m1 = [8 * 0x00; mHash; salt]
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash = Hash.hash a m1 in
//db = [0x00;..; 0x00; 0x01; salt]
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let db = create dbLen (u8 0) in
let last_before_salt = dbLen - sLen - 1 in
let db = db.[last_before_salt] <- u8 1 in
let db = update_sub db (last_before_salt + 1) sLen salt in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let maskedDB = xor_bytes db dbMask in
let maskedDB = db_zero maskedDB emBits in
//em = [maskedDB; m1Hash; 0xbc]
let em = create emLen (u8 0) in
let em = update_sub em 0 dbLen maskedDB in
let em = update_sub em dbLen hLen m1Hash in
assert (v em.[0] == v maskedDB.[0]);
em.[emLen - 1] <- u8 0xbc
val pss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8}
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify_ a sLen msgLen msg emBits em =
let hLen = Hash.hash_length a in
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let maskedDB = sub em 0 dbLen in
let m1Hash = sub em dbLen hLen in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let db = xor_bytes dbMask maskedDB in
let db = db_zero db emBits in
let padLen = emLen - sLen - hLen - 1 in
let pad2 = create padLen (u8 0) in
let pad2 = pad2.[padLen - 1] <- u8 0x01 in
let pad = sub db 0 padLen in
let salt = sub db padLen sLen in
if not (lbytes_eq pad pad2) then false
else begin
let mHash = Hash.hash a msg in
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash0 = Hash.hash a m1 in
lbytes_eq m1Hash0 m1Hash
end
val pss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify a sLen msgLen msg emBits em =
let emLen = blocks emBits 8 in
let msBits = emBits % 8 in
let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in
let em_last = em.[emLen - 1] in
if (emLen < sLen + Hash.hash_length a + 2) then false
else begin
if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) &&
FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy))
then false
else pss_verify_ a sLen msgLen msg emBits em end
val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma
(requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8))
(ensures os2ip #(blocks emBits 8) em < pow2 emBits)
let os2ip_lemma emBits em =
let emLen = blocks emBits 8 in
let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) =
assert ((emBits - 1) / 8 <= emBits / 8) in
if emBits % 8 > 0 then begin
nat_from_intseq_be_slice_lemma em 1;
nat_from_intseq_be_lemma0 (slice em 0 1);
assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]);
assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]);
calc (<=) {
pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0];
(==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) }
pow2 (8 * (emLen - 1)) * (1 + v em.[0]);
(<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) }
pow2 (8 * (emLen - 1)) * pow2 (emBits % 8);
(==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) }
pow2 (8 * ((emBits - 1) / 8) + emBits % 8);
(<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) }
pow2 emBits;
};
assert (nat_from_bytes_be em < pow2 emBits) end
else begin
assert (nat_from_bytes_be em < pow2 (emLen * 8));
assert (emBits == 8 * emLen) end
val rsapss_sign_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
tuple2 bool (lbytes (blocks modBits 8))
let rsapss_sign_ a modBits skey sLen salt msgLen msg =
let pkey = Mk_rsapss_skey?.pkey skey in
let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let d = Mk_rsapss_skey?.d skey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let em = pss_encode a sLen salt msgLen msg emBits in
let m = os2ip #emLen em in
os2ip_lemma emBits em;
let s = pow_mod #n m d in
let m' = pow_mod #n s e in
let eq_m = m = m' in
let s = if eq_m then s else 0 in
(eq_m, i2osp k s)
val rsapss_sign:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat
-> salt:lbytes sLen
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
option (lbytes (blocks modBits 8)) | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} ->
modBits: Spec.RSAPSS.modBits_t ->
skey: Spec.RSAPSS.rsapss_skey modBits ->
sLen: Lib.IntTypes.size_nat ->
salt: Lib.ByteSequence.lbytes sLen ->
msgLen: Prims.nat ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen}
-> FStar.Pervasives.Native.option (Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks modBits 8)) | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.b2t",
"Spec.RSAPSS.hash_is_supported",
"Spec.RSAPSS.modBits_t",
"Spec.RSAPSS.rsapss_skey",
"Lib.IntTypes.size_nat",
"Lib.ByteSequence.lbytes",
"Prims.nat",
"Lib.ByteSequence.bytes",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.bool",
"Spec.RSAPSS.blocks",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Spec.RSAPSS.rsapss_sign_",
"Prims.op_AmpAmp",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Spec.Hash.Definitions.hash_length",
"Lib.IntTypes.max_size_t",
"Spec.Hash.Definitions.less_than_max_input_length",
"Prims.op_Subtraction"
] | [] | false | false | false | false | false | let rsapss_sign a modBits skey sLen salt msgLen msg =
| let b =
sLen + Hash.hash_length a + 8 <= max_size_t &&
(sLen + Hash.hash_length a + 8)
`Hash.less_than_max_input_length`
a &&
msgLen
`Hash.less_than_max_input_length`
a &&
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8
in
if b
then
let eq_m, sgnt = rsapss_sign_ a modBits skey sLen salt msgLen msg in
if eq_m then Some sgnt else None
else None | false |
Vale.Transformers.MovbeElim.fst | Vale.Transformers.MovbeElim.movbe_elim_correct | val movbe_elim_correct (is: list ins) (s: machine_state)
: Lemma (peephole_correct movbe_elim_ph is s) [SMTPat (peephole_correct movbe_elim_ph is s)] | val movbe_elim_correct (is: list ins) (s: machine_state)
: Lemma (peephole_correct movbe_elim_ph is s) [SMTPat (peephole_correct movbe_elim_ph is s)] | let movbe_elim_correct (is:list ins) (s:machine_state) :
Lemma (peephole_correct movbe_elim_ph is s)
[SMTPat (peephole_correct movbe_elim_ph is s)] =
match is with
| [Instr i oprs (AnnotateMovbe64 proof_of_movbe)] ->
let oprs:normal (instr_operands_t [out op64] [op64]) =
coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs in
let (dst, (src, ())) = oprs in
if OReg? dst then (
let Some is' = movbe_elim_ph.ph is in
lemma_movbe_is_mov_bswap dst src s
) else ()
| _ -> () | {
"file_name": "vale/code/lib/transformers/Vale.Transformers.MovbeElim.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 11,
"end_line": 86,
"start_col": 0,
"start_line": 74
} | module Vale.Transformers.MovbeElim
open Vale.X64.Bytes_Code_s
open Vale.X64.Instruction_s
open Vale.X64.Instructions_s
open Vale.X64.Machine_Semantics_s
open Vale.X64.Machine_s
open Vale.X64.Print_s
open Vale.Transformers.InstructionReorder
open Vale.X64.InsLemmas
open Vale.Transformers.PeepHole
let movbe_elim_ph = {
ph = (function
| [Instr i oprs (AnnotateMovbe64 proof_of_movbe)] ->
let oprs:normal (instr_operands_t [out op64] [op64]) =
coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs in
let (dst, (src, ())) = oprs in
if OReg? dst then (
let mov = make_instr ins_Mov64 dst src in
let bswap = make_instr ins_Bswap64 dst in
Some [mov; bswap]
) else None
| _ -> None);
input_hint = 1;
}
module T = Vale.Def.Types_s
module H = Vale.Arch.Heap
#push-options "--initial_fuel 2 --max_fuel 2 --initial_ifuel 0 --max_ifuel 0"
let lemma_movbe_is_mov_bswap (dst src:operand64) (s:machine_state) :
Lemma
(requires (OReg? dst))
(ensures (
let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in
let mov = make_instr ins_Mov64 dst src in
let bswap = make_instr ins_Bswap64 dst in
let s1 = machine_eval_ins movbe s in
let s2 = machine_eval_ins bswap (machine_eval_ins mov s) in
s1.ms_ok ==> equiv_states s1 s2)) =
let movbe = make_instr_annotate ins_MovBe64 (AnnotateMovbe64 ()) dst src in
let mov = make_instr ins_Mov64 dst src in
let bswap = make_instr ins_Bswap64 dst in
let s_movbe = machine_eval_ins movbe s in
let s_mov = machine_eval_ins mov s in
let s_bswap = machine_eval_ins bswap s_mov in
if valid_src_operand64_and_taint src s && valid_dst_operand64 dst s then (
let src_v = eval_operand src s in
let dst_movbe_v = T.reverse_bytes_nat64 src_v in
let dst_mov_v = eval_operand dst s_mov in
let dst_bswap_v = T.reverse_bytes_nat64 dst_mov_v in
if s_movbe.ms_ok then (
assert (Vale.X64.CPU_Features_s.movbe_enabled);
assert (s_movbe == update_operand64_preserve_flags'' dst dst_movbe_v s s);
assert (s_mov == update_operand64_preserve_flags'' dst src_v s s);
lemma_update_to_valid_destination_keeps_it_as_valid_src dst s src_v;
assert (eval_operand dst s_mov == src_v);
assert (valid_src_operand64_and_taint dst s_mov);
assert (s_bswap == update_operand64_preserve_flags'' dst dst_bswap_v s_mov s_mov);
assert (src_v == dst_mov_v);
assert (dst_movbe_v == dst_bswap_v);
lemma_double_update_reg dst s s_mov s_bswap s_movbe src_v dst_bswap_v
) else ()
) else (
assert (s_movbe == {s with ms_ok = false});
assert (s_mov == {s with ms_ok = false});
assert (s_bswap.ms_ok == false)
)
#pop-options | {
"checked_file": "/",
"dependencies": [
"Vale.X64.Print_s.fst.checked",
"Vale.X64.Machine_Semantics_s.fst.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Instructions_s.fsti.checked",
"Vale.X64.Instruction_s.fsti.checked",
"Vale.X64.InsLemmas.fsti.checked",
"Vale.X64.CPU_Features_s.fst.checked",
"Vale.X64.Bytes_Code_s.fst.checked",
"Vale.Transformers.PeepHole.fsti.checked",
"Vale.Transformers.InstructionReorder.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Heap.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Transformers.MovbeElim.fst"
} | [
{
"abbrev": true,
"full_module": "Vale.Arch.Heap",
"short_module": "H"
},
{
"abbrev": true,
"full_module": "Vale.Def.Types_s",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Vale.Transformers.PeepHole",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.InsLemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Transformers.InstructionReorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Print_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Machine_Semantics_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instructions_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Instruction_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.X64.Bytes_Code_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Transformers",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Transformers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 3,
"initial_ifuel": 0,
"max_fuel": 3,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | is: Prims.list Vale.X64.Machine_Semantics_s.ins -> s: Vale.X64.Machine_Semantics_s.machine_state
-> FStar.Pervasives.Lemma
(ensures
Vale.Transformers.PeepHole.peephole_correct Vale.Transformers.MovbeElim.movbe_elim_ph is s)
[
SMTPat (Vale.Transformers.PeepHole.peephole_correct Vale.Transformers.MovbeElim.movbe_elim_ph
is
s)
] | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.list",
"Vale.X64.Machine_Semantics_s.ins",
"Vale.X64.Machine_Semantics_s.machine_state",
"Vale.X64.Instruction_s.instr_t_record",
"Vale.X64.Instruction_s.instr_operands_t",
"Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__outs",
"Vale.X64.Instruction_s.__proj__InstrTypeRecord__item__args",
"Vale.X64.Machine_Semantics_s.equals_instr",
"Vale.X64.Instruction_s.InstrTypeRecord",
"Prims.Cons",
"Vale.X64.Instruction_s.instr_out",
"Vale.X64.Instruction_s.out",
"Vale.X64.Instruction_s.op64",
"Prims.Nil",
"Vale.X64.Instruction_s.instr_operand",
"Vale.X64.Instruction_s.PreserveFlags",
"Vale.X64.Instructions_s.ins_MovBe64",
"Vale.X64.Machine_s.operand64",
"Vale.X64.Machine_s.uu___is_OReg",
"Vale.X64.Machine_s.nat64",
"Vale.X64.Machine_s.reg_64",
"Vale.Transformers.MovbeElim.lemma_movbe_is_mov_bswap",
"Prims.unit",
"FStar.Pervasives.Native.option",
"Vale.Transformers.PeepHole.__proj__Mkpre_peephole__item__ph",
"Vale.Transformers.MovbeElim.movbe_elim_ph",
"Prims.bool",
"FStar.Pervasives.norm",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.zeta",
"FStar.Pervasives.iota",
"FStar.Pervasives.delta_attr",
"Prims.string",
"FStar.Pervasives.Native.Mktuple2",
"Vale.X64.Instruction_s.instr_operand_inout",
"Vale.X64.Instruction_s.Out",
"Vale.X64.Instruction_s.IOpEx",
"Vale.X64.Instruction_s.IOp64",
"Vale.Transformers.PeepHole.coerce_to_normal",
"Prims.l_True",
"Prims.squash",
"Vale.Transformers.PeepHole.peephole_correct",
"FStar.Pervasives.pattern",
"FStar.Pervasives.smt_pat"
] | [] | false | false | true | false | false | let movbe_elim_correct (is: list ins) (s: machine_state)
: Lemma (peephole_correct movbe_elim_ph is s) [SMTPat (peephole_correct movbe_elim_ph is s)] =
| match is with
| [Instr i oprs (AnnotateMovbe64 proof_of_movbe)] ->
let oprs:normal (instr_operands_t [out op64] [op64]) =
coerce_to_normal #(instr_operands_t [out op64] [op64]) oprs
in
let dst, (src, ()) = oprs in
if OReg? dst
then
(let Some is' = movbe_elim_ph.ph is in
lemma_movbe_is_mov_bswap dst src s)
| _ -> () | false |
Spec.RSAPSS.fst | Spec.RSAPSS.mgf_hash | val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen) | val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen) | let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 38,
"end_line": 68,
"start_col": 0,
"start_line": 61
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen) | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} ->
len:
Lib.IntTypes.size_nat
{ len + 4 <= Lib.IntTypes.max_size_t /\
Spec.Hash.Definitions.less_than_max_input_length (len + 4) a } ->
mgfseed: Lib.ByteSequence.lbytes len ->
maskLen:
Lib.IntTypes.size_pos
{ Spec.RSAPSS.blocks maskLen (Spec.Hash.Definitions.hash_length a) *
Spec.Hash.Definitions.hash_length a <
Prims.pow2 32 }
-> Lib.ByteSequence.lbytes maskLen | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.b2t",
"Spec.RSAPSS.hash_is_supported",
"Lib.IntTypes.size_nat",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Lib.IntTypes.max_size_t",
"Spec.Hash.Definitions.less_than_max_input_length",
"Lib.ByteSequence.lbytes",
"Lib.IntTypes.size_pos",
"Prims.op_LessThan",
"FStar.Mul.op_Star",
"Spec.RSAPSS.blocks",
"Spec.Hash.Definitions.hash_length",
"Prims.pow2",
"Spec.RSAPSS.mgf_hash_a",
"Lib.Sequence.seq",
"Lib.IntTypes.uint8",
"Prims.eq2",
"Prims.int",
"Lib.Sequence.length",
"Lib.Sequence.sub",
"FStar.Pervasives.Native.tuple2",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.op_Multiply",
"Lib.Sequence.generate_blocks",
"Spec.RSAPSS.mgf_hash_f",
"Prims.pos",
"Prims.op_Subtraction",
"Prims.nat",
"Prims.op_GreaterThan",
"Lib.Sequence.lseq",
"Prims.l_Forall",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index",
"Lib.Sequence.update_sub",
"Lib.IntTypes.uint_t",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.create",
"Lib.IntTypes.mk_int",
"Prims.l_imp",
"Lib.Sequence.create",
"Lib.IntTypes.u8"
] | [] | false | false | false | false | false | let mgf_hash a len mgfseed maskLen =
| let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc =
generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter
in
sub #uint8 #(n * hLen) acc 0 maskLen | false |
Spec.RSAPSS.fst | Spec.RSAPSS.pss_verify | val pss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos
-> em:lbytes (blocks emBits 8) ->
Tot bool | val pss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos
-> em:lbytes (blocks emBits 8) ->
Tot bool | let pss_verify a sLen msgLen msg emBits em =
let emLen = blocks emBits 8 in
let msBits = emBits % 8 in
let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in
let em_last = em.[emLen - 1] in
if (emLen < sLen + Hash.hash_length a + 2) then false
else begin
if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) &&
FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy))
then false
else pss_verify_ a sLen msgLen msg emBits em end | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 52,
"end_line": 212,
"start_col": 0,
"start_line": 200
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen)
let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen
(* Bignum convert functions *)
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
let os2ip #len b = nat_from_bytes_be b
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len)
let i2osp len n = nat_to_intseq_be len n
///
/// RSA
///
type modBits_t = modBits:size_nat{1 < modBits}
noeq type rsapss_pkey (modBits:modBits_t) =
| Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits
noeq type rsapss_skey (modBits:modBits_t) =
| Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat ->
Pure (lbytes len)
(requires True)
(ensures fun res ->
(v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0])))
let db_zero #len db emBits =
let msBits = emBits % 8 in
if msBits > 0 then begin
let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in
Math.Lemmas.pow2_plus msBits (8 - msBits);
logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits;
r end
else db
val pss_encode:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} ->
Pure (lbytes (blocks emBits 8))
(requires True)
(ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)
let pss_encode a sLen salt msgLen msg emBits =
let mHash = Hash.hash a msg in
let hLen = Hash.hash_length a in
//m1 = [8 * 0x00; mHash; salt]
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash = Hash.hash a m1 in
//db = [0x00;..; 0x00; 0x01; salt]
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let db = create dbLen (u8 0) in
let last_before_salt = dbLen - sLen - 1 in
let db = db.[last_before_salt] <- u8 1 in
let db = update_sub db (last_before_salt + 1) sLen salt in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let maskedDB = xor_bytes db dbMask in
let maskedDB = db_zero maskedDB emBits in
//em = [maskedDB; m1Hash; 0xbc]
let em = create emLen (u8 0) in
let em = update_sub em 0 dbLen maskedDB in
let em = update_sub em dbLen hLen m1Hash in
assert (v em.[0] == v maskedDB.[0]);
em.[emLen - 1] <- u8 0xbc
val pss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8}
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify_ a sLen msgLen msg emBits em =
let hLen = Hash.hash_length a in
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let maskedDB = sub em 0 dbLen in
let m1Hash = sub em dbLen hLen in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let db = xor_bytes dbMask maskedDB in
let db = db_zero db emBits in
let padLen = emLen - sLen - hLen - 1 in
let pad2 = create padLen (u8 0) in
let pad2 = pad2.[padLen - 1] <- u8 0x01 in
let pad = sub db 0 padLen in
let salt = sub db padLen sLen in
if not (lbytes_eq pad pad2) then false
else begin
let mHash = Hash.hash a msg in
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash0 = Hash.hash a m1 in
lbytes_eq m1Hash0 m1Hash
end
val pss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos
-> em:lbytes (blocks emBits 8) ->
Tot bool | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} ->
sLen:
Lib.IntTypes.size_nat
{ sLen + Spec.Hash.Definitions.hash_length a + 8 <= Lib.IntTypes.max_size_t /\
Spec.Hash.Definitions.less_than_max_input_length (sLen +
Spec.Hash.Definitions.hash_length a +
8)
a } ->
msgLen: Prims.nat{Spec.Hash.Definitions.less_than_max_input_length msgLen a} ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen} ->
emBits: Lib.IntTypes.size_pos ->
em: Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks emBits 8)
-> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.b2t",
"Spec.RSAPSS.hash_is_supported",
"Lib.IntTypes.size_nat",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Spec.Hash.Definitions.hash_length",
"Lib.IntTypes.max_size_t",
"Spec.Hash.Definitions.less_than_max_input_length",
"Prims.nat",
"Lib.ByteSequence.bytes",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.size_pos",
"Lib.ByteSequence.lbytes",
"Spec.RSAPSS.blocks",
"Prims.op_LessThan",
"Prims.bool",
"Prims.op_Negation",
"Prims.op_AmpAmp",
"FStar.UInt8.op_Equals_Hat",
"Lib.RawIntTypes.u8_to_UInt8",
"FStar.UInt8.__uint_to_t",
"Spec.RSAPSS.pss_verify_",
"Lib.IntTypes.int_t",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Prims.op_Subtraction",
"Lib.Sequence.op_String_Access",
"Prims.op_GreaterThan",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.op_Less_Less_Dot",
"Lib.IntTypes.u8",
"Lib.IntTypes.size",
"Lib.IntTypes.uint8",
"Prims.int",
"Prims.op_Modulus",
"Prims.pos",
"Prims.pow2",
"Prims.op_Multiply"
] | [] | false | false | false | false | false | let pss_verify a sLen msgLen msg emBits em =
| let emLen = blocks emBits 8 in
let msBits = emBits % 8 in
let em_0 = if msBits > 0 then em.[ 0 ] &. (u8 0xff <<. size msBits) else u8 0 in
let em_last = em.[ emLen - 1 ] in
if (emLen < sLen + Hash.hash_length a + 2)
then false
else
if
not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) &&
FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy))
then false
else pss_verify_ a sLen msgLen msg emBits em | false |
Spec.RSAPSS.fst | Spec.RSAPSS.rsapss_load_pkey | val rsapss_load_pkey:
modBits:modBits_t
-> eBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8) ->
option (rsapss_pkey modBits) | val rsapss_load_pkey:
modBits:modBits_t
-> eBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8) ->
option (rsapss_pkey modBits) | let rsapss_load_pkey modBits eBits nb eb =
let n = os2ip #(blocks modBits 8) nb in
let e = os2ip #(blocks eBits 8) eb in
//`n % 2 = 1` is needed to store `r2 = r * r % n` as a part of pkey
if (n % 2 = 1 && pow2 (modBits - 1) < n && n < pow2 modBits &&
0 < e && e < pow2 eBits) then
Some (Mk_rsapss_pkey n e)
else
None | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 8,
"end_line": 378,
"start_col": 0,
"start_line": 369
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen)
let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen
(* Bignum convert functions *)
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
let os2ip #len b = nat_from_bytes_be b
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len)
let i2osp len n = nat_to_intseq_be len n
///
/// RSA
///
type modBits_t = modBits:size_nat{1 < modBits}
noeq type rsapss_pkey (modBits:modBits_t) =
| Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits
noeq type rsapss_skey (modBits:modBits_t) =
| Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat ->
Pure (lbytes len)
(requires True)
(ensures fun res ->
(v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0])))
let db_zero #len db emBits =
let msBits = emBits % 8 in
if msBits > 0 then begin
let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in
Math.Lemmas.pow2_plus msBits (8 - msBits);
logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits;
r end
else db
val pss_encode:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} ->
Pure (lbytes (blocks emBits 8))
(requires True)
(ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)
let pss_encode a sLen salt msgLen msg emBits =
let mHash = Hash.hash a msg in
let hLen = Hash.hash_length a in
//m1 = [8 * 0x00; mHash; salt]
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash = Hash.hash a m1 in
//db = [0x00;..; 0x00; 0x01; salt]
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let db = create dbLen (u8 0) in
let last_before_salt = dbLen - sLen - 1 in
let db = db.[last_before_salt] <- u8 1 in
let db = update_sub db (last_before_salt + 1) sLen salt in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let maskedDB = xor_bytes db dbMask in
let maskedDB = db_zero maskedDB emBits in
//em = [maskedDB; m1Hash; 0xbc]
let em = create emLen (u8 0) in
let em = update_sub em 0 dbLen maskedDB in
let em = update_sub em dbLen hLen m1Hash in
assert (v em.[0] == v maskedDB.[0]);
em.[emLen - 1] <- u8 0xbc
val pss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8}
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify_ a sLen msgLen msg emBits em =
let hLen = Hash.hash_length a in
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let maskedDB = sub em 0 dbLen in
let m1Hash = sub em dbLen hLen in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let db = xor_bytes dbMask maskedDB in
let db = db_zero db emBits in
let padLen = emLen - sLen - hLen - 1 in
let pad2 = create padLen (u8 0) in
let pad2 = pad2.[padLen - 1] <- u8 0x01 in
let pad = sub db 0 padLen in
let salt = sub db padLen sLen in
if not (lbytes_eq pad pad2) then false
else begin
let mHash = Hash.hash a msg in
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash0 = Hash.hash a m1 in
lbytes_eq m1Hash0 m1Hash
end
val pss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify a sLen msgLen msg emBits em =
let emLen = blocks emBits 8 in
let msBits = emBits % 8 in
let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in
let em_last = em.[emLen - 1] in
if (emLen < sLen + Hash.hash_length a + 2) then false
else begin
if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) &&
FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy))
then false
else pss_verify_ a sLen msgLen msg emBits em end
val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma
(requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8))
(ensures os2ip #(blocks emBits 8) em < pow2 emBits)
let os2ip_lemma emBits em =
let emLen = blocks emBits 8 in
let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) =
assert ((emBits - 1) / 8 <= emBits / 8) in
if emBits % 8 > 0 then begin
nat_from_intseq_be_slice_lemma em 1;
nat_from_intseq_be_lemma0 (slice em 0 1);
assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]);
assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]);
calc (<=) {
pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0];
(==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) }
pow2 (8 * (emLen - 1)) * (1 + v em.[0]);
(<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) }
pow2 (8 * (emLen - 1)) * pow2 (emBits % 8);
(==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) }
pow2 (8 * ((emBits - 1) / 8) + emBits % 8);
(<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) }
pow2 emBits;
};
assert (nat_from_bytes_be em < pow2 emBits) end
else begin
assert (nat_from_bytes_be em < pow2 (emLen * 8));
assert (emBits == 8 * emLen) end
val rsapss_sign_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
tuple2 bool (lbytes (blocks modBits 8))
let rsapss_sign_ a modBits skey sLen salt msgLen msg =
let pkey = Mk_rsapss_skey?.pkey skey in
let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let d = Mk_rsapss_skey?.d skey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let em = pss_encode a sLen salt msgLen msg emBits in
let m = os2ip #emLen em in
os2ip_lemma emBits em;
let s = pow_mod #n m d in
let m' = pow_mod #n s e in
let eq_m = m = m' in
let s = if eq_m then s else 0 in
(eq_m, i2osp k s)
val rsapss_sign:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat
-> salt:lbytes sLen
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
option (lbytes (blocks modBits 8))
let rsapss_sign a modBits skey sLen salt msgLen msg =
let b =
sLen + Hash.hash_length a + 8 <= max_size_t &&
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a &&
msgLen `Hash.less_than_max_input_length` a &&
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 in
if b then begin
let (eq_m, sgnt) = rsapss_sign_ a modBits skey sLen salt msgLen msg in
if eq_m then Some sgnt else None end
else
None
val rsapss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> pkey:rsapss_pkey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> sgnt:lbytes (blocks modBits 8)
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
Tot bool
let rsapss_verify_ a modBits pkey sLen sgnt msgLen msg =
let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let s = os2ip #k sgnt in
if s < n then begin
let m = pow_mod #n s e in
if m < pow2 (emLen * 8) then
let em = i2osp emLen m in
pss_verify a sLen msgLen msg emBits em
else false end
else false
val rsapss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> pkey:rsapss_pkey modBits
-> sLen:size_nat
-> k:size_nat
-> sgnt:lbytes k
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
Tot bool
let rsapss_verify a modBits pkey sLen k sgnt msgLen msg =
let b =
sLen + Hash.hash_length a + 8 <= max_size_t &&
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a &&
msgLen `Hash.less_than_max_input_length` a &&
k = blocks modBits 8 in
if b then
rsapss_verify_ a modBits pkey sLen sgnt msgLen msg
else
false
val rsapss_load_pkey:
modBits:modBits_t
-> eBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8) ->
option (rsapss_pkey modBits) | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
modBits: Spec.RSAPSS.modBits_t ->
eBits: Lib.IntTypes.size_pos ->
nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks modBits 8) ->
eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks eBits 8)
-> FStar.Pervasives.Native.option (Spec.RSAPSS.rsapss_pkey modBits) | Prims.Tot | [
"total"
] | [] | [
"Spec.RSAPSS.modBits_t",
"Lib.IntTypes.size_pos",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Spec.RSAPSS.blocks",
"Prims.op_AmpAmp",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Subtraction",
"FStar.Pervasives.Native.Some",
"Spec.RSAPSS.rsapss_pkey",
"Spec.RSAPSS.Mk_rsapss_pkey",
"Prims.bool",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option",
"Prims.nat",
"Prims.b2t",
"Prims.op_Multiply",
"Spec.RSAPSS.os2ip"
] | [] | false | false | false | false | false | let rsapss_load_pkey modBits eBits nb eb =
| let n = os2ip #(blocks modBits 8) nb in
let e = os2ip #(blocks eBits 8) eb in
if (n % 2 = 1 && pow2 (modBits - 1) < n && n < pow2 modBits && 0 < e && e < pow2 eBits)
then Some (Mk_rsapss_pkey n e)
else None | false |
Spec.RSAPSS.fst | Spec.RSAPSS.rsapss_sign_ | val rsapss_sign_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
tuple2 bool (lbytes (blocks modBits 8)) | val rsapss_sign_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
tuple2 bool (lbytes (blocks modBits 8)) | let rsapss_sign_ a modBits skey sLen salt msgLen msg =
let pkey = Mk_rsapss_skey?.pkey skey in
let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let d = Mk_rsapss_skey?.d skey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let em = pss_encode a sLen salt msgLen msg emBits in
let m = os2ip #emLen em in
os2ip_lemma emBits em;
let s = pow_mod #n m d in
let m' = pow_mod #n s e in
let eq_m = m = m' in
let s = if eq_m then s else 0 in
(eq_m, i2osp k s) | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 19,
"end_line": 280,
"start_col": 0,
"start_line": 261
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen)
let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen
(* Bignum convert functions *)
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
let os2ip #len b = nat_from_bytes_be b
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len)
let i2osp len n = nat_to_intseq_be len n
///
/// RSA
///
type modBits_t = modBits:size_nat{1 < modBits}
noeq type rsapss_pkey (modBits:modBits_t) =
| Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits
noeq type rsapss_skey (modBits:modBits_t) =
| Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat ->
Pure (lbytes len)
(requires True)
(ensures fun res ->
(v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0])))
let db_zero #len db emBits =
let msBits = emBits % 8 in
if msBits > 0 then begin
let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in
Math.Lemmas.pow2_plus msBits (8 - msBits);
logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits;
r end
else db
val pss_encode:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} ->
Pure (lbytes (blocks emBits 8))
(requires True)
(ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)
let pss_encode a sLen salt msgLen msg emBits =
let mHash = Hash.hash a msg in
let hLen = Hash.hash_length a in
//m1 = [8 * 0x00; mHash; salt]
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash = Hash.hash a m1 in
//db = [0x00;..; 0x00; 0x01; salt]
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let db = create dbLen (u8 0) in
let last_before_salt = dbLen - sLen - 1 in
let db = db.[last_before_salt] <- u8 1 in
let db = update_sub db (last_before_salt + 1) sLen salt in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let maskedDB = xor_bytes db dbMask in
let maskedDB = db_zero maskedDB emBits in
//em = [maskedDB; m1Hash; 0xbc]
let em = create emLen (u8 0) in
let em = update_sub em 0 dbLen maskedDB in
let em = update_sub em dbLen hLen m1Hash in
assert (v em.[0] == v maskedDB.[0]);
em.[emLen - 1] <- u8 0xbc
val pss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8}
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify_ a sLen msgLen msg emBits em =
let hLen = Hash.hash_length a in
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let maskedDB = sub em 0 dbLen in
let m1Hash = sub em dbLen hLen in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let db = xor_bytes dbMask maskedDB in
let db = db_zero db emBits in
let padLen = emLen - sLen - hLen - 1 in
let pad2 = create padLen (u8 0) in
let pad2 = pad2.[padLen - 1] <- u8 0x01 in
let pad = sub db 0 padLen in
let salt = sub db padLen sLen in
if not (lbytes_eq pad pad2) then false
else begin
let mHash = Hash.hash a msg in
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash0 = Hash.hash a m1 in
lbytes_eq m1Hash0 m1Hash
end
val pss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify a sLen msgLen msg emBits em =
let emLen = blocks emBits 8 in
let msBits = emBits % 8 in
let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in
let em_last = em.[emLen - 1] in
if (emLen < sLen + Hash.hash_length a + 2) then false
else begin
if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) &&
FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy))
then false
else pss_verify_ a sLen msgLen msg emBits em end
val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma
(requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8))
(ensures os2ip #(blocks emBits 8) em < pow2 emBits)
let os2ip_lemma emBits em =
let emLen = blocks emBits 8 in
let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) =
assert ((emBits - 1) / 8 <= emBits / 8) in
if emBits % 8 > 0 then begin
nat_from_intseq_be_slice_lemma em 1;
nat_from_intseq_be_lemma0 (slice em 0 1);
assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]);
assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]);
calc (<=) {
pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0];
(==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) }
pow2 (8 * (emLen - 1)) * (1 + v em.[0]);
(<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) }
pow2 (8 * (emLen - 1)) * pow2 (emBits % 8);
(==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) }
pow2 (8 * ((emBits - 1) / 8) + emBits % 8);
(<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) }
pow2 emBits;
};
assert (nat_from_bytes_be em < pow2 emBits) end
else begin
assert (nat_from_bytes_be em < pow2 (emLen * 8));
assert (emBits == 8 * emLen) end
val rsapss_sign_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
tuple2 bool (lbytes (blocks modBits 8)) | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} ->
modBits: Spec.RSAPSS.modBits_t ->
skey: Spec.RSAPSS.rsapss_skey modBits ->
sLen:
Lib.IntTypes.size_nat
{ sLen + Spec.Hash.Definitions.hash_length a + 8 <= Lib.IntTypes.max_size_t /\
Spec.Hash.Definitions.less_than_max_input_length (sLen +
Spec.Hash.Definitions.hash_length a +
8)
a /\
sLen + Spec.Hash.Definitions.hash_length a + 2 <= Spec.RSAPSS.blocks (modBits - 1) 8 } ->
salt: Lib.ByteSequence.lbytes sLen ->
msgLen: Prims.nat{Spec.Hash.Definitions.less_than_max_input_length msgLen a} ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen}
-> Prims.bool * Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks modBits 8) | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.b2t",
"Spec.RSAPSS.hash_is_supported",
"Spec.RSAPSS.modBits_t",
"Spec.RSAPSS.rsapss_skey",
"Lib.IntTypes.size_nat",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Spec.Hash.Definitions.hash_length",
"Lib.IntTypes.max_size_t",
"Spec.Hash.Definitions.less_than_max_input_length",
"Spec.RSAPSS.blocks",
"Prims.op_Subtraction",
"Lib.ByteSequence.lbytes",
"Prims.nat",
"Lib.ByteSequence.bytes",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"FStar.Pervasives.Native.Mktuple2",
"Prims.bool",
"Spec.RSAPSS.i2osp",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Multiply",
"FStar.Mul.op_Star",
"Prims.op_Equality",
"Prims.l_or",
"Lib.NatMod.nat_mod",
"Lib.NatMod.pow_mod",
"Prims.unit",
"Spec.RSAPSS.os2ip_lemma",
"Spec.RSAPSS.os2ip",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Spec.RSAPSS.pss_encode",
"Prims.pos",
"Prims.int",
"FStar.Math.Lemmas.pow2_le_compat",
"Spec.RSAPSS.__proj__Mk_rsapss_skey__item__d",
"Spec.RSAPSS.__proj__Mk_rsapss_pkey__item__e",
"Spec.RSAPSS.__proj__Mk_rsapss_pkey__item__n",
"Spec.RSAPSS.rsapss_pkey",
"Spec.RSAPSS.__proj__Mk_rsapss_skey__item__pkey",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let rsapss_sign_ a modBits skey sLen salt msgLen msg =
| let pkey = Mk_rsapss_skey?.pkey skey in
let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let d = Mk_rsapss_skey?.d skey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let em = pss_encode a sLen salt msgLen msg emBits in
let m = os2ip #emLen em in
os2ip_lemma emBits em;
let s = pow_mod #n m d in
let m' = pow_mod #n s e in
let eq_m = m = m' in
let s = if eq_m then s else 0 in
(eq_m, i2osp k s) | false |
Hacl.P256.PrecompTable.fst | Hacl.P256.PrecompTable.precomp_g_pow2_64_table_lemma_w4 | val precomp_g_pow2_64_table_lemma_w4: unit ->
Lemma (forall (i:nat{i < 16}). precomp_table_acc_inv g_pow2_64 16 precomp_g_pow2_64_table_lseq_w4 i) | val precomp_g_pow2_64_table_lemma_w4: unit ->
Lemma (forall (i:nat{i < 16}). precomp_table_acc_inv g_pow2_64 16 precomp_g_pow2_64_table_lseq_w4 i) | let precomp_g_pow2_64_table_lemma_w4 () =
normalize_term_spec (SPT.precomp_base_table_list mk_p256_precomp_base_table proj_g_pow2_64 15);
SPT.precomp_base_table_lemma mk_p256_precomp_base_table
proj_g_pow2_64 16 precomp_g_pow2_64_table_lseq_w4;
proj_g_pow2_64_lemma () | {
"file_name": "code/ecdsap256/Hacl.P256.PrecompTable.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 25,
"end_line": 230,
"start_col": 0,
"start_line": 226
} | module Hacl.P256.PrecompTable
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module SPT = Hacl.Spec.PrecompBaseTable
module SPT256 = Hacl.Spec.PrecompBaseTable256
module SPTK = Hacl.Spec.P256.PrecompTable
module S = Spec.P256
module SL = Spec.P256.Lemmas
open Hacl.Impl.P256.Point
include Hacl.Impl.P256.Group
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let proj_point_to_list p =
SPTK.proj_point_to_list_lemma p;
SPTK.proj_point_to_list p
let lemma_refl x =
SPTK.proj_point_to_list_lemma x
//-----------------
inline_for_extraction noextract
let proj_g_pow2_64 : S.proj_point =
[@inline_let]
let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in
[@inline_let]
let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in
[@inline_let]
let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in
(rX, rY, rZ)
val lemma_proj_g_pow2_64_eval : unit ->
Lemma (SE.exp_pow2 S.mk_p256_concrete_ops S.base_point 64 == proj_g_pow2_64)
let lemma_proj_g_pow2_64_eval () =
SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops S.base_point 64;
let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64) in
normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64);
let rX : S.felem = 0x000931f4ae428a4ad81ee0aa89cf5247ce85d4dd696c61b4bb9d4761e57b7fbe in
let rY : S.felem = 0x7e88e5e6a142d5c2269f21a158e82ab2c79fcecb26e397b96fd5b9fbcd0a69a5 in
let rZ : S.felem = 0x02626dc2dd5e06cd19de5e6afb6c5dbdd3e41dc1472e7b8ef11eb0662e41c44b in
assert_norm (qX == rX /\ qY == rY /\ qZ == rZ)
inline_for_extraction noextract
let proj_g_pow2_128 : S.proj_point =
[@inline_let]
let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in
[@inline_let]
let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in
[@inline_let]
let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in
(rX, rY, rZ)
val lemma_proj_g_pow2_128_eval : unit ->
Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128)
let lemma_proj_g_pow2_128_eval () =
SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_64 64;
let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64) in
normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64);
let rX : S.felem = 0x04c3aaf6c6c00704e96eda89461d63fd2c97ee1e6786fc785e6afac7aa92f9b1 in
let rY : S.felem = 0x14f1edaeb8e9c8d4797d164a3946c7ff50a7c8cd59139a4dbce354e6e4df09c3 in
let rZ : S.felem = 0x80119ced9a5ce83c4e31f8de1a38f89d5f9ff9f637dca86d116a4217f83e55d2 in
assert_norm (qX == rX /\ qY == rY /\ qZ == rZ)
inline_for_extraction noextract
let proj_g_pow2_192 : S.proj_point =
[@inline_let]
let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in
[@inline_let]
let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in
[@inline_let]
let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in
(rX, rY, rZ)
val lemma_proj_g_pow2_192_eval : unit ->
Lemma (SE.exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192)
let lemma_proj_g_pow2_192_eval () =
SPT256.exp_pow2_rec_is_exp_pow2 S.mk_p256_concrete_ops proj_g_pow2_128 64;
let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64) in
normalize_term_spec (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64);
let rX : S.felem = 0xc762a9c8ae1b2f7434ff8da70fe105e0d4f188594989f193de0dbdbf5f60cb9a in
let rY : S.felem = 0x1eddaf51836859e1369f1ae8d9ab02e4123b6f151d9b796e297a38fa5613d9bc in
let rZ : S.felem = 0xcb433ab3f67815707e398dc7910cc4ec6ea115360060fc73c35b53dce02e2c72 in
assert_norm (qX == rX /\ qY == rY /\ qZ == rZ)
// let proj_g_pow2_64 : S.proj_point =
// normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops S.base_point 64)
// let proj_g_pow2_128 : S.proj_point =
// normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_64 64)
// let proj_g_pow2_192 : S.proj_point =
// normalize_term (SPT256.exp_pow2_rec S.mk_p256_concrete_ops proj_g_pow2_128 64)
inline_for_extraction noextract
let proj_g_pow2_64_list : SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_64)
inline_for_extraction noextract
let proj_g_pow2_128_list : SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_128)
inline_for_extraction noextract
let proj_g_pow2_192_list : SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_192)
let proj_g_pow2_64_lseq : LSeq.lseq uint64 12 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64);
Seq.seq_of_list proj_g_pow2_64_list
let proj_g_pow2_128_lseq : LSeq.lseq uint64 12 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128);
Seq.seq_of_list proj_g_pow2_128_list
let proj_g_pow2_192_lseq : LSeq.lseq uint64 12 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192);
Seq.seq_of_list proj_g_pow2_192_list
val proj_g_pow2_64_lemma: unit ->
Lemma (S.to_aff_point proj_g_pow2_64 == pow_point (pow2 64) g_aff)
let proj_g_pow2_64_lemma () =
lemma_proj_g_pow2_64_eval ();
SPT256.a_pow2_64_lemma S.mk_p256_concrete_ops S.base_point
val proj_g_pow2_128_lemma: unit ->
Lemma (S.to_aff_point proj_g_pow2_128 == pow_point (pow2 128) g_aff)
let proj_g_pow2_128_lemma () =
lemma_proj_g_pow2_128_eval ();
lemma_proj_g_pow2_64_eval ();
SPT256.a_pow2_128_lemma S.mk_p256_concrete_ops S.base_point
val proj_g_pow2_192_lemma: unit ->
Lemma (S.to_aff_point proj_g_pow2_192 == pow_point (pow2 192) g_aff)
let proj_g_pow2_192_lemma () =
lemma_proj_g_pow2_192_eval ();
lemma_proj_g_pow2_128_eval ();
lemma_proj_g_pow2_64_eval ();
SPT256.a_pow2_192_lemma S.mk_p256_concrete_ops S.base_point
let proj_g_pow2_64_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64);
proj_g_pow2_64_lemma ();
SPTK.proj_point_to_list_lemma proj_g_pow2_64
let proj_g_pow2_128_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128);
proj_g_pow2_128_lemma ();
SPTK.proj_point_to_list_lemma proj_g_pow2_128
let proj_g_pow2_192_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192);
proj_g_pow2_192_lemma ();
SPTK.proj_point_to_list_lemma proj_g_pow2_192
let mk_proj_g_pow2_64 () =
createL proj_g_pow2_64_list
let mk_proj_g_pow2_128 () =
createL proj_g_pow2_128_list
let mk_proj_g_pow2_192 () =
createL proj_g_pow2_192_list
//----------------
/// window size = 4; precomputed table = [[0]G, [1]G, ..., [15]G]
inline_for_extraction noextract
let precomp_basepoint_table_list_w4: x:list uint64{FStar.List.Tot.length x = 192} =
normalize_term (SPT.precomp_base_table_list mk_p256_precomp_base_table S.base_point 15)
let precomp_basepoint_table_lseq_w4 : LSeq.lseq uint64 192 =
normalize_term_spec (SPT.precomp_base_table_list mk_p256_precomp_base_table S.base_point 15);
Seq.seq_of_list precomp_basepoint_table_list_w4
let precomp_basepoint_table_lemma_w4 () =
normalize_term_spec (SPT.precomp_base_table_list mk_p256_precomp_base_table S.base_point 15);
SPT.precomp_base_table_lemma mk_p256_precomp_base_table S.base_point 16 precomp_basepoint_table_lseq_w4
let precomp_basepoint_table_w4:
x:glbuffer uint64 192ul{witnessed x precomp_basepoint_table_lseq_w4 /\ recallable x} =
createL_global precomp_basepoint_table_list_w4
/// window size = 4; precomputed table = [[0]([pow2 64]G), [1]([pow2 64]G), ..., [15]([pow2 64]G)]
inline_for_extraction noextract
let precomp_g_pow2_64_table_list_w4: x:list uint64{FStar.List.Tot.length x = 192} =
normalize_term (SPT.precomp_base_table_list mk_p256_precomp_base_table proj_g_pow2_64 15)
let precomp_g_pow2_64_table_lseq_w4 : LSeq.lseq uint64 192 =
normalize_term_spec (SPT.precomp_base_table_list mk_p256_precomp_base_table proj_g_pow2_64 15);
Seq.seq_of_list precomp_g_pow2_64_table_list_w4 | {
"checked_file": "/",
"dependencies": [
"Spec.P256.Lemmas.fsti.checked",
"Spec.P256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.PrecompBaseTable256.fsti.checked",
"Hacl.Spec.PrecompBaseTable.fsti.checked",
"Hacl.Spec.P256.PrecompTable.fsti.checked",
"Hacl.Impl.P256.Point.fsti.checked",
"Hacl.Impl.P256.Group.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.P256.PrecompTable.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.P256.Lemmas",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.PrecompTable",
"short_module": "SPTK"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable256",
"short_module": "SPT256"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Group",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.P256.Point",
"short_module": null
},
{
"abbrev": true,
"full_module": "Hacl.Spec.P256.Montgomery",
"short_module": "SM"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable",
"short_module": "SPT"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation.Definitions",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit
-> FStar.Pervasives.Lemma
(ensures
forall (i: Prims.nat{i < 16}).
Hacl.P256.PrecompTable.precomp_table_acc_inv Hacl.P256.PrecompTable.g_pow2_64
16
Hacl.P256.PrecompTable.precomp_g_pow2_64_table_lseq_w4
i) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Hacl.P256.PrecompTable.proj_g_pow2_64_lemma",
"Hacl.Spec.PrecompBaseTable.precomp_base_table_lemma",
"Spec.P256.PointOps.proj_point",
"Lib.IntTypes.U64",
"FStar.UInt32.uint_to_t",
"Hacl.P256.PrecompTable.mk_p256_precomp_base_table",
"Hacl.P256.PrecompTable.proj_g_pow2_64",
"Hacl.P256.PrecompTable.precomp_g_pow2_64_table_lseq_w4",
"FStar.Pervasives.normalize_term_spec",
"Prims.list",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"FStar.List.Tot.Base.length",
"FStar.Mul.op_Star",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Spec.PrecompBaseTable.precomp_base_table_list"
] | [] | true | false | true | false | false | let precomp_g_pow2_64_table_lemma_w4 () =
| normalize_term_spec (SPT.precomp_base_table_list mk_p256_precomp_base_table proj_g_pow2_64 15);
SPT.precomp_base_table_lemma mk_p256_precomp_base_table
proj_g_pow2_64
16
precomp_g_pow2_64_table_lseq_w4;
proj_g_pow2_64_lemma () | false |
Spec.RSAPSS.fst | Spec.RSAPSS.rsapss_verify_ | val rsapss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> pkey:rsapss_pkey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> sgnt:lbytes (blocks modBits 8)
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
Tot bool | val rsapss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> pkey:rsapss_pkey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> sgnt:lbytes (blocks modBits 8)
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
Tot bool | let rsapss_verify_ a modBits pkey sLen sgnt msgLen msg =
let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let s = os2ip #k sgnt in
if s < n then begin
let m = pow_mod #n s e in
if m < pow2 (emLen * 8) then
let em = i2osp emLen m in
pss_verify a sLen msgLen msg emBits em
else false end
else false | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 12,
"end_line": 335,
"start_col": 0,
"start_line": 319
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen)
let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen
(* Bignum convert functions *)
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
let os2ip #len b = nat_from_bytes_be b
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len)
let i2osp len n = nat_to_intseq_be len n
///
/// RSA
///
type modBits_t = modBits:size_nat{1 < modBits}
noeq type rsapss_pkey (modBits:modBits_t) =
| Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits
noeq type rsapss_skey (modBits:modBits_t) =
| Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat ->
Pure (lbytes len)
(requires True)
(ensures fun res ->
(v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0])))
let db_zero #len db emBits =
let msBits = emBits % 8 in
if msBits > 0 then begin
let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in
Math.Lemmas.pow2_plus msBits (8 - msBits);
logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits;
r end
else db
val pss_encode:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} ->
Pure (lbytes (blocks emBits 8))
(requires True)
(ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)
let pss_encode a sLen salt msgLen msg emBits =
let mHash = Hash.hash a msg in
let hLen = Hash.hash_length a in
//m1 = [8 * 0x00; mHash; salt]
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash = Hash.hash a m1 in
//db = [0x00;..; 0x00; 0x01; salt]
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let db = create dbLen (u8 0) in
let last_before_salt = dbLen - sLen - 1 in
let db = db.[last_before_salt] <- u8 1 in
let db = update_sub db (last_before_salt + 1) sLen salt in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let maskedDB = xor_bytes db dbMask in
let maskedDB = db_zero maskedDB emBits in
//em = [maskedDB; m1Hash; 0xbc]
let em = create emLen (u8 0) in
let em = update_sub em 0 dbLen maskedDB in
let em = update_sub em dbLen hLen m1Hash in
assert (v em.[0] == v maskedDB.[0]);
em.[emLen - 1] <- u8 0xbc
val pss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8}
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify_ a sLen msgLen msg emBits em =
let hLen = Hash.hash_length a in
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let maskedDB = sub em 0 dbLen in
let m1Hash = sub em dbLen hLen in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let db = xor_bytes dbMask maskedDB in
let db = db_zero db emBits in
let padLen = emLen - sLen - hLen - 1 in
let pad2 = create padLen (u8 0) in
let pad2 = pad2.[padLen - 1] <- u8 0x01 in
let pad = sub db 0 padLen in
let salt = sub db padLen sLen in
if not (lbytes_eq pad pad2) then false
else begin
let mHash = Hash.hash a msg in
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash0 = Hash.hash a m1 in
lbytes_eq m1Hash0 m1Hash
end
val pss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify a sLen msgLen msg emBits em =
let emLen = blocks emBits 8 in
let msBits = emBits % 8 in
let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in
let em_last = em.[emLen - 1] in
if (emLen < sLen + Hash.hash_length a + 2) then false
else begin
if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) &&
FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy))
then false
else pss_verify_ a sLen msgLen msg emBits em end
val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma
(requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8))
(ensures os2ip #(blocks emBits 8) em < pow2 emBits)
let os2ip_lemma emBits em =
let emLen = blocks emBits 8 in
let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) =
assert ((emBits - 1) / 8 <= emBits / 8) in
if emBits % 8 > 0 then begin
nat_from_intseq_be_slice_lemma em 1;
nat_from_intseq_be_lemma0 (slice em 0 1);
assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]);
assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]);
calc (<=) {
pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0];
(==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) }
pow2 (8 * (emLen - 1)) * (1 + v em.[0]);
(<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) }
pow2 (8 * (emLen - 1)) * pow2 (emBits % 8);
(==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) }
pow2 (8 * ((emBits - 1) / 8) + emBits % 8);
(<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) }
pow2 emBits;
};
assert (nat_from_bytes_be em < pow2 emBits) end
else begin
assert (nat_from_bytes_be em < pow2 (emLen * 8));
assert (emBits == 8 * emLen) end
val rsapss_sign_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
tuple2 bool (lbytes (blocks modBits 8))
let rsapss_sign_ a modBits skey sLen salt msgLen msg =
let pkey = Mk_rsapss_skey?.pkey skey in
let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let d = Mk_rsapss_skey?.d skey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let em = pss_encode a sLen salt msgLen msg emBits in
let m = os2ip #emLen em in
os2ip_lemma emBits em;
let s = pow_mod #n m d in
let m' = pow_mod #n s e in
let eq_m = m = m' in
let s = if eq_m then s else 0 in
(eq_m, i2osp k s)
val rsapss_sign:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat
-> salt:lbytes sLen
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
option (lbytes (blocks modBits 8))
let rsapss_sign a modBits skey sLen salt msgLen msg =
let b =
sLen + Hash.hash_length a + 8 <= max_size_t &&
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a &&
msgLen `Hash.less_than_max_input_length` a &&
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 in
if b then begin
let (eq_m, sgnt) = rsapss_sign_ a modBits skey sLen salt msgLen msg in
if eq_m then Some sgnt else None end
else
None
val rsapss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> pkey:rsapss_pkey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> sgnt:lbytes (blocks modBits 8)
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
Tot bool | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} ->
modBits: Spec.RSAPSS.modBits_t ->
pkey: Spec.RSAPSS.rsapss_pkey modBits ->
sLen:
Lib.IntTypes.size_nat
{ sLen + Spec.Hash.Definitions.hash_length a + 8 <= Lib.IntTypes.max_size_t /\
Spec.Hash.Definitions.less_than_max_input_length (sLen +
Spec.Hash.Definitions.hash_length a +
8)
a } ->
sgnt: Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks modBits 8) ->
msgLen: Prims.nat{Spec.Hash.Definitions.less_than_max_input_length msgLen a} ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen}
-> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.b2t",
"Spec.RSAPSS.hash_is_supported",
"Spec.RSAPSS.modBits_t",
"Spec.RSAPSS.rsapss_pkey",
"Lib.IntTypes.size_nat",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Spec.Hash.Definitions.hash_length",
"Lib.IntTypes.max_size_t",
"Spec.Hash.Definitions.less_than_max_input_length",
"Lib.ByteSequence.lbytes",
"Spec.RSAPSS.blocks",
"Prims.nat",
"Lib.ByteSequence.bytes",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Mul.op_Star",
"Spec.RSAPSS.pss_verify",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Spec.RSAPSS.i2osp",
"Prims.bool",
"Lib.NatMod.nat_mod",
"Lib.NatMod.pow_mod",
"Prims.op_Multiply",
"Spec.RSAPSS.os2ip",
"Prims.pos",
"Prims.op_Subtraction",
"Prims.int",
"Prims.unit",
"FStar.Math.Lemmas.pow2_le_compat",
"Spec.RSAPSS.__proj__Mk_rsapss_pkey__item__e",
"Spec.RSAPSS.__proj__Mk_rsapss_pkey__item__n"
] | [] | false | false | false | false | false | let rsapss_verify_ a modBits pkey sLen sgnt msgLen msg =
| let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let s = os2ip #k sgnt in
if s < n
then
let m = pow_mod #n s e in
if m < pow2 (emLen * 8)
then
let em = i2osp emLen m in
pss_verify a sLen msgLen msg emBits em
else false
else false | false |
Bug2605.fst | Bug2605.g3 | val g3 (#a: Type) (i: int)
: Steel unit emp (fun _ -> emp) (requires fun _ -> phi i) (ensures fun _ _ _ -> True) | val g3 (#a: Type) (i: int)
: Steel unit emp (fun _ -> emp) (requires fun _ -> phi i) (ensures fun _ _ _ -> True) | let g3 (#a:Type) (i:int)
: Steel unit emp (λ _ → emp)
(requires λ _ → phi i)
(ensures λ _ _ _ → ⊤)
= f3 i | {
"file_name": "share/steel/tests/Bug2605.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 8,
"end_line": 19,
"start_col": 0,
"start_line": 15
} | module Bug2605
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.ST.Util
open Steel.ST.Coercions
assume val phi : int -> Type0
assume
val f3 (i:int{phi i})
: STT unit emp (fun _ -> emp) | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Util.fsti.checked",
"Steel.ST.Coercions.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"prims.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Bug2605.fst"
} | [
{
"abbrev": false,
"full_module": "Steel.ST.Coercions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | i: Prims.int -> Steel.Effect.Steel Prims.unit | Steel.Effect.Steel | [] | [] | [
"Prims.int",
"Bug2605.f3",
"Prims.unit",
"Steel.Effect.Common.emp",
"Steel.Effect.Common.vprop",
"Steel.Effect.Common.rmem",
"Bug2605.phi",
"Prims.l_True"
] | [] | false | true | false | false | false | let g3 (#a: Type) (i: int)
: Steel unit emp (fun _ -> emp) (requires fun _ -> phi i) (ensures fun _ _ _ -> True) =
| f3 i | false |
Spec.RSAPSS.fst | Spec.RSAPSS.rsapss_load_skey | val rsapss_load_skey:
modBits:modBits_t
-> eBits:size_pos
-> dBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8)
-> db:lseq uint8 (blocks dBits 8) ->
option (rsapss_skey modBits) | val rsapss_load_skey:
modBits:modBits_t
-> eBits:size_pos
-> dBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8)
-> db:lseq uint8 (blocks dBits 8) ->
option (rsapss_skey modBits) | let rsapss_load_skey modBits eBits dBits nb eb db =
let pkey = rsapss_load_pkey modBits eBits nb eb in
let d = os2ip #(blocks dBits 8) db in
if (Some? pkey && 0 < d && d < pow2 dBits) then
Some (Mk_rsapss_skey (Some?.v pkey) d)
else
None | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 8,
"end_line": 397,
"start_col": 0,
"start_line": 390
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen)
let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen
(* Bignum convert functions *)
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
let os2ip #len b = nat_from_bytes_be b
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len)
let i2osp len n = nat_to_intseq_be len n
///
/// RSA
///
type modBits_t = modBits:size_nat{1 < modBits}
noeq type rsapss_pkey (modBits:modBits_t) =
| Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits
noeq type rsapss_skey (modBits:modBits_t) =
| Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat ->
Pure (lbytes len)
(requires True)
(ensures fun res ->
(v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0])))
let db_zero #len db emBits =
let msBits = emBits % 8 in
if msBits > 0 then begin
let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in
Math.Lemmas.pow2_plus msBits (8 - msBits);
logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits;
r end
else db
val pss_encode:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} ->
Pure (lbytes (blocks emBits 8))
(requires True)
(ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)
let pss_encode a sLen salt msgLen msg emBits =
let mHash = Hash.hash a msg in
let hLen = Hash.hash_length a in
//m1 = [8 * 0x00; mHash; salt]
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash = Hash.hash a m1 in
//db = [0x00;..; 0x00; 0x01; salt]
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let db = create dbLen (u8 0) in
let last_before_salt = dbLen - sLen - 1 in
let db = db.[last_before_salt] <- u8 1 in
let db = update_sub db (last_before_salt + 1) sLen salt in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let maskedDB = xor_bytes db dbMask in
let maskedDB = db_zero maskedDB emBits in
//em = [maskedDB; m1Hash; 0xbc]
let em = create emLen (u8 0) in
let em = update_sub em 0 dbLen maskedDB in
let em = update_sub em dbLen hLen m1Hash in
assert (v em.[0] == v maskedDB.[0]);
em.[emLen - 1] <- u8 0xbc
val pss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8}
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify_ a sLen msgLen msg emBits em =
let hLen = Hash.hash_length a in
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let maskedDB = sub em 0 dbLen in
let m1Hash = sub em dbLen hLen in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let db = xor_bytes dbMask maskedDB in
let db = db_zero db emBits in
let padLen = emLen - sLen - hLen - 1 in
let pad2 = create padLen (u8 0) in
let pad2 = pad2.[padLen - 1] <- u8 0x01 in
let pad = sub db 0 padLen in
let salt = sub db padLen sLen in
if not (lbytes_eq pad pad2) then false
else begin
let mHash = Hash.hash a msg in
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash0 = Hash.hash a m1 in
lbytes_eq m1Hash0 m1Hash
end
val pss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify a sLen msgLen msg emBits em =
let emLen = blocks emBits 8 in
let msBits = emBits % 8 in
let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in
let em_last = em.[emLen - 1] in
if (emLen < sLen + Hash.hash_length a + 2) then false
else begin
if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) &&
FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy))
then false
else pss_verify_ a sLen msgLen msg emBits em end
val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma
(requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8))
(ensures os2ip #(blocks emBits 8) em < pow2 emBits)
let os2ip_lemma emBits em =
let emLen = blocks emBits 8 in
let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) =
assert ((emBits - 1) / 8 <= emBits / 8) in
if emBits % 8 > 0 then begin
nat_from_intseq_be_slice_lemma em 1;
nat_from_intseq_be_lemma0 (slice em 0 1);
assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]);
assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]);
calc (<=) {
pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0];
(==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) }
pow2 (8 * (emLen - 1)) * (1 + v em.[0]);
(<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) }
pow2 (8 * (emLen - 1)) * pow2 (emBits % 8);
(==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) }
pow2 (8 * ((emBits - 1) / 8) + emBits % 8);
(<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) }
pow2 emBits;
};
assert (nat_from_bytes_be em < pow2 emBits) end
else begin
assert (nat_from_bytes_be em < pow2 (emLen * 8));
assert (emBits == 8 * emLen) end
val rsapss_sign_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
tuple2 bool (lbytes (blocks modBits 8))
let rsapss_sign_ a modBits skey sLen salt msgLen msg =
let pkey = Mk_rsapss_skey?.pkey skey in
let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let d = Mk_rsapss_skey?.d skey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let em = pss_encode a sLen salt msgLen msg emBits in
let m = os2ip #emLen em in
os2ip_lemma emBits em;
let s = pow_mod #n m d in
let m' = pow_mod #n s e in
let eq_m = m = m' in
let s = if eq_m then s else 0 in
(eq_m, i2osp k s)
val rsapss_sign:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat
-> salt:lbytes sLen
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
option (lbytes (blocks modBits 8))
let rsapss_sign a modBits skey sLen salt msgLen msg =
let b =
sLen + Hash.hash_length a + 8 <= max_size_t &&
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a &&
msgLen `Hash.less_than_max_input_length` a &&
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 in
if b then begin
let (eq_m, sgnt) = rsapss_sign_ a modBits skey sLen salt msgLen msg in
if eq_m then Some sgnt else None end
else
None
val rsapss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> pkey:rsapss_pkey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> sgnt:lbytes (blocks modBits 8)
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
Tot bool
let rsapss_verify_ a modBits pkey sLen sgnt msgLen msg =
let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let s = os2ip #k sgnt in
if s < n then begin
let m = pow_mod #n s e in
if m < pow2 (emLen * 8) then
let em = i2osp emLen m in
pss_verify a sLen msgLen msg emBits em
else false end
else false
val rsapss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> pkey:rsapss_pkey modBits
-> sLen:size_nat
-> k:size_nat
-> sgnt:lbytes k
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
Tot bool
let rsapss_verify a modBits pkey sLen k sgnt msgLen msg =
let b =
sLen + Hash.hash_length a + 8 <= max_size_t &&
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a &&
msgLen `Hash.less_than_max_input_length` a &&
k = blocks modBits 8 in
if b then
rsapss_verify_ a modBits pkey sLen sgnt msgLen msg
else
false
val rsapss_load_pkey:
modBits:modBits_t
-> eBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8) ->
option (rsapss_pkey modBits)
let rsapss_load_pkey modBits eBits nb eb =
let n = os2ip #(blocks modBits 8) nb in
let e = os2ip #(blocks eBits 8) eb in
//`n % 2 = 1` is needed to store `r2 = r * r % n` as a part of pkey
if (n % 2 = 1 && pow2 (modBits - 1) < n && n < pow2 modBits &&
0 < e && e < pow2 eBits) then
Some (Mk_rsapss_pkey n e)
else
None
val rsapss_load_skey:
modBits:modBits_t
-> eBits:size_pos
-> dBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8)
-> db:lseq uint8 (blocks dBits 8) ->
option (rsapss_skey modBits) | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
modBits: Spec.RSAPSS.modBits_t ->
eBits: Lib.IntTypes.size_pos ->
dBits: Lib.IntTypes.size_pos ->
nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks modBits 8) ->
eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks eBits 8) ->
db: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks dBits 8)
-> FStar.Pervasives.Native.option (Spec.RSAPSS.rsapss_skey modBits) | Prims.Tot | [
"total"
] | [] | [
"Spec.RSAPSS.modBits_t",
"Lib.IntTypes.size_pos",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Spec.RSAPSS.blocks",
"Prims.op_AmpAmp",
"FStar.Pervasives.Native.uu___is_Some",
"Spec.RSAPSS.rsapss_pkey",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Pervasives.Native.Some",
"Spec.RSAPSS.rsapss_skey",
"Spec.RSAPSS.Mk_rsapss_skey",
"FStar.Pervasives.Native.__proj__Some__item__v",
"Prims.bool",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option",
"Prims.nat",
"Prims.b2t",
"Prims.op_Multiply",
"Spec.RSAPSS.os2ip",
"Spec.RSAPSS.rsapss_load_pkey"
] | [] | false | false | false | false | false | let rsapss_load_skey modBits eBits dBits nb eb db =
| let pkey = rsapss_load_pkey modBits eBits nb eb in
let d = os2ip #(blocks dBits 8) db in
if (Some? pkey && 0 < d && d < pow2 dBits) then Some (Mk_rsapss_skey (Some?.v pkey) d) else None | false |
Spec.RSAPSS.fst | Spec.RSAPSS.rsapss_skey_sign | val rsapss_skey_sign:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> eBits:size_pos
-> dBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8)
-> db:lseq uint8 (blocks dBits 8)
-> sLen:size_nat
-> salt:lbytes sLen
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
option (lbytes (blocks modBits 8)) | val rsapss_skey_sign:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> eBits:size_pos
-> dBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8)
-> db:lseq uint8 (blocks dBits 8)
-> sLen:size_nat
-> salt:lbytes sLen
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
option (lbytes (blocks modBits 8)) | let rsapss_skey_sign a modBits eBits dBits nb eb db sLen salt msgLen msg =
let skey = rsapss_load_skey modBits eBits dBits nb eb db in
match skey with
| Some vskey -> rsapss_sign a modBits vskey sLen salt msgLen msg
| None -> None | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 16,
"end_line": 418,
"start_col": 0,
"start_line": 414
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen)
let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen
(* Bignum convert functions *)
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
let os2ip #len b = nat_from_bytes_be b
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len)
let i2osp len n = nat_to_intseq_be len n
///
/// RSA
///
type modBits_t = modBits:size_nat{1 < modBits}
noeq type rsapss_pkey (modBits:modBits_t) =
| Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits
noeq type rsapss_skey (modBits:modBits_t) =
| Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat ->
Pure (lbytes len)
(requires True)
(ensures fun res ->
(v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0])))
let db_zero #len db emBits =
let msBits = emBits % 8 in
if msBits > 0 then begin
let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in
Math.Lemmas.pow2_plus msBits (8 - msBits);
logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits;
r end
else db
val pss_encode:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} ->
Pure (lbytes (blocks emBits 8))
(requires True)
(ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)
let pss_encode a sLen salt msgLen msg emBits =
let mHash = Hash.hash a msg in
let hLen = Hash.hash_length a in
//m1 = [8 * 0x00; mHash; salt]
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash = Hash.hash a m1 in
//db = [0x00;..; 0x00; 0x01; salt]
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let db = create dbLen (u8 0) in
let last_before_salt = dbLen - sLen - 1 in
let db = db.[last_before_salt] <- u8 1 in
let db = update_sub db (last_before_salt + 1) sLen salt in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let maskedDB = xor_bytes db dbMask in
let maskedDB = db_zero maskedDB emBits in
//em = [maskedDB; m1Hash; 0xbc]
let em = create emLen (u8 0) in
let em = update_sub em 0 dbLen maskedDB in
let em = update_sub em dbLen hLen m1Hash in
assert (v em.[0] == v maskedDB.[0]);
em.[emLen - 1] <- u8 0xbc
val pss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8}
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify_ a sLen msgLen msg emBits em =
let hLen = Hash.hash_length a in
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let maskedDB = sub em 0 dbLen in
let m1Hash = sub em dbLen hLen in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let db = xor_bytes dbMask maskedDB in
let db = db_zero db emBits in
let padLen = emLen - sLen - hLen - 1 in
let pad2 = create padLen (u8 0) in
let pad2 = pad2.[padLen - 1] <- u8 0x01 in
let pad = sub db 0 padLen in
let salt = sub db padLen sLen in
if not (lbytes_eq pad pad2) then false
else begin
let mHash = Hash.hash a msg in
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash0 = Hash.hash a m1 in
lbytes_eq m1Hash0 m1Hash
end
val pss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify a sLen msgLen msg emBits em =
let emLen = blocks emBits 8 in
let msBits = emBits % 8 in
let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in
let em_last = em.[emLen - 1] in
if (emLen < sLen + Hash.hash_length a + 2) then false
else begin
if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) &&
FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy))
then false
else pss_verify_ a sLen msgLen msg emBits em end
val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma
(requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8))
(ensures os2ip #(blocks emBits 8) em < pow2 emBits)
let os2ip_lemma emBits em =
let emLen = blocks emBits 8 in
let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) =
assert ((emBits - 1) / 8 <= emBits / 8) in
if emBits % 8 > 0 then begin
nat_from_intseq_be_slice_lemma em 1;
nat_from_intseq_be_lemma0 (slice em 0 1);
assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]);
assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]);
calc (<=) {
pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0];
(==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) }
pow2 (8 * (emLen - 1)) * (1 + v em.[0]);
(<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) }
pow2 (8 * (emLen - 1)) * pow2 (emBits % 8);
(==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) }
pow2 (8 * ((emBits - 1) / 8) + emBits % 8);
(<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) }
pow2 emBits;
};
assert (nat_from_bytes_be em < pow2 emBits) end
else begin
assert (nat_from_bytes_be em < pow2 (emLen * 8));
assert (emBits == 8 * emLen) end
val rsapss_sign_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
tuple2 bool (lbytes (blocks modBits 8))
let rsapss_sign_ a modBits skey sLen salt msgLen msg =
let pkey = Mk_rsapss_skey?.pkey skey in
let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let d = Mk_rsapss_skey?.d skey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let em = pss_encode a sLen salt msgLen msg emBits in
let m = os2ip #emLen em in
os2ip_lemma emBits em;
let s = pow_mod #n m d in
let m' = pow_mod #n s e in
let eq_m = m = m' in
let s = if eq_m then s else 0 in
(eq_m, i2osp k s)
val rsapss_sign:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat
-> salt:lbytes sLen
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
option (lbytes (blocks modBits 8))
let rsapss_sign a modBits skey sLen salt msgLen msg =
let b =
sLen + Hash.hash_length a + 8 <= max_size_t &&
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a &&
msgLen `Hash.less_than_max_input_length` a &&
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 in
if b then begin
let (eq_m, sgnt) = rsapss_sign_ a modBits skey sLen salt msgLen msg in
if eq_m then Some sgnt else None end
else
None
val rsapss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> pkey:rsapss_pkey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> sgnt:lbytes (blocks modBits 8)
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
Tot bool
let rsapss_verify_ a modBits pkey sLen sgnt msgLen msg =
let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let s = os2ip #k sgnt in
if s < n then begin
let m = pow_mod #n s e in
if m < pow2 (emLen * 8) then
let em = i2osp emLen m in
pss_verify a sLen msgLen msg emBits em
else false end
else false
val rsapss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> pkey:rsapss_pkey modBits
-> sLen:size_nat
-> k:size_nat
-> sgnt:lbytes k
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
Tot bool
let rsapss_verify a modBits pkey sLen k sgnt msgLen msg =
let b =
sLen + Hash.hash_length a + 8 <= max_size_t &&
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a &&
msgLen `Hash.less_than_max_input_length` a &&
k = blocks modBits 8 in
if b then
rsapss_verify_ a modBits pkey sLen sgnt msgLen msg
else
false
val rsapss_load_pkey:
modBits:modBits_t
-> eBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8) ->
option (rsapss_pkey modBits)
let rsapss_load_pkey modBits eBits nb eb =
let n = os2ip #(blocks modBits 8) nb in
let e = os2ip #(blocks eBits 8) eb in
//`n % 2 = 1` is needed to store `r2 = r * r % n` as a part of pkey
if (n % 2 = 1 && pow2 (modBits - 1) < n && n < pow2 modBits &&
0 < e && e < pow2 eBits) then
Some (Mk_rsapss_pkey n e)
else
None
val rsapss_load_skey:
modBits:modBits_t
-> eBits:size_pos
-> dBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8)
-> db:lseq uint8 (blocks dBits 8) ->
option (rsapss_skey modBits)
let rsapss_load_skey modBits eBits dBits nb eb db =
let pkey = rsapss_load_pkey modBits eBits nb eb in
let d = os2ip #(blocks dBits 8) db in
if (Some? pkey && 0 < d && d < pow2 dBits) then
Some (Mk_rsapss_skey (Some?.v pkey) d)
else
None
val rsapss_skey_sign:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> eBits:size_pos
-> dBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8)
-> db:lseq uint8 (blocks dBits 8)
-> sLen:size_nat
-> salt:lbytes sLen
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
option (lbytes (blocks modBits 8)) | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} ->
modBits: Spec.RSAPSS.modBits_t ->
eBits: Lib.IntTypes.size_pos ->
dBits: Lib.IntTypes.size_pos ->
nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks modBits 8) ->
eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks eBits 8) ->
db: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks dBits 8) ->
sLen: Lib.IntTypes.size_nat ->
salt: Lib.ByteSequence.lbytes sLen ->
msgLen: Prims.nat ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen}
-> FStar.Pervasives.Native.option (Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks modBits 8)) | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.b2t",
"Spec.RSAPSS.hash_is_supported",
"Spec.RSAPSS.modBits_t",
"Lib.IntTypes.size_pos",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Spec.RSAPSS.blocks",
"Lib.IntTypes.size_nat",
"Lib.ByteSequence.lbytes",
"Prims.nat",
"Lib.ByteSequence.bytes",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.RSAPSS.rsapss_skey",
"Spec.RSAPSS.rsapss_sign",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option",
"Spec.RSAPSS.rsapss_load_skey"
] | [] | false | false | false | false | false | let rsapss_skey_sign a modBits eBits dBits nb eb db sLen salt msgLen msg =
| let skey = rsapss_load_skey modBits eBits dBits nb eb db in
match skey with
| Some vskey -> rsapss_sign a modBits vskey sLen salt msgLen msg
| None -> None | false |
Spec.RSAPSS.fst | Spec.RSAPSS.rsapss_pkey_verify | val rsapss_pkey_verify:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> eBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8)
-> sLen:size_nat
-> k:size_nat
-> sgnt:lbytes k
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
Tot bool | val rsapss_pkey_verify:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> eBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8)
-> sLen:size_nat
-> k:size_nat
-> sgnt:lbytes k
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
Tot bool | let rsapss_pkey_verify a modBits eBits nb eb sLen k sgnt msgLen msg =
let pkey = rsapss_load_pkey modBits eBits nb eb in
match pkey with
| Some vpkey -> rsapss_verify a modBits vpkey sLen k sgnt msgLen msg
| None -> false | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 438,
"start_col": 0,
"start_line": 434
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen)
let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen
(* Bignum convert functions *)
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
let os2ip #len b = nat_from_bytes_be b
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len)
let i2osp len n = nat_to_intseq_be len n
///
/// RSA
///
type modBits_t = modBits:size_nat{1 < modBits}
noeq type rsapss_pkey (modBits:modBits_t) =
| Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits
noeq type rsapss_skey (modBits:modBits_t) =
| Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat ->
Pure (lbytes len)
(requires True)
(ensures fun res ->
(v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0])))
let db_zero #len db emBits =
let msBits = emBits % 8 in
if msBits > 0 then begin
let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in
Math.Lemmas.pow2_plus msBits (8 - msBits);
logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits;
r end
else db
val pss_encode:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} ->
Pure (lbytes (blocks emBits 8))
(requires True)
(ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)
let pss_encode a sLen salt msgLen msg emBits =
let mHash = Hash.hash a msg in
let hLen = Hash.hash_length a in
//m1 = [8 * 0x00; mHash; salt]
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash = Hash.hash a m1 in
//db = [0x00;..; 0x00; 0x01; salt]
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let db = create dbLen (u8 0) in
let last_before_salt = dbLen - sLen - 1 in
let db = db.[last_before_salt] <- u8 1 in
let db = update_sub db (last_before_salt + 1) sLen salt in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let maskedDB = xor_bytes db dbMask in
let maskedDB = db_zero maskedDB emBits in
//em = [maskedDB; m1Hash; 0xbc]
let em = create emLen (u8 0) in
let em = update_sub em 0 dbLen maskedDB in
let em = update_sub em dbLen hLen m1Hash in
assert (v em.[0] == v maskedDB.[0]);
em.[emLen - 1] <- u8 0xbc
val pss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8}
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify_ a sLen msgLen msg emBits em =
let hLen = Hash.hash_length a in
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let maskedDB = sub em 0 dbLen in
let m1Hash = sub em dbLen hLen in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let db = xor_bytes dbMask maskedDB in
let db = db_zero db emBits in
let padLen = emLen - sLen - hLen - 1 in
let pad2 = create padLen (u8 0) in
let pad2 = pad2.[padLen - 1] <- u8 0x01 in
let pad = sub db 0 padLen in
let salt = sub db padLen sLen in
if not (lbytes_eq pad pad2) then false
else begin
let mHash = Hash.hash a msg in
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash0 = Hash.hash a m1 in
lbytes_eq m1Hash0 m1Hash
end
val pss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify a sLen msgLen msg emBits em =
let emLen = blocks emBits 8 in
let msBits = emBits % 8 in
let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in
let em_last = em.[emLen - 1] in
if (emLen < sLen + Hash.hash_length a + 2) then false
else begin
if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) &&
FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy))
then false
else pss_verify_ a sLen msgLen msg emBits em end
val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma
(requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8))
(ensures os2ip #(blocks emBits 8) em < pow2 emBits)
let os2ip_lemma emBits em =
let emLen = blocks emBits 8 in
let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) =
assert ((emBits - 1) / 8 <= emBits / 8) in
if emBits % 8 > 0 then begin
nat_from_intseq_be_slice_lemma em 1;
nat_from_intseq_be_lemma0 (slice em 0 1);
assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]);
assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]);
calc (<=) {
pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0];
(==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) }
pow2 (8 * (emLen - 1)) * (1 + v em.[0]);
(<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) }
pow2 (8 * (emLen - 1)) * pow2 (emBits % 8);
(==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) }
pow2 (8 * ((emBits - 1) / 8) + emBits % 8);
(<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) }
pow2 emBits;
};
assert (nat_from_bytes_be em < pow2 emBits) end
else begin
assert (nat_from_bytes_be em < pow2 (emLen * 8));
assert (emBits == 8 * emLen) end
val rsapss_sign_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a /\
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
tuple2 bool (lbytes (blocks modBits 8))
let rsapss_sign_ a modBits skey sLen salt msgLen msg =
let pkey = Mk_rsapss_skey?.pkey skey in
let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let d = Mk_rsapss_skey?.d skey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let em = pss_encode a sLen salt msgLen msg emBits in
let m = os2ip #emLen em in
os2ip_lemma emBits em;
let s = pow_mod #n m d in
let m' = pow_mod #n s e in
let eq_m = m = m' in
let s = if eq_m then s else 0 in
(eq_m, i2osp k s)
val rsapss_sign:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> skey:rsapss_skey modBits
-> sLen:size_nat
-> salt:lbytes sLen
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
option (lbytes (blocks modBits 8))
let rsapss_sign a modBits skey sLen salt msgLen msg =
let b =
sLen + Hash.hash_length a + 8 <= max_size_t &&
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a &&
msgLen `Hash.less_than_max_input_length` a &&
sLen + Hash.hash_length a + 2 <= blocks (modBits - 1) 8 in
if b then begin
let (eq_m, sgnt) = rsapss_sign_ a modBits skey sLen salt msgLen msg in
if eq_m then Some sgnt else None end
else
None
val rsapss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> pkey:rsapss_pkey modBits
-> sLen:size_nat{
sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> sgnt:lbytes (blocks modBits 8)
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen} ->
Tot bool
let rsapss_verify_ a modBits pkey sLen sgnt msgLen msg =
let n = Mk_rsapss_pkey?.n pkey in
let e = Mk_rsapss_pkey?.e pkey in
let k = blocks modBits 8 in
FStar.Math.Lemmas.pow2_le_compat (8 * k) modBits;
let emBits = modBits - 1 in
let emLen = blocks emBits 8 in
let s = os2ip #k sgnt in
if s < n then begin
let m = pow_mod #n s e in
if m < pow2 (emLen * 8) then
let em = i2osp emLen m in
pss_verify a sLen msgLen msg emBits em
else false end
else false
val rsapss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> pkey:rsapss_pkey modBits
-> sLen:size_nat
-> k:size_nat
-> sgnt:lbytes k
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
Tot bool
let rsapss_verify a modBits pkey sLen k sgnt msgLen msg =
let b =
sLen + Hash.hash_length a + 8 <= max_size_t &&
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a &&
msgLen `Hash.less_than_max_input_length` a &&
k = blocks modBits 8 in
if b then
rsapss_verify_ a modBits pkey sLen sgnt msgLen msg
else
false
val rsapss_load_pkey:
modBits:modBits_t
-> eBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8) ->
option (rsapss_pkey modBits)
let rsapss_load_pkey modBits eBits nb eb =
let n = os2ip #(blocks modBits 8) nb in
let e = os2ip #(blocks eBits 8) eb in
//`n % 2 = 1` is needed to store `r2 = r * r % n` as a part of pkey
if (n % 2 = 1 && pow2 (modBits - 1) < n && n < pow2 modBits &&
0 < e && e < pow2 eBits) then
Some (Mk_rsapss_pkey n e)
else
None
val rsapss_load_skey:
modBits:modBits_t
-> eBits:size_pos
-> dBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8)
-> db:lseq uint8 (blocks dBits 8) ->
option (rsapss_skey modBits)
let rsapss_load_skey modBits eBits dBits nb eb db =
let pkey = rsapss_load_pkey modBits eBits nb eb in
let d = os2ip #(blocks dBits 8) db in
if (Some? pkey && 0 < d && d < pow2 dBits) then
Some (Mk_rsapss_skey (Some?.v pkey) d)
else
None
val rsapss_skey_sign:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> eBits:size_pos
-> dBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8)
-> db:lseq uint8 (blocks dBits 8)
-> sLen:size_nat
-> salt:lbytes sLen
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
option (lbytes (blocks modBits 8))
let rsapss_skey_sign a modBits eBits dBits nb eb db sLen salt msgLen msg =
let skey = rsapss_load_skey modBits eBits dBits nb eb db in
match skey with
| Some vskey -> rsapss_sign a modBits vskey sLen salt msgLen msg
| None -> None
val rsapss_pkey_verify:
a:Hash.hash_alg{hash_is_supported a}
-> modBits:modBits_t
-> eBits:size_pos
-> nb:lseq uint8 (blocks modBits 8)
-> eb:lseq uint8 (blocks eBits 8)
-> sLen:size_nat
-> k:size_nat
-> sgnt:lbytes k
-> msgLen:nat
-> msg:bytes{length msg == msgLen} ->
Tot bool | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} ->
modBits: Spec.RSAPSS.modBits_t ->
eBits: Lib.IntTypes.size_pos ->
nb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks modBits 8) ->
eb: Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.RSAPSS.blocks eBits 8) ->
sLen: Lib.IntTypes.size_nat ->
k: Lib.IntTypes.size_nat ->
sgnt: Lib.ByteSequence.lbytes k ->
msgLen: Prims.nat ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen}
-> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.b2t",
"Spec.RSAPSS.hash_is_supported",
"Spec.RSAPSS.modBits_t",
"Lib.IntTypes.size_pos",
"Lib.Sequence.lseq",
"Lib.IntTypes.uint8",
"Spec.RSAPSS.blocks",
"Lib.IntTypes.size_nat",
"Lib.ByteSequence.lbytes",
"Prims.nat",
"Lib.ByteSequence.bytes",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.RSAPSS.rsapss_pkey",
"Spec.RSAPSS.rsapss_verify",
"Prims.bool",
"FStar.Pervasives.Native.option",
"Spec.RSAPSS.rsapss_load_pkey"
] | [] | false | false | false | false | false | let rsapss_pkey_verify a modBits eBits nb eb sLen k sgnt msgLen msg =
| let pkey = rsapss_load_pkey modBits eBits nb eb in
match pkey with
| Some vpkey -> rsapss_verify a modBits vpkey sLen k sgnt msgLen msg
| None -> false | false |
MiniParse.Impl.Int.fst | MiniParse.Impl.Int.parse_bounded_u16_impl | val parse_bounded_u16_impl (b: nat) : Tot (parser_impl (parse_bounded_u16 b)) | val parse_bounded_u16_impl (b: nat) : Tot (parser_impl (parse_bounded_u16 b)) | let parse_bounded_u16_impl
(b: nat)
: Tot (parser_impl (parse_bounded_u16 b)) =
if b >= 65536
then (fun input len -> parse_synth_impl parse_u16_impl (fun x -> x <: bounded_u16 b) (fun x -> x <: bounded_u16 b) (fun x -> x) () input len)
else
[@@inline_let]
let b' = U16.uint_to_t b in
parse_synth_impl
(parse_filter_impl parse_u16_impl (fun x -> U16.v x < b) (fun x -> x `U16.lt` b'))
(fun x -> x <: bounded_u16 b)
(fun x -> x <: bounded_u16 b)
(fun x -> x)
() | {
"file_name": "examples/miniparse/MiniParse.Impl.Int.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 8,
"end_line": 81,
"start_col": 0,
"start_line": 68
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module MiniParse.Impl.Int
include MiniParse.Spec.Int
include MiniParse.Impl.Combinators
module U16 = FStar.UInt16
module B = LowStar.Buffer
module U32 = FStar.UInt32
module HST = FStar.HyperStack.ST
module Aux = MiniParse.Spec.Int.Aux
inline_for_extraction
let parse_u8_impl : parser_impl parse_u8 = make_total_constant_size_parser_impl 1 1ul (fun x -> Seq.index x 0) () (fun x -> B.index x 0ul)
inline_for_extraction
let serialize_u8_impl : serializer_impl serialize_u8 =
(fun output (len: U32.t { len == B.len output } ) x ->
let h = HST.get () in
if len `U32.lt` 1ul
then None
else begin
let output' = B.sub output 0ul 1ul in
B.upd output' 0ul x;
let h' = HST.get () in
assert (B.as_seq h' output' `Seq.equal` Seq.create 1 x);
Some 1ul
end)
inline_for_extraction
let parse_u16_impl : parser_impl parse_u16 = make_total_constant_size_parser_impl 2 2ul parse_u16_aux () (fun x ->
let lo = B.index x 0ul in
let hi = B.index x 1ul in
Aux.decode_u16 (lo, hi)
)
inline_for_extraction
let serialize_u16_impl : serializer_impl serialize_u16 =
fun output (len: U32.t { len == B.len output } ) x ->
if len `U32.lt` 2ul
then None
else begin
let (lo, hi) = Aux.encode_u16 x in
let output' = B.sub output 0ul 2ul in
B.upd output' 0ul lo;
B.upd output' 1ul hi;
let h' = HST.get () in
assert (B.as_seq h' output' `Seq.equal` Seq.append (Seq.create 1 lo) (Seq.create 1 hi));
Some 2ul
end
#set-options "--z3rlimit 64" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MiniParse.Spec.Int.Aux.fst.checked",
"MiniParse.Spec.Int.fst.checked",
"MiniParse.Impl.Combinators.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked"
],
"interface_file": false,
"source_file": "MiniParse.Impl.Int.fst"
} | [
{
"abbrev": true,
"full_module": "MiniParse.Spec.Int.Aux",
"short_module": "Aux"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.UInt16",
"short_module": "U16"
},
{
"abbrev": false,
"full_module": "MiniParse.Impl.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Spec.Int",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "MiniParse.Impl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 64,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Prims.nat -> MiniParse.Impl.Base.parser_impl (MiniParse.Spec.Int.parse_bounded_u16 b) | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.op_GreaterThanOrEqual",
"MiniParse.Impl.Base.buffer8",
"FStar.UInt32.t",
"Prims.eq2",
"LowStar.Monotonic.Buffer.len",
"FStar.UInt8.t",
"LowStar.Buffer.trivial_preorder",
"MiniParse.Impl.Combinators.parse_synth_impl",
"FStar.UInt16.t",
"MiniParse.Spec.Int.bounded_u16",
"MiniParse.Spec.Int.parse_u16",
"MiniParse.Impl.Int.parse_u16_impl",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"Prims.bool",
"Prims.op_LessThan",
"FStar.UInt16.v",
"MiniParse.Spec.Combinators.parse_filter",
"MiniParse.Impl.Combinators.parse_filter_impl",
"FStar.UInt16.lt",
"FStar.UInt16.uint_to_t",
"MiniParse.Impl.Base.parser_impl",
"MiniParse.Spec.Int.parse_bounded_u16"
] | [] | false | false | false | false | false | let parse_bounded_u16_impl (b: nat) : Tot (parser_impl (parse_bounded_u16 b)) =
| if b >= 65536
then
(fun input len ->
parse_synth_impl parse_u16_impl
(fun x -> x <: bounded_u16 b)
(fun x -> x <: bounded_u16 b)
(fun x -> x)
()
input
len)
else
[@@ inline_let ]let b' = U16.uint_to_t b in
parse_synth_impl (parse_filter_impl parse_u16_impl (fun x -> U16.v x < b) (fun x -> x `U16.lt` b')
)
(fun x -> x <: bounded_u16 b)
(fun x -> x <: bounded_u16 b)
(fun x -> x)
() | false |
Spec.RSAPSS.fst | Spec.RSAPSS.pss_verify_ | val pss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8}
-> em:lbytes (blocks emBits 8) ->
Tot bool | val pss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8}
-> em:lbytes (blocks emBits 8) ->
Tot bool | let pss_verify_ a sLen msgLen msg emBits em =
let hLen = Hash.hash_length a in
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let maskedDB = sub em 0 dbLen in
let m1Hash = sub em dbLen hLen in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let db = xor_bytes dbMask maskedDB in
let db = db_zero db emBits in
let padLen = emLen - sLen - hLen - 1 in
let pad2 = create padLen (u8 0) in
let pad2 = pad2.[padLen - 1] <- u8 0x01 in
let pad = sub db 0 padLen in
let salt = sub db padLen sLen in
if not (lbytes_eq pad pad2) then false
else begin
let mHash = Hash.hash a msg in
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash0 = Hash.hash a m1 in
lbytes_eq m1Hash0 m1Hash
end | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 187,
"start_col": 0,
"start_line": 160
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen)
let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen
(* Bignum convert functions *)
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
let os2ip #len b = nat_from_bytes_be b
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len)
let i2osp len n = nat_to_intseq_be len n
///
/// RSA
///
type modBits_t = modBits:size_nat{1 < modBits}
noeq type rsapss_pkey (modBits:modBits_t) =
| Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits
noeq type rsapss_skey (modBits:modBits_t) =
| Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat ->
Pure (lbytes len)
(requires True)
(ensures fun res ->
(v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0])))
let db_zero #len db emBits =
let msBits = emBits % 8 in
if msBits > 0 then begin
let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in
Math.Lemmas.pow2_plus msBits (8 - msBits);
logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits;
r end
else db
val pss_encode:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} ->
Pure (lbytes (blocks emBits 8))
(requires True)
(ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)
let pss_encode a sLen salt msgLen msg emBits =
let mHash = Hash.hash a msg in
let hLen = Hash.hash_length a in
//m1 = [8 * 0x00; mHash; salt]
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash = Hash.hash a m1 in
//db = [0x00;..; 0x00; 0x01; salt]
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let db = create dbLen (u8 0) in
let last_before_salt = dbLen - sLen - 1 in
let db = db.[last_before_salt] <- u8 1 in
let db = update_sub db (last_before_salt + 1) sLen salt in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let maskedDB = xor_bytes db dbMask in
let maskedDB = db_zero maskedDB emBits in
//em = [maskedDB; m1Hash; 0xbc]
let em = create emLen (u8 0) in
let em = update_sub em 0 dbLen maskedDB in
let em = update_sub em dbLen hLen m1Hash in
assert (v em.[0] == v maskedDB.[0]);
em.[emLen - 1] <- u8 0xbc
val pss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8}
-> em:lbytes (blocks emBits 8) ->
Tot bool | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} ->
sLen:
Lib.IntTypes.size_nat
{ sLen + Spec.Hash.Definitions.hash_length a + 8 <= Lib.IntTypes.max_size_t /\
Spec.Hash.Definitions.less_than_max_input_length (sLen +
Spec.Hash.Definitions.hash_length a +
8)
a } ->
msgLen: Prims.nat{Spec.Hash.Definitions.less_than_max_input_length msgLen a} ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen} ->
emBits:
Lib.IntTypes.size_pos
{sLen + Spec.Hash.Definitions.hash_length a + 2 <= Spec.RSAPSS.blocks emBits 8} ->
em: Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks emBits 8)
-> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.b2t",
"Spec.RSAPSS.hash_is_supported",
"Lib.IntTypes.size_nat",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Spec.Hash.Definitions.hash_length",
"Lib.IntTypes.max_size_t",
"Spec.Hash.Definitions.less_than_max_input_length",
"Prims.nat",
"Lib.ByteSequence.bytes",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.size_pos",
"Spec.RSAPSS.blocks",
"Lib.ByteSequence.lbytes",
"Prims.op_Negation",
"Lib.ByteSequence.lbytes_eq",
"Prims.bool",
"Spec.Hash.Definitions.hash_length'",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Spec.Agile.Hash.hash",
"Lib.Sequence.sub",
"Prims.l_Forall",
"Prims.l_or",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index",
"Lib.Sequence.update_sub",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.create",
"Lib.IntTypes.mk_int",
"Prims.l_imp",
"Lib.Sequence.create",
"Lib.IntTypes.u8",
"Prims.int",
"FStar.Seq.Base.slice",
"FStar.Seq.Base.upd",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.op_disEquality",
"Lib.Sequence.op_String_Assignment",
"Spec.RSAPSS.db_zero",
"Spec.RSAPSS.xor_bytes",
"Spec.RSAPSS.mgf_hash",
"Prims.pos",
"Prims.op_Multiply",
"Prims.op_GreaterThan"
] | [] | false | false | false | false | false | let pss_verify_ a sLen msgLen msg emBits em =
| let hLen = Hash.hash_length a in
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let maskedDB = sub em 0 dbLen in
let m1Hash = sub em dbLen hLen in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let db = xor_bytes dbMask maskedDB in
let db = db_zero db emBits in
let padLen = emLen - sLen - hLen - 1 in
let pad2 = create padLen (u8 0) in
let pad2 = pad2.[ padLen - 1 ] <- u8 0x01 in
let pad = sub db 0 padLen in
let salt = sub db padLen sLen in
if not (lbytes_eq pad pad2)
then false
else
let mHash = Hash.hash a msg in
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash0 = Hash.hash a m1 in
lbytes_eq m1Hash0 m1Hash | false |
Hacl.Spec.Curve25519.Field51.Lemmas.fst | Hacl.Spec.Curve25519.Field51.Lemmas.lemma_prime | val lemma_prime: unit ->
Lemma (pow2 255 % prime = 19) | val lemma_prime: unit ->
Lemma (pow2 255 % prime = 19) | let lemma_prime () =
assert_norm (pow2 255 % prime = 19 % prime);
assert_norm (19 < prime);
FStar.Math.Lemmas.modulo_lemma 19 prime | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 41,
"end_line": 73,
"start_col": 0,
"start_line": 70
} | module Hacl.Spec.Curve25519.Field51.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open FStar.Tactics
open FStar.Tactics.Canon
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
module BSeq = Lib.ByteSequence
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'"
val lemma_mod_sub_distr: a:int -> b:int -> n:pos ->
Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr a b n =
FStar.Math.Lemmas.lemma_div_mod b n;
FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n;
// (a - b) % n == (a - (b % n) - (b / n) * n) % n
FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n
val lemma_mul5_distr_r:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat ->
Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f)
let lemma_mul5_distr_r a b c d e f = ()
val lemma_mul5_distr_l:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat ->
Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f)
let lemma_mul5_distr_l a b c d e f = ()
val lemma_mul_assos_3:
a:nat -> b:nat -> c:nat ->
Lemma (a * b * c == a * (b * c))
let lemma_mul_assos_3 a b c = ()
val lemma_mul_assos_4:
a:nat -> b:nat -> c:nat -> d:nat ->
Lemma (a * b * c * d == a * (b * c * d))
let lemma_mul_assos_4 a b c d = ()
val lemma_mul_assos_5:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat ->
Lemma (a * b * c * d * e == a * (b * c * d * e))
let lemma_mul_assos_5 a b c d e = ()
val lemma_mul_assos_6:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat ->
Lemma (a * b * c * d * e * f == a * (b * c * d * e * f))
let lemma_mul_assos_6 a b c d e f = ()
val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a <= b /\ c <= d)
(ensures a + c <= b + d)
let lemma_add_le a b c d = ()
val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a <= b /\ c <= d)
(ensures a * c <= b * d)
let lemma_mul_le a b c d = ()
val lemma_prime: unit -> | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"Hacl.Impl.Curve25519.Lemmas.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Canon.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Canon",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Pervasives.Lemma (ensures Prims.pow2 255 % Spec.Curve25519.prime = 19) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"FStar.Math.Lemmas.modulo_lemma",
"Spec.Curve25519.prime",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Equality",
"Prims.int",
"Prims.op_Modulus",
"Prims.pow2"
] | [] | true | false | true | false | false | let lemma_prime () =
| assert_norm (pow2 255 % prime = 19 % prime);
assert_norm (19 < prime);
FStar.Math.Lemmas.modulo_lemma 19 prime | false |
Hacl.Spec.Curve25519.Field51.Lemmas.fst | Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mod_sub_distr | val lemma_mod_sub_distr: a:int -> b:int -> n:pos ->
Lemma ((a - b % n) % n = (a - b) % n) | val lemma_mod_sub_distr: a:int -> b:int -> n:pos ->
Lemma ((a - b % n) % n = (a - b) % n) | let lemma_mod_sub_distr a b n =
FStar.Math.Lemmas.lemma_div_mod b n;
FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n;
// (a - b) % n == (a - (b % n) - (b / n) * n) % n
FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 61,
"end_line": 24,
"start_col": 0,
"start_line": 20
} | module Hacl.Spec.Curve25519.Field51.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open FStar.Tactics
open FStar.Tactics.Canon
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
module BSeq = Lib.ByteSequence
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'"
val lemma_mod_sub_distr: a:int -> b:int -> n:pos -> | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"Hacl.Impl.Curve25519.Lemmas.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Canon.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Canon",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.int -> b: Prims.int -> n: Prims.pos
-> FStar.Pervasives.Lemma (ensures (a - b % n) % n = (a - b) % n) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.int",
"Prims.pos",
"FStar.Math.Lemmas.lemma_mod_plus",
"Prims.op_Subtraction",
"Prims.op_Modulus",
"Prims.op_Minus",
"Prims.op_Division",
"Prims.unit",
"FStar.Math.Lemmas.distributivity_sub_left",
"FStar.Math.Lemmas.lemma_div_mod"
] | [] | true | false | true | false | false | let lemma_mod_sub_distr a b n =
| FStar.Math.Lemmas.lemma_div_mod b n;
FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n;
FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (- (b / n)) n | false |
Spec.RSAPSS.fst | Spec.RSAPSS.pss_encode | val pss_encode:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} ->
Pure (lbytes (blocks emBits 8))
(requires True)
(ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8) | val pss_encode:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} ->
Pure (lbytes (blocks emBits 8))
(requires True)
(ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8) | let pss_encode a sLen salt msgLen msg emBits =
let mHash = Hash.hash a msg in
let hLen = Hash.hash_length a in
//m1 = [8 * 0x00; mHash; salt]
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash = Hash.hash a m1 in
//db = [0x00;..; 0x00; 0x01; salt]
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let db = create dbLen (u8 0) in
let last_before_salt = dbLen - sLen - 1 in
let db = db.[last_before_salt] <- u8 1 in
let db = update_sub db (last_before_salt + 1) sLen salt in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let maskedDB = xor_bytes db dbMask in
let maskedDB = db_zero maskedDB emBits in
//em = [maskedDB; m1Hash; 0xbc]
let em = create emLen (u8 0) in
let em = update_sub em 0 dbLen maskedDB in
let em = update_sub em dbLen hLen m1Hash in
assert (v em.[0] == v maskedDB.[0]);
em.[emLen - 1] <- u8 0xbc | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 27,
"end_line": 147,
"start_col": 0,
"start_line": 119
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen)
let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen
(* Bignum convert functions *)
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
let os2ip #len b = nat_from_bytes_be b
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len)
let i2osp len n = nat_to_intseq_be len n
///
/// RSA
///
type modBits_t = modBits:size_nat{1 < modBits}
noeq type rsapss_pkey (modBits:modBits_t) =
| Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits
noeq type rsapss_skey (modBits:modBits_t) =
| Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat ->
Pure (lbytes len)
(requires True)
(ensures fun res ->
(v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0])))
let db_zero #len db emBits =
let msBits = emBits % 8 in
if msBits > 0 then begin
let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in
Math.Lemmas.pow2_plus msBits (8 - msBits);
logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits;
r end
else db
val pss_encode:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} ->
Pure (lbytes (blocks emBits 8))
(requires True)
(ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8) | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.hash_alg{Spec.RSAPSS.hash_is_supported a} ->
sLen:
Lib.IntTypes.size_nat
{ sLen + Spec.Hash.Definitions.hash_length a + 8 <= Lib.IntTypes.max_size_t /\
Spec.Hash.Definitions.less_than_max_input_length (sLen +
Spec.Hash.Definitions.hash_length a +
8)
a } ->
salt: Lib.ByteSequence.lbytes sLen ->
msgLen: Prims.nat{Spec.Hash.Definitions.less_than_max_input_length msgLen a} ->
msg: Lib.ByteSequence.bytes{Lib.Sequence.length msg == msgLen} ->
emBits:
Lib.IntTypes.size_pos
{Spec.Hash.Definitions.hash_length a + sLen + 2 <= Spec.RSAPSS.blocks emBits 8}
-> Prims.Pure (Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks emBits 8)) | Prims.Pure | [] | [] | [
"Spec.Hash.Definitions.hash_alg",
"Prims.b2t",
"Spec.RSAPSS.hash_is_supported",
"Lib.IntTypes.size_nat",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"Spec.Hash.Definitions.hash_length",
"Lib.IntTypes.max_size_t",
"Spec.Hash.Definitions.less_than_max_input_length",
"Lib.ByteSequence.lbytes",
"Prims.nat",
"Lib.ByteSequence.bytes",
"Prims.eq2",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.size_pos",
"Spec.RSAPSS.blocks",
"Lib.Sequence.op_String_Assignment",
"Prims.op_Subtraction",
"Lib.IntTypes.u8",
"Prims.unit",
"Prims._assert",
"Lib.IntTypes.range_t",
"Lib.IntTypes.v",
"Lib.Sequence.op_String_Access",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.Sequence.sub",
"Prims.l_Forall",
"Prims.l_or",
"Prims.op_LessThan",
"FStar.Seq.Base.index",
"Lib.Sequence.to_seq",
"Lib.Sequence.index",
"Lib.Sequence.update_sub",
"FStar.Seq.Base.seq",
"FStar.Seq.Base.create",
"Lib.IntTypes.mk_int",
"Prims.l_imp",
"Lib.Sequence.create",
"Spec.RSAPSS.db_zero",
"Spec.RSAPSS.xor_bytes",
"Spec.RSAPSS.mgf_hash",
"FStar.Seq.Base.upd",
"Prims.pow2",
"Prims.op_disEquality",
"Prims.int",
"Prims.pos",
"Prims.op_Multiply",
"Spec.Hash.Definitions.hash_length'",
"Spec.Agile.Hash.hash",
"Prims.op_GreaterThan"
] | [] | false | false | false | false | false | let pss_encode a sLen salt msgLen msg emBits =
| let mHash = Hash.hash a msg in
let hLen = Hash.hash_length a in
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash = Hash.hash a m1 in
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let db = create dbLen (u8 0) in
let last_before_salt = dbLen - sLen - 1 in
let db = db.[ last_before_salt ] <- u8 1 in
let db = update_sub db (last_before_salt + 1) sLen salt in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let maskedDB = xor_bytes db dbMask in
let maskedDB = db_zero maskedDB emBits in
let em = create emLen (u8 0) in
let em = update_sub em 0 dbLen maskedDB in
let em = update_sub em dbLen hLen m1Hash in
assert (v em.[ 0 ] == v maskedDB.[ 0 ]);
em.[ emLen - 1 ] <- u8 0xbc | false |
Hacl.Spec.Curve25519.Field51.Lemmas.fst | Hacl.Spec.Curve25519.Field51.Lemmas.lemma_add_zero | val lemma_add_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> Lemma (
let (f10, f11, f12, f13, f14) = f1 in
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
let out = (o0, o1, o2, o3, o4) in
feval out == feval f1) | val lemma_add_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> Lemma (
let (f10, f11, f12, f13, f14) = f1 in
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
let out = (o0, o1, o2, o3, o4) in
feval out == feval f1) | let lemma_add_zero f1 =
let (f10, f11, f12, f13, f14) = f1 in
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
let out = (o0, o1, o2, o3, o4) in
assert (feval out ==
(v f10 + 0x3fffffffffff68 +
(v f11 + 0x3ffffffffffff8) * pow51 +
(v f12 + 0x3ffffffffffff8) * pow51 * pow51 +
(v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 +
(v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime);
FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51;
FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51);
FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51);
FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51);
assert_norm (
0x3fffffffffff68 +
0x3ffffffffffff8 * pow51 +
0x3ffffffffffff8 * pow51 * pow51 +
0x3ffffffffffff8 * pow51 * pow51 * pow51 +
0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime);
assert (feval out == (v f10 + v f11 * pow51 +
v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 +
v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime);
FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime;
assert (feval out == (v f10 + v f11 * pow51 +
v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 +
v f14 * pow51 * pow51 * pow51 * pow51) % prime) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 51,
"end_line": 116,
"start_col": 0,
"start_line": 86
} | module Hacl.Spec.Curve25519.Field51.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open FStar.Tactics
open FStar.Tactics.Canon
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
module BSeq = Lib.ByteSequence
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'"
val lemma_mod_sub_distr: a:int -> b:int -> n:pos ->
Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr a b n =
FStar.Math.Lemmas.lemma_div_mod b n;
FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n;
// (a - b) % n == (a - (b % n) - (b / n) * n) % n
FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n
val lemma_mul5_distr_r:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat ->
Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f)
let lemma_mul5_distr_r a b c d e f = ()
val lemma_mul5_distr_l:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat ->
Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f)
let lemma_mul5_distr_l a b c d e f = ()
val lemma_mul_assos_3:
a:nat -> b:nat -> c:nat ->
Lemma (a * b * c == a * (b * c))
let lemma_mul_assos_3 a b c = ()
val lemma_mul_assos_4:
a:nat -> b:nat -> c:nat -> d:nat ->
Lemma (a * b * c * d == a * (b * c * d))
let lemma_mul_assos_4 a b c d = ()
val lemma_mul_assos_5:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat ->
Lemma (a * b * c * d * e == a * (b * c * d * e))
let lemma_mul_assos_5 a b c d e = ()
val lemma_mul_assos_6:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat ->
Lemma (a * b * c * d * e * f == a * (b * c * d * e * f))
let lemma_mul_assos_6 a b c d e f = ()
val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a <= b /\ c <= d)
(ensures a + c <= b + d)
let lemma_add_le a b c d = ()
val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a <= b /\ c <= d)
(ensures a * c <= b * d)
let lemma_mul_le a b c d = ()
val lemma_prime: unit ->
Lemma (pow2 255 % prime = 19)
let lemma_prime () =
assert_norm (pow2 255 % prime = 19 % prime);
assert_norm (19 < prime);
FStar.Math.Lemmas.modulo_lemma 19 prime
val lemma_add_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> Lemma (
let (f10, f11, f12, f13, f14) = f1 in
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
let out = (o0, o1, o2, o3, o4) in | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"Hacl.Impl.Curve25519.Lemmas.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Canon.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Canon",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f1:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (1, 2, 1, 1, 1)}
-> FStar.Pervasives.Lemma
(ensures
(let _ = f1 in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ f10 f11 f12 f13 f14 = _ in
let o0 = f10 +! Lib.IntTypes.u64 0x3fffffffffff68 in
let o1 = f11 +! Lib.IntTypes.u64 0x3ffffffffffff8 in
let o2 = f12 +! Lib.IntTypes.u64 0x3ffffffffffff8 in
let o3 = f13 +! Lib.IntTypes.u64 0x3ffffffffffff8 in
let o4 = f14 +! Lib.IntTypes.u64 0x3ffffffffffff8 in
let out = o0, o1, o2, o3, o4 in
Hacl.Spec.Curve25519.Field51.Definition.feval out ==
Hacl.Spec.Curve25519.Field51.Definition.feval f1)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Lib.IntTypes.uint64",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.Curve25519.Field51.Definition.feval",
"Prims.op_Modulus",
"Prims.op_Addition",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"FStar.Mul.op_Star",
"Hacl.Spec.Curve25519.Field51.Definition.pow51",
"Spec.Curve25519.prime",
"Prims.unit",
"FStar.Math.Lemmas.lemma_mod_plus",
"Hacl.Spec.Curve25519.Field51.Definition.as_nat5",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"FStar.Math.Lemmas.distributivity_add_left",
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.u64"
] | [] | false | false | true | false | false | let lemma_add_zero f1 =
| let f10, f11, f12, f13, f14 = f1 in
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
let out = (o0, o1, o2, o3, o4) in
assert (feval out ==
(v f10 + 0x3fffffffffff68 + (v f11 + 0x3ffffffffffff8) * pow51 +
((v f12 + 0x3ffffffffffff8) * pow51) * pow51 +
(((v f13 + 0x3ffffffffffff8) * pow51) * pow51) * pow51 +
((((v f14 + 0x3ffffffffffff8) * pow51) * pow51) * pow51) * pow51) %
prime);
FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51;
FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51);
FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 ((pow51 * pow51) * pow51);
FStar.Math.Lemmas.distributivity_add_left (v f14)
0x3ffffffffffff8
(((pow51 * pow51) * pow51) * pow51);
assert_norm (0x3fffffffffff68 + 0x3ffffffffffff8 * pow51 + (0x3ffffffffffff8 * pow51) * pow51 +
((0x3ffffffffffff8 * pow51) * pow51) * pow51 +
(((0x3ffffffffffff8 * pow51) * pow51) * pow51) * pow51 =
8 * prime);
assert (feval out ==
(v f10 + v f11 * pow51 + (v f12 * pow51) * pow51 + ((v f13 * pow51) * pow51) * pow51 +
(((v f14 * pow51) * pow51) * pow51) * pow51 +
8 * prime) %
prime);
FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime;
assert (feval out ==
(v f10 + v f11 * pow51 + (v f12 * pow51) * pow51 + ((v f13 * pow51) * pow51) * pow51 +
(((v f14 * pow51) * pow51) * pow51) * pow51) %
prime) | false |
Hacl.Spec.Curve25519.Field51.Lemmas.fst | Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51_pow51_pow51_pow51 | val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5
-> Lemma
(requires (let (r0, r1, r2, r3, r4) = r in
v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\
v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51))
(ensures (let (r0, r1, r2, r3, r4) = r in
(pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime ==
as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) | val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5
-> Lemma
(requires (let (r0, r1, r2, r3, r4) = r in
v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\
v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51))
(ensures (let (r0, r1, r2, r3, r4) = r in
(pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime ==
as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0) % prime)) | let lemma_fmul5_pow51_pow51_pow51_pow51 r =
let (r0, r1, r2, r3, r4) = r in
lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r);
let p51p51p51r = pow51 * pow51 * pow51 * as_nat5 r in
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime;
assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51p51r % prime)) % prime);
lemma_fmul5_pow51_pow51_pow51 r;
assert ((pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime ==
(pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime);
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime;
lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1);
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0)) prime | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 124,
"end_line": 203,
"start_col": 0,
"start_line": 192
} | module Hacl.Spec.Curve25519.Field51.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open FStar.Tactics
open FStar.Tactics.Canon
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
module BSeq = Lib.ByteSequence
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'"
val lemma_mod_sub_distr: a:int -> b:int -> n:pos ->
Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr a b n =
FStar.Math.Lemmas.lemma_div_mod b n;
FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n;
// (a - b) % n == (a - (b % n) - (b / n) * n) % n
FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n
val lemma_mul5_distr_r:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat ->
Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f)
let lemma_mul5_distr_r a b c d e f = ()
val lemma_mul5_distr_l:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat ->
Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f)
let lemma_mul5_distr_l a b c d e f = ()
val lemma_mul_assos_3:
a:nat -> b:nat -> c:nat ->
Lemma (a * b * c == a * (b * c))
let lemma_mul_assos_3 a b c = ()
val lemma_mul_assos_4:
a:nat -> b:nat -> c:nat -> d:nat ->
Lemma (a * b * c * d == a * (b * c * d))
let lemma_mul_assos_4 a b c d = ()
val lemma_mul_assos_5:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat ->
Lemma (a * b * c * d * e == a * (b * c * d * e))
let lemma_mul_assos_5 a b c d e = ()
val lemma_mul_assos_6:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat ->
Lemma (a * b * c * d * e * f == a * (b * c * d * e * f))
let lemma_mul_assos_6 a b c d e f = ()
val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a <= b /\ c <= d)
(ensures a + c <= b + d)
let lemma_add_le a b c d = ()
val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a <= b /\ c <= d)
(ensures a * c <= b * d)
let lemma_mul_le a b c d = ()
val lemma_prime: unit ->
Lemma (pow2 255 % prime = 19)
let lemma_prime () =
assert_norm (pow2 255 % prime = 19 % prime);
assert_norm (19 < prime);
FStar.Math.Lemmas.modulo_lemma 19 prime
val lemma_add_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> Lemma (
let (f10, f11, f12, f13, f14) = f1 in
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
let out = (o0, o1, o2, o3, o4) in
feval out == feval f1)
let lemma_add_zero f1 =
let (f10, f11, f12, f13, f14) = f1 in
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
let out = (o0, o1, o2, o3, o4) in
assert (feval out ==
(v f10 + 0x3fffffffffff68 +
(v f11 + 0x3ffffffffffff8) * pow51 +
(v f12 + 0x3ffffffffffff8) * pow51 * pow51 +
(v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 +
(v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime);
FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51;
FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51);
FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51);
FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51);
assert_norm (
0x3fffffffffff68 +
0x3ffffffffffff8 * pow51 +
0x3ffffffffffff8 * pow51 * pow51 +
0x3ffffffffffff8 * pow51 * pow51 * pow51 +
0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime);
assert (feval out == (v f10 + v f11 * pow51 +
v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 +
v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime);
FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime;
assert (feval out == (v f10 + v f11 * pow51 +
v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 +
v f14 * pow51 * pow51 * pow51 * pow51) % prime)
val lemma_fmul5_pow51: r:felem5
-> Lemma
(requires (let (r0, r1, r2, r3, r4) = r in
v r4 * 19 <= 190 * pow51))
(ensures (let (r0, r1, r2, r3, r4) = r in
(pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime))
let lemma_fmul5_pow51 r =
let (r0, r1, r2, r3, r4) = r in
assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 +
v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51));
lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51)
(v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51);
let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 +
pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in
let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in
assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime);
FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime;
assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime);
FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime;
lemma_prime ();
assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime);
FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime
val lemma_fmul5_pow51_pow51:r:felem5
-> Lemma
(requires (let (r0, r1, r2, r3, r4) = r in
v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51))
(ensures (let (r0, r1, r2, r3, r4) = r in
(pow51 * pow51 * as_nat5 r) % prime ==
as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime))
let lemma_fmul5_pow51_pow51 r =
let (r0, r1, r2, r3, r4) = r in
lemma_mul_assos_3 pow51 pow51 (as_nat5 r);
let p51r = pow51 * as_nat5 r in
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime;
assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime);
lemma_fmul5_pow51 r;
assert ((pow51 * pow51 * as_nat5 r) % prime ==
(pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime);
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime;
lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3);
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime
val lemma_fmul5_pow51_pow51_pow51: r:felem5
-> Lemma
(requires (let (r0, r1, r2, r3, r4) = r in
v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\
v r2 * 19 <= 190 * pow51))
(ensures (let (r0, r1, r2, r3, r4) = r in
(pow51 * pow51 * pow51 * as_nat5 r) % prime ==
as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime))
let lemma_fmul5_pow51_pow51_pow51 r =
let (r0, r1, r2, r3, r4) = r in
lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r);
let p51p51r = pow51 * pow51 * as_nat5 r in
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime;
assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime);
lemma_fmul5_pow51_pow51 r;
assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime ==
(pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime);
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime;
lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2);
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime
val lemma_fmul5_pow51_pow51_pow51_pow51: r:felem5
-> Lemma
(requires (let (r0, r1, r2, r3, r4) = r in
v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\
v r2 * 19 <= 190 * pow51 /\ v r1 * 19 <= 190 * pow51))
(ensures (let (r0, r1, r2, r3, r4) = r in
(pow51 * pow51 * pow51 * pow51 * as_nat5 r) % prime == | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"Hacl.Impl.Curve25519.Lemmas.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Canon.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Canon",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Hacl.Spec.Curve25519.Field51.Definition.felem5
-> FStar.Pervasives.Lemma
(requires
(let _ = r in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ r1 r2 r3 r4 = _ in
Lib.IntTypes.v r4 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51 /\
Lib.IntTypes.v r3 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51 /\
Lib.IntTypes.v r2 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51 /\
Lib.IntTypes.v r1 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51)
<:
Type0))
(ensures
(let _ = r in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ r0 r1 r2 r3 r4 = _ in
(((Hacl.Spec.Curve25519.Field51.Definition.pow51 *
Hacl.Spec.Curve25519.Field51.Definition.pow51) *
Hacl.Spec.Curve25519.Field51.Definition.pow51) *
Hacl.Spec.Curve25519.Field51.Definition.pow51) *
Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r %
Spec.Curve25519.prime ==
Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r1 *! Lib.IntTypes.u64 19,
r2 *! Lib.IntTypes.u64 19,
r3 *! Lib.IntTypes.u64 19,
r4 *! Lib.IntTypes.u64 19,
r0) %
Spec.Curve25519.prime)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Lib.IntTypes.uint64",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"Hacl.Spec.Curve25519.Field51.Definition.pow51",
"Hacl.Spec.Curve25519.Field51.Definition.as_nat5",
"FStar.Pervasives.Native.Mktuple5",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.u64",
"Spec.Curve25519.prime",
"Prims.unit",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51_pow51_pow51",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul_assos_5"
] | [] | false | false | true | false | false | let lemma_fmul5_pow51_pow51_pow51_pow51 r =
| let r0, r1, r2, r3, r4 = r in
lemma_mul_assos_5 pow51 pow51 pow51 pow51 (as_nat5 r);
let p51p51p51r = ((pow51 * pow51) * pow51) * as_nat5 r in
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51p51r prime;
assert (((((pow51 * pow51) * pow51) * pow51) * as_nat5 r) % prime ==
(pow51 * (p51p51p51r % prime)) % prime);
lemma_fmul5_pow51_pow51_pow51 r;
assert (((((pow51 * pow51) * pow51) * pow51) * as_nat5 r) % prime ==
(pow51 * (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) % prime);
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51
(as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1))
prime;
lemma_fmul5_pow51 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1);
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51
(as_nat5 (r1 *! u64 19, r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0))
prime | false |
Hacl.Spec.Curve25519.Field51.Lemmas.fst | Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51_pow51_pow51 | val lemma_fmul5_pow51_pow51_pow51: r:felem5
-> Lemma
(requires (let (r0, r1, r2, r3, r4) = r in
v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\
v r2 * 19 <= 190 * pow51))
(ensures (let (r0, r1, r2, r3, r4) = r in
(pow51 * pow51 * pow51 * as_nat5 r) % prime ==
as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) | val lemma_fmul5_pow51_pow51_pow51: r:felem5
-> Lemma
(requires (let (r0, r1, r2, r3, r4) = r in
v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\
v r2 * 19 <= 190 * pow51))
(ensures (let (r0, r1, r2, r3, r4) = r in
(pow51 * pow51 * pow51 * as_nat5 r) % prime ==
as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1) % prime)) | let lemma_fmul5_pow51_pow51_pow51 r =
let (r0, r1, r2, r3, r4) = r in
lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r);
let p51p51r = pow51 * pow51 * as_nat5 r in
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime;
assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime);
lemma_fmul5_pow51_pow51 r;
assert ((pow51 * pow51 * pow51 * as_nat5 r) % prime ==
(pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime);
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime;
lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2);
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1)) prime | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.Lemmas.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 114,
"end_line": 182,
"start_col": 0,
"start_line": 171
} | module Hacl.Spec.Curve25519.Field51.Lemmas
open FStar.Mul
open Lib.Sequence
open Lib.IntTypes
open FStar.Tactics
open FStar.Tactics.Canon
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
module BSeq = Lib.ByteSequence
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --using_facts_from '* -FStar.Seq -FStar.Tactics'"
val lemma_mod_sub_distr: a:int -> b:int -> n:pos ->
Lemma ((a - b % n) % n = (a - b) % n)
let lemma_mod_sub_distr a b n =
FStar.Math.Lemmas.lemma_div_mod b n;
FStar.Math.Lemmas.distributivity_sub_left 0 (b / n) n;
// (a - b) % n == (a - (b % n) - (b / n) * n) % n
FStar.Math.Lemmas.lemma_mod_plus (a - (b % n)) (-(b / n)) n
val lemma_mul5_distr_r:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat ->
Lemma ((a + b + c + d + e) * f == a * f + b * f + c * f + d * f + e * f)
let lemma_mul5_distr_r a b c d e f = ()
val lemma_mul5_distr_l:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat ->
Lemma (a * (b + c + d + e + f) == a * b + a * c + a * d + a * e + a * f)
let lemma_mul5_distr_l a b c d e f = ()
val lemma_mul_assos_3:
a:nat -> b:nat -> c:nat ->
Lemma (a * b * c == a * (b * c))
let lemma_mul_assos_3 a b c = ()
val lemma_mul_assos_4:
a:nat -> b:nat -> c:nat -> d:nat ->
Lemma (a * b * c * d == a * (b * c * d))
let lemma_mul_assos_4 a b c d = ()
val lemma_mul_assos_5:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat ->
Lemma (a * b * c * d * e == a * (b * c * d * e))
let lemma_mul_assos_5 a b c d e = ()
val lemma_mul_assos_6:
a:nat -> b:nat -> c:nat -> d:nat -> e:nat -> f:nat ->
Lemma (a * b * c * d * e * f == a * (b * c * d * e * f))
let lemma_mul_assos_6 a b c d e f = ()
val lemma_add_le:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a <= b /\ c <= d)
(ensures a + c <= b + d)
let lemma_add_le a b c d = ()
val lemma_mul_le:a:nat -> b:nat -> c:nat -> d:nat ->
Lemma
(requires a <= b /\ c <= d)
(ensures a * c <= b * d)
let lemma_mul_le a b c d = ()
val lemma_prime: unit ->
Lemma (pow2 255 % prime = 19)
let lemma_prime () =
assert_norm (pow2 255 % prime = 19 % prime);
assert_norm (19 < prime);
FStar.Math.Lemmas.modulo_lemma 19 prime
val lemma_add_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> Lemma (
let (f10, f11, f12, f13, f14) = f1 in
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
let out = (o0, o1, o2, o3, o4) in
feval out == feval f1)
let lemma_add_zero f1 =
let (f10, f11, f12, f13, f14) = f1 in
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
let out = (o0, o1, o2, o3, o4) in
assert (feval out ==
(v f10 + 0x3fffffffffff68 +
(v f11 + 0x3ffffffffffff8) * pow51 +
(v f12 + 0x3ffffffffffff8) * pow51 * pow51 +
(v f13 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 +
(v f14 + 0x3ffffffffffff8) * pow51 * pow51 * pow51 * pow51) % prime);
FStar.Math.Lemmas.distributivity_add_left (v f11) 0x3ffffffffffff8 pow51;
FStar.Math.Lemmas.distributivity_add_left (v f12) 0x3ffffffffffff8 (pow51 * pow51);
FStar.Math.Lemmas.distributivity_add_left (v f13) 0x3ffffffffffff8 (pow51 * pow51 * pow51);
FStar.Math.Lemmas.distributivity_add_left (v f14) 0x3ffffffffffff8 (pow51 * pow51 * pow51 * pow51);
assert_norm (
0x3fffffffffff68 +
0x3ffffffffffff8 * pow51 +
0x3ffffffffffff8 * pow51 * pow51 +
0x3ffffffffffff8 * pow51 * pow51 * pow51 +
0x3ffffffffffff8 * pow51 * pow51 * pow51 * pow51 = 8 * prime);
assert (feval out == (v f10 + v f11 * pow51 +
v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 +
v f14 * pow51 * pow51 * pow51 * pow51 + 8 * prime) % prime);
FStar.Math.Lemmas.lemma_mod_plus (as_nat5 f1) 8 prime;
assert (feval out == (v f10 + v f11 * pow51 +
v f12 * pow51 * pow51 + v f13 * pow51 * pow51 * pow51 +
v f14 * pow51 * pow51 * pow51 * pow51) % prime)
val lemma_fmul5_pow51: r:felem5
-> Lemma
(requires (let (r0, r1, r2, r3, r4) = r in
v r4 * 19 <= 190 * pow51))
(ensures (let (r0, r1, r2, r3, r4) = r in
(pow51 * as_nat5 r) % prime == as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime))
let lemma_fmul5_pow51 r =
let (r0, r1, r2, r3, r4) = r in
assert (pow51 * as_nat5 r == pow51 * (v r0 + v r1 * pow51 + v r2 * pow51 * pow51 +
v r3 * pow51 * pow51 * pow51 + v r4 * pow51 * pow51 * pow51 * pow51));
lemma_mul5_distr_l pow51 (v r0) (v r1 * pow51) (v r2 * pow51 * pow51)
(v r3 * pow51 * pow51 * pow51) (v r4 * pow51 * pow51 * pow51 * pow51);
let p51r0123 = pow51 * v r0 + pow51 * v r1 * pow51 +
pow51 * v r2 * pow51 * pow51 + pow51 * v r3 * pow51 * pow51 * pow51 in
let p51r4 = pow51 * v r4 * pow51 * pow51 * pow51 * pow51 in
assert ((pow51 * as_nat5 r) % prime == (p51r0123 + p51r4) % prime);
FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 p51r4 prime;
assert_norm (p51r4 % prime == (v r4 * pow2 255) % prime);
FStar.Math.Lemmas.lemma_mod_mul_distr_r (v r4) (pow2 255) prime;
lemma_prime ();
assert_norm ((v r4 * pow2 255) % prime == (v r4 * 19) % prime);
FStar.Math.Lemmas.lemma_mod_plus_distr_r p51r0123 (v r4 * 19) prime
val lemma_fmul5_pow51_pow51:r:felem5
-> Lemma
(requires (let (r0, r1, r2, r3, r4) = r in
v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51))
(ensures (let (r0, r1, r2, r3, r4) = r in
(pow51 * pow51 * as_nat5 r) % prime ==
as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime))
let lemma_fmul5_pow51_pow51 r =
let (r0, r1, r2, r3, r4) = r in
lemma_mul_assos_3 pow51 pow51 (as_nat5 r);
let p51r = pow51 * as_nat5 r in
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51r prime;
assert ((pow51 * pow51 * as_nat5 r) % prime == (pow51 * (p51r % prime)) % prime);
lemma_fmul5_pow51 r;
assert ((pow51 * pow51 * as_nat5 r) % prime ==
(pow51 * (as_nat5 (r4 *! u64 19, r0, r1, r2, r3) % prime)) % prime);
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r4 *! u64 19, r0, r1, r2, r3)) prime;
lemma_fmul5_pow51 (r4 *! u64 19, r0, r1, r2, r3);
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2)) prime
val lemma_fmul5_pow51_pow51_pow51: r:felem5
-> Lemma
(requires (let (r0, r1, r2, r3, r4) = r in
v r4 * 19 <= 190 * pow51 /\ v r3 * 19 <= 190 * pow51 /\
v r2 * 19 <= 190 * pow51))
(ensures (let (r0, r1, r2, r3, r4) = r in
(pow51 * pow51 * pow51 * as_nat5 r) % prime == | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"Hacl.Impl.Curve25519.Lemmas.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Tactics.Canon.fst.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.Lemmas.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Canon",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: Hacl.Spec.Curve25519.Field51.Definition.felem5
-> FStar.Pervasives.Lemma
(requires
(let _ = r in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ _ _ r2 r3 r4 = _ in
Lib.IntTypes.v r4 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51 /\
Lib.IntTypes.v r3 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51 /\
Lib.IntTypes.v r2 * 19 <= 190 * Hacl.Spec.Curve25519.Field51.Definition.pow51)
<:
Type0))
(ensures
(let _ = r in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ r0 r1 r2 r3 r4 = _ in
((Hacl.Spec.Curve25519.Field51.Definition.pow51 *
Hacl.Spec.Curve25519.Field51.Definition.pow51) *
Hacl.Spec.Curve25519.Field51.Definition.pow51) *
Hacl.Spec.Curve25519.Field51.Definition.as_nat5 r %
Spec.Curve25519.prime ==
Hacl.Spec.Curve25519.Field51.Definition.as_nat5 (r2 *! Lib.IntTypes.u64 19,
r3 *! Lib.IntTypes.u64 19,
r4 *! Lib.IntTypes.u64 19,
r0,
r1) %
Spec.Curve25519.prime)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Lib.IntTypes.uint64",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"Hacl.Spec.Curve25519.Field51.Definition.pow51",
"Hacl.Spec.Curve25519.Field51.Definition.as_nat5",
"FStar.Pervasives.Native.Mktuple5",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.u64",
"Spec.Curve25519.prime",
"Prims.unit",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5_pow51_pow51",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mul_assos_4"
] | [] | false | false | true | false | false | let lemma_fmul5_pow51_pow51_pow51 r =
| let r0, r1, r2, r3, r4 = r in
lemma_mul_assos_4 pow51 pow51 pow51 (as_nat5 r);
let p51p51r = (pow51 * pow51) * as_nat5 r in
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51 p51p51r prime;
assert ((((pow51 * pow51) * pow51) * as_nat5 r) % prime == (pow51 * (p51p51r % prime)) % prime);
lemma_fmul5_pow51_pow51 r;
assert ((((pow51 * pow51) * pow51) * as_nat5 r) % prime ==
(pow51 * (as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2) % prime)) % prime);
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51
(as_nat5 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2))
prime;
lemma_fmul5_pow51 (r3 *! u64 19, r4 *! u64 19, r0, r1, r2);
FStar.Math.Lemmas.lemma_mod_mul_distr_r pow51
(as_nat5 (r2 *! u64 19, r3 *! u64 19, r4 *! u64 19, r0, r1))
prime | false |
InterpreterTarget.fst | InterpreterTarget.index | val index : a: Type -> Type | let index a = option a | {
"file_name": "src/3d/InterpreterTarget.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 22,
"end_line": 43,
"start_col": 0,
"start_line": 43
} | (*
Copyright 2021 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module InterpreterTarget
(* The abstract syntax for the code produced by 3d, targeting prelude/Interpreter.fst *)
open FStar.All
open FStar.List.Tot
module A = Ast
module T = Target
module H = Hashtable
noeq
type inv =
| Inv_conj : inv -> inv -> inv
| Inv_ptr : expr -> inv
| Inv_copy_buf: expr -> inv
noeq
type eloc =
| Eloc_output : eloc
| Eloc_union : eloc -> eloc -> eloc
| Eloc_ptr : expr -> eloc
| Eloc_copy_buf: e:expr { T.Identifier? (fst e) } -> eloc
noeq
type disj =
| Disj_pair : l:eloc{ Eloc_copy_buf? l } -> eloc -> disj
| Disj_conj : disj -> disj -> disj | {
"checked_file": "/",
"dependencies": [
"Target.fsti.checked",
"prims.fst.checked",
"Hashtable.fsti.checked",
"FStar.String.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.List.fst.checked",
"FStar.All.fst.checked",
"Ast.fst.checked"
],
"interface_file": true,
"source_file": "InterpreterTarget.fst"
} | [
{
"abbrev": true,
"full_module": "Hashtable",
"short_module": "H"
},
{
"abbrev": true,
"full_module": "Target",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Ast",
"short_module": "A"
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Binding",
"short_module": null
},
{
"abbrev": true,
"full_module": "Target",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "Ast",
"short_module": "A"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> Type | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.option"
] | [] | false | false | false | true | true | let index a =
| option a | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.