file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.split | val split: Prims.unit -> Tac unit | val split: Prims.unit -> Tac unit | let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal" | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 43,
"end_line": 68,
"start_col": 0,
"start_line": 66
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.try_with",
"FStar.Tactics.V1.Derived.apply_lemma",
"Prims.exn",
"FStar.Tactics.V1.Derived.fail"
] | [] | false | true | false | false | false | let split () : Tac unit =
| try apply_lemma (`split_lem) with | _ -> fail "Could not split goal" | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.l_intro | val l_intro : _: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.binder | let l_intro () = forall_intro `or_else` implies_intro | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 53,
"end_line": 89,
"start_col": 0,
"start_line": 89
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.binder | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.or_else",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Logic.forall_intro",
"FStar.Tactics.V1.Logic.implies_intro"
] | [] | false | true | false | false | false | let l_intro () =
| forall_intro `or_else` implies_intro | false |
|
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.implies_intros | val implies_intros: Prims.unit -> Tac binders | val implies_intros: Prims.unit -> Tac binders | let implies_intros () : Tac binders = repeat1 implies_intro | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 59,
"end_line": 86,
"start_col": 0,
"start_line": 86
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.binders | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.repeat1",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Logic.implies_intro",
"Prims.list",
"FStar.Stubs.Reflection.Types.binders"
] | [] | false | true | false | false | false | let implies_intros () : Tac binders =
| repeat1 implies_intro | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.l_intros | val l_intros : _: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Stubs.Reflection.Types.binder) | let l_intros () = repeat l_intro | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 92,
"start_col": 0,
"start_line": 92
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac (Prims.list FStar.Stubs.Reflection.Types.binder) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.repeat",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Logic.l_intro",
"Prims.list"
] | [] | false | true | false | false | false | let l_intros () =
| repeat l_intro | false |
|
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.squash_intro | val squash_intro: Prims.unit -> Tac unit | val squash_intro: Prims.unit -> Tac unit | let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 39,
"end_line": 95,
"start_col": 0,
"start_line": 94
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.apply"
] | [] | false | true | false | false | false | let squash_intro () : Tac unit =
| apply (`FStar.Squash.return_squash) | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.hyp | val hyp (b: binder) : Tac unit | val hyp (b: binder) : Tac unit | let hyp (b:binder) : Tac unit = l_exact (binder_to_term b) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 58,
"end_line": 101,
"start_col": 0,
"start_line": 101
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Stubs.Reflection.Types.binder -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Logic.l_exact",
"Prims.unit",
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Derived.binder_to_term"
] | [] | false | true | false | false | false | let hyp (b: binder) : Tac unit =
| l_exact (binder_to_term b) | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.l_exact | val l_exact : t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 99,
"start_col": 0,
"start_line": 97
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Derived.try_with",
"Prims.unit",
"FStar.Tactics.V1.Derived.exact",
"Prims.exn",
"FStar.Tactics.V1.Logic.squash_intro"
] | [] | false | true | false | false | false | let l_exact (t: term) =
| try exact t
with
| _ ->
(squash_intro ();
exact t) | false |
|
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.rewrite_all_equalities | val rewrite_all_equalities: Prims.unit -> Tac unit | val rewrite_all_equalities: Prims.unit -> Tac unit | let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 166,
"start_col": 0,
"start_line": 165
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Logic.visit",
"FStar.Tactics.V1.Logic.simplify_eq_implication"
] | [] | false | true | false | false | false | let rewrite_all_equalities () : Tac unit =
| visit simplify_eq_implication | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.unsquash | val unsquash (t: term) : Tac term | val unsquash (t: term) : Tac term | let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b)) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 195,
"start_col": 0,
"start_line": 191
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.term | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.V1.Builtins.pack_ln",
"FStar.Stubs.Reflection.V1.Data.Tv_Var",
"FStar.Reflection.V1.Derived.bv_of_binder",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Stubs.Tactics.V1.Builtins.intro",
"Prims.unit",
"FStar.Tactics.V1.Derived.apply_lemma",
"FStar.Reflection.V1.Derived.mk_e_app",
"Prims.Cons",
"Prims.Nil"
] | [] | false | true | false | false | false | let unsquash (t: term) : Tac term =
| let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b)) | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.explode | val explode: Prims.unit -> Tac unit | val explode: Prims.unit -> Tac unit | let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))])) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 64,
"end_line": 131,
"start_col": 0,
"start_line": 128
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Pervasives.ignore",
"FStar.Tactics.V1.Derived.repeatseq",
"FStar.Tactics.V1.Derived.first",
"Prims.Cons",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Logic.l_intro",
"FStar.Tactics.V1.Logic.split",
"Prims.Nil"
] | [] | false | true | false | false | false | let explode () : Tac unit =
| ignore (repeatseq (fun () -> first [(fun () -> ignore (l_intro ())); (fun () -> ignore (split ()))])
) | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.visit | val visit (callback: (unit -> Tac unit)) : Tac unit | val visit (callback: (unit -> Tac unit)) : Tac unit | let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 150,
"start_col": 0,
"start_line": 133
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))])) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | callback: (_: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit)
-> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.focus",
"FStar.Tactics.V1.Derived.or_else",
"FStar.Stubs.Reflection.Types.bv",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Derived.seq",
"FStar.Tactics.V1.Logic.visit",
"FStar.Tactics.V1.Logic.l_revert_all",
"FStar.Stubs.Reflection.Types.binders",
"FStar.Tactics.V1.Logic.forall_intros",
"FStar.Tactics.V1.Logic.split",
"FStar.Tactics.V1.Logic.l_revert",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Logic.implies_intro",
"FStar.Reflection.V1.Formula.formula",
"FStar.Reflection.V1.Formula.term_as_formula",
"FStar.Tactics.V1.Derived.cur_goal"
] | [
"recursion"
] | false | true | false | false | false | let rec visit (callback: (unit -> Tac unit)) : Tac unit =
| focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q -> seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ -> ())) | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.l_revert_all | val l_revert_all (bs: binders) : Tac unit | val l_revert_all (bs: binders) : Tac unit | let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 53,
"end_line": 42,
"start_col": 0,
"start_line": 39
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | bs: FStar.Stubs.Reflection.Types.binders -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.binders",
"Prims.unit",
"FStar.Stubs.Reflection.Types.binder",
"Prims.list",
"FStar.Tactics.V1.Logic.l_revert_all",
"FStar.Tactics.V1.Logic.l_revert"
] | [
"recursion"
] | false | true | false | false | false | let rec l_revert_all (bs: binders) : Tac unit =
| match bs with
| [] -> ()
| _ :: tl ->
l_revert ();
l_revert_all tl | false |
Spec.RSAPSS.fst | Spec.RSAPSS.os2ip_lemma | val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma
(requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8))
(ensures os2ip #(blocks emBits 8) em < pow2 emBits) | val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma
(requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8))
(ensures os2ip #(blocks emBits 8) em < pow2 emBits) | let os2ip_lemma emBits em =
let emLen = blocks emBits 8 in
let aux (emBits:size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) =
assert ((emBits - 1) / 8 <= emBits / 8) in
if emBits % 8 > 0 then begin
nat_from_intseq_be_slice_lemma em 1;
nat_from_intseq_be_lemma0 (slice em 0 1);
assert (nat_from_bytes_be em == nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[0]);
assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0]);
calc (<=) {
pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[0];
(==) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[0]) }
pow2 (8 * (emLen - 1)) * (1 + v em.[0]);
(<=) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1)) (v em.[0] + 1) (pow2 (emBits % 8)) }
pow2 (8 * (emLen - 1)) * pow2 (emBits % 8);
(==) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) }
pow2 (8 * ((emBits - 1) / 8) + emBits % 8);
(<=) { aux emBits; Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8) }
pow2 emBits;
};
assert (nat_from_bytes_be em < pow2 emBits) end
else begin
assert (nat_from_bytes_be em < pow2 (emLen * 8));
assert (emBits == 8 * emLen) end | {
"file_name": "specs/Spec.RSAPSS.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 36,
"end_line": 245,
"start_col": 0,
"start_line": 219
} | module Spec.RSAPSS
open FStar.Mul
open Lib.IntTypes
open Lib.NatMod
open Lib.Sequence
open Lib.ByteSequence
open Lib.LoopCombinators
module Hash = Spec.Agile.Hash
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
RFC spec of RSA-PSS: https://tools.ietf.org/html/rfc8017#section-8.1
List of supported hash functions: https://tools.ietf.org/html/rfc8446#appendix-B.3.1.3
Mask generation function: https://tools.ietf.org/html/rfc8017#page-67
*)
///
/// Auxillary functions
///
val blocks: x:size_pos -> m:size_pos -> Tot (r:size_pos{x <= m * r})
let blocks x m = (x - 1) / m + 1
val xor_bytes: #len:size_pos -> b1:lbytes len -> b2:lbytes len -> Tot (lbytes len)
let xor_bytes #len b1 b2 = map2 (fun x y -> x ^. y) b1 b2
let hash_is_supported (a:Hash.hash_alg) : Tot bool =
match a with
| Hash.SHA2_256 -> true
| Hash.SHA2_384 -> true
| Hash.SHA2_512 -> true
| _ -> false
(* Mask Generation Function *)
val mgf_hash_f:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> i:size_nat
-> mgfseed_counter:lbytes (len + 4) ->
lbytes (len + 4) & lbytes (Hash.hash_length a)
let mgf_hash_f a len i mgfseed_counter =
let counter = nat_to_intseq_be 4 i in
let mgfseed_counter = update_sub mgfseed_counter len 4 counter in
let block = Hash.hash a mgfseed_counter in
mgfseed_counter, block
let mgf_hash_a (len:size_nat{len + 4 <= max_size_t}) (n:pos) (i:nat{i <= n}) = lbytes (len + 4)
val mgf_hash:
a:Hash.hash_alg{hash_is_supported a}
-> len:size_nat{len + 4 <= max_size_t /\ (len + 4) `Hash.less_than_max_input_length` a}
-> mgfseed:lbytes len
-> maskLen:size_pos{(blocks maskLen (Hash.hash_length a)) * Hash.hash_length a < pow2 32} ->
Tot (lbytes maskLen)
let mgf_hash a len mgfseed maskLen =
let mgfseed_counter = create (len + 4) (u8 0) in
let mgfseed_counter = update_sub mgfseed_counter 0 len mgfseed in
let hLen = Hash.hash_length a in
let n = blocks maskLen hLen in
let _, acc = generate_blocks #uint8 hLen n n (mgf_hash_a len n) (mgf_hash_f a len) mgfseed_counter in
sub #uint8 #(n * hLen) acc 0 maskLen
(* Bignum convert functions *)
val os2ip: #len:size_nat -> b:lbytes len -> Tot (res:nat{res < pow2 (8 * len)})
let os2ip #len b = nat_from_bytes_be b
val i2osp: len:size_nat -> n:nat{n < pow2 (8 * len)} -> Tot (lbytes len)
let i2osp len n = nat_to_intseq_be len n
///
/// RSA
///
type modBits_t = modBits:size_nat{1 < modBits}
noeq type rsapss_pkey (modBits:modBits_t) =
| Mk_rsapss_pkey: n:pos{pow2 (modBits - 1) < n /\ n < pow2 modBits} -> e:pos -> rsapss_pkey modBits
noeq type rsapss_skey (modBits:modBits_t) =
| Mk_rsapss_skey: pkey:rsapss_pkey modBits -> d:pos -> rsapss_skey modBits
val db_zero: #len:size_pos -> db:lbytes len -> emBits:size_nat ->
Pure (lbytes len)
(requires True)
(ensures fun res ->
(v res.[0] == (if emBits % 8 > 0 then v db.[0] % pow2 (emBits % 8) else v db.[0])))
let db_zero #len db emBits =
let msBits = emBits % 8 in
if msBits > 0 then begin
let r = db.[0] <- db.[0] &. (u8 0xff >>. size (8 - msBits)) in
Math.Lemmas.pow2_plus msBits (8 - msBits);
logand_mask db.[0] (u8 0xff >>. size (8 - msBits)) msBits;
r end
else db
val pss_encode:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> salt:lbytes sLen
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{Hash.hash_length a + sLen + 2 <= blocks emBits 8} ->
Pure (lbytes (blocks emBits 8))
(requires True)
(ensures fun em -> if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8)
let pss_encode a sLen salt msgLen msg emBits =
let mHash = Hash.hash a msg in
let hLen = Hash.hash_length a in
//m1 = [8 * 0x00; mHash; salt]
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash = Hash.hash a m1 in
//db = [0x00;..; 0x00; 0x01; salt]
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let db = create dbLen (u8 0) in
let last_before_salt = dbLen - sLen - 1 in
let db = db.[last_before_salt] <- u8 1 in
let db = update_sub db (last_before_salt + 1) sLen salt in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let maskedDB = xor_bytes db dbMask in
let maskedDB = db_zero maskedDB emBits in
//em = [maskedDB; m1Hash; 0xbc]
let em = create emLen (u8 0) in
let em = update_sub em 0 dbLen maskedDB in
let em = update_sub em dbLen hLen m1Hash in
assert (v em.[0] == v maskedDB.[0]);
em.[emLen - 1] <- u8 0xbc
val pss_verify_:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos{sLen + Hash.hash_length a + 2 <= blocks emBits 8}
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify_ a sLen msgLen msg emBits em =
let hLen = Hash.hash_length a in
let emLen = blocks emBits 8 in
let dbLen = emLen - hLen - 1 in
let maskedDB = sub em 0 dbLen in
let m1Hash = sub em dbLen hLen in
let dbMask = mgf_hash a hLen m1Hash dbLen in
let db = xor_bytes dbMask maskedDB in
let db = db_zero db emBits in
let padLen = emLen - sLen - hLen - 1 in
let pad2 = create padLen (u8 0) in
let pad2 = pad2.[padLen - 1] <- u8 0x01 in
let pad = sub db 0 padLen in
let salt = sub db padLen sLen in
if not (lbytes_eq pad pad2) then false
else begin
let mHash = Hash.hash a msg in
let m1Len = 8 + hLen + sLen in
let m1 = create m1Len (u8 0) in
let m1 = update_sub m1 8 hLen mHash in
let m1 = update_sub m1 (8 + hLen) sLen salt in
let m1Hash0 = Hash.hash a m1 in
lbytes_eq m1Hash0 m1Hash
end
val pss_verify:
a:Hash.hash_alg{hash_is_supported a}
-> sLen:size_nat{sLen + Hash.hash_length a + 8 <= max_size_t /\
(sLen + Hash.hash_length a + 8) `Hash.less_than_max_input_length` a}
-> msgLen:nat{msgLen `Hash.less_than_max_input_length` a}
-> msg:bytes{length msg == msgLen}
-> emBits:size_pos
-> em:lbytes (blocks emBits 8) ->
Tot bool
let pss_verify a sLen msgLen msg emBits em =
let emLen = blocks emBits 8 in
let msBits = emBits % 8 in
let em_0 = if msBits > 0 then em.[0] &. (u8 0xff <<. size msBits) else u8 0 in
let em_last = em.[emLen - 1] in
if (emLen < sLen + Hash.hash_length a + 2) then false
else begin
if not (FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_last =^ 0xbcuy) &&
FStar.UInt8.(Lib.RawIntTypes.u8_to_UInt8 em_0 =^ 0uy))
then false
else pss_verify_ a sLen msgLen msg emBits em end
val os2ip_lemma: emBits:size_pos -> em:lbytes (blocks emBits 8) -> Lemma
(requires (if emBits % 8 > 0 then v em.[0] < pow2 (emBits % 8) else v em.[0] < pow2 8))
(ensures os2ip #(blocks emBits 8) em < pow2 emBits) | {
"checked_file": "/",
"dependencies": [
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Spec.RSAPSS.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Agile.Hash",
"short_module": "Hash"
},
{
"abbrev": false,
"full_module": "Lib.LoopCombinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.NatMod",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | emBits: Lib.IntTypes.size_pos -> em: Lib.ByteSequence.lbytes (Spec.RSAPSS.blocks emBits 8)
-> FStar.Pervasives.Lemma
(requires
((match emBits % 8 > 0 with
| true -> Lib.IntTypes.v em.[ 0 ] < Prims.pow2 (emBits % 8)
| _ -> Lib.IntTypes.v em.[ 0 ] < Prims.pow2 8)
<:
Type0)) (ensures Spec.RSAPSS.os2ip em < Prims.pow2 emBits) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.IntTypes.size_pos",
"Lib.ByteSequence.lbytes",
"Spec.RSAPSS.blocks",
"Prims.op_GreaterThan",
"Prims.op_Modulus",
"Prims._assert",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.ByteSequence.nat_from_bytes_be",
"Lib.IntTypes.SEC",
"Prims.pow2",
"Prims.unit",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"Lib.IntTypes.v",
"Lib.IntTypes.U8",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.uint_t",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.eq2",
"Prims.Nil",
"FStar.Calc.calc_step",
"Prims.op_Division",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.distributivity_add_right",
"Prims.squash",
"FStar.Math.Lemmas.lemma_mult_le_left",
"FStar.Math.Lemmas.pow2_plus",
"FStar.Math.Lemmas.pow2_le_compat",
"Lib.Sequence.slice",
"Lib.ByteSequence.nat_from_intseq_be_lemma0",
"Lib.ByteSequence.nat_from_intseq_be_slice_lemma",
"Prims.bool",
"Prims.pos",
"Prims.l_True",
"Prims.op_Multiply",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let os2ip_lemma emBits em =
| let emLen = blocks emBits 8 in
let aux (emBits: size_pos{emBits % 8 > 0}) : Lemma (8 * ((emBits - 1) / 8) + emBits % 8 <= emBits) =
assert ((emBits - 1) / 8 <= emBits / 8)
in
if emBits % 8 > 0
then
(nat_from_intseq_be_slice_lemma em 1;
nat_from_intseq_be_lemma0 (slice em 0 1);
assert (nat_from_bytes_be em ==
nat_from_bytes_be (slice em 1 emLen) + pow2 ((emLen - 1) * 8) * v em.[ 0 ]);
assert (nat_from_bytes_be em < pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[ 0 ]);
calc ( <= ) {
pow2 ((emLen - 1) * 8) + pow2 ((emLen - 1) * 8) * v em.[ 0 ];
( == ) { Math.Lemmas.distributivity_add_right (pow2 (8 * (emLen - 1))) 1 (v em.[ 0 ]) }
pow2 (8 * (emLen - 1)) * (1 + v em.[ 0 ]);
( <= ) { Math.Lemmas.lemma_mult_le_left (pow2 (8 * emLen - 1))
(v em.[ 0 ] + 1)
(pow2 (emBits % 8)) }
pow2 (8 * (emLen - 1)) * pow2 (emBits % 8);
( == ) { Math.Lemmas.pow2_plus (8 * (emLen - 1)) (emBits % 8) }
pow2 (8 * ((emBits - 1) / 8) + emBits % 8);
( <= ) { (aux emBits;
Math.Lemmas.pow2_le_compat emBits ((emBits - 1) - (emBits - 1) % 8 + emBits % 8)) }
pow2 emBits;
};
assert (nat_from_bytes_be em < pow2 emBits))
else
(assert (nat_from_bytes_be em < pow2 (emLen * 8));
assert (emBits == 8 * emLen)) | false |
MiniParseExample2.fst | MiniParseExample2.c3 | val c3:sum_case #somme #(bounded_u16 4) imp0 3us | val c3:sum_case #somme #(bounded_u16 4) imp0 3us | let c3 : sum_case #somme #(bounded_u16 4) imp0 3us =
Case #(bounded_u16 4) #somme
unit
parse_empty
serialize_empty
(fun (_: unit) -> X <: refine_with_tag #(bounded_u16 4) #somme imp0 (3us <: bounded_u16 4))
(fun (_: refine_with_tag #(bounded_u16 4) #somme imp0 (3us <: bounded_u16 4)) -> ())
() | {
"file_name": "examples/miniparse/MiniParseExample2.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 10,
"end_line": 42,
"start_col": 0,
"start_line": 35
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module MiniParseExample2
open MiniParse.Spec.TSum
module T = FStar.Tactics.V2
module U8 = FStar.UInt8
noeq
type somme = | U of FStar.UInt8.t | V | W | X
#set-options "--z3rlimit 16"
let imp0 (x: somme) : Tot (bounded_u16 4) = match x with
| U _ -> 0us <: bounded_u16 4
| V -> 1us <: bounded_u16 4
| W -> 2us <: bounded_u16 4
| _ -> 3us <: bounded_u16 4
#set-options "--print_universes --print_implicits" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MiniParse.Spec.TSum.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "MiniParseExample2.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "MiniParse.Spec.TSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 16,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | MiniParse.Spec.TSum.sum_case MiniParseExample2.imp0 (3us <: FStar.UInt16.t) | Prims.Tot | [
"total"
] | [] | [
"MiniParse.Spec.TSum.Case",
"MiniParse.Spec.Int.bounded_u16",
"MiniParseExample2.somme",
"MiniParseExample2.imp0",
"FStar.UInt16.__uint_to_t",
"Prims.unit",
"MiniParse.Spec.Combinators.parse_empty",
"MiniParse.Spec.Combinators.serialize_empty",
"MiniParseExample2.X",
"MiniParse.Spec.TSum.refine_with_tag"
] | [] | false | false | false | false | false | let c3:sum_case #somme #(bounded_u16 4) imp0 3us =
| Case #(bounded_u16 4)
#somme
unit
parse_empty
serialize_empty
(fun (_: unit) -> X <: refine_with_tag #(bounded_u16 4) #somme imp0 (3us <: bounded_u16 4))
(fun (_: refine_with_tag #(bounded_u16 4) #somme imp0 (3us <: bounded_u16 4)) -> ())
() | false |
FStar.Buffer.Quantifiers.fst | FStar.Buffer.Quantifiers.lemma_blit_quantifiers | val lemma_blit_quantifiers: #a:Type -> h0:mem -> h1:mem -> b:buffer a -> bi:UInt32.t{v bi <= length b} ->
b':buffer a{disjoint b b'} -> bi':UInt32.t{v bi' <= length b'} -> len:UInt32.t{v bi+v len <= length b /\ v bi'+v len <= length b'} -> Lemma
(requires (live h0 b /\ live h0 b' /\ live h1 b'
/\ Seq.slice (as_seq h1 b') (v bi') (v bi'+v len) == Seq.slice (as_seq h0 b) (v bi) (v bi+v len)
/\ Seq.slice (as_seq h1 b') 0 (v bi') == Seq.slice (as_seq h0 b') 0 (v bi')
/\ Seq.slice (as_seq h1 b') (v bi'+v len) (length b') == Seq.slice (as_seq h0 b') (v bi'+v len) (length b')
))
(ensures (live h0 b /\ live h0 b' /\ live h1 b'
/\ (forall (i:nat). {:pattern (get h1 b' (v bi'+i))} i < v len ==> get h1 b' (v bi'+i) == get h0 b (v bi+i))
/\ (forall (i:nat). {:pattern (get h1 b' i)} ((i >= v bi' + v len /\ i < length b') \/ i < v bi') ==> get h1 b' i == get h0 b' i)
)) | val lemma_blit_quantifiers: #a:Type -> h0:mem -> h1:mem -> b:buffer a -> bi:UInt32.t{v bi <= length b} ->
b':buffer a{disjoint b b'} -> bi':UInt32.t{v bi' <= length b'} -> len:UInt32.t{v bi+v len <= length b /\ v bi'+v len <= length b'} -> Lemma
(requires (live h0 b /\ live h0 b' /\ live h1 b'
/\ Seq.slice (as_seq h1 b') (v bi') (v bi'+v len) == Seq.slice (as_seq h0 b) (v bi) (v bi+v len)
/\ Seq.slice (as_seq h1 b') 0 (v bi') == Seq.slice (as_seq h0 b') 0 (v bi')
/\ Seq.slice (as_seq h1 b') (v bi'+v len) (length b') == Seq.slice (as_seq h0 b') (v bi'+v len) (length b')
))
(ensures (live h0 b /\ live h0 b' /\ live h1 b'
/\ (forall (i:nat). {:pattern (get h1 b' (v bi'+i))} i < v len ==> get h1 b' (v bi'+i) == get h0 b (v bi+i))
/\ (forall (i:nat). {:pattern (get h1 b' i)} ((i >= v bi' + v len /\ i < length b') \/ i < v bi') ==> get h1 b' i == get h0 b' i)
)) | let lemma_blit_quantifiers #a h0 h1 b bi b' bi' len =
let lemma_post_1 (j:nat) = j < v len ==> get h1 b' (v bi'+j) == get h0 b (v bi+j) in
let qj_1 : j:nat -> Lemma (lemma_post_1 j)
= fun j -> assert (j < v len ==> Seq.index (Seq.slice (as_seq h1 b') (v bi') (v bi'+v len)) j
== Seq.index (Seq.slice (as_seq h0 b) (v bi) (v bi+v len)) j) in
let lemma_post_2 (j:nat) = ((j >= v bi' + v len /\ j < length b') \/ j < v bi')
==> get h1 b' j == get h0 b' j in
let qj_2 : j:nat -> Lemma (lemma_post_2 j)
= fun j -> assert (j < v bi' ==> Seq.index (Seq.slice (as_seq h1 b') 0 (v bi')) j
== Seq.index (Seq.slice (as_seq h0 b') 0 (v bi')) j);
assert ((j >= v bi' + v len /\ j < length b')
==> Seq.index (Seq.slice (as_seq h1 b') (v bi'+v len) (length b')) (j - (v bi'+v len))
== Seq.index (Seq.slice (as_seq h0 b') (v bi'+v len) (length b')) (j - (v bi'+v len)))
in
Classical.forall_intro #_ #lemma_post_1 qj_1;
Classical.forall_intro #_ #lemma_post_2 qj_2 | {
"file_name": "ulib/legacy/FStar.Buffer.Quantifiers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 46,
"end_line": 105,
"start_col": 0,
"start_line": 90
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Buffer.Quantifiers
open FStar.Seq
open FStar.UInt32
open FStar.HyperStack
open FStar.Ghost
open FStar.Buffer
open FStar.Classical
#set-options "--initial_fuel 0 --max_fuel 0"
val lemma_sub_quantifiers: #a:Type -> h:mem -> b:buffer a -> b':buffer a -> i:FStar.UInt32.t -> len:FStar.UInt32.t{v len <= length b /\ v i + v len <= length b} -> Lemma
(requires (live h b /\ live h b' /\ Seq.slice (as_seq h b) (v i) (v i + v len) == as_seq h b'))
(ensures (live h b /\ live h b' /\ Seq.slice (as_seq h b) (v i) (v i + v len) == as_seq h b'
/\ length b' = v len
/\ (forall (j:nat). {:pattern (get h b' j)} j < length b' ==> get h b' j == get h b (j + v i)) ))
[SMTPat (Seq.slice (as_seq h b) (v i) (v i + v len)); SMTPat (as_seq h b')]
let lemma_sub_quantifiers #a h b b' i len =
assert (Seq.length (Seq.slice (as_seq h b) (v i) (v i + v len)) = v len);
let lemma_post (j:nat) = j < length b' ==> get h b' j == get h b (j + v i) in
let qj : j:nat -> Lemma (lemma_post j)
= fun j -> assert (j < v len ==> Seq.index (as_seq h b') j == Seq.index (as_seq h b) (j + v i)) in
Classical.forall_intro #_ #lemma_post qj
val lemma_offset_quantifiers: #a:Type -> h:mem -> b:buffer a -> b':buffer a -> i:FStar.UInt32.t{v i <= length b} -> Lemma
(requires (live h b /\ live h b' /\ Seq.slice (as_seq h b) (v i) (length b) == as_seq h b'))
(ensures (live h b /\ live h b' /\ Seq.slice (as_seq h b) (v i) (length b) == as_seq h b'
/\ length b' = length b - v i
/\ (forall (j:nat). {:pattern (get h b' j)} j < length b' ==> get h b' j == get h b (j + v i)) ))
[SMTPat (Seq.slice (as_seq h b) (v i) (length b)); SMTPat (as_seq h b')]
let lemma_offset_quantifiers #a h b b' i =
lemma_sub_quantifiers #a h b b' i (uint_to_t (length b - v i))
val lemma_create_quantifiers: #a:Type -> h:mem -> b:buffer a -> init:a -> len:FStar.UInt32.t -> Lemma
(requires (live h b /\ as_seq h b == Seq.create (v len) init))
(ensures (live h b /\ length b = v len
/\ (forall (i:nat). {:pattern (get h b i)} i < length b ==> get h b i == init)))
[SMTPat (as_seq h b); SMTPat (Seq.create (v len) init)]
let lemma_create_quantifiers #a h b init len =
assert (Seq.length (as_seq h b) = v len);
let lemma_post (i:nat) = i < length b ==> get h b i == init in
let qi : i:nat -> Lemma (lemma_post i) =
fun i -> assert (i < length b ==> get h b i == Seq.index (as_seq h b) i) in
Classical.forall_intro #_ #lemma_post qi
val lemma_index_quantifiers: #a:Type -> h:mem -> b:buffer a -> n:FStar.UInt32.t -> Lemma
(requires (live h b /\ v n < length b))
(ensures (live h b /\ v n < length b /\ get h b (v n) == Seq.index (as_seq h b) (v n)))
[SMTPat (Seq.index (as_seq h b) (v n))]
let lemma_index_quantifiers #a h b n = ()
val lemma_upd_quantifiers: #a:Type -> h0:mem -> h1:mem -> b:buffer a -> n:FStar.UInt32.t -> z:a -> Lemma
(requires (live h0 b /\ live h1 b /\ v n < length b /\ as_seq h1 b == Seq.upd (as_seq h0 b) (v n) z))
(ensures (live h0 b /\ live h1 b /\ v n < length b
/\ (forall (i:nat). {:pattern (get h1 b i)} (i < length b /\ i <> v n)
==> get h1 b i == get h0 b i)
/\ get h1 b (v n) == z))
[SMTPat (as_seq h1 b); SMTPat (Seq.upd (as_seq h0 b) (v n) z)]
let lemma_upd_quantifiers #a h0 h1 b n z =
assert(forall (i:nat). i < length b ==> get h1 b i == Seq.index (as_seq h1 b) i)
#reset-options "--initial_fuel 0 --max_fuel 0 --z3rlimit 8"
val lemma_blit_quantifiers: #a:Type -> h0:mem -> h1:mem -> b:buffer a -> bi:UInt32.t{v bi <= length b} ->
b':buffer a{disjoint b b'} -> bi':UInt32.t{v bi' <= length b'} -> len:UInt32.t{v bi+v len <= length b /\ v bi'+v len <= length b'} -> Lemma
(requires (live h0 b /\ live h0 b' /\ live h1 b'
/\ Seq.slice (as_seq h1 b') (v bi') (v bi'+v len) == Seq.slice (as_seq h0 b) (v bi) (v bi+v len)
/\ Seq.slice (as_seq h1 b') 0 (v bi') == Seq.slice (as_seq h0 b') 0 (v bi')
/\ Seq.slice (as_seq h1 b') (v bi'+v len) (length b') == Seq.slice (as_seq h0 b') (v bi'+v len) (length b')
))
(ensures (live h0 b /\ live h0 b' /\ live h1 b'
/\ (forall (i:nat). {:pattern (get h1 b' (v bi'+i))} i < v len ==> get h1 b' (v bi'+i) == get h0 b (v bi+i))
/\ (forall (i:nat). {:pattern (get h1 b' i)} ((i >= v bi' + v len /\ i < length b') \/ i < v bi') ==> get h1 b' i == get h0 b' i) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked",
"FStar.Buffer.fst.checked"
],
"interface_file": false,
"source_file": "FStar.Buffer.Quantifiers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt32",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 8,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
h0: FStar.Monotonic.HyperStack.mem ->
h1: FStar.Monotonic.HyperStack.mem ->
b: FStar.Buffer.buffer a ->
bi: FStar.UInt32.t{FStar.UInt32.v bi <= FStar.Buffer.length b} ->
b': FStar.Buffer.buffer a {FStar.Buffer.disjoint b b'} ->
bi': FStar.UInt32.t{FStar.UInt32.v bi' <= FStar.Buffer.length b'} ->
len:
FStar.UInt32.t
{ FStar.UInt32.v bi + FStar.UInt32.v len <= FStar.Buffer.length b /\
FStar.UInt32.v bi' + FStar.UInt32.v len <= FStar.Buffer.length b' }
-> FStar.Pervasives.Lemma
(requires
FStar.Buffer.live h0 b /\ FStar.Buffer.live h0 b' /\ FStar.Buffer.live h1 b' /\
FStar.Seq.Base.slice (FStar.Buffer.as_seq h1 b')
(FStar.UInt32.v bi')
(FStar.UInt32.v bi' + FStar.UInt32.v len) ==
FStar.Seq.Base.slice (FStar.Buffer.as_seq h0 b)
(FStar.UInt32.v bi)
(FStar.UInt32.v bi + FStar.UInt32.v len) /\
FStar.Seq.Base.slice (FStar.Buffer.as_seq h1 b') 0 (FStar.UInt32.v bi') ==
FStar.Seq.Base.slice (FStar.Buffer.as_seq h0 b') 0 (FStar.UInt32.v bi') /\
FStar.Seq.Base.slice (FStar.Buffer.as_seq h1 b')
(FStar.UInt32.v bi' + FStar.UInt32.v len)
(FStar.Buffer.length b') ==
FStar.Seq.Base.slice (FStar.Buffer.as_seq h0 b')
(FStar.UInt32.v bi' + FStar.UInt32.v len)
(FStar.Buffer.length b'))
(ensures
FStar.Buffer.live h0 b /\ FStar.Buffer.live h0 b' /\ FStar.Buffer.live h1 b' /\
(forall (i: Prims.nat). {:pattern FStar.Buffer.get h1 b' (FStar.UInt32.v bi' + i)}
i < FStar.UInt32.v len ==>
FStar.Buffer.get h1 b' (FStar.UInt32.v bi' + i) ==
FStar.Buffer.get h0 b (FStar.UInt32.v bi + i)) /\
(forall (i: Prims.nat). {:pattern FStar.Buffer.get h1 b' i}
i >= FStar.UInt32.v bi' + FStar.UInt32.v len /\ i < FStar.Buffer.length b' \/
i < FStar.UInt32.v bi' ==>
FStar.Buffer.get h1 b' i == FStar.Buffer.get h0 b' i)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"FStar.Monotonic.HyperStack.mem",
"FStar.Buffer.buffer",
"FStar.UInt32.t",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt32.v",
"FStar.Buffer.length",
"FStar.Buffer.disjoint",
"Prims.l_and",
"Prims.op_Addition",
"FStar.Classical.forall_intro",
"Prims.nat",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"Prims._assert",
"Prims.l_imp",
"Prims.op_GreaterThanOrEqual",
"Prims.op_LessThan",
"Prims.eq2",
"FStar.Seq.Base.index",
"FStar.Seq.Base.slice",
"FStar.Buffer.as_seq",
"Prims.op_Subtraction",
"Prims.logical",
"Prims.l_or",
"FStar.Buffer.get"
] | [] | false | false | true | false | false | let lemma_blit_quantifiers #a h0 h1 b bi b' bi' len =
| let lemma_post_1 (j: nat) = j < v len ==> get h1 b' (v bi' + j) == get h0 b (v bi + j) in
let qj_1: j: nat -> Lemma (lemma_post_1 j) =
fun j ->
assert (j < v len ==>
Seq.index (Seq.slice (as_seq h1 b') (v bi') (v bi' + v len)) j ==
Seq.index (Seq.slice (as_seq h0 b) (v bi) (v bi + v len)) j)
in
let lemma_post_2 (j: nat) =
((j >= v bi' + v len /\ j < length b') \/ j < v bi') ==> get h1 b' j == get h0 b' j
in
let qj_2: j: nat -> Lemma (lemma_post_2 j) =
fun j ->
assert (j < v bi' ==>
Seq.index (Seq.slice (as_seq h1 b') 0 (v bi')) j ==
Seq.index (Seq.slice (as_seq h0 b') 0 (v bi')) j);
assert ((j >= v bi' + v len /\ j < length b') ==>
Seq.index (Seq.slice (as_seq h1 b') (v bi' + v len) (length b')) (j - (v bi' + v len)) ==
Seq.index (Seq.slice (as_seq h0 b') (v bi' + v len) (length b')) (j - (v bi' + v len)))
in
Classical.forall_intro #_ #lemma_post_1 qj_1;
Classical.forall_intro #_ #lemma_post_2 qj_2 | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.pose_lemma | val pose_lemma (t: term) : Tac binder | val pose_lemma (t: term) : Tac binder | let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 126,
"start_col": 0,
"start_line": 107
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.binder | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Derived.pose",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Reflection.V1.Formula.formula",
"Prims.unit",
"FStar.Pervasives.ignore",
"FStar.Pervasives.Native.option",
"FStar.Tactics.V1.Derived.trytac",
"FStar.Tactics.V1.Derived.trivial",
"FStar.Tactics.V1.Derived.flip",
"FStar.Tactics.V1.Derived.binder_to_term",
"FStar.Tactics.V1.Derived.tcut",
"FStar.Reflection.V1.Formula.term_as_formula'",
"FStar.Tactics.V1.Derived.norm_term",
"Prims.Nil",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.Native.tuple2",
"FStar.Stubs.Reflection.V1.Builtins.inspect_comp",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Stubs.Reflection.V1.Data.comp_view",
"FStar.Tactics.V1.Derived.fail",
"FStar.Stubs.Reflection.Types.comp",
"FStar.Stubs.Tactics.V1.Builtins.tcc",
"FStar.Stubs.Reflection.Types.env",
"FStar.Tactics.V1.Derived.cur_env"
] | [] | false | true | false | false | false | let pose_lemma (t: term) : Tac binder =
| let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in
let post = norm_term [] post in
match term_as_formula' pre with
| True_ -> pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b =
pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t))))
in
flip ();
ignore (trytac trivial);
b | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.revert_squash | val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x) | val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x) | let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in () | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 71,
"end_line": 31,
"start_col": 0,
"start_line": 31
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Prims.squash (forall (x: a). b x) -> x: a -> Prims.squash (b x) | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"Prims.l_Forall",
"Prims.unit"
] | [] | false | false | true | false | false | let revert_squash #a #b s x =
| let x:(_: unit{forall x. b x}) = s in
() | false |
MiniParseExample2.fst | MiniParseExample2.c2 | val c2:sum_case #somme #(bounded_u16 4) imp0 2us | val c2:sum_case #somme #(bounded_u16 4) imp0 2us | let c2 : sum_case #somme #(bounded_u16 4) imp0 2us =
Case #(bounded_u16 4) #somme
unit
parse_empty
serialize_empty
(fun (_: unit) -> W <: refine_with_tag #(bounded_u16 4) #somme imp0 (2us <: bounded_u16 4))
(fun (x: refine_with_tag #(bounded_u16 4) #somme imp0 (2us <: bounded_u16 4)) -> ())
() | {
"file_name": "examples/miniparse/MiniParseExample2.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 10,
"end_line": 53,
"start_col": 0,
"start_line": 46
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module MiniParseExample2
open MiniParse.Spec.TSum
module T = FStar.Tactics.V2
module U8 = FStar.UInt8
noeq
type somme = | U of FStar.UInt8.t | V | W | X
#set-options "--z3rlimit 16"
let imp0 (x: somme) : Tot (bounded_u16 4) = match x with
| U _ -> 0us <: bounded_u16 4
| V -> 1us <: bounded_u16 4
| W -> 2us <: bounded_u16 4
| _ -> 3us <: bounded_u16 4
#set-options "--print_universes --print_implicits"
let c3 : sum_case #somme #(bounded_u16 4) imp0 3us =
Case #(bounded_u16 4) #somme
unit
parse_empty
serialize_empty
(fun (_: unit) -> X <: refine_with_tag #(bounded_u16 4) #somme imp0 (3us <: bounded_u16 4))
(fun (_: refine_with_tag #(bounded_u16 4) #somme imp0 (3us <: bounded_u16 4)) -> ())
()
#set-options "--z3rlimit 64" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MiniParse.Spec.TSum.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "MiniParseExample2.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "MiniParse.Spec.TSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 64,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | MiniParse.Spec.TSum.sum_case MiniParseExample2.imp0 (2us <: FStar.UInt16.t) | Prims.Tot | [
"total"
] | [] | [
"MiniParse.Spec.TSum.Case",
"MiniParse.Spec.Int.bounded_u16",
"MiniParseExample2.somme",
"MiniParseExample2.imp0",
"FStar.UInt16.__uint_to_t",
"Prims.unit",
"MiniParse.Spec.Combinators.parse_empty",
"MiniParse.Spec.Combinators.serialize_empty",
"MiniParseExample2.W",
"MiniParse.Spec.TSum.refine_with_tag"
] | [] | false | false | false | false | false | let c2:sum_case #somme #(bounded_u16 4) imp0 2us =
| Case #(bounded_u16 4)
#somme
unit
parse_empty
serialize_empty
(fun (_: unit) -> W <: refine_with_tag #(bounded_u16 4) #somme imp0 (2us <: bounded_u16 4))
(fun (x: refine_with_tag #(bounded_u16 4) #somme imp0 (2us <: bounded_u16 4)) -> ())
() | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.cases_or | val cases_or (o: term) : Tac unit | val cases_or (o: term) : Tac unit | let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o]) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 205,
"start_col": 0,
"start_line": 204
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | o: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Derived.apply_lemma",
"FStar.Reflection.V1.Derived.mk_e_app",
"Prims.Cons",
"Prims.Nil",
"Prims.unit"
] | [] | false | true | false | false | false | let cases_or (o: term) : Tac unit =
| apply_lemma (mk_e_app (`or_ind) [o]) | false |
MiniParseExample2.fst | MiniParseExample2.c1 | val c1:sum_case #somme #(bounded_u16 4) imp0 1us | val c1:sum_case #somme #(bounded_u16 4) imp0 1us | let c1 : sum_case #somme #(bounded_u16 4) imp0 1us =
Case #(bounded_u16 4) #somme
unit
parse_empty
serialize_empty
(fun (_: unit) -> V <: refine_with_tag #(bounded_u16 4) #somme imp0 (1us <: bounded_u16 4))
(fun (_: refine_with_tag #(bounded_u16 4) #somme imp0 (1us <: bounded_u16 4)) -> ())
() | {
"file_name": "examples/miniparse/MiniParseExample2.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 10,
"end_line": 62,
"start_col": 0,
"start_line": 55
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module MiniParseExample2
open MiniParse.Spec.TSum
module T = FStar.Tactics.V2
module U8 = FStar.UInt8
noeq
type somme = | U of FStar.UInt8.t | V | W | X
#set-options "--z3rlimit 16"
let imp0 (x: somme) : Tot (bounded_u16 4) = match x with
| U _ -> 0us <: bounded_u16 4
| V -> 1us <: bounded_u16 4
| W -> 2us <: bounded_u16 4
| _ -> 3us <: bounded_u16 4
#set-options "--print_universes --print_implicits"
let c3 : sum_case #somme #(bounded_u16 4) imp0 3us =
Case #(bounded_u16 4) #somme
unit
parse_empty
serialize_empty
(fun (_: unit) -> X <: refine_with_tag #(bounded_u16 4) #somme imp0 (3us <: bounded_u16 4))
(fun (_: refine_with_tag #(bounded_u16 4) #somme imp0 (3us <: bounded_u16 4)) -> ())
()
#set-options "--z3rlimit 64"
let c2 : sum_case #somme #(bounded_u16 4) imp0 2us =
Case #(bounded_u16 4) #somme
unit
parse_empty
serialize_empty
(fun (_: unit) -> W <: refine_with_tag #(bounded_u16 4) #somme imp0 (2us <: bounded_u16 4))
(fun (x: refine_with_tag #(bounded_u16 4) #somme imp0 (2us <: bounded_u16 4)) -> ())
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MiniParse.Spec.TSum.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "MiniParseExample2.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "MiniParse.Spec.TSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 64,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | MiniParse.Spec.TSum.sum_case MiniParseExample2.imp0 (1us <: FStar.UInt16.t) | Prims.Tot | [
"total"
] | [] | [
"MiniParse.Spec.TSum.Case",
"MiniParse.Spec.Int.bounded_u16",
"MiniParseExample2.somme",
"MiniParseExample2.imp0",
"FStar.UInt16.__uint_to_t",
"Prims.unit",
"MiniParse.Spec.Combinators.parse_empty",
"MiniParse.Spec.Combinators.serialize_empty",
"MiniParseExample2.V",
"MiniParse.Spec.TSum.refine_with_tag"
] | [] | false | false | false | false | false | let c1:sum_case #somme #(bounded_u16 4) imp0 1us =
| Case #(bounded_u16 4)
#somme
unit
parse_empty
serialize_empty
(fun (_: unit) -> V <: refine_with_tag #(bounded_u16 4) #somme imp0 (1us <: bounded_u16 4))
(fun (_: refine_with_tag #(bounded_u16 4) #somme imp0 (1us <: bounded_u16 4)) -> ())
() | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.right | val right: Prims.unit -> Tac unit | val right: Prims.unit -> Tac unit | let right () : Tac unit =
apply_lemma (`or_intro_2) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 227,
"start_col": 0,
"start_line": 226
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.apply_lemma"
] | [] | false | true | false | false | false | let right () : Tac unit =
| apply_lemma (`or_intro_2) | false |
MiniParseExample2.fst | MiniParseExample2.c0 | val c0:sum_case #somme #(bounded_u16 4) imp0 0us | val c0:sum_case #somme #(bounded_u16 4) imp0 0us | let c0 : sum_case #somme #(bounded_u16 4) imp0 0us =
Case #(bounded_u16 4) #somme
U8.t
parse_u8
serialize_u8
(fun (x: U8.t) -> U x <: refine_with_tag #(bounded_u16 4) #somme imp0 (0us <: bounded_u16 4))
(fun (x: refine_with_tag #(bounded_u16 4) #somme imp0 0us) -> (
match x with
| U x -> x
))
() | {
"file_name": "examples/miniparse/MiniParseExample2.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 10,
"end_line": 74,
"start_col": 0,
"start_line": 64
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module MiniParseExample2
open MiniParse.Spec.TSum
module T = FStar.Tactics.V2
module U8 = FStar.UInt8
noeq
type somme = | U of FStar.UInt8.t | V | W | X
#set-options "--z3rlimit 16"
let imp0 (x: somme) : Tot (bounded_u16 4) = match x with
| U _ -> 0us <: bounded_u16 4
| V -> 1us <: bounded_u16 4
| W -> 2us <: bounded_u16 4
| _ -> 3us <: bounded_u16 4
#set-options "--print_universes --print_implicits"
let c3 : sum_case #somme #(bounded_u16 4) imp0 3us =
Case #(bounded_u16 4) #somme
unit
parse_empty
serialize_empty
(fun (_: unit) -> X <: refine_with_tag #(bounded_u16 4) #somme imp0 (3us <: bounded_u16 4))
(fun (_: refine_with_tag #(bounded_u16 4) #somme imp0 (3us <: bounded_u16 4)) -> ())
()
#set-options "--z3rlimit 64"
let c2 : sum_case #somme #(bounded_u16 4) imp0 2us =
Case #(bounded_u16 4) #somme
unit
parse_empty
serialize_empty
(fun (_: unit) -> W <: refine_with_tag #(bounded_u16 4) #somme imp0 (2us <: bounded_u16 4))
(fun (x: refine_with_tag #(bounded_u16 4) #somme imp0 (2us <: bounded_u16 4)) -> ())
()
let c1 : sum_case #somme #(bounded_u16 4) imp0 1us =
Case #(bounded_u16 4) #somme
unit
parse_empty
serialize_empty
(fun (_: unit) -> V <: refine_with_tag #(bounded_u16 4) #somme imp0 (1us <: bounded_u16 4))
(fun (_: refine_with_tag #(bounded_u16 4) #somme imp0 (1us <: bounded_u16 4)) -> ())
() | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"MiniParse.Spec.TSum.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt16.fsti.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "MiniParseExample2.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "MiniParse.Spec.TSum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 64,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | MiniParse.Spec.TSum.sum_case MiniParseExample2.imp0 (0us <: FStar.UInt16.t) | Prims.Tot | [
"total"
] | [] | [
"MiniParse.Spec.TSum.Case",
"MiniParse.Spec.Int.bounded_u16",
"MiniParseExample2.somme",
"MiniParseExample2.imp0",
"FStar.UInt16.__uint_to_t",
"FStar.UInt8.t",
"MiniParse.Spec.Int.parse_u8",
"MiniParse.Spec.Int.serialize_u8",
"MiniParseExample2.U",
"MiniParse.Spec.TSum.refine_with_tag"
] | [] | false | false | false | false | false | let c0:sum_case #somme #(bounded_u16 4) imp0 0us =
| Case #(bounded_u16 4)
#somme
U8.t
parse_u8
serialize_u8
(fun (x: U8.t) -> U x <: refine_with_tag #(bounded_u16 4) #somme imp0 (0us <: bounded_u16 4))
(fun (x: refine_with_tag #(bounded_u16 4) #somme imp0 0us) -> (match x with | U x -> x))
() | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.imp_intro_lem | val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b) | val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b) | let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f)) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 113,
"end_line": 74,
"start_col": 0,
"start_line": 73
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: a -> Prims.squash b) -> FStar.Pervasives.Lemma (ensures a ==> b) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.squash",
"FStar.Classical.give_witness",
"Prims.l_imp",
"FStar.Classical.arrow_to_impl",
"FStar.Squash.bind_squash",
"Prims.unit"
] | [] | false | false | true | false | false | let imp_intro_lem #a #b f =
| FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x: squash a) ->
FStar.Squash.bind_squash x f)) | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.cases_bool | val cases_bool (b: term) : Tac unit | val cases_bool (b: term) : Tac unit | let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ()) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 104,
"end_line": 215,
"start_col": 0,
"start_line": 212
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Derived.seq",
"Prims.unit",
"FStar.Tactics.V1.Derived.apply_lemma",
"FStar.Reflection.V1.Derived.mk_e_app",
"Prims.Cons",
"Prims.Nil",
"FStar.Pervasives.Native.option",
"FStar.Tactics.V1.Derived.trytac",
"FStar.Stubs.Tactics.V1.Builtins.clear_top",
"FStar.Stubs.Tactics.V1.Builtins.rewrite",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Logic.implies_intro"
] | [] | false | true | false | false | false | let cases_bool (b: term) : Tac unit =
| let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () ->
let _ =
trytac (fun () ->
let b = implies_intro () in
rewrite b;
clear_top ())
in
()) | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.and_elim | val and_elim (t: term) : Tac unit | val and_elim (t: term) : Tac unit | let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 7,
"end_line": 245,
"start_col": 0,
"start_line": 241
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Derived.try_with",
"Prims.unit",
"FStar.Tactics.V1.Derived.apply_lemma",
"Prims.exn"
] | [] | false | true | false | false | false | let and_elim (t: term) : Tac unit =
| try apply_lemma (`(__and_elim (`#t))) with | _ -> apply_lemma (`(__and_elim' (`#t))) | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.witness | val witness (t: term) : Tac unit | val witness (t: term) : Tac unit | let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 256,
"start_col": 0,
"start_line": 254
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Derived.exact",
"Prims.unit",
"FStar.Tactics.V1.Derived.apply_raw"
] | [] | false | true | false | false | false | let witness (t: term) : Tac unit =
| apply_raw (`__witness);
exact t | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.__elim_exists' | val __elim_exists'
(#t: _)
(#pred: (t -> Type0))
(#goal: _)
(h: (exists x. pred x))
(k: (x: t -> pred x -> squash goal))
: squash goal | val __elim_exists'
(#t: _)
(#pred: (t -> Type0))
(#goal: _)
(h: (exists x. pred x))
(k: (x: t -> pred x -> squash goal))
: squash goal | let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 70,
"end_line": 261,
"start_col": 0,
"start_line": 259
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: (exists (x: t). pred x) -> k: (x: t -> _: pred x -> Prims.squash goal) -> Prims.squash goal | Prims.Tot | [
"total"
] | [] | [
"Prims.l_Exists",
"Prims.squash",
"FStar.Squash.bind_squash",
"Prims.dtuple2"
] | [] | false | false | true | false | false | let __elim_exists'
#t
(#pred: (t -> Type0))
#goal
(h: (exists x. pred x))
(k: (x: t -> pred x -> squash goal))
: squash goal =
| FStar.Squash.bind_squash #(x: t & pred x) h (fun (| x , pf |) -> k x pf) | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.destruct_and | val destruct_and (t: term) : Tac (binder * binder) | val destruct_and (t: term) : Tac (binder * binder) | let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ()) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 249,
"start_col": 0,
"start_line": 247
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term
-> FStar.Tactics.Effect.Tac
(FStar.Stubs.Reflection.Types.binder * FStar.Stubs.Reflection.Types.binder) | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V1.Logic.implies_intro",
"Prims.unit",
"FStar.Tactics.V1.Logic.and_elim"
] | [] | false | true | false | false | false | let destruct_and (t: term) : Tac (binder * binder) =
| and_elim t;
(implies_intro (), implies_intro ()) | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.left | val left: Prims.unit -> Tac unit | val left: Prims.unit -> Tac unit | let left () : Tac unit =
apply_lemma (`or_intro_1) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 224,
"start_col": 0,
"start_line": 223
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.apply_lemma"
] | [] | false | true | false | false | false | let left () : Tac unit =
| apply_lemma (`or_intro_1) | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.elim_exists | val elim_exists (t: term) : Tac (binder & binder) | val elim_exists (t: term) : Tac (binder & binder) | let elim_exists (t : term) : Tac (binder & binder) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 9,
"end_line": 268,
"start_col": 0,
"start_line": 264
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term
-> FStar.Tactics.Effect.Tac
(FStar.Stubs.Reflection.Types.binder * FStar.Stubs.Reflection.Types.binder) | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Pervasives.Native.tuple2",
"FStar.Stubs.Tactics.V1.Builtins.intro",
"Prims.unit",
"FStar.Tactics.V1.Derived.apply_lemma"
] | [] | false | true | false | false | false | let elim_exists (t: term) : Tac (binder & binder) =
| apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf) | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.__forall_inst_sq | val __forall_inst_sq (#t: _) (#pred: (t -> Type0)) (h: squash (forall x. pred x)) (x: t)
: squash (pred x) | val __forall_inst_sq (#t: _) (#pred: (t -> Type0)) (h: squash (forall x. pred x)) (x: t)
: squash (pred x) | let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 82,
"end_line": 277,
"start_col": 0,
"start_line": 276
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binder & binder) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h: Prims.squash (forall (x: t). pred x) -> x: t -> Prims.squash (pred x) | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"Prims.l_Forall",
"FStar.Squash.bind_squash",
"FStar.Tactics.V1.Logic.__forall_inst"
] | [] | false | false | true | false | false | let __forall_inst_sq #t (#pred: (t -> Type0)) (h: squash (forall x. pred x)) (x: t)
: squash (pred x) =
| FStar.Squash.bind_squash h (fun (f: (forall x. pred x)) -> __forall_inst f x) | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.instantiate_as | val instantiate_as (fa x: term) (s: string) : Tac binder | val instantiate_as (fa x: term) (s: string) : Tac binder | let instantiate_as (fa : term) (x : term) (s : string) : Tac binder =
let b = instantiate fa x in
rename_to b s | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 286,
"start_col": 0,
"start_line": 284
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binder & binder) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binder =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | fa: FStar.Stubs.Reflection.Types.term -> x: FStar.Stubs.Reflection.Types.term -> s: Prims.string
-> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.binder | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"Prims.string",
"FStar.Stubs.Tactics.V1.Builtins.rename_to",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Logic.instantiate"
] | [] | false | true | false | false | false | let instantiate_as (fa x: term) (s: string) : Tac binder =
| let b = instantiate fa x in
rename_to b s | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.easy | val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a | val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a | let easy #a #x = x | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 327,
"start_col": 0,
"start_line": 327
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binder & binder) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binder =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binder =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:binders) (b:binder) : Tac (binders * binder) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#(binder_to_term b))));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = binders_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
private
let lemma_from_squash #a #b f x = let _ = f x in assert (b x)
private
let easy_fill () =
let _ = repeat intro in
(* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *)
let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in
smt () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let easy #a #x =
| x | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.instantiate | val instantiate (fa x: term) : Tac binder | val instantiate (fa x: term) : Tac binder | let instantiate (fa : term) (x : term) : Tac binder =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate" | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 32,
"end_line": 282,
"start_col": 0,
"start_line": 279
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binder & binder) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | fa: FStar.Stubs.Reflection.Types.term -> x: FStar.Stubs.Reflection.Types.term
-> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.binder | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Derived.try_with",
"FStar.Stubs.Reflection.Types.binder",
"Prims.unit",
"FStar.Tactics.V1.Derived.pose",
"Prims.exn",
"FStar.Tactics.V1.Derived.fail"
] | [] | false | true | false | false | false | let instantiate (fa x: term) : Tac binder =
| try pose (`__forall_inst_sq (`#fa) (`#x))
with
| _ -> try pose (`__forall_inst (`#fa) (`#x)) with | _ -> fail "could not instantiate" | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.__lemma_to_squash | val __lemma_to_squash:
#req: _ ->
#ens: _ ->
squash req ->
h: (unit -> Lemma (requires req) (ensures ens))
-> squash ens | val __lemma_to_squash:
#req: _ ->
#ens: _ ->
squash req ->
h: (unit -> Lemma (requires req) (ensures ens))
-> squash ens | let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h () | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 6,
"end_line": 105,
"start_col": 0,
"start_line": 104
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.squash req -> h: (_: Prims.unit -> FStar.Pervasives.Lemma (requires req) (ensures ens))
-> Prims.squash ens | Prims.Tot | [
"total"
] | [] | [
"Prims.squash",
"Prims.unit",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [] | false | false | true | false | false | let __lemma_to_squash #req #ens (_: squash req) (h: (unit -> Lemma (requires req) (ensures ens)))
: squash ens =
| h () | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.easy_fill | val easy_fill : _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | let easy_fill () =
let _ = repeat intro in
(* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *)
let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in
smt () | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 10,
"end_line": 324,
"start_col": 0,
"start_line": 320
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binder & binder) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binder =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binder =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:binders) (b:binder) : Tac (binders * binder) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#(binder_to_term b))));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = binders_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
private
let lemma_from_squash #a #b f x = let _ = f x in assert (b x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.smt",
"FStar.Pervasives.Native.option",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Derived.trytac",
"FStar.Stubs.Tactics.V1.Builtins.intro",
"FStar.Tactics.V1.Derived.apply",
"Prims.list",
"FStar.Tactics.V1.Derived.repeat"
] | [] | false | true | false | false | false | let easy_fill () =
| let _ = repeat intro in
let _ =
trytac (fun () ->
apply (`lemma_from_squash);
intro ())
in
smt () | false |
|
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.skolem | val skolem : _: Prims.unit
-> FStar.Tactics.Effect.Tac
(Prims.list (FStar.Stubs.Reflection.Types.binders * FStar.Stubs.Reflection.Types.binder)) | let skolem () =
let bs = binders_of_env (cur_env ()) in
map sk_binder bs | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 312,
"start_col": 0,
"start_line": 310
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binder & binder) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binder =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binder =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:binders) (b:binder) : Tac (binders * binder) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#(binder_to_term b))));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit
-> FStar.Tactics.Effect.Tac
(Prims.list (FStar.Stubs.Reflection.Types.binders * FStar.Stubs.Reflection.Types.binder)) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.Util.map",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Pervasives.Native.tuple2",
"FStar.Stubs.Reflection.Types.binders",
"FStar.Tactics.V1.Logic.sk_binder",
"Prims.list",
"FStar.Stubs.Reflection.V1.Builtins.binders_of_env",
"FStar.Stubs.Reflection.Types.env",
"FStar.Tactics.V1.Derived.cur_env"
] | [] | false | true | false | false | false | let skolem () =
| let bs = binders_of_env (cur_env ()) in
map sk_binder bs | false |
|
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.sk_binder' | val sk_binder' (acc: binders) (b: binder) : Tac (binders * binder) | val sk_binder' (acc: binders) (b: binder) : Tac (binders * binder) | let rec sk_binder' (acc:binders) (b:binder) : Tac (binders * binder) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#(binder_to_term b))));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 304,
"start_col": 0,
"start_line": 294
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binder & binder) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binder =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binder =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | acc: FStar.Stubs.Reflection.Types.binders -> b: FStar.Stubs.Reflection.Types.binder
-> FStar.Tactics.Effect.Tac
(FStar.Stubs.Reflection.Types.binders * FStar.Stubs.Reflection.Types.binder) | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.binders",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Derived.focus",
"FStar.Pervasives.Native.tuple2",
"Prims.unit",
"FStar.Tactics.V1.Derived.try_with",
"FStar.Tactics.V1.Logic.sk_binder'",
"Prims.Cons",
"FStar.Tactics.V1.Logic.implies_intro",
"FStar.Tactics.V1.Logic.forall_intro",
"FStar.Stubs.Tactics.V1.Builtins.clear",
"FStar.Tactics.V1.Derived.fail",
"Prims.bool",
"Prims.op_disEquality",
"Prims.int",
"FStar.Tactics.V1.Derived.ngoals",
"FStar.Tactics.V1.Derived.apply_lemma",
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Derived.binder_to_term",
"Prims.exn",
"FStar.Pervasives.Native.Mktuple2"
] | [
"recursion"
] | false | true | false | false | false | let rec sk_binder' (acc: binders) (b: binder) : Tac (binders * binder) =
| focus (fun () ->
try
(apply_lemma (`(sklem0 (`#(binder_to_term b))));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx :: acc) b')
with
| _ -> (acc, b)) | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.sk_binder | val sk_binder : b: FStar.Stubs.Reflection.Types.binder
-> FStar.Tactics.Effect.Tac
(FStar.Stubs.Reflection.Types.binders * FStar.Stubs.Reflection.Types.binder) | let sk_binder b = sk_binder' [] b | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 33,
"end_line": 308,
"start_col": 0,
"start_line": 308
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binder & binder) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binder =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binder =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:binders) (b:binder) : Tac (binders * binder) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#(binder_to_term b))));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: FStar.Stubs.Reflection.Types.binder
-> FStar.Tactics.Effect.Tac
(FStar.Stubs.Reflection.Types.binders * FStar.Stubs.Reflection.Types.binder) | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Logic.sk_binder'",
"Prims.Nil",
"FStar.Pervasives.Native.tuple2",
"FStar.Stubs.Reflection.Types.binders"
] | [] | false | true | false | false | false | let sk_binder b =
| sk_binder' [] b | false |
|
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.using_lemma | val using_lemma (t: term) : Tac binder | val using_lemma (t: term) : Tac binder | let using_lemma (t : term) : Tac binder =
try pose_lemma (`(lem1_fa (`#t))) with | _ ->
try pose_lemma (`(lem2_fa (`#t))) with | _ ->
try pose_lemma (`(lem3_fa (`#t))) with | _ ->
fail #binder "using_lemma: failed to instantiate" | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 364,
"start_col": 0,
"start_line": 360
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binder & binder) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binder =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binder =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:binders) (b:binder) : Tac (binders * binder) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#(binder_to_term b))));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = binders_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
private
let lemma_from_squash #a #b f x = let _ = f x in assert (b x)
private
let easy_fill () =
let _ = repeat intro in
(* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *)
let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in
smt ()
val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a
let easy #a #x = x
private
let lem1_fa #a #pre #post
($lem : (x:a -> Lemma (requires pre x) (ensures post x))) :
Lemma (forall (x:a). pre x ==> post x) =
let l' x : Lemma (pre x ==> post x) =
Classical.move_requires lem x
in
Classical.forall_intro l'
private
let lem2_fa #a #b #pre #post
($lem : (x:a -> y:b -> Lemma (requires pre x y) (ensures post x y))) :
Lemma (forall (x:a) (y:b). pre x y ==> post x y) =
let l' x y : Lemma (pre x y ==> post x y) =
Classical.move_requires (lem x) y
in
Classical.forall_intro_2 l'
private
let lem3_fa #a #b #c #pre #post
($lem : (x:a -> y:b -> z:c -> Lemma (requires pre x y z) (ensures post x y z))) :
Lemma (forall (x:a) (y:b) (z:c). pre x y z ==> post x y z) =
let l' x y z : Lemma (pre x y z ==> post x y z) =
Classical.move_requires (lem x y) z
in
Classical.forall_intro_3 l'
(** Add a lemma into the local context, quantified for all arguments.
Only works for lemmas with up to 3 arguments for now. It is expected
that `t` is a top-level name, this has not been battle-tested for other | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac FStar.Stubs.Reflection.Types.binder | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Derived.try_with",
"FStar.Stubs.Reflection.Types.binder",
"Prims.unit",
"FStar.Tactics.V1.Logic.pose_lemma",
"Prims.exn",
"FStar.Tactics.V1.Derived.fail"
] | [] | false | true | false | false | false | let using_lemma (t: term) : Tac binder =
| try pose_lemma (`(lem1_fa (`#t)))
with
| _ ->
try pose_lemma (`(lem2_fa (`#t)))
with
| _ ->
try pose_lemma (`(lem3_fa (`#t))) with | _ -> fail #binder "using_lemma: failed to instantiate" | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.lem3_fa | val lem3_fa
(#a #b #c #pre #post: _)
($lem: (x: a -> y: b -> z: c -> Lemma (requires pre x y z) (ensures post x y z)))
: Lemma (forall (x: a) (y: b) (z: c). pre x y z ==> post x y z) | val lem3_fa
(#a #b #c #pre #post: _)
($lem: (x: a -> y: b -> z: c -> Lemma (requires pre x y z) (ensures post x y z)))
: Lemma (forall (x: a) (y: b) (z: c). pre x y z ==> post x y z) | let lem3_fa #a #b #c #pre #post
($lem : (x:a -> y:b -> z:c -> Lemma (requires pre x y z) (ensures post x y z))) :
Lemma (forall (x:a) (y:b) (z:c). pre x y z ==> post x y z) =
let l' x y z : Lemma (pre x y z ==> post x y z) =
Classical.move_requires (lem x y) z
in
Classical.forall_intro_3 l' | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 354,
"start_col": 0,
"start_line": 348
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binder & binder) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binder =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binder =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:binders) (b:binder) : Tac (binders * binder) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#(binder_to_term b))));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = binders_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
private
let lemma_from_squash #a #b f x = let _ = f x in assert (b x)
private
let easy_fill () =
let _ = repeat intro in
(* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *)
let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in
smt ()
val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a
let easy #a #x = x
private
let lem1_fa #a #pre #post
($lem : (x:a -> Lemma (requires pre x) (ensures post x))) :
Lemma (forall (x:a). pre x ==> post x) =
let l' x : Lemma (pre x ==> post x) =
Classical.move_requires lem x
in
Classical.forall_intro l'
private
let lem2_fa #a #b #pre #post
($lem : (x:a -> y:b -> Lemma (requires pre x y) (ensures post x y))) :
Lemma (forall (x:a) (y:b). pre x y ==> post x y) =
let l' x y : Lemma (pre x y ==> post x y) =
Classical.move_requires (lem x) y
in
Classical.forall_intro_2 l' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $lem: (x: a -> y: b -> z: c -> FStar.Pervasives.Lemma (requires pre x y z) (ensures post x y z))
-> FStar.Pervasives.Lemma (ensures forall (x: a) (y: b) (z: c). pre x y z ==> post x y z) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro_3",
"Prims.l_imp",
"Prims.l_True",
"FStar.Classical.move_requires",
"Prims.l_Forall"
] | [] | false | false | true | false | false | let lem3_fa
#a
#b
#c
#pre
#post
($lem: (x: a -> y: b -> z: c -> Lemma (requires pre x y z) (ensures post x y z)))
: Lemma (forall (x: a) (y: b) (z: c). pre x y z ==> post x y z) =
| let l' x y z : Lemma (pre x y z ==> post x y z) = Classical.move_requires (lem x y) z in
Classical.forall_intro_3 l' | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.lem1_fa | val lem1_fa (#a #pre #post: _) ($lem: (x: a -> Lemma (requires pre x) (ensures post x)))
: Lemma (forall (x: a). pre x ==> post x) | val lem1_fa (#a #pre #post: _) ($lem: (x: a -> Lemma (requires pre x) (ensures post x)))
: Lemma (forall (x: a). pre x ==> post x) | let lem1_fa #a #pre #post
($lem : (x:a -> Lemma (requires pre x) (ensures post x))) :
Lemma (forall (x:a). pre x ==> post x) =
let l' x : Lemma (pre x ==> post x) =
Classical.move_requires lem x
in
Classical.forall_intro l' | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 336,
"start_col": 0,
"start_line": 330
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binder & binder) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binder =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binder =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:binders) (b:binder) : Tac (binders * binder) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#(binder_to_term b))));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = binders_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
private
let lemma_from_squash #a #b f x = let _ = f x in assert (b x)
private
let easy_fill () =
let _ = repeat intro in
(* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *)
let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in
smt ()
val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a
let easy #a #x = x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $lem: (x: a -> FStar.Pervasives.Lemma (requires pre x) (ensures post x))
-> FStar.Pervasives.Lemma (ensures forall (x: a). pre x ==> post x) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro",
"Prims.l_imp",
"Prims.l_True",
"FStar.Classical.move_requires",
"Prims.l_Forall"
] | [] | false | false | true | false | false | let lem1_fa #a #pre #post ($lem: (x: a -> Lemma (requires pre x) (ensures post x)))
: Lemma (forall (x: a). pre x ==> post x) =
| let l' x : Lemma (pre x ==> post x) = Classical.move_requires lem x in
Classical.forall_intro l' | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.vbind | val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q | val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q | let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 95,
"end_line": 187,
"start_col": 0,
"start_line": 187
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | sq: Prims.squash p -> f: (_: p -> Prims.squash q) -> FStar.Pervasives.Lemma (ensures q) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.squash",
"FStar.Classical.give_witness_from_squash",
"FStar.Squash.bind_squash",
"Prims.unit"
] | [] | true | false | true | false | false | let vbind #p #q sq f =
| FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f) | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.simplify_eq_implication | val simplify_eq_implication: Prims.unit -> Tac unit | val simplify_eq_implication: Prims.unit -> Tac unit | let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 163,
"start_col": 0,
"start_line": 152
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Tactics.V1.Derived.fail",
"FStar.Reflection.V1.Formula.formula",
"FStar.Stubs.Reflection.Types.term",
"FStar.Tactics.V1.Logic.visit",
"FStar.Tactics.V1.Logic.simplify_eq_implication",
"FStar.Stubs.Tactics.V1.Builtins.clear_top",
"FStar.Stubs.Tactics.V1.Builtins.rewrite",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Logic.implies_intro",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V1.Derived.destruct_equality_implication",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.V1.Derived.cur_goal",
"FStar.Stubs.Reflection.Types.env",
"FStar.Tactics.V1.Derived.cur_env"
] | [
"recursion"
] | false | true | false | false | false | let rec simplify_eq_implication () : Tac unit =
| let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit simplify_eq_implication | false |
LowStar.Lens.fst | LowStar.Lens.mods | val mods (l:hs_lens 'a 'b) (h:HS.mem) : Type0 | val mods (l:hs_lens 'a 'b) (h:HS.mem) : Type0 | let mods (l:hs_lens 'a 'b) (h:HS.mem) =
B.modifies (as_loc l.footprint) l.snapshot h /\
FStar.HyperStack.ST.equal_domains l.snapshot h | {
"file_name": "examples/data_structures/LowStar.Lens.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 48,
"end_line": 24,
"start_col": 0,
"start_line": 22
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.Lens
open FStar.HyperStack.ST
module B = LowStar.Buffer
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "LowStar.Lens.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: LowStar.Lens.hs_lens 'a 'b -> h: FStar.Monotonic.HyperStack.mem -> Type0 | Prims.Tot | [
"total"
] | [] | [
"LowStar.Lens.hs_lens",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Lens.as_loc",
"LowStar.Lens.__proj__Mkhs_lens__item__footprint",
"LowStar.Lens.__proj__Mkhs_lens__item__snapshot",
"FStar.HyperStack.ST.equal_domains"
] | [] | false | false | false | true | true | let mods (l: hs_lens 'a 'b) (h: HS.mem) =
| B.modifies (as_loc l.footprint) l.snapshot h /\ FStar.HyperStack.ST.equal_domains l.snapshot h | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.lem2_fa | val lem2_fa
(#a #b #pre #post: _)
($lem: (x: a -> y: b -> Lemma (requires pre x y) (ensures post x y)))
: Lemma (forall (x: a) (y: b). pre x y ==> post x y) | val lem2_fa
(#a #b #pre #post: _)
($lem: (x: a -> y: b -> Lemma (requires pre x y) (ensures post x y)))
: Lemma (forall (x: a) (y: b). pre x y ==> post x y) | let lem2_fa #a #b #pre #post
($lem : (x:a -> y:b -> Lemma (requires pre x y) (ensures post x y))) :
Lemma (forall (x:a) (y:b). pre x y ==> post x y) =
let l' x y : Lemma (pre x y ==> post x y) =
Classical.move_requires (lem x) y
in
Classical.forall_intro_2 l' | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 29,
"end_line": 345,
"start_col": 0,
"start_line": 339
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binder & binder) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binder =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binder =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:binders) (b:binder) : Tac (binders * binder) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#(binder_to_term b))));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = binders_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x)
private
let lemma_from_squash #a #b f x = let _ = f x in assert (b x)
private
let easy_fill () =
let _ = repeat intro in
(* If the goal is `a -> Lemma b`, intro will fail, try to use this switch *)
let _ = trytac (fun () -> apply (`lemma_from_squash); intro ()) in
smt ()
val easy : #a:Type -> (#[easy_fill ()] _ : a) -> a
let easy #a #x = x
private
let lem1_fa #a #pre #post
($lem : (x:a -> Lemma (requires pre x) (ensures post x))) :
Lemma (forall (x:a). pre x ==> post x) =
let l' x : Lemma (pre x ==> post x) =
Classical.move_requires lem x
in
Classical.forall_intro l' | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | $lem: (x: a -> y: b -> FStar.Pervasives.Lemma (requires pre x y) (ensures post x y))
-> FStar.Pervasives.Lemma (ensures forall (x: a) (y: b). pre x y ==> post x y) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.unit",
"Prims.squash",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Classical.forall_intro_2",
"Prims.l_imp",
"Prims.l_True",
"FStar.Classical.move_requires",
"Prims.l_Forall"
] | [] | false | false | true | false | false | let lem2_fa #a #b #pre #post ($lem: (x: a -> y: b -> Lemma (requires pre x y) (ensures post x y)))
: Lemma (forall (x: a) (y: b). pre x y ==> post x y) =
| let l' x y : Lemma (pre x y ==> post x y) = Classical.move_requires (lem x) y in
Classical.forall_intro_2 l' | false |
LowStar.Lens.fst | LowStar.Lens.inv | val inv (#roots:_) (#view:_) (l:hs_lens roots view) (h:HS.mem) : Type0 | val inv (#roots:_) (#view:_) (l:hs_lens roots view) (h:HS.mem) : Type0 | let inv #roots #view (l:hs_lens roots view) (h:HS.mem) =
l.invariant l.x h /\
mods l h | {
"file_name": "examples/data_structures/LowStar.Lens.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 10,
"end_line": 28,
"start_col": 0,
"start_line": 26
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.Lens
open FStar.HyperStack.ST
module B = LowStar.Buffer
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
let mods (l:hs_lens 'a 'b) (h:HS.mem) =
B.modifies (as_loc l.footprint) l.snapshot h /\
FStar.HyperStack.ST.equal_domains l.snapshot h | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "LowStar.Lens.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: LowStar.Lens.hs_lens roots view -> h: FStar.Monotonic.HyperStack.mem -> Type0 | Prims.Tot | [
"total"
] | [] | [
"LowStar.Lens.hs_lens",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Lens.__proj__Mkhs_lens__item__invariant",
"LowStar.Lens.__proj__Mkhs_lens__item__x",
"LowStar.Lens.mods"
] | [] | false | false | false | true | true | let inv #roots #view (l: hs_lens roots view) (h: HS.mem) =
| l.invariant l.x h /\ mods l h | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.unfold_definition_and_simplify_eq | val unfold_definition_and_simplify_eq (tm: term) : Tac unit | val unfold_definition_and_simplify_eq (tm: term) : Tac unit | let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 184,
"start_col": 0,
"start_line": 168
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | tm: FStar.Stubs.Reflection.Types.term -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.V1.Builtins.term_eq",
"FStar.Tactics.V1.Derived.trivial",
"Prims.unit",
"Prims.bool",
"FStar.Reflection.V1.Formula.formula",
"FStar.Tactics.V1.Derived.fail",
"FStar.Tactics.V1.Logic.visit",
"FStar.Tactics.V1.Logic.unfold_definition_and_simplify_eq",
"FStar.Stubs.Tactics.V1.Builtins.clear_top",
"FStar.Stubs.Tactics.V1.Builtins.rewrite",
"FStar.Stubs.Reflection.Types.binder",
"FStar.Tactics.V1.Logic.implies_intro",
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.tuple2",
"FStar.Tactics.V1.Derived.destruct_equality_implication",
"FStar.Reflection.V1.Formula.term_as_formula",
"FStar.Stubs.Reflection.Types.typ",
"FStar.Tactics.V1.Derived.cur_goal"
] | [
"recursion"
] | false | true | false | false | false | let rec unfold_definition_and_simplify_eq (tm: term) : Tac unit =
| let g = cur_goal () in
match term_as_formula g with
| App hd arg -> if term_eq hd tm then trivial ()
| _ ->
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm) | false |
ProgramOptimizations.fst | ProgramOptimizations.com12 | val com12 : ProgramOptimizations.com | let com12 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (Var x)) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 34,
"end_line": 160,
"start_col": 0,
"start_line": 159
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z
*)
let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1; | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ProgramOptimizations.com | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.Seq",
"ProgramOptimizations.Assign",
"ProgramOptimizations.x",
"ProgramOptimizations.IOp",
"ProgramOptimizations.Add",
"ProgramOptimizations.Var",
"ProgramOptimizations.y",
"ProgramOptimizations.Const",
"ProgramOptimizations.z"
] | [] | false | false | false | true | false | let com12 =
| Seq (Assign x (IOp Add (Var y) (Const 1))) (Assign z (Var x)) | false |
|
Spec.Frodo.Test.fst | Spec.Frodo.Test.test1_keypaircoins | val test1_keypaircoins : Prims.list Lib.IntTypes.uint8 | let test1_keypaircoins =
List.Tot.map u8_from_UInt8
[
0xa6uy; 0x65uy; 0x65uy; 0x9fuy; 0xfbuy; 0xe4uy; 0x06uy; 0x5cuy; 0xcauy; 0x81uy; 0x5auy; 0x45uy;
0xe4uy; 0x94uy; 0xd8uy; 0x01uy; 0x90uy; 0x30uy; 0x33uy; 0x55uy; 0x33uy; 0x84uy; 0x2euy; 0xe4uy;
0x4cuy; 0x55uy; 0x8fuy; 0xd8uy; 0xaeuy; 0x4buy; 0x4euy; 0x91uy; 0x62uy; 0xfeuy; 0xc7uy; 0x9auy;
0xc5uy; 0xcduy; 0x1fuy; 0xe2uy; 0xd2uy; 0x00uy; 0x63uy; 0x39uy; 0xaauy; 0xb1uy; 0xf3uy; 0x17uy
] | {
"file_name": "specs/tests/Spec.Frodo.Test.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 62,
"start_col": 0,
"start_line": 55
} | module Spec.Frodo.Test
open FStar.Mul
open Lib.IntTypes
open Lib.RawIntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Frodo.KEM
open Spec.Frodo.KEM.KeyGen
open Spec.Frodo.KEM.Encaps
open Spec.Frodo.KEM.Decaps
open Spec.Frodo.Params
open FStar.All
module PS = Lib.PrintSequence
#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
let compare (#len: size_nat) (test_expected: lbytes len) (test_result: lbytes len) =
for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) test_expected test_result
let test_frodo
(a:frodo_alg)
(gen_a:frodo_gen_a)
(keypaircoins: list uint8 {List.Tot.length keypaircoins == 2 * crypto_bytes a + bytes_seed_a})
(enccoins: list uint8 {List.Tot.length enccoins == bytes_mu a})
(ss_expected: list uint8 {List.Tot.length ss_expected == crypto_bytes a})
(pk_expected: list uint8 {List.Tot.length pk_expected == crypto_publickeybytes a})
(ct_expected: list uint8 {List.Tot.length ct_expected == crypto_ciphertextbytes a})
(sk_expected: list uint8 {List.Tot.length sk_expected == crypto_secretkeybytes a})
: ML bool =
let keypaircoins = createL keypaircoins in
let enccoins = createL enccoins in
let ss_expected = createL ss_expected in
let pk_expected = createL pk_expected in
let ct_expected = createL ct_expected in
let sk_expected = createL sk_expected in
let pk, sk = crypto_kem_keypair_ a gen_a keypaircoins in
let ct, ss1 = crypto_kem_enc_ a gen_a enccoins pk in
let ss2 = crypto_kem_dec a gen_a ct sk in
let r_pk = compare pk_expected pk in
let r_sk = compare sk_expected sk in
let r_ct = compare ct_expected ct in
let r_ss = PS.print_compare true (crypto_bytes a) ss1 ss2 in
let r_ss1 = PS.print_compare true (crypto_bytes a) ss_expected ss2 in
r_pk && r_sk && r_ct && r_ss && r_ss1
//
// Test1. FrodoKEM-64. SHAKE128 | {
"checked_file": "/",
"dependencies": [
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.KEM.Encaps.fst.checked",
"Spec.Frodo.KEM.Decaps.fst.checked",
"Spec.Frodo.KEM.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintSequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.Test.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.PrintSequence",
"short_module": "PS"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.Decaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.Encaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.list Lib.IntTypes.uint8 | Prims.Tot | [
"total"
] | [] | [
"FStar.List.Tot.Base.map",
"FStar.UInt8.t",
"Lib.IntTypes.uint8",
"Lib.RawIntTypes.u8_from_UInt8",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | false | false | false | true | false | let test1_keypaircoins =
| List.Tot.map u8_from_UInt8
[
0xa6uy; 0x65uy; 0x65uy; 0x9fuy; 0xfbuy; 0xe4uy; 0x06uy; 0x5cuy; 0xcauy; 0x81uy; 0x5auy; 0x45uy;
0xe4uy; 0x94uy; 0xd8uy; 0x01uy; 0x90uy; 0x30uy; 0x33uy; 0x55uy; 0x33uy; 0x84uy; 0x2euy; 0xe4uy;
0x4cuy; 0x55uy; 0x8fuy; 0xd8uy; 0xaeuy; 0x4buy; 0x4euy; 0x91uy; 0x62uy; 0xfeuy; 0xc7uy; 0x9auy;
0xc5uy; 0xcduy; 0x1fuy; 0xe2uy; 0xd2uy; 0x00uy; 0x63uy; 0x39uy; 0xaauy; 0xb1uy; 0xf3uy; 0x17uy
] | false |
|
Spec.Frodo.Test.fst | Spec.Frodo.Test.test1_ss_expected | val test1_ss_expected : Prims.list Lib.IntTypes.uint8 | let test1_ss_expected =
List.Tot.map u8_from_UInt8
[
0xf8uy; 0x96uy; 0x15uy; 0x94uy; 0x80uy; 0x9fuy; 0xebuy; 0x77uy; 0x56uy; 0xbeuy; 0x37uy; 0x69uy;
0xa0uy; 0xeauy; 0x60uy; 0x16uy
] | {
"file_name": "specs/tests/Spec.Frodo.Test.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 76,
"start_col": 0,
"start_line": 71
} | module Spec.Frodo.Test
open FStar.Mul
open Lib.IntTypes
open Lib.RawIntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Frodo.KEM
open Spec.Frodo.KEM.KeyGen
open Spec.Frodo.KEM.Encaps
open Spec.Frodo.KEM.Decaps
open Spec.Frodo.Params
open FStar.All
module PS = Lib.PrintSequence
#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
let compare (#len: size_nat) (test_expected: lbytes len) (test_result: lbytes len) =
for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) test_expected test_result
let test_frodo
(a:frodo_alg)
(gen_a:frodo_gen_a)
(keypaircoins: list uint8 {List.Tot.length keypaircoins == 2 * crypto_bytes a + bytes_seed_a})
(enccoins: list uint8 {List.Tot.length enccoins == bytes_mu a})
(ss_expected: list uint8 {List.Tot.length ss_expected == crypto_bytes a})
(pk_expected: list uint8 {List.Tot.length pk_expected == crypto_publickeybytes a})
(ct_expected: list uint8 {List.Tot.length ct_expected == crypto_ciphertextbytes a})
(sk_expected: list uint8 {List.Tot.length sk_expected == crypto_secretkeybytes a})
: ML bool =
let keypaircoins = createL keypaircoins in
let enccoins = createL enccoins in
let ss_expected = createL ss_expected in
let pk_expected = createL pk_expected in
let ct_expected = createL ct_expected in
let sk_expected = createL sk_expected in
let pk, sk = crypto_kem_keypair_ a gen_a keypaircoins in
let ct, ss1 = crypto_kem_enc_ a gen_a enccoins pk in
let ss2 = crypto_kem_dec a gen_a ct sk in
let r_pk = compare pk_expected pk in
let r_sk = compare sk_expected sk in
let r_ct = compare ct_expected ct in
let r_ss = PS.print_compare true (crypto_bytes a) ss1 ss2 in
let r_ss1 = PS.print_compare true (crypto_bytes a) ss_expected ss2 in
r_pk && r_sk && r_ct && r_ss && r_ss1
//
// Test1. FrodoKEM-64. SHAKE128
//
let test1_keypaircoins =
List.Tot.map u8_from_UInt8
[
0xa6uy; 0x65uy; 0x65uy; 0x9fuy; 0xfbuy; 0xe4uy; 0x06uy; 0x5cuy; 0xcauy; 0x81uy; 0x5auy; 0x45uy;
0xe4uy; 0x94uy; 0xd8uy; 0x01uy; 0x90uy; 0x30uy; 0x33uy; 0x55uy; 0x33uy; 0x84uy; 0x2euy; 0xe4uy;
0x4cuy; 0x55uy; 0x8fuy; 0xd8uy; 0xaeuy; 0x4buy; 0x4euy; 0x91uy; 0x62uy; 0xfeuy; 0xc7uy; 0x9auy;
0xc5uy; 0xcduy; 0x1fuy; 0xe2uy; 0xd2uy; 0x00uy; 0x63uy; 0x39uy; 0xaauy; 0xb1uy; 0xf3uy; 0x17uy
]
let test1_enccoins =
List.Tot.map u8_from_UInt8
[
0x8duy; 0xf3uy; 0xfauy; 0xe3uy; 0x83uy; 0x27uy; 0xc5uy; 0x3cuy; 0xc1uy; 0xc4uy; 0x8cuy; 0x60uy;
0xb2uy; 0x52uy; 0x2buy; 0xb5uy
] | {
"checked_file": "/",
"dependencies": [
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.KEM.Encaps.fst.checked",
"Spec.Frodo.KEM.Decaps.fst.checked",
"Spec.Frodo.KEM.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintSequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.Test.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.PrintSequence",
"short_module": "PS"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.Decaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.Encaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.list Lib.IntTypes.uint8 | Prims.Tot | [
"total"
] | [] | [
"FStar.List.Tot.Base.map",
"FStar.UInt8.t",
"Lib.IntTypes.uint8",
"Lib.RawIntTypes.u8_from_UInt8",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | false | false | false | true | false | let test1_ss_expected =
| List.Tot.map u8_from_UInt8
[
0xf8uy; 0x96uy; 0x15uy; 0x94uy; 0x80uy; 0x9fuy; 0xebuy; 0x77uy; 0x56uy; 0xbeuy; 0x37uy; 0x69uy;
0xa0uy; 0xeauy; 0x60uy; 0x16uy
] | false |
|
ProgramOptimizations.fst | ProgramOptimizations.rel11 | val rel11 : ProgramOptimizations.rel_exp | let rel11 = RROp Eq (Left y) (Right y) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 162,
"start_col": 0,
"start_line": 162
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z
*)
let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (IOp Add (Var y) (Const 1))) //z := y + 1
let com12 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (Var x)) //z := x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ProgramOptimizations.rel_exp | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.RROp",
"ProgramOptimizations.Eq",
"ProgramOptimizations.Left",
"ProgramOptimizations.y",
"ProgramOptimizations.Right"
] | [] | false | false | false | true | false | let rel11 =
| RROp Eq (Left y) (Right y) | false |
|
ProgramOptimizations.fst | ProgramOptimizations.com21 | val com21 : ProgramOptimizations.com | let com21 = If (ROp Gt (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 7)) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 181,
"start_col": 0,
"start_line": 179
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z
*)
let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (IOp Add (Var y) (Const 1))) //z := y + 1
let com12 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (Var x)) //z := x
let rel11 = RROp Eq (Left y) (Right y) //Left y = Right y
let rel12 = RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x /\
(RROp Eq (Left z) (Right z)) //Left z = Right z
let lemma_sound_optimization1 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel11 h_left h_right)) //h_left, h_right are related by rel1
(ensures (let _, h_left' = reify (com_denotation com11) h_left in
let _, h_right' = reify (com_denotation com12) h_right in
rel_exp_denotation rel12 h_left' h_right')) //[|com1|](h_left), [|com2|](h_right) are related by rel2
= ()
(*
* dead code elimination
* proving com1 = if x > 3 then y := x else y := 7
* and com2 = skip
* are equivalent if all that the rest of the computation cares for is y > 2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ProgramOptimizations.com | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.If",
"ProgramOptimizations.ROp",
"ProgramOptimizations.Gt",
"ProgramOptimizations.Var",
"ProgramOptimizations.x",
"ProgramOptimizations.Const",
"ProgramOptimizations.Assign",
"ProgramOptimizations.y"
] | [] | false | false | false | true | false | let com21 =
| If (ROp Gt (Var x) (Const 3)) (Assign y (Var x)) (Assign y (Const 7)) | false |
|
ProgramOptimizations.fst | ProgramOptimizations.com22 | val com22 : ProgramOptimizations.com | let com22 = Skip | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 16,
"end_line": 182,
"start_col": 0,
"start_line": 182
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z
*)
let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (IOp Add (Var y) (Const 1))) //z := y + 1
let com12 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (Var x)) //z := x
let rel11 = RROp Eq (Left y) (Right y) //Left y = Right y
let rel12 = RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x /\
(RROp Eq (Left z) (Right z)) //Left z = Right z
let lemma_sound_optimization1 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel11 h_left h_right)) //h_left, h_right are related by rel1
(ensures (let _, h_left' = reify (com_denotation com11) h_left in
let _, h_right' = reify (com_denotation com12) h_right in
rel_exp_denotation rel12 h_left' h_right')) //[|com1|](h_left), [|com2|](h_right) are related by rel2
= ()
(*
* dead code elimination
* proving com1 = if x > 3 then y := x else y := 7
* and com2 = skip
* are equivalent if all that the rest of the computation cares for is y > 2
*)
let com21 = If (ROp Gt (Var x) (Const 3))
(Assign y (Var x)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ProgramOptimizations.com | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.Skip"
] | [] | false | false | false | true | false | let com22 =
| Skip | false |
|
ProgramOptimizations.fst | ProgramOptimizations.rel22 | val rel22 : ProgramOptimizations.rel_exp | let rel22 = RBOp And (RROp Gt (Left y) (GConst 2)) //Left y > 2
(RROp Gt (Right y) (GConst 2)) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 188,
"start_col": 0,
"start_line": 187
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z
*)
let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (IOp Add (Var y) (Const 1))) //z := y + 1
let com12 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (Var x)) //z := x
let rel11 = RROp Eq (Left y) (Right y) //Left y = Right y
let rel12 = RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x /\
(RROp Eq (Left z) (Right z)) //Left z = Right z
let lemma_sound_optimization1 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel11 h_left h_right)) //h_left, h_right are related by rel1
(ensures (let _, h_left' = reify (com_denotation com11) h_left in
let _, h_right' = reify (com_denotation com12) h_right in
rel_exp_denotation rel12 h_left' h_right')) //[|com1|](h_left), [|com2|](h_right) are related by rel2
= ()
(*
* dead code elimination
* proving com1 = if x > 3 then y := x else y := 7
* and com2 = skip
* are equivalent if all that the rest of the computation cares for is y > 2
*)
let com21 = If (ROp Gt (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 7)) //if x > 3 then y := x else y := 7
let com22 = Skip
let rel21 = RBOp And (RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x
(RROp Gt (Left y) (GConst 2))) //Left y > 2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ProgramOptimizations.rel_exp | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.RBOp",
"ProgramOptimizations.And",
"ProgramOptimizations.RROp",
"ProgramOptimizations.Gt",
"ProgramOptimizations.Left",
"ProgramOptimizations.y",
"ProgramOptimizations.GConst",
"ProgramOptimizations.Right"
] | [] | false | false | false | true | false | let rel22 =
| RBOp And (RROp Gt (Left y) (GConst 2)) (RROp Gt (Right y) (GConst 2)) | false |
|
ProgramOptimizations.fst | ProgramOptimizations.rel12 | val rel12 : ProgramOptimizations.rel_exp | let rel12 = RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x /\
(RROp Eq (Left z) (Right z)) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 49,
"end_line": 164,
"start_col": 0,
"start_line": 163
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z
*)
let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (IOp Add (Var y) (Const 1))) //z := y + 1
let com12 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (Var x)) //z := x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ProgramOptimizations.rel_exp | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.RBOp",
"ProgramOptimizations.And",
"ProgramOptimizations.RROp",
"ProgramOptimizations.Eq",
"ProgramOptimizations.Left",
"ProgramOptimizations.x",
"ProgramOptimizations.Right",
"ProgramOptimizations.z"
] | [] | false | false | false | true | false | let rel12 =
| RBOp And (RROp Eq (Left x) (Right x)) (RROp Eq (Left z) (Right z)) | false |
|
ProgramOptimizations.fst | ProgramOptimizations.com31 | val com31 : ProgramOptimizations.com | let com31 = If (ROp Eq (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 3)) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 28,
"end_line": 205,
"start_col": 0,
"start_line": 203
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z
*)
let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (IOp Add (Var y) (Const 1))) //z := y + 1
let com12 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (Var x)) //z := x
let rel11 = RROp Eq (Left y) (Right y) //Left y = Right y
let rel12 = RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x /\
(RROp Eq (Left z) (Right z)) //Left z = Right z
let lemma_sound_optimization1 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel11 h_left h_right)) //h_left, h_right are related by rel1
(ensures (let _, h_left' = reify (com_denotation com11) h_left in
let _, h_right' = reify (com_denotation com12) h_right in
rel_exp_denotation rel12 h_left' h_right')) //[|com1|](h_left), [|com2|](h_right) are related by rel2
= ()
(*
* dead code elimination
* proving com1 = if x > 3 then y := x else y := 7
* and com2 = skip
* are equivalent if all that the rest of the computation cares for is y > 2
*)
let com21 = If (ROp Gt (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 7)) //if x > 3 then y := x else y := 7
let com22 = Skip
let rel21 = RBOp And (RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x
(RROp Gt (Left y) (GConst 2))) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let rel22 = RBOp And (RROp Gt (Left y) (GConst 2)) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let lemma_sound_optimization2 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel21 h_left h_right))
(ensures (let _, h_left' = reify (com_denotation com21) h_left in
let _, h_right' = reify (com_denotation com22) h_right in
rel_exp_denotation rel22 h_left' h_right'))
= ()
(*
* optimization
* proving com1 = if x = 3 then y := x else y := 3
* and com2 = y := 3
* are equivalent | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ProgramOptimizations.com | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.If",
"ProgramOptimizations.ROp",
"ProgramOptimizations.Eq",
"ProgramOptimizations.Var",
"ProgramOptimizations.x",
"ProgramOptimizations.Const",
"ProgramOptimizations.Assign",
"ProgramOptimizations.y"
] | [] | false | false | false | true | false | let com31 =
| If (ROp Eq (Var x) (Const 3)) (Assign y (Var x)) (Assign y (Const 3)) | false |
|
ProgramOptimizations.fst | ProgramOptimizations.com11 | val com11 : ProgramOptimizations.com | let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (IOp Add (Var y) (Const 1))) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 54,
"end_line": 158,
"start_col": 0,
"start_line": 157
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ProgramOptimizations.com | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.Seq",
"ProgramOptimizations.Assign",
"ProgramOptimizations.x",
"ProgramOptimizations.IOp",
"ProgramOptimizations.Add",
"ProgramOptimizations.Var",
"ProgramOptimizations.y",
"ProgramOptimizations.Const",
"ProgramOptimizations.z"
] | [] | false | false | false | true | false | let com11 =
| Seq (Assign x (IOp Add (Var y) (Const 1))) (Assign z (IOp Add (Var y) (Const 1))) | false |
|
ProgramOptimizations.fst | ProgramOptimizations.rel21 | val rel21 : ProgramOptimizations.rel_exp | let rel21 = RBOp And (RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x
(RROp Gt (Left y) (GConst 2))) //Left y > 2
(RROp Gt (Right y) (GConst 2)) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 186,
"start_col": 0,
"start_line": 184
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z
*)
let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (IOp Add (Var y) (Const 1))) //z := y + 1
let com12 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (Var x)) //z := x
let rel11 = RROp Eq (Left y) (Right y) //Left y = Right y
let rel12 = RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x /\
(RROp Eq (Left z) (Right z)) //Left z = Right z
let lemma_sound_optimization1 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel11 h_left h_right)) //h_left, h_right are related by rel1
(ensures (let _, h_left' = reify (com_denotation com11) h_left in
let _, h_right' = reify (com_denotation com12) h_right in
rel_exp_denotation rel12 h_left' h_right')) //[|com1|](h_left), [|com2|](h_right) are related by rel2
= ()
(*
* dead code elimination
* proving com1 = if x > 3 then y := x else y := 7
* and com2 = skip
* are equivalent if all that the rest of the computation cares for is y > 2
*)
let com21 = If (ROp Gt (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 7)) //if x > 3 then y := x else y := 7
let com22 = Skip | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ProgramOptimizations.rel_exp | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.RBOp",
"ProgramOptimizations.And",
"ProgramOptimizations.RROp",
"ProgramOptimizations.Eq",
"ProgramOptimizations.Left",
"ProgramOptimizations.x",
"ProgramOptimizations.Right",
"ProgramOptimizations.Gt",
"ProgramOptimizations.y",
"ProgramOptimizations.GConst"
] | [] | false | false | false | true | false | let rel21 =
| RBOp And
(RBOp And (RROp Eq (Left x) (Right x)) (RROp Gt (Left y) (GConst 2)))
(RROp Gt (Right y) (GConst 2)) | false |
|
ProgramOptimizations.fst | ProgramOptimizations.com32 | val com32 : ProgramOptimizations.com | let com32 = Assign y (Const 3) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 30,
"end_line": 206,
"start_col": 0,
"start_line": 206
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z
*)
let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (IOp Add (Var y) (Const 1))) //z := y + 1
let com12 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (Var x)) //z := x
let rel11 = RROp Eq (Left y) (Right y) //Left y = Right y
let rel12 = RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x /\
(RROp Eq (Left z) (Right z)) //Left z = Right z
let lemma_sound_optimization1 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel11 h_left h_right)) //h_left, h_right are related by rel1
(ensures (let _, h_left' = reify (com_denotation com11) h_left in
let _, h_right' = reify (com_denotation com12) h_right in
rel_exp_denotation rel12 h_left' h_right')) //[|com1|](h_left), [|com2|](h_right) are related by rel2
= ()
(*
* dead code elimination
* proving com1 = if x > 3 then y := x else y := 7
* and com2 = skip
* are equivalent if all that the rest of the computation cares for is y > 2
*)
let com21 = If (ROp Gt (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 7)) //if x > 3 then y := x else y := 7
let com22 = Skip
let rel21 = RBOp And (RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x
(RROp Gt (Left y) (GConst 2))) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let rel22 = RBOp And (RROp Gt (Left y) (GConst 2)) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let lemma_sound_optimization2 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel21 h_left h_right))
(ensures (let _, h_left' = reify (com_denotation com21) h_left in
let _, h_right' = reify (com_denotation com22) h_right in
rel_exp_denotation rel22 h_left' h_right'))
= ()
(*
* optimization
* proving com1 = if x = 3 then y := x else y := 3
* and com2 = y := 3
* are equivalent
*)
let com31 = If (ROp Eq (Var x) (Const 3))
(Assign y (Var x)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ProgramOptimizations.com | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.Assign",
"ProgramOptimizations.y",
"ProgramOptimizations.Const"
] | [] | false | false | false | true | false | let com32 =
| Assign y (Const 3) | false |
|
ProgramOptimizations.fst | ProgramOptimizations.rel31 | val rel31 : ProgramOptimizations.rel_exp | let rel31 = RTrue | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 208,
"start_col": 0,
"start_line": 208
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z
*)
let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (IOp Add (Var y) (Const 1))) //z := y + 1
let com12 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (Var x)) //z := x
let rel11 = RROp Eq (Left y) (Right y) //Left y = Right y
let rel12 = RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x /\
(RROp Eq (Left z) (Right z)) //Left z = Right z
let lemma_sound_optimization1 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel11 h_left h_right)) //h_left, h_right are related by rel1
(ensures (let _, h_left' = reify (com_denotation com11) h_left in
let _, h_right' = reify (com_denotation com12) h_right in
rel_exp_denotation rel12 h_left' h_right')) //[|com1|](h_left), [|com2|](h_right) are related by rel2
= ()
(*
* dead code elimination
* proving com1 = if x > 3 then y := x else y := 7
* and com2 = skip
* are equivalent if all that the rest of the computation cares for is y > 2
*)
let com21 = If (ROp Gt (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 7)) //if x > 3 then y := x else y := 7
let com22 = Skip
let rel21 = RBOp And (RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x
(RROp Gt (Left y) (GConst 2))) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let rel22 = RBOp And (RROp Gt (Left y) (GConst 2)) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let lemma_sound_optimization2 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel21 h_left h_right))
(ensures (let _, h_left' = reify (com_denotation com21) h_left in
let _, h_right' = reify (com_denotation com22) h_right in
rel_exp_denotation rel22 h_left' h_right'))
= ()
(*
* optimization
* proving com1 = if x = 3 then y := x else y := 3
* and com2 = y := 3
* are equivalent
*)
let com31 = If (ROp Eq (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 3)) //if x = 3 then y := x else y := 3
let com32 = Assign y (Const 3) //y := 3 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ProgramOptimizations.rel_exp | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.RTrue"
] | [] | false | false | false | true | false | let rel31 =
| RTrue | false |
|
ProgramOptimizations.fst | ProgramOptimizations.rel32 | val rel32 : ProgramOptimizations.rel_exp | let rel32 = RBOp And (RROp Eq (Left y) (GConst 3)) //Left y = 3
(RROp Eq (Right y) (GConst 3)) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 210,
"start_col": 0,
"start_line": 209
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z
*)
let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (IOp Add (Var y) (Const 1))) //z := y + 1
let com12 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (Var x)) //z := x
let rel11 = RROp Eq (Left y) (Right y) //Left y = Right y
let rel12 = RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x /\
(RROp Eq (Left z) (Right z)) //Left z = Right z
let lemma_sound_optimization1 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel11 h_left h_right)) //h_left, h_right are related by rel1
(ensures (let _, h_left' = reify (com_denotation com11) h_left in
let _, h_right' = reify (com_denotation com12) h_right in
rel_exp_denotation rel12 h_left' h_right')) //[|com1|](h_left), [|com2|](h_right) are related by rel2
= ()
(*
* dead code elimination
* proving com1 = if x > 3 then y := x else y := 7
* and com2 = skip
* are equivalent if all that the rest of the computation cares for is y > 2
*)
let com21 = If (ROp Gt (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 7)) //if x > 3 then y := x else y := 7
let com22 = Skip
let rel21 = RBOp And (RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x
(RROp Gt (Left y) (GConst 2))) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let rel22 = RBOp And (RROp Gt (Left y) (GConst 2)) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let lemma_sound_optimization2 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel21 h_left h_right))
(ensures (let _, h_left' = reify (com_denotation com21) h_left in
let _, h_right' = reify (com_denotation com22) h_right in
rel_exp_denotation rel22 h_left' h_right'))
= ()
(*
* optimization
* proving com1 = if x = 3 then y := x else y := 3
* and com2 = y := 3
* are equivalent
*)
let com31 = If (ROp Eq (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 3)) //if x = 3 then y := x else y := 3
let com32 = Assign y (Const 3) //y := 3 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ProgramOptimizations.rel_exp | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.RBOp",
"ProgramOptimizations.And",
"ProgramOptimizations.RROp",
"ProgramOptimizations.Eq",
"ProgramOptimizations.Left",
"ProgramOptimizations.y",
"ProgramOptimizations.GConst",
"ProgramOptimizations.Right"
] | [] | false | false | false | true | false | let rel32 =
| RBOp And (RROp Eq (Left y) (GConst 3)) (RROp Eq (Right y) (GConst 3)) | false |
|
ProgramOptimizations.fst | ProgramOptimizations.com42 | val com42 : ProgramOptimizations.com | let com42 = Seq (Assign x (Var y)) //x := y;
(Assign z (IOp Add (Var z) (Var x))) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 52,
"end_line": 229,
"start_col": 0,
"start_line": 228
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z
*)
let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (IOp Add (Var y) (Const 1))) //z := y + 1
let com12 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (Var x)) //z := x
let rel11 = RROp Eq (Left y) (Right y) //Left y = Right y
let rel12 = RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x /\
(RROp Eq (Left z) (Right z)) //Left z = Right z
let lemma_sound_optimization1 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel11 h_left h_right)) //h_left, h_right are related by rel1
(ensures (let _, h_left' = reify (com_denotation com11) h_left in
let _, h_right' = reify (com_denotation com12) h_right in
rel_exp_denotation rel12 h_left' h_right')) //[|com1|](h_left), [|com2|](h_right) are related by rel2
= ()
(*
* dead code elimination
* proving com1 = if x > 3 then y := x else y := 7
* and com2 = skip
* are equivalent if all that the rest of the computation cares for is y > 2
*)
let com21 = If (ROp Gt (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 7)) //if x > 3 then y := x else y := 7
let com22 = Skip
let rel21 = RBOp And (RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x
(RROp Gt (Left y) (GConst 2))) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let rel22 = RBOp And (RROp Gt (Left y) (GConst 2)) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let lemma_sound_optimization2 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel21 h_left h_right))
(ensures (let _, h_left' = reify (com_denotation com21) h_left in
let _, h_right' = reify (com_denotation com22) h_right in
rel_exp_denotation rel22 h_left' h_right'))
= ()
(*
* optimization
* proving com1 = if x = 3 then y := x else y := 3
* and com2 = y := 3
* are equivalent
*)
let com31 = If (ROp Eq (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 3)) //if x = 3 then y := x else y := 3
let com32 = Assign y (Const 3) //y := 3
let rel31 = RTrue
let rel32 = RBOp And (RROp Eq (Left y) (GConst 3)) //Left y = 3
(RROp Eq (Right y) (GConst 3)) //Right y = 3
let lemma_sound_optimization3 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel31 h_left h_right))
(ensures (let _, h_left' = reify (com_denotation com31) h_left in
let _, h_right' = reify (com_denotation com32) h_right in
rel_exp_denotation rel32 h_left' h_right'))
= ()
(*
* optimization
* proving com1 = x := -y; z := z - x; x := -x
and com2 = x := y; z := z + x
* are equivalent
*)
let com41 = Seq (Assign x (UMinus (Var y))) //x := -y;
(Seq (Assign z (IOp Sub (Var z) (Var x))) //z := z - x; | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ProgramOptimizations.com | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.Seq",
"ProgramOptimizations.Assign",
"ProgramOptimizations.x",
"ProgramOptimizations.Var",
"ProgramOptimizations.y",
"ProgramOptimizations.z",
"ProgramOptimizations.IOp",
"ProgramOptimizations.Add"
] | [] | false | false | false | true | false | let com42 =
| Seq (Assign x (Var y)) (Assign z (IOp Add (Var z) (Var x))) | false |
|
ProgramOptimizations.fst | ProgramOptimizations.com41 | val com41 : ProgramOptimizations.com | let com41 = Seq (Assign x (UMinus (Var y))) //x := -y;
(Seq (Assign z (IOp Sub (Var z) (Var x))) //z := z - x;
(Assign x (UMinus (Var x)))) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 35,
"end_line": 227,
"start_col": 0,
"start_line": 225
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z
*)
let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (IOp Add (Var y) (Const 1))) //z := y + 1
let com12 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (Var x)) //z := x
let rel11 = RROp Eq (Left y) (Right y) //Left y = Right y
let rel12 = RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x /\
(RROp Eq (Left z) (Right z)) //Left z = Right z
let lemma_sound_optimization1 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel11 h_left h_right)) //h_left, h_right are related by rel1
(ensures (let _, h_left' = reify (com_denotation com11) h_left in
let _, h_right' = reify (com_denotation com12) h_right in
rel_exp_denotation rel12 h_left' h_right')) //[|com1|](h_left), [|com2|](h_right) are related by rel2
= ()
(*
* dead code elimination
* proving com1 = if x > 3 then y := x else y := 7
* and com2 = skip
* are equivalent if all that the rest of the computation cares for is y > 2
*)
let com21 = If (ROp Gt (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 7)) //if x > 3 then y := x else y := 7
let com22 = Skip
let rel21 = RBOp And (RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x
(RROp Gt (Left y) (GConst 2))) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let rel22 = RBOp And (RROp Gt (Left y) (GConst 2)) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let lemma_sound_optimization2 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel21 h_left h_right))
(ensures (let _, h_left' = reify (com_denotation com21) h_left in
let _, h_right' = reify (com_denotation com22) h_right in
rel_exp_denotation rel22 h_left' h_right'))
= ()
(*
* optimization
* proving com1 = if x = 3 then y := x else y := 3
* and com2 = y := 3
* are equivalent
*)
let com31 = If (ROp Eq (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 3)) //if x = 3 then y := x else y := 3
let com32 = Assign y (Const 3) //y := 3
let rel31 = RTrue
let rel32 = RBOp And (RROp Eq (Left y) (GConst 3)) //Left y = 3
(RROp Eq (Right y) (GConst 3)) //Right y = 3
let lemma_sound_optimization3 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel31 h_left h_right))
(ensures (let _, h_left' = reify (com_denotation com31) h_left in
let _, h_right' = reify (com_denotation com32) h_right in
rel_exp_denotation rel32 h_left' h_right'))
= ()
(*
* optimization
* proving com1 = x := -y; z := z - x; x := -x
and com2 = x := y; z := z + x
* are equivalent | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ProgramOptimizations.com | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.Seq",
"ProgramOptimizations.Assign",
"ProgramOptimizations.x",
"ProgramOptimizations.UMinus",
"ProgramOptimizations.Var",
"ProgramOptimizations.y",
"ProgramOptimizations.z",
"ProgramOptimizations.IOp",
"ProgramOptimizations.Sub"
] | [] | false | false | false | true | false | let com41 =
| Seq (Assign x (UMinus (Var y)))
(Seq (Assign z (IOp Sub (Var z) (Var x))) (Assign x (UMinus (Var x)))) | false |
|
ProgramOptimizations.fst | ProgramOptimizations.rhl | val rhl : c1: ProgramOptimizations.com ->
c2: ProgramOptimizations.com ->
re1: ProgramOptimizations.rel_exp ->
re2: ProgramOptimizations.rel_exp
-> Prims.logical | let rhl (c1:com) (c2:com) (re1:rel_exp) (re2:rel_exp) =
forall (h_left:heap) (h_right:heap). rel_exp_denotation re1 h_left h_right ==>
(let _, h_left' = reify (com_denotation c1) h_left in
let _, h_right' = reify (com_denotation c2) h_right in
rel_exp_denotation re2 h_left' h_right') | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 248,
"start_col": 0,
"start_line": 244
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z
*)
let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (IOp Add (Var y) (Const 1))) //z := y + 1
let com12 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (Var x)) //z := x
let rel11 = RROp Eq (Left y) (Right y) //Left y = Right y
let rel12 = RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x /\
(RROp Eq (Left z) (Right z)) //Left z = Right z
let lemma_sound_optimization1 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel11 h_left h_right)) //h_left, h_right are related by rel1
(ensures (let _, h_left' = reify (com_denotation com11) h_left in
let _, h_right' = reify (com_denotation com12) h_right in
rel_exp_denotation rel12 h_left' h_right')) //[|com1|](h_left), [|com2|](h_right) are related by rel2
= ()
(*
* dead code elimination
* proving com1 = if x > 3 then y := x else y := 7
* and com2 = skip
* are equivalent if all that the rest of the computation cares for is y > 2
*)
let com21 = If (ROp Gt (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 7)) //if x > 3 then y := x else y := 7
let com22 = Skip
let rel21 = RBOp And (RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x
(RROp Gt (Left y) (GConst 2))) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let rel22 = RBOp And (RROp Gt (Left y) (GConst 2)) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let lemma_sound_optimization2 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel21 h_left h_right))
(ensures (let _, h_left' = reify (com_denotation com21) h_left in
let _, h_right' = reify (com_denotation com22) h_right in
rel_exp_denotation rel22 h_left' h_right'))
= ()
(*
* optimization
* proving com1 = if x = 3 then y := x else y := 3
* and com2 = y := 3
* are equivalent
*)
let com31 = If (ROp Eq (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 3)) //if x = 3 then y := x else y := 3
let com32 = Assign y (Const 3) //y := 3
let rel31 = RTrue
let rel32 = RBOp And (RROp Eq (Left y) (GConst 3)) //Left y = 3
(RROp Eq (Right y) (GConst 3)) //Right y = 3
let lemma_sound_optimization3 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel31 h_left h_right))
(ensures (let _, h_left' = reify (com_denotation com31) h_left in
let _, h_right' = reify (com_denotation com32) h_right in
rel_exp_denotation rel32 h_left' h_right'))
= ()
(*
* optimization
* proving com1 = x := -y; z := z - x; x := -x
and com2 = x := y; z := z + x
* are equivalent
*)
let com41 = Seq (Assign x (UMinus (Var y))) //x := -y;
(Seq (Assign z (IOp Sub (Var z) (Var x))) //z := z - x;
(Assign x (UMinus (Var x)))) //x := -x
let com42 = Seq (Assign x (Var y)) //x := y;
(Assign z (IOp Add (Var z) (Var x))) //z := z + x
let rel4 = RBOp And (RROp Eq (Left x) (Right x))
(RBOp And (RROp Eq (Left y) (Right y))
(RROp Eq (Left z) (Right z)))
#set-options "--z3rlimit 20"
let lemma_sound_optimization4 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel4 h_left h_right))
(ensures (let _, h_left' = reify (com_denotation com41) h_left in
let _, h_right' = reify (com_denotation com42) h_right in
rel_exp_denotation rel4 h_left' h_right'))
= ()
#reset-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c1: ProgramOptimizations.com ->
c2: ProgramOptimizations.com ->
re1: ProgramOptimizations.rel_exp ->
re2: ProgramOptimizations.rel_exp
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.com",
"ProgramOptimizations.rel_exp",
"Prims.l_Forall",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.l_imp",
"Prims.b2t",
"ProgramOptimizations.rel_exp_denotation",
"Prims.unit",
"Prims.logical",
"FStar.Pervasives.Native.tuple2",
"ProgramOptimizations.com_denotation"
] | [] | false | false | false | true | true | let rhl (c1 c2: com) (re1 re2: rel_exp) =
| forall (h_left: heap) (h_right: heap).
rel_exp_denotation re1 h_left h_right ==>
(let _, h_left' = reify (com_denotation c1) h_left in
let _, h_right' = reify (com_denotation c2) h_right in
rel_exp_denotation re2 h_left' h_right') | false |
|
Spec.Frodo.Test.fst | Spec.Frodo.Test.test1_enccoins | val test1_enccoins : Prims.list Lib.IntTypes.uint8 | let test1_enccoins =
List.Tot.map u8_from_UInt8
[
0x8duy; 0xf3uy; 0xfauy; 0xe3uy; 0x83uy; 0x27uy; 0xc5uy; 0x3cuy; 0xc1uy; 0xc4uy; 0x8cuy; 0x60uy;
0xb2uy; 0x52uy; 0x2buy; 0xb5uy
] | {
"file_name": "specs/tests/Spec.Frodo.Test.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 69,
"start_col": 0,
"start_line": 64
} | module Spec.Frodo.Test
open FStar.Mul
open Lib.IntTypes
open Lib.RawIntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Frodo.KEM
open Spec.Frodo.KEM.KeyGen
open Spec.Frodo.KEM.Encaps
open Spec.Frodo.KEM.Decaps
open Spec.Frodo.Params
open FStar.All
module PS = Lib.PrintSequence
#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
let compare (#len: size_nat) (test_expected: lbytes len) (test_result: lbytes len) =
for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) test_expected test_result
let test_frodo
(a:frodo_alg)
(gen_a:frodo_gen_a)
(keypaircoins: list uint8 {List.Tot.length keypaircoins == 2 * crypto_bytes a + bytes_seed_a})
(enccoins: list uint8 {List.Tot.length enccoins == bytes_mu a})
(ss_expected: list uint8 {List.Tot.length ss_expected == crypto_bytes a})
(pk_expected: list uint8 {List.Tot.length pk_expected == crypto_publickeybytes a})
(ct_expected: list uint8 {List.Tot.length ct_expected == crypto_ciphertextbytes a})
(sk_expected: list uint8 {List.Tot.length sk_expected == crypto_secretkeybytes a})
: ML bool =
let keypaircoins = createL keypaircoins in
let enccoins = createL enccoins in
let ss_expected = createL ss_expected in
let pk_expected = createL pk_expected in
let ct_expected = createL ct_expected in
let sk_expected = createL sk_expected in
let pk, sk = crypto_kem_keypair_ a gen_a keypaircoins in
let ct, ss1 = crypto_kem_enc_ a gen_a enccoins pk in
let ss2 = crypto_kem_dec a gen_a ct sk in
let r_pk = compare pk_expected pk in
let r_sk = compare sk_expected sk in
let r_ct = compare ct_expected ct in
let r_ss = PS.print_compare true (crypto_bytes a) ss1 ss2 in
let r_ss1 = PS.print_compare true (crypto_bytes a) ss_expected ss2 in
r_pk && r_sk && r_ct && r_ss && r_ss1
//
// Test1. FrodoKEM-64. SHAKE128
//
let test1_keypaircoins =
List.Tot.map u8_from_UInt8
[
0xa6uy; 0x65uy; 0x65uy; 0x9fuy; 0xfbuy; 0xe4uy; 0x06uy; 0x5cuy; 0xcauy; 0x81uy; 0x5auy; 0x45uy;
0xe4uy; 0x94uy; 0xd8uy; 0x01uy; 0x90uy; 0x30uy; 0x33uy; 0x55uy; 0x33uy; 0x84uy; 0x2euy; 0xe4uy;
0x4cuy; 0x55uy; 0x8fuy; 0xd8uy; 0xaeuy; 0x4buy; 0x4euy; 0x91uy; 0x62uy; 0xfeuy; 0xc7uy; 0x9auy;
0xc5uy; 0xcduy; 0x1fuy; 0xe2uy; 0xd2uy; 0x00uy; 0x63uy; 0x39uy; 0xaauy; 0xb1uy; 0xf3uy; 0x17uy
] | {
"checked_file": "/",
"dependencies": [
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.KEM.Encaps.fst.checked",
"Spec.Frodo.KEM.Decaps.fst.checked",
"Spec.Frodo.KEM.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintSequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.Test.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.PrintSequence",
"short_module": "PS"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.Decaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.Encaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.list Lib.IntTypes.uint8 | Prims.Tot | [
"total"
] | [] | [
"FStar.List.Tot.Base.map",
"FStar.UInt8.t",
"Lib.IntTypes.uint8",
"Lib.RawIntTypes.u8_from_UInt8",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | false | false | false | true | false | let test1_enccoins =
| List.Tot.map u8_from_UInt8
[
0x8duy; 0xf3uy; 0xfauy; 0xe3uy; 0x83uy; 0x27uy; 0xc5uy; 0x3cuy; 0xc1uy; 0xc4uy; 0x8cuy; 0x60uy;
0xb2uy; 0x52uy; 0x2buy; 0xb5uy
] | false |
|
ProgramOptimizations.fst | ProgramOptimizations.rel4 | val rel4 : ProgramOptimizations.rel_exp | let rel4 = RBOp And (RROp Eq (Left x) (Right x))
(RBOp And (RROp Eq (Left y) (Right y))
(RROp Eq (Left z) (Right z))) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 56,
"end_line": 233,
"start_col": 0,
"start_line": 231
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right
let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right)
assume val x:id
assume val y:id
assume val z:id
assume Distinct_vars: x <> y /\ y <> z /\ x <> z
(*
* removing redundant computation
* proving com1 = x := y + 1; z := y + 1
* and com2 = x := y + 1; z := x
*
* relate two states with equal values of y to two states with equal values of x and z
*)
let com11 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (IOp Add (Var y) (Const 1))) //z := y + 1
let com12 = Seq (Assign x (IOp Add (Var y) (Const 1))) //x := y + 1;
(Assign z (Var x)) //z := x
let rel11 = RROp Eq (Left y) (Right y) //Left y = Right y
let rel12 = RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x /\
(RROp Eq (Left z) (Right z)) //Left z = Right z
let lemma_sound_optimization1 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel11 h_left h_right)) //h_left, h_right are related by rel1
(ensures (let _, h_left' = reify (com_denotation com11) h_left in
let _, h_right' = reify (com_denotation com12) h_right in
rel_exp_denotation rel12 h_left' h_right')) //[|com1|](h_left), [|com2|](h_right) are related by rel2
= ()
(*
* dead code elimination
* proving com1 = if x > 3 then y := x else y := 7
* and com2 = skip
* are equivalent if all that the rest of the computation cares for is y > 2
*)
let com21 = If (ROp Gt (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 7)) //if x > 3 then y := x else y := 7
let com22 = Skip
let rel21 = RBOp And (RBOp And (RROp Eq (Left x) (Right x)) //Left x = Right x
(RROp Gt (Left y) (GConst 2))) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let rel22 = RBOp And (RROp Gt (Left y) (GConst 2)) //Left y > 2
(RROp Gt (Right y) (GConst 2)) //Right y > 2
let lemma_sound_optimization2 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel21 h_left h_right))
(ensures (let _, h_left' = reify (com_denotation com21) h_left in
let _, h_right' = reify (com_denotation com22) h_right in
rel_exp_denotation rel22 h_left' h_right'))
= ()
(*
* optimization
* proving com1 = if x = 3 then y := x else y := 3
* and com2 = y := 3
* are equivalent
*)
let com31 = If (ROp Eq (Var x) (Const 3))
(Assign y (Var x))
(Assign y (Const 3)) //if x = 3 then y := x else y := 3
let com32 = Assign y (Const 3) //y := 3
let rel31 = RTrue
let rel32 = RBOp And (RROp Eq (Left y) (GConst 3)) //Left y = 3
(RROp Eq (Right y) (GConst 3)) //Right y = 3
let lemma_sound_optimization3 (h_left:heap) (h_right:heap)
:Lemma (requires (rel_exp_denotation rel31 h_left h_right))
(ensures (let _, h_left' = reify (com_denotation com31) h_left in
let _, h_right' = reify (com_denotation com32) h_right in
rel_exp_denotation rel32 h_left' h_right'))
= ()
(*
* optimization
* proving com1 = x := -y; z := z - x; x := -x
and com2 = x := y; z := z + x
* are equivalent
*)
let com41 = Seq (Assign x (UMinus (Var y))) //x := -y;
(Seq (Assign z (IOp Sub (Var z) (Var x))) //z := z - x;
(Assign x (UMinus (Var x)))) //x := -x
let com42 = Seq (Assign x (Var y)) //x := y;
(Assign z (IOp Add (Var z) (Var x))) //z := z + x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | ProgramOptimizations.rel_exp | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.RBOp",
"ProgramOptimizations.And",
"ProgramOptimizations.RROp",
"ProgramOptimizations.Eq",
"ProgramOptimizations.Left",
"ProgramOptimizations.x",
"ProgramOptimizations.Right",
"ProgramOptimizations.y",
"ProgramOptimizations.z"
] | [] | false | false | false | true | false | let rel4 =
| RBOp And
(RROp Eq (Left x) (Right x))
(RBOp And (RROp Eq (Left y) (Right y)) (RROp Eq (Left z) (Right z))) | false |
|
ProgramOptimizations.fst | ProgramOptimizations.com_denotation | val com_denotation (c: com) : ISNull unit | val com_denotation (c: com) : ISNull unit | let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2 | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 71,
"end_line": 100,
"start_col": 1,
"start_line": 92
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | c: ProgramOptimizations.com -> FStar.DM4F.IntStoreFixed.ISNull Prims.unit | FStar.DM4F.IntStoreFixed.ISNull | [] | [] | [
"ProgramOptimizations.com",
"Prims.unit",
"ProgramOptimizations.var",
"ProgramOptimizations.i_exp",
"FStar.DM4F.IntStoreFixed.write",
"Prims.int",
"ProgramOptimizations.i_exp_denotation",
"ProgramOptimizations.com_denotation",
"ProgramOptimizations.b_exp",
"Prims.bool",
"ProgramOptimizations.b_exp_denotation"
] | [
"recursion"
] | false | true | false | false | false | let rec com_denotation (c: com) : ISNull unit =
| match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n
| Seq c1 c2 ->
com_denotation c1;
com_denotation c2
| If b c1 c2 -> if b_exp_denotation b then com_denotation c1 else com_denotation c2 | false |
ProgramOptimizations.fst | ProgramOptimizations.b_exp_denotation | val b_exp_denotation (b: b_exp) : ISNull bool | val b_exp_denotation (b: b_exp) : ISNull bool | let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 90,
"start_col": 1,
"start_line": 73
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: ProgramOptimizations.b_exp -> FStar.DM4F.IntStoreFixed.ISNull Prims.bool | FStar.DM4F.IntStoreFixed.ISNull | [] | [] | [
"ProgramOptimizations.b_exp",
"Prims.bool",
"ProgramOptimizations.r_op",
"ProgramOptimizations.i_exp",
"Prims.op_LessThan",
"Prims.op_GreaterThan",
"Prims.op_Equality",
"Prims.int",
"ProgramOptimizations.i_exp_denotation",
"ProgramOptimizations.b_op",
"Prims.op_AmpAmp",
"Prims.op_BarBar",
"ProgramOptimizations.b_exp_denotation",
"Prims.op_Negation"
] | [
"recursion"
] | false | true | false | false | false | let rec b_exp_denotation (b: b_exp) : ISNull bool =
| match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b) | false |
ProgramOptimizations.fst | ProgramOptimizations.i_exp_denotation | val i_exp_denotation (e: i_exp) : ISNull int | val i_exp_denotation (e: i_exp) : ISNull int | let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 42,
"end_line": 71,
"start_col": 1,
"start_line": 61
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | e: ProgramOptimizations.i_exp -> FStar.DM4F.IntStoreFixed.ISNull Prims.int | FStar.DM4F.IntStoreFixed.ISNull | [] | [] | [
"ProgramOptimizations.i_exp",
"Prims.int",
"FStar.DM4F.Heap.IntStoreFixed.id",
"FStar.DM4F.IntStoreFixed.op_Bang",
"ProgramOptimizations.i_op",
"Prims.op_Addition",
"Prims.op_Subtraction",
"ProgramOptimizations.i_exp_denotation",
"Prims.op_Minus"
] | [
"recursion"
] | false | true | false | false | false | let rec i_exp_denotation (e: i_exp) : ISNull int =
| match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e) | false |
ProgramOptimizations.fst | ProgramOptimizations.g_exp_denotation | val g_exp_denotation (g: g_exp) (h_left h_right: heap) : int | val g_exp_denotation (g: g_exp) (h_left h_right: heap) : int | let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 84,
"end_line": 123,
"start_col": 0,
"start_line": 115
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
g: ProgramOptimizations.g_exp ->
h_left: FStar.DM4F.Heap.IntStoreFixed.heap ->
h_right: FStar.DM4F.Heap.IntStoreFixed.heap
-> Prims.int | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.g_exp",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"Prims.int",
"FStar.DM4F.Heap.IntStoreFixed.id",
"FStar.DM4F.Heap.IntStoreFixed.sel",
"ProgramOptimizations.i_op",
"Prims.op_Addition",
"ProgramOptimizations.g_exp_denotation",
"Prims.op_Subtraction"
] | [
"recursion"
] | false | false | false | true | false | let rec g_exp_denotation (g: g_exp) (h_left h_right: heap) : int =
| match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right | false |
FStar.Tactics.V1.Logic.fst | FStar.Tactics.V1.Logic.lemma_from_squash | val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x) | val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x) | let lemma_from_squash #a #b f x = let _ = f x in assert (b x) | {
"file_name": "ulib/FStar.Tactics.V1.Logic.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 61,
"end_line": 317,
"start_col": 0,
"start_line": 317
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Tactics.V1.Logic
open FStar.Tactics.Effect
open FStar.Stubs.Tactics.V1.Builtins
open FStar.Tactics.V1.Derived
open FStar.Tactics.Util
open FStar.Reflection.V1
open FStar.Reflection.V1.Formula
(** Returns the current goal as a [formula]. *)
let cur_formula () : Tac formula = term_as_formula (cur_goal ())
private val revert_squash : (#a:Type) -> (#b : (a -> Type)) ->
(squash (forall (x:a). b x)) ->
x:a -> squash (b x)
let revert_squash #a #b s x = let x : (_:unit{forall x. b x}) = s in ()
(** Revert an introduced binder as a forall. *)
let l_revert () : Tac unit =
revert ();
apply (`revert_squash)
(** Repeated [l_revert]. *)
let rec l_revert_all (bs:binders) : Tac unit =
match bs with
| [] -> ()
| _::tl -> begin l_revert (); l_revert_all tl end
private let fa_intro_lem (#a:Type) (#p:a -> Type) (f:(x:a -> squash (p x))) : Lemma (forall (x:a). p x) =
FStar.Classical.lemma_forall_intro_gtot
((fun x -> FStar.IndefiniteDescription.elim_squash (f x)) <: (x:a -> GTot (p x)))
(** Introduce a forall. *)
let forall_intro () : Tac binder =
apply_lemma (`fa_intro_lem);
intro ()
(** Introduce a forall, with some given name. *)
let forall_intro_as (s:string) : Tac binder =
apply_lemma (`fa_intro_lem);
intro_as s
(** Repeated [forall_intro]. *)
let forall_intros () : Tac binders = repeat1 forall_intro
private val split_lem : (#a:Type) -> (#b:Type) ->
squash a -> squash b -> Lemma (a /\ b)
let split_lem #a #b sa sb = ()
(** Split a conjunction into two goals. *)
let split () : Tac unit =
try apply_lemma (`split_lem)
with | _ -> fail "Could not split goal"
private val imp_intro_lem : (#a:Type) -> (#b : Type) ->
(a -> squash b) ->
Lemma (a ==> b)
let imp_intro_lem #a #b f =
FStar.Classical.give_witness (FStar.Classical.arrow_to_impl (fun (x:squash a) -> FStar.Squash.bind_squash x f))
(** Introduce an implication. *)
let implies_intro () : Tac binder =
apply_lemma (`imp_intro_lem);
intro ()
let implies_intro_as (s:string) : Tac binder =
apply_lemma (`imp_intro_lem);
intro_as s
(** Repeated [implies_intro]. *)
let implies_intros () : Tac binders = repeat1 implies_intro
(** "Logical" intro: introduce a forall or an implication. *)
let l_intro () = forall_intro `or_else` implies_intro
(** Repeated [l]. *)
let l_intros () = repeat l_intro
let squash_intro () : Tac unit =
apply (`FStar.Squash.return_squash)
let l_exact (t:term) =
try exact t with
| _ -> (squash_intro (); exact t)
let hyp (b:binder) : Tac unit = l_exact (binder_to_term b)
private
let __lemma_to_squash #req #ens (_ : squash req) (h : (unit -> Lemma (requires req) (ensures ens))) : squash ens =
h ()
let pose_lemma (t : term) : Tac binder =
let c = tcc (cur_env ()) t in
let pre, post =
match inspect_comp c with
| C_Lemma pre post _ -> pre, post
| _ -> fail ""
in
let post = `((`#post) ()) in (* unthunk *)
let post = norm_term [] post in
(* If the precondition is trivial, do not cut by it *)
match term_as_formula' pre with
| True_ ->
pose (`(__lemma_to_squash #(`#pre) #(`#post) () (fun () -> (`#t))))
| _ ->
let reqb = tcut (`squash (`#pre)) in
let b = pose (`(__lemma_to_squash #(`#pre) #(`#post) (`#(binder_to_term reqb)) (fun () -> (`#t)))) in
flip ();
ignore (trytac trivial);
b
let explode () : Tac unit =
ignore (
repeatseq (fun () -> first [(fun () -> ignore (l_intro ()));
(fun () -> ignore (split ()))]))
let rec visit (callback:unit -> Tac unit) : Tac unit =
focus (fun () ->
or_else callback
(fun () ->
let g = cur_goal () in
match term_as_formula g with
| Forall _b _sort _phi ->
let binders = forall_intros () in
seq (fun () -> visit callback) (fun () -> l_revert_all binders)
| And p q ->
seq split (fun () -> visit callback)
| Implies p q ->
let _ = implies_intro () in
seq (fun () -> visit callback) l_revert
| _ ->
()
)
)
let rec simplify_eq_implication () : Tac unit =
let e = cur_env () in
let g = cur_goal () in
let r = destruct_equality_implication g in
match r with
| None ->
fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in // G, eq_h:x=e |- P
rewrite eq_h; // G, eq_h:x=e |- P[e/x]
clear_top (); // G |- P[e/x]
visit simplify_eq_implication
let rewrite_all_equalities () : Tac unit =
visit simplify_eq_implication
let rec unfold_definition_and_simplify_eq (tm:term) : Tac unit =
let g = cur_goal () in
match term_as_formula g with
| App hd arg ->
if term_eq hd tm
then trivial ()
else ()
| _ -> begin
let r = destruct_equality_implication g in
match r with
| None -> fail "Not an equality implication"
| Some (_, rhs) ->
let eq_h = implies_intro () in
rewrite eq_h;
clear_top ();
visit (fun () -> unfold_definition_and_simplify_eq tm)
end
private val vbind : (#p:Type) -> (#q:Type) -> squash p -> (p -> squash q) -> Lemma q
let vbind #p #q sq f = FStar.Classical.give_witness_from_squash (FStar.Squash.bind_squash sq f)
(** A tactic to unsquash a hypothesis. Perhaps you are looking
for [unsquash_term]. *)
let unsquash (t:term) : Tac term =
let v = `vbind in
apply_lemma (mk_e_app v [t]);
let b = intro () in
pack_ln (Tv_Var (bv_of_binder b))
private val or_ind : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p \/ q) ->
(squash (p ==> phi)) ->
(squash (q ==> phi)) ->
Lemma phi
let or_ind #p #q #phi o l r = ()
let cases_or (o:term) : Tac unit =
apply_lemma (mk_e_app (`or_ind) [o])
private val bool_ind : (b:bool) -> (phi:Type) -> (squash (b == true ==> phi)) ->
(squash (b == false ==> phi)) ->
Lemma phi
let bool_ind b phi l r = ()
let cases_bool (b:term) : Tac unit =
let bi = `bool_ind in
seq (fun () -> apply_lemma (mk_e_app bi [b]))
(fun () -> let _ = trytac (fun () -> let b = implies_intro () in rewrite b; clear_top ()) in ())
private val or_intro_1 : (#p:Type) -> (#q:Type) -> squash p -> Lemma (p \/ q)
let or_intro_1 #p #q _ = ()
private val or_intro_2 : (#p:Type) -> (#q:Type) -> squash q -> Lemma (p \/ q)
let or_intro_2 #p #q _ = ()
let left () : Tac unit =
apply_lemma (`or_intro_1)
let right () : Tac unit =
apply_lemma (`or_intro_2)
private val __and_elim : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
(p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim #p #q #phi p_and_q f = ()
private val __and_elim' : (#p:Type) -> (#q:Type) -> (#phi:Type) ->
squash (p /\ q) ->
squash (p ==> q ==> phi) ->
Lemma phi
let __and_elim' #p #q #phi p_and_q f = ()
let and_elim (t : term) : Tac unit =
begin
try apply_lemma (`(__and_elim (`#t)))
with | _ -> apply_lemma (`(__and_elim' (`#t)))
end
let destruct_and (t : term) : Tac (binder * binder) =
and_elim t;
(implies_intro (), implies_intro ())
private val __witness : (#a:Type) -> (x:a) -> (#p:(a -> Type)) -> squash (p x) -> squash (exists (x:a). p x)
private let __witness #a x #p _ = ()
let witness (t : term) : Tac unit =
apply_raw (`__witness);
exact t
private
let __elim_exists' #t (#pred : t -> Type0) #goal (h : (exists x. pred x))
(k : (x:t -> pred x -> squash goal)) : squash goal =
FStar.Squash.bind_squash #(x:t & pred x) h (fun (|x, pf|) -> k x pf)
(* returns witness and proof as binders *)
let elim_exists (t : term) : Tac (binder & binder) =
apply_lemma (`(__elim_exists' (`#(t))));
let x = intro () in
let pf = intro () in
(x, pf)
private
let __forall_inst #t (#pred : t -> Type0) (h : (forall x. pred x)) (x : t) : squash (pred x) =
()
(* GM: annoying that this doesn't just work by SMT *)
private
let __forall_inst_sq #t (#pred : t -> Type0) (h : squash (forall x. pred x)) (x : t) : squash (pred x) =
FStar.Squash.bind_squash h (fun (f : (forall x. pred x)) -> __forall_inst f x)
let instantiate (fa : term) (x : term) : Tac binder =
try pose (`__forall_inst_sq (`#fa) (`#x)) with | _ ->
try pose (`__forall_inst (`#fa) (`#x)) with | _ ->
fail "could not instantiate"
let instantiate_as (fa : term) (x : term) (s : string) : Tac binder =
let b = instantiate fa x in
rename_to b s
private
let sklem0 (#a:Type) (#p : a -> Type0) ($v : (exists (x:a). p x)) (phi:Type0) :
Lemma (requires (forall x. p x ==> phi))
(ensures phi) = ()
private
let rec sk_binder' (acc:binders) (b:binder) : Tac (binders * binder) =
focus (fun () ->
try
apply_lemma (`(sklem0 (`#(binder_to_term b))));
if ngoals () <> 1 then fail "no";
clear b;
let bx = forall_intro () in
let b' = implies_intro () in
sk_binder' (bx::acc) b' (* We might have introduced a new existential, so possibly recurse *)
with | _ -> (acc, b) (* If the above failed, just return *)
)
(* Skolemizes a given binder for an existential, returning the introduced new binders
* and the skolemized formula. *)
let sk_binder b = sk_binder' [] b
let skolem () =
let bs = binders_of_env (cur_env ()) in
map sk_binder bs
private
val lemma_from_squash : #a:Type -> #b:(a -> Type) -> (x:a -> squash (b x)) -> x:a -> Lemma (b x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Tactics.V1.Derived.fst.checked",
"FStar.Tactics.Util.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Stubs.Tactics.V1.Builtins.fsti.checked",
"FStar.Squash.fsti.checked",
"FStar.Reflection.V1.Formula.fst.checked",
"FStar.Reflection.V1.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.IndefiniteDescription.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Tactics.V1.Logic.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Reflection.V1.Formula",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Reflection.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1.Derived",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Stubs.Tactics.V1.Builtins",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V1",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (x: a -> Prims.squash (b x)) -> x: a -> FStar.Pervasives.Lemma (ensures b x) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.squash",
"Prims._assert",
"Prims.unit"
] | [] | true | false | true | false | false | let lemma_from_squash #a #b f x =
| let _ = f x in
assert (b x) | false |
ProgramOptimizations.fst | ProgramOptimizations.rel_exp_denotation | val rel_exp_denotation (re: rel_exp) (h_left h_right: heap) : bool | val rel_exp_denotation (re: rel_exp) (h_left h_right: heap) : bool | let rec rel_exp_denotation (re:rel_exp) (h_left:heap) (h_right:heap) :bool =
match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right) | {
"file_name": "examples/rel/ProgramOptimizations.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 59,
"end_line": 142,
"start_col": 0,
"start_line": 125
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module ProgramOptimizations
open FStar.DM4F.Heap.IntStoreFixed
open FStar.DM4F.IntStoreFixed
(*
* language and examples from:
* "Simple Relational Correctness Proofs for Static Analyses and Program Transformations"
* https://research.microsoft.com/en-us/um/people/nick/correctnesspopl2004.pdf
*)
type var = id
type i_op =
| Add
| Sub
type i_exp =
| Const : int -> i_exp
| Var : id -> i_exp
| IOp : i_op -> i_exp -> i_exp -> i_exp
| UMinus: i_exp -> i_exp
type r_op =
| Lt
| Gt
| Eq
type b_op =
| And
| Or
type b_exp =
| CTrue : b_exp
| CFalse: b_exp
| ROp : r_op -> i_exp -> i_exp -> b_exp
| BOp : b_op -> b_exp -> b_exp -> b_exp
| Not : b_exp -> b_exp
type com =
| Skip : com
| Assign: var -> i_exp -> com
| Seq : com -> com -> com
| If : b_exp -> com -> com -> com
let rec i_exp_denotation (e:i_exp) :ISNull int =
match e with
| Const n -> n
| Var r -> !r
| IOp op e1 e2 ->
(let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
match op with
| Add -> n1 + n2
| Sub -> n1 - n2)
| UMinus e -> - (i_exp_denotation e)
let rec b_exp_denotation (b:b_exp) :ISNull bool =
match b with
| CTrue -> true
| CFalse -> false
| ROp op e1 e2 ->
let n1 = i_exp_denotation e1 in
let n2 = i_exp_denotation e2 in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| BOp op b1 b2 ->
let bc1 = b_exp_denotation b1 in
let bc2 = b_exp_denotation b2 in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| Not b -> not (b_exp_denotation b)
let rec com_denotation (c:com) :ISNull unit =
match c with
| Skip -> ()
| Assign r e ->
let n = i_exp_denotation e in
write r n (* r := n does not work, as it goes to FStar.ST *)
| Seq c1 c2 -> com_denotation c1; com_denotation c2
| If b c1 c2 ->
if b_exp_denotation b then com_denotation c1 else com_denotation c2
type g_exp =
| GConst: int -> g_exp
| Left : id -> g_exp
| Right : id -> g_exp
| GIOp : i_op -> g_exp -> g_exp -> g_exp
type rel_exp =
| RTrue : rel_exp
| RFalse: rel_exp
| RROp : r_op -> g_exp -> g_exp -> rel_exp
| RBOp : b_op -> rel_exp -> rel_exp -> rel_exp
| RNot : rel_exp -> rel_exp
let rec g_exp_denotation (g:g_exp) (h_left:heap) (h_right:heap) :int =
match g with
| GConst n -> n
| Left r -> sel h_left r
| Right r -> sel h_right r
| GIOp op g1 g2 ->
match op with
| Add -> g_exp_denotation g1 h_left h_right + g_exp_denotation g2 h_left h_right
| Sub -> g_exp_denotation g1 h_left h_right - g_exp_denotation g2 h_left h_right | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.DM4F.IntStoreFixed.fst.checked",
"FStar.DM4F.Heap.IntStoreFixed.fsti.checked"
],
"interface_file": false,
"source_file": "ProgramOptimizations.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.DM4F.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.DM4F.Heap.IntStoreFixed",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
re: ProgramOptimizations.rel_exp ->
h_left: FStar.DM4F.Heap.IntStoreFixed.heap ->
h_right: FStar.DM4F.Heap.IntStoreFixed.heap
-> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"ProgramOptimizations.rel_exp",
"FStar.DM4F.Heap.IntStoreFixed.heap",
"ProgramOptimizations.r_op",
"ProgramOptimizations.g_exp",
"Prims.op_LessThan",
"Prims.op_GreaterThan",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"ProgramOptimizations.g_exp_denotation",
"ProgramOptimizations.b_op",
"Prims.op_AmpAmp",
"Prims.op_BarBar",
"ProgramOptimizations.rel_exp_denotation",
"Prims.op_Negation"
] | [
"recursion"
] | false | false | false | true | false | let rec rel_exp_denotation (re: rel_exp) (h_left h_right: heap) : bool =
| match re with
| RTrue -> true
| RFalse -> false
| RROp op g1 g2 ->
let n1 = g_exp_denotation g1 h_left h_right in
let n2 = g_exp_denotation g2 h_left h_right in
(match op with
| Lt -> n1 < n2
| Gt -> n1 > n2
| Eq -> n1 = n2)
| RBOp op re1 re2 ->
let bc1 = rel_exp_denotation re1 h_left h_right in
let bc2 = rel_exp_denotation re2 h_left h_right in
(match op with
| And -> bc1 && bc2
| Or -> bc1 || bc2)
| RNot re1 -> not (rel_exp_denotation re1 h_left h_right) | false |
Spec.Frodo.Test.fst | Spec.Frodo.Test.compare | val compare : test_expected: Lib.ByteSequence.lbytes len -> test_result: Lib.ByteSequence.lbytes len -> Prims.bool | let compare (#len: size_nat) (test_expected: lbytes len) (test_result: lbytes len) =
for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) test_expected test_result | {
"file_name": "specs/tests/Spec.Frodo.Test.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 87,
"end_line": 23,
"start_col": 0,
"start_line": 22
} | module Spec.Frodo.Test
open FStar.Mul
open Lib.IntTypes
open Lib.RawIntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Frodo.KEM
open Spec.Frodo.KEM.KeyGen
open Spec.Frodo.KEM.Encaps
open Spec.Frodo.KEM.Decaps
open Spec.Frodo.Params
open FStar.All
module PS = Lib.PrintSequence
#set-options "--z3rlimit 50 --fuel 0 --ifuel 1" | {
"checked_file": "/",
"dependencies": [
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.KEM.Encaps.fst.checked",
"Spec.Frodo.KEM.Decaps.fst.checked",
"Spec.Frodo.KEM.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintSequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.Test.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.PrintSequence",
"short_module": "PS"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.Decaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.Encaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | test_expected: Lib.ByteSequence.lbytes len -> test_result: Lib.ByteSequence.lbytes len -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Lib.IntTypes.size_nat",
"Lib.ByteSequence.lbytes",
"Lib.Sequence.for_all2",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.op_Equality",
"Prims.nat",
"Prims.l_or",
"Prims.b2t",
"Prims.int",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.range",
"Lib.IntTypes.uint_v",
"Lib.RawIntTypes.uint_to_nat",
"Prims.bool"
] | [] | false | false | false | false | false | let compare (#len: size_nat) (test_expected test_result: lbytes len) =
| for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) test_expected test_result | false |
|
LowStar.Lens.fst | LowStar.Lens.view | val view (#roots:_) (#view:_) (l:hs_lens roots view) (h:imem (inv l)) : GTot view | val view (#roots:_) (#view:_) (l:hs_lens roots view) (h:imem (inv l)) : GTot view | let view #roots #view (l:hs_lens roots view) (h:imem (inv l)) =
l.l.get h | {
"file_name": "examples/data_structures/LowStar.Lens.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 11,
"end_line": 31,
"start_col": 0,
"start_line": 30
} | (*
Copyright 2008-2019 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.Lens
open FStar.HyperStack.ST
module B = LowStar.Buffer
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
let mods (l:hs_lens 'a 'b) (h:HS.mem) =
B.modifies (as_loc l.footprint) l.snapshot h /\
FStar.HyperStack.ST.equal_domains l.snapshot h
let inv #roots #view (l:hs_lens roots view) (h:HS.mem) =
l.invariant l.x h /\
mods l h | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "LowStar.Lens.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: LowStar.Lens.hs_lens roots view -> h: LowStar.Lens.imem (LowStar.Lens.inv l) -> Prims.GTot view | Prims.GTot | [
"sometrivial"
] | [] | [
"LowStar.Lens.hs_lens",
"LowStar.Lens.imem",
"LowStar.Lens.inv",
"LowStar.Lens.__proj__Mklens__item__get",
"LowStar.Lens.__proj__Mkhs_lens__item__invariant",
"LowStar.Lens.__proj__Mkhs_lens__item__x",
"LowStar.Lens.__proj__Mkhs_lens__item__l"
] | [] | false | false | false | false | false | let view #roots #view (l: hs_lens roots view) (h: imem (inv l)) =
| l.l.get h | false |
Demo.MultiplyByRepeatedAddition.fst | Demo.MultiplyByRepeatedAddition.i | val i (x: U32.t) : GTot int | val i (x: U32.t) : GTot int | let i (x:U32.t) : GTot int = U32.v x | {
"file_name": "share/steel/examples/pulse/Demo.MultiplyByRepeatedAddition.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 36,
"end_line": 83,
"start_col": 0,
"start_line": 83
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Demo.MultiplyByRepeatedAddition
open Pulse.Lib.Pervasives
open FStar.UInt32
#push-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection'"
#set-options "--ext 'pulse:rvalues' --split_queries always"
#set-options "--z3rlimit 40"
module U32 = FStar.UInt32
open FStar.Mul
let rec multiply (x y:nat) : z:nat { z == x * y} =
if x = 0 then 0
else multiply (x - 1) y + y
```pulse
fn mult (x y:nat)
requires emp
returns z:nat
ensures pure (z == x * y)
{
let mut ctr = 0;
let mut acc = 0;
while ((ctr < x))
invariant b.
exists* c a.
pts_to ctr c **
pts_to acc a **
pure (a == (c * y) /\
c <= x /\
b == (c < x))
{
acc := acc + y;
ctr := ctr + 1;
};
acc
}
```
open Pulse.Lib.BoundedIntegers
#push-options "--z3rlimit 75 --split_queries always --retry 5" // batch mode fails without these options, IDE works
```pulse
fn mult32 (x y:U32.t)
requires pure (fits #U32.t (v x * v y))
returns z:U32.t
ensures pure (v z == v x * v y)
{
let mut ctr = 0ul;
let mut acc = 0ul;
while ((ctr < x))
invariant b.
exists* c a.
pts_to ctr c **
pts_to acc a **
pure (c <= x /\
v a == (v c * v y) /\
b == (c < x))
{
acc := acc + y;
ctr := ctr + 1ul;
};
acc
}
```
#pop-options | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Pervasives.fst.checked",
"Pulse.Lib.BoundedIntegers.fst.checked",
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Demo.MultiplyByRepeatedAddition.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.UInt32",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib.BoundedIntegers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.UInt32",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Demo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Demo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 40,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.UInt32.t -> Prims.GTot Prims.int | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.UInt32.t",
"FStar.UInt32.v",
"Prims.int"
] | [] | false | false | false | false | false | let i (x: U32.t) : GTot int =
| U32.v x | false |
Vale.Stdcalls.X64.GCM_IV.fst | Vale.Stdcalls.X64.GCM_IV.uint64 | val uint64 : Prims.eqtype | let uint64 = UInt64.t | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCM_IV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 21,
"end_line": 27,
"start_col": 0,
"start_line": 27
} | module Vale.Stdcalls.X64.GCM_IV
open FStar.HyperStack.ST
module B = LowStar.Buffer
module HS = FStar.HyperStack
open FStar.Mul
module DV = LowStar.BufferView.Down
module UV = LowStar.BufferView.Up
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module GC = Vale.AES.X64.GCMencryptOpt
open Vale.AES.GCM_s | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"Vale.AES.X64.GCMencryptOpt.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"prims.fst.checked",
"LowStar.BufferView.Up.fsti.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.GCM_IV.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AES.X64.GCMencryptOpt",
"short_module": "GC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.eqtype | Prims.Tot | [
"total"
] | [] | [
"FStar.UInt64.t"
] | [] | false | false | false | true | false | let uint64 =
| UInt64.t | false |
|
Vale.Stdcalls.X64.GCM_IV.fst | Vale.Stdcalls.X64.GCM_IV.t128_no_mod | val t128_no_mod : Vale.Interop.Base.td | let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCM_IV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 106,
"end_line": 40,
"start_col": 0,
"start_line": 40
} | module Vale.Stdcalls.X64.GCM_IV
open FStar.HyperStack.ST
module B = LowStar.Buffer
module HS = FStar.HyperStack
open FStar.Mul
module DV = LowStar.BufferView.Down
module UV = LowStar.BufferView.Up
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module GC = Vale.AES.X64.GCMencryptOpt
open Vale.AES.GCM_s
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt8 TUInt128
[@__reduce__] noextract
let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"Vale.AES.X64.GCMencryptOpt.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"prims.fst.checked",
"LowStar.BufferView.Up.fsti.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.GCM_IV.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AES.X64.GCMencryptOpt",
"short_module": "GC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Vale.Interop.Base.td | Prims.Tot | [
"total"
] | [] | [
"Vale.Interop.Base.TD_Buffer",
"Vale.Arch.HeapTypes_s.TUInt8",
"Vale.Arch.HeapTypes_s.TUInt128",
"Vale.Interop.Base.Mkbuffer_qualifiers",
"Vale.Arch.HeapTypes_s.Secret"
] | [] | false | false | false | true | false | let t128_no_mod =
| TD_Buffer TUInt8 TUInt128 ({ modified = false; strict_disjointness = false; taint = MS.Secret }) | false |
|
RecordOfArrays.fst | RecordOfArrays.rec_array_perm | val rec_array_perm (r: rec_array) (v: rec_array_repr) : vprop | val rec_array_perm (r: rec_array) (v: rec_array_repr) : vprop | let rec_array_perm (r:rec_array) (v:rec_array_repr)
: vprop =
A.pts_to r.r1 v.v1 **
A.pts_to r.r2 v.v2 | {
"file_name": "share/steel/examples/pulse/bug-reports/RecordOfArrays.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 20,
"end_line": 40,
"start_col": 0,
"start_line": 37
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module RecordOfArrays
open Pulse.Lib.Pervasives
module R = Pulse.Lib.Reference
module A = Pulse.Lib.Array
module U8 = FStar.UInt8
module US = FStar.SizeT
// Similar to Records, but with arrays
noeq
type rec_array = {
r1: A.array U8.t;
r2: A.array U8.t;
}
type rec_array_repr = {
v1: Seq.seq U8.t;
v2: Seq.seq U8.t;
} | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Reference.fsti.checked",
"Pulse.Lib.Pervasives.fst.checked",
"Pulse.Lib.Array.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "RecordOfArrays.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Array",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: RecordOfArrays.rec_array -> v: RecordOfArrays.rec_array_repr -> Pulse.Lib.Core.vprop | Prims.Tot | [
"total"
] | [] | [
"RecordOfArrays.rec_array",
"RecordOfArrays.rec_array_repr",
"Pulse.Lib.Core.op_Star_Star",
"Pulse.Lib.Array.Core.pts_to",
"FStar.UInt8.t",
"RecordOfArrays.__proj__Mkrec_array__item__r1",
"PulseCore.FractionalPermission.full_perm",
"RecordOfArrays.__proj__Mkrec_array_repr__item__v1",
"RecordOfArrays.__proj__Mkrec_array__item__r2",
"RecordOfArrays.__proj__Mkrec_array_repr__item__v2",
"Pulse.Lib.Core.vprop"
] | [] | false | false | false | true | false | let rec_array_perm (r: rec_array) (v: rec_array_repr) : vprop =
| A.pts_to r.r1 v.v1 ** A.pts_to r.r2 v.v2 | false |
Vale.Stdcalls.X64.GCM_IV.fst | Vale.Stdcalls.X64.GCM_IV.tuint64 | val tuint64 : Vale.Interop.Base.td | let tuint64 = TD_Base TUInt64 | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCM_IV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 42,
"start_col": 0,
"start_line": 42
} | module Vale.Stdcalls.X64.GCM_IV
open FStar.HyperStack.ST
module B = LowStar.Buffer
module HS = FStar.HyperStack
open FStar.Mul
module DV = LowStar.BufferView.Down
module UV = LowStar.BufferView.Up
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module GC = Vale.AES.X64.GCMencryptOpt
open Vale.AES.GCM_s
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt8 TUInt128
[@__reduce__] noextract
let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq
[@__reduce__] noextract
let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret}) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"Vale.AES.X64.GCMencryptOpt.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"prims.fst.checked",
"LowStar.BufferView.Up.fsti.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.GCM_IV.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AES.X64.GCMencryptOpt",
"short_module": "GC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Vale.Interop.Base.td | Prims.Tot | [
"total"
] | [] | [
"Vale.Interop.Base.TD_Base",
"Vale.Arch.HeapTypes_s.TUInt64"
] | [] | false | false | false | true | false | let tuint64 =
| TD_Base TUInt64 | false |
|
RecordOfArrays.fst | RecordOfArrays.mk_rec_array_repr | val mk_rec_array_repr : v1: FStar.Seq.Base.seq FStar.UInt8.t -> v2: FStar.Seq.Base.seq FStar.UInt8.t
-> RecordOfArrays.rec_array_repr | let mk_rec_array_repr (v1 v2:Seq.seq U8.t) = { v1=v1; v2=v2 } | {
"file_name": "share/steel/examples/pulse/bug-reports/RecordOfArrays.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 61,
"end_line": 44,
"start_col": 0,
"start_line": 44
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module RecordOfArrays
open Pulse.Lib.Pervasives
module R = Pulse.Lib.Reference
module A = Pulse.Lib.Array
module U8 = FStar.UInt8
module US = FStar.SizeT
// Similar to Records, but with arrays
noeq
type rec_array = {
r1: A.array U8.t;
r2: A.array U8.t;
}
type rec_array_repr = {
v1: Seq.seq U8.t;
v2: Seq.seq U8.t;
}
let rec_array_perm (r:rec_array) (v:rec_array_repr)
: vprop =
A.pts_to r.r1 v.v1 **
A.pts_to r.r2 v.v2
//Using record syntax directly in Pulse vprops | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Reference.fsti.checked",
"Pulse.Lib.Pervasives.fst.checked",
"Pulse.Lib.Array.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "RecordOfArrays.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Array",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | v1: FStar.Seq.Base.seq FStar.UInt8.t -> v2: FStar.Seq.Base.seq FStar.UInt8.t
-> RecordOfArrays.rec_array_repr | Prims.Tot | [
"total"
] | [] | [
"FStar.Seq.Base.seq",
"FStar.UInt8.t",
"RecordOfArrays.Mkrec_array_repr",
"RecordOfArrays.rec_array_repr"
] | [] | false | false | false | true | false | let mk_rec_array_repr (v1 v2: Seq.seq U8.t) =
| { v1 = v1; v2 = v2 } | false |
|
Vale.Stdcalls.X64.GCM_IV.fst | Vale.Stdcalls.X64.GCM_IV.t128_mod | val t128_mod : Vale.Interop.Base.td | let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCM_IV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 51,
"end_line": 38,
"start_col": 0,
"start_line": 38
} | module Vale.Stdcalls.X64.GCM_IV
open FStar.HyperStack.ST
module B = LowStar.Buffer
module HS = FStar.HyperStack
open FStar.Mul
module DV = LowStar.BufferView.Down
module UV = LowStar.BufferView.Up
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module GC = Vale.AES.X64.GCMencryptOpt
open Vale.AES.GCM_s
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt8 TUInt128 | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"Vale.AES.X64.GCMencryptOpt.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"prims.fst.checked",
"LowStar.BufferView.Up.fsti.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.GCM_IV.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AES.X64.GCMencryptOpt",
"short_module": "GC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Vale.Interop.Base.td | Prims.Tot | [
"total"
] | [] | [
"Vale.Interop.Base.TD_Buffer",
"Vale.Arch.HeapTypes_s.TUInt8",
"Vale.Arch.HeapTypes_s.TUInt128",
"Vale.Interop.Base.default_bq"
] | [] | false | false | false | true | false | let t128_mod =
| TD_Buffer TUInt8 TUInt128 default_bq | false |
|
Spec.Frodo.Test.fst | Spec.Frodo.Test.test1_ct_expected | val test1_ct_expected : Prims.list Lib.IntTypes.uint8 | let test1_ct_expected =
List.Tot.map u8_from_UInt8
[
0xebuy; 0x01uy; 0x36uy; 0x7duy; 0xe9uy; 0xdauy; 0x51uy; 0x3fuy; 0x8duy; 0xc7uy; 0x53uy; 0xdeuy;
0xfcuy; 0xa2uy; 0x2cuy; 0xacuy; 0x2duy; 0xbcuy; 0x9buy; 0xacuy; 0x9cuy; 0xc0uy; 0xc5uy; 0x08uy;
0x9duy; 0x0duy; 0x07uy; 0xbcuy; 0xd8uy; 0x69uy; 0x20uy; 0xccuy; 0x18uy; 0x0cuy; 0xbcuy; 0x7buy;
0x49uy; 0x23uy; 0x06uy; 0x8cuy; 0x9cuy; 0xc4uy; 0x1fuy; 0xffuy; 0x53uy; 0x91uy; 0x9cuy; 0x7fuy;
0xb4uy; 0xa7uy; 0x28uy; 0xdfuy; 0x30uy; 0x5euy; 0x9euy; 0x19uy; 0xd1uy; 0xbbuy; 0xe7uy; 0xacuy;
0x0cuy; 0xb2uy; 0xbduy; 0x58uy; 0xd6uy; 0x96uy; 0x8buy; 0x04uy; 0x66uy; 0xf6uy; 0xbeuy; 0x58uy;
0x25uy; 0xf9uy; 0xfbuy; 0xe1uy; 0x13uy; 0x7auy; 0x88uy; 0x57uy; 0xb6uy; 0xb5uy; 0x71uy; 0xe6uy;
0xe2uy; 0x63uy; 0xd2uy; 0x85uy; 0x8duy; 0x07uy; 0x37uy; 0xe9uy; 0xaduy; 0xe9uy; 0x3duy; 0x95uy;
0xccuy; 0x7euy; 0x56uy; 0x2duy; 0xaauy; 0x0buy; 0x13uy; 0xdfuy; 0xe8uy; 0x19uy; 0x7euy; 0x52uy;
0x8duy; 0x7buy; 0xaauy; 0x09uy; 0x10uy; 0xb2uy; 0x32uy; 0x9cuy; 0x91uy; 0xf3uy; 0x14uy; 0x49uy;
0x4auy; 0x9fuy; 0x38uy; 0xc0uy; 0xf5uy; 0xf4uy; 0x44uy; 0xc6uy; 0xf6uy; 0xf8uy; 0xd0uy; 0xb0uy;
0x4fuy; 0xc1uy; 0xc3uy; 0xd7uy; 0x71uy; 0x18uy; 0xe3uy; 0xc0uy; 0xf5uy; 0x7auy; 0xd0uy; 0x04uy;
0x4fuy; 0xcfuy; 0x76uy; 0xdcuy; 0xeeuy; 0x35uy; 0x21uy; 0xe0uy; 0x9euy; 0x41uy; 0x10uy; 0x06uy;
0x2duy; 0xb8uy; 0x0cuy; 0xabuy; 0x1duy; 0x3duy; 0x60uy; 0xefuy; 0xaduy; 0xc5uy; 0x80uy; 0x09uy;
0x56uy; 0xeeuy; 0xcbuy; 0x53uy; 0x1buy; 0x50uy; 0x95uy; 0x34uy; 0x47uy; 0xaeuy; 0x70uy; 0x96uy;
0xbauy; 0x19uy; 0x55uy; 0x99uy; 0xd1uy; 0xb1uy; 0xe6uy; 0x32uy; 0xf0uy; 0x19uy; 0x3buy; 0x2buy;
0xc7uy; 0x9cuy; 0xf7uy; 0xcauy; 0xa7uy; 0x3auy; 0xd3uy; 0xdcuy; 0xecuy; 0xf2uy; 0x49uy; 0x43uy;
0x64uy; 0x7cuy; 0xfduy; 0x35uy; 0xe8uy; 0xfauy; 0xa5uy; 0x98uy; 0x01uy; 0x6buy; 0x4euy; 0xe5uy;
0x84uy; 0x03uy; 0x24uy; 0xb6uy; 0xc7uy; 0x30uy; 0x13uy; 0x44uy; 0xd3uy; 0xe6uy; 0x97uy; 0xefuy;
0xf7uy; 0x13uy; 0xefuy; 0x0euy; 0x9fuy; 0x12uy; 0x75uy; 0x76uy; 0x69uy; 0x7cuy; 0x91uy; 0x15uy;
0x6cuy; 0xc0uy; 0xc2uy; 0x60uy; 0x8cuy; 0x63uy; 0xa7uy; 0xfauy; 0xc2uy; 0xf4uy; 0x17uy; 0xbauy;
0x8buy; 0xd4uy; 0xcfuy; 0x4auy; 0x8duy; 0x63uy; 0xb8uy; 0xa4uy; 0x6buy; 0x9cuy; 0x87uy; 0x94uy;
0x37uy; 0x05uy; 0x9duy; 0xc4uy; 0x76uy; 0x24uy; 0x77uy; 0x79uy; 0x4duy; 0x93uy; 0x62uy; 0x0buy;
0xbcuy; 0x72uy; 0x7euy; 0xb2uy; 0xefuy; 0x3cuy; 0x00uy; 0x1cuy; 0x18uy; 0x18uy; 0xbbuy; 0xe8uy;
0x60uy; 0x6euy; 0xc5uy; 0x9buy; 0x47uy; 0x93uy; 0x77uy; 0xd8uy; 0xf0uy; 0x45uy; 0x16uy; 0x97uy;
0x15uy; 0xc0uy; 0xd3uy; 0x4euy; 0x6duy; 0xe9uy; 0xfeuy; 0x89uy; 0xc3uy; 0x87uy; 0x3auy; 0x49uy;
0xfbuy; 0x9duy; 0x86uy; 0xffuy; 0xcauy; 0xa1uy; 0x3fuy; 0x15uy; 0x37uy; 0xd8uy; 0x98uy; 0xeeuy;
0xd9uy; 0x36uy; 0x06uy; 0x33uy; 0xd8uy; 0xdauy; 0x82uy; 0xeeuy; 0x60uy; 0x8cuy; 0xc7uy; 0xf3uy;
0x19uy; 0x47uy; 0x15uy; 0x7fuy; 0xd3uy; 0xf1uy; 0x30uy; 0xa2uy; 0xc6uy; 0xc4uy; 0x04uy; 0x5cuy;
0x50uy; 0xa3uy; 0x48uy; 0xc8uy; 0x1buy; 0x35uy; 0xfeuy; 0xa5uy; 0xeauy; 0x8auy; 0x4auy; 0x8cuy;
0x9cuy; 0x85uy; 0x8cuy; 0x1fuy; 0xbbuy; 0x3duy; 0xafuy; 0x2euy; 0x3auy; 0xaduy; 0x34uy; 0x6cuy;
0x5duy; 0x87uy; 0xc9uy; 0xc9uy; 0x7fuy; 0x30uy; 0xc1uy; 0x8duy; 0x4cuy; 0xd6uy; 0xbfuy; 0xc0uy;
0xf8uy; 0xa7uy; 0xb2uy; 0x91uy; 0x9buy; 0xe7uy; 0x85uy; 0x96uy; 0xe8uy; 0xb3uy; 0xaeuy; 0x89uy;
0x53uy; 0x41uy; 0x48uy; 0x0euy; 0xd0uy; 0x6auy; 0x4euy; 0x0cuy; 0x7duy; 0x10uy; 0xa1uy; 0xe8uy;
0x9duy; 0x7cuy; 0xdcuy; 0x76uy; 0x91uy; 0x86uy; 0x70uy; 0x67uy; 0xe1uy; 0x76uy; 0x4duy; 0x23uy;
0xeauy; 0x55uy; 0x62uy; 0xb9uy; 0x61uy; 0x7fuy; 0x24uy; 0xd3uy; 0x06uy; 0xd8uy; 0x15uy; 0x88uy;
0x52uy; 0x92uy; 0x8auy; 0xc1uy; 0x8auy; 0x1cuy; 0x7buy; 0x40uy; 0xfauy; 0x03uy; 0xe0uy; 0x93uy;
0xf7uy; 0x2duy; 0xf1uy; 0xdcuy; 0x27uy; 0x10uy; 0xd4uy; 0x28uy; 0x0auy; 0x61uy; 0x87uy; 0xbfuy;
0x09uy; 0xfbuy; 0xb1uy; 0xc7uy; 0xd8uy; 0xe9uy; 0xfauy; 0xa5uy; 0xa8uy; 0x6buy; 0x6duy; 0xa0uy;
0x64uy; 0xb7uy; 0xe4uy; 0x86uy; 0x79uy; 0x6euy; 0x85uy; 0x93uy; 0x94uy; 0xc9uy; 0xdeuy; 0xa9uy;
0x40uy; 0xb3uy; 0x6euy; 0xa0uy; 0xa6uy; 0xc8uy; 0xc9uy; 0x84uy; 0x3euy; 0xdbuy; 0x1duy; 0xa8uy;
0xbcuy; 0x04uy; 0x1cuy; 0xa4uy; 0x4fuy; 0x70uy; 0x77uy; 0xafuy; 0x98uy; 0x71uy; 0xc6uy; 0xbeuy;
0x24uy; 0x58uy; 0xc9uy; 0x53uy; 0x20uy; 0xd2uy; 0xeauy; 0x3duy; 0xe7uy; 0x3fuy; 0x8cuy; 0x44uy;
0xc8uy; 0x3fuy; 0x14uy; 0x50uy; 0xcduy; 0xc8uy; 0x45uy; 0x99uy; 0xf8uy; 0xb6uy; 0xd5uy; 0x99uy;
0x5auy; 0x77uy; 0x61uy; 0x48uy; 0x9fuy; 0x1auy; 0xb0uy; 0x6fuy; 0x1cuy; 0x27uy; 0x35uy; 0x80uy;
0xe6uy; 0x1euy; 0xe2uy; 0x75uy; 0xafuy; 0xf8uy; 0x10uy; 0x6duy; 0x0euy; 0xe6uy; 0x8auy; 0xb5uy;
0xffuy; 0x6cuy; 0x1euy; 0x41uy; 0x60uy; 0x93uy; 0xebuy; 0xffuy; 0x9fuy; 0xffuy; 0xf7uy; 0xcauy;
0x77uy; 0x2fuy; 0xc2uy; 0x44uy; 0xe8uy; 0x86uy; 0x23uy; 0x8auy; 0x2euy; 0xa7uy; 0x1buy; 0xb2uy;
0x8auy; 0x6cuy; 0x79uy; 0x0euy; 0x4duy; 0xe2uy; 0x09uy; 0xa7uy; 0xdauy; 0x60uy; 0x54uy; 0x55uy;
0x36uy; 0xb9uy; 0x06uy; 0x51uy; 0xd9uy; 0x1duy; 0x6cuy; 0xaauy; 0x0buy; 0x03uy; 0xb1uy; 0x38uy;
0x63uy; 0xd7uy; 0x29uy; 0x76uy; 0xf6uy; 0xc5uy; 0x73uy; 0x0auy; 0x0euy; 0x1duy; 0xf7uy; 0xc9uy;
0x5auy; 0xdauy; 0xdcuy; 0x64uy; 0xd5uy; 0x9fuy; 0x51uy; 0xc8uy; 0x8euy; 0x6fuy; 0xf6uy; 0xb9uy;
0x0cuy; 0xd4uy; 0x57uy; 0x5duy; 0x82uy; 0x4euy; 0xeeuy; 0xc6uy; 0x8auy; 0xf5uy; 0x7fuy; 0x59uy;
0xe1uy; 0x0cuy; 0xb8uy; 0xe7uy; 0xf6uy; 0xc6uy; 0x2auy; 0xb1uy; 0x5auy; 0xbauy; 0x77uy; 0xa0uy;
0x30uy; 0x19uy; 0x10uy; 0xe6uy; 0x5auy; 0x90uy; 0x03uy; 0x21uy; 0x3euy; 0xd8uy; 0xc1uy; 0xc5uy;
0xc5uy; 0x81uy; 0xf7uy; 0xc1uy; 0x6auy; 0xfauy; 0xecuy; 0xf6uy; 0x31uy; 0x0duy; 0xf6uy; 0x85uy;
0x9fuy; 0xb5uy; 0x34uy; 0x38uy; 0xf8uy; 0xc1uy; 0xe6uy; 0x7euy; 0x67uy; 0x8buy; 0x14uy; 0x01uy;
0x3buy; 0x32uy; 0xb6uy; 0xb1uy; 0x90uy; 0x91uy; 0xbcuy; 0x40uy; 0x90uy; 0x72uy; 0x55uy; 0x76uy;
0x2buy; 0x34uy; 0x3buy; 0x05uy; 0x65uy; 0x87uy; 0x0euy; 0x4buy; 0xb5uy; 0xcduy; 0x94uy; 0x88uy;
0x60uy; 0xf0uy; 0x7duy; 0xc9uy; 0x21uy; 0x71uy; 0xe2uy; 0x55uy; 0x43uy; 0x06uy; 0x1cuy; 0x84uy;
0x02uy; 0xd0uy; 0x4euy; 0xcbuy; 0x1buy; 0x38uy; 0x6duy; 0x58uy; 0x62uy; 0xabuy; 0x50uy; 0xcfuy;
0xb5uy; 0x47uy; 0x24uy; 0xb8uy; 0x6cuy; 0x00uy; 0xa4uy; 0xf2uy; 0x97uy; 0x9fuy; 0xf3uy; 0x98uy;
0x2euy; 0xf9uy; 0x4fuy; 0x02uy; 0xdcuy; 0x1duy; 0xc6uy; 0x08uy; 0x35uy; 0x57uy; 0xe5uy; 0x9buy;
0xd7uy; 0xf4uy; 0xd7uy; 0x28uy; 0x50uy; 0x39uy; 0xfduy; 0xd8uy; 0xe6uy; 0xbfuy; 0xcauy; 0x61uy;
0x65uy; 0xe3uy; 0xd0uy; 0x95uy; 0x65uy; 0x68uy; 0xb1uy; 0x41uy; 0x65uy; 0x1auy; 0x62uy; 0xceuy;
0x65uy; 0x8fuy; 0xeeuy; 0xe7uy; 0x7auy; 0x3cuy; 0x04uy; 0x95uy; 0x01uy; 0xd1uy; 0x31uy; 0x75uy;
0x80uy; 0x69uy; 0x1euy; 0x4buy; 0xb3uy; 0x4fuy; 0xb9uy; 0x5buy; 0x5cuy; 0x8euy; 0x16uy; 0x01uy;
0x99uy; 0x02uy; 0x55uy; 0x94uy; 0x0buy; 0xa9uy; 0x49uy; 0x7cuy; 0x10uy; 0xd4uy; 0xc9uy; 0xdduy;
0x2buy; 0xabuy; 0x8buy; 0x4cuy; 0x21uy; 0x7auy; 0x7duy; 0x53uy; 0x7buy; 0xd0uy; 0x69uy; 0x45uy;
0xcauy; 0x9auy; 0x91uy; 0x40uy; 0x54uy; 0x03uy; 0xb3uy; 0x56uy; 0x0euy; 0xc6uy; 0x68uy; 0x30uy;
0xdcuy; 0xb1uy; 0xffuy; 0xe4uy; 0x3fuy; 0x0euy; 0x1euy; 0xc0uy; 0x56uy; 0xb2uy; 0xe1uy; 0xfcuy;
0x58uy; 0xf5uy; 0xabuy; 0x39uy; 0x4euy; 0xdduy; 0x33uy; 0xbcuy; 0x12uy; 0xc5uy; 0xdcuy; 0x77uy;
0x46uy; 0x84uy; 0x82uy; 0xb2uy; 0x7fuy; 0xa2uy; 0xf6uy; 0x06uy; 0x24uy; 0xd6uy; 0x3cuy; 0xe3uy;
0xc5uy; 0xc2uy; 0x18uy; 0xc4uy; 0xc9uy; 0xf5uy; 0xa3uy; 0x2auy; 0x56uy; 0x5buy; 0x59uy; 0xe7uy;
0x00uy; 0x92uy; 0xb4uy; 0xd6uy; 0xf9uy; 0x96uy; 0x7cuy; 0x01uy; 0x26uy; 0x1euy; 0x5fuy; 0x27uy;
0x9cuy; 0x1buy; 0xb7uy; 0xf7uy; 0x36uy; 0xebuy; 0x7auy; 0xf3uy; 0xa7uy; 0x5euy; 0x38uy; 0xb2uy;
0x7buy; 0x7fuy; 0xd1uy; 0x4euy; 0x68uy; 0xb9uy; 0xa9uy; 0xf8uy; 0x7auy; 0x06uy; 0xb4uy; 0xe8uy;
0x42uy; 0xd8uy; 0xc7uy; 0x5auy; 0x08uy; 0xd5uy; 0x67uy; 0xa7uy; 0x30uy; 0xb6uy; 0x2euy; 0x80uy;
0xacuy; 0xa9uy; 0x07uy; 0xbbuy; 0x18uy; 0x54uy; 0xc3uy; 0x81uy; 0x6euy; 0x8auy; 0x24uy; 0xc0uy;
0x7fuy; 0xd0uy; 0x54uy; 0xb2uy; 0xe7uy; 0x1auy; 0x11uy; 0xf4uy; 0x9duy; 0x2cuy; 0x75uy; 0x37uy;
0x2euy; 0xc6uy; 0xfcuy; 0x85uy; 0x5duy; 0x46uy; 0x44uy; 0x7auy; 0x36uy; 0xe5uy; 0x62uy; 0xa4uy;
0x26uy; 0xdduy; 0x4cuy; 0x20uy; 0x33uy; 0x7auy; 0x8auy; 0x41uy; 0x8auy; 0x0fuy; 0xa4uy; 0xf8uy;
0x74uy; 0x45uy; 0x98uy; 0xe3uy; 0x73uy; 0xa1uy; 0x4euy; 0x40uy; 0x10uy; 0x5buy; 0x0fuy; 0xa0uy;
0xe4uy; 0x5euy; 0x97uy; 0x40uy; 0xdcuy; 0x68uy; 0x79uy; 0xd7uy; 0xfeuy; 0xfduy; 0x34uy; 0xd0uy;
0xb7uy; 0xcbuy; 0x4auy; 0xf3uy; 0xb0uy; 0xc7uy; 0xf5uy; 0xbauy; 0x6cuy; 0xa9uy; 0xf0uy; 0x82uy;
0x01uy; 0xb2uy; 0x3fuy; 0x9euy; 0x56uy; 0x9cuy; 0x86uy; 0x05uy; 0x03uy; 0x99uy; 0x2euy; 0xe7uy;
0xeduy; 0xdfuy; 0xfeuy; 0x05uy; 0x3buy; 0xdbuy; 0x3cuy; 0x30uy; 0x98uy; 0xa2uy; 0x23uy; 0x86uy;
0xefuy; 0x80uy; 0xe4uy; 0x2fuy; 0xdeuy; 0x8cuy; 0x7duy; 0x2euy; 0x78uy; 0xdbuy; 0xd6uy; 0xcauy;
0x7fuy; 0x79uy; 0x7auy; 0x3buy; 0xafuy; 0x2auy; 0xeduy; 0xf3uy; 0x03uy; 0x15uy; 0xccuy; 0x3duy;
0x52uy; 0x50uy; 0x1duy; 0x08uy; 0x93uy; 0xa2uy; 0xd8uy; 0x63uy; 0x91uy; 0xa0uy; 0x6cuy; 0xccuy
] | {
"file_name": "specs/tests/Spec.Frodo.Test.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 258,
"start_col": 0,
"start_line": 165
} | module Spec.Frodo.Test
open FStar.Mul
open Lib.IntTypes
open Lib.RawIntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Frodo.KEM
open Spec.Frodo.KEM.KeyGen
open Spec.Frodo.KEM.Encaps
open Spec.Frodo.KEM.Decaps
open Spec.Frodo.Params
open FStar.All
module PS = Lib.PrintSequence
#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
let compare (#len: size_nat) (test_expected: lbytes len) (test_result: lbytes len) =
for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) test_expected test_result
let test_frodo
(a:frodo_alg)
(gen_a:frodo_gen_a)
(keypaircoins: list uint8 {List.Tot.length keypaircoins == 2 * crypto_bytes a + bytes_seed_a})
(enccoins: list uint8 {List.Tot.length enccoins == bytes_mu a})
(ss_expected: list uint8 {List.Tot.length ss_expected == crypto_bytes a})
(pk_expected: list uint8 {List.Tot.length pk_expected == crypto_publickeybytes a})
(ct_expected: list uint8 {List.Tot.length ct_expected == crypto_ciphertextbytes a})
(sk_expected: list uint8 {List.Tot.length sk_expected == crypto_secretkeybytes a})
: ML bool =
let keypaircoins = createL keypaircoins in
let enccoins = createL enccoins in
let ss_expected = createL ss_expected in
let pk_expected = createL pk_expected in
let ct_expected = createL ct_expected in
let sk_expected = createL sk_expected in
let pk, sk = crypto_kem_keypair_ a gen_a keypaircoins in
let ct, ss1 = crypto_kem_enc_ a gen_a enccoins pk in
let ss2 = crypto_kem_dec a gen_a ct sk in
let r_pk = compare pk_expected pk in
let r_sk = compare sk_expected sk in
let r_ct = compare ct_expected ct in
let r_ss = PS.print_compare true (crypto_bytes a) ss1 ss2 in
let r_ss1 = PS.print_compare true (crypto_bytes a) ss_expected ss2 in
r_pk && r_sk && r_ct && r_ss && r_ss1
//
// Test1. FrodoKEM-64. SHAKE128
//
let test1_keypaircoins =
List.Tot.map u8_from_UInt8
[
0xa6uy; 0x65uy; 0x65uy; 0x9fuy; 0xfbuy; 0xe4uy; 0x06uy; 0x5cuy; 0xcauy; 0x81uy; 0x5auy; 0x45uy;
0xe4uy; 0x94uy; 0xd8uy; 0x01uy; 0x90uy; 0x30uy; 0x33uy; 0x55uy; 0x33uy; 0x84uy; 0x2euy; 0xe4uy;
0x4cuy; 0x55uy; 0x8fuy; 0xd8uy; 0xaeuy; 0x4buy; 0x4euy; 0x91uy; 0x62uy; 0xfeuy; 0xc7uy; 0x9auy;
0xc5uy; 0xcduy; 0x1fuy; 0xe2uy; 0xd2uy; 0x00uy; 0x63uy; 0x39uy; 0xaauy; 0xb1uy; 0xf3uy; 0x17uy
]
let test1_enccoins =
List.Tot.map u8_from_UInt8
[
0x8duy; 0xf3uy; 0xfauy; 0xe3uy; 0x83uy; 0x27uy; 0xc5uy; 0x3cuy; 0xc1uy; 0xc4uy; 0x8cuy; 0x60uy;
0xb2uy; 0x52uy; 0x2buy; 0xb5uy
]
let test1_ss_expected =
List.Tot.map u8_from_UInt8
[
0xf8uy; 0x96uy; 0x15uy; 0x94uy; 0x80uy; 0x9fuy; 0xebuy; 0x77uy; 0x56uy; 0xbeuy; 0x37uy; 0x69uy;
0xa0uy; 0xeauy; 0x60uy; 0x16uy
]
let test1_pk_expected =
List.Tot.map u8_from_UInt8
[
0x0duy; 0xacuy; 0x6fuy; 0x83uy; 0x94uy; 0x00uy; 0x1auy; 0xcauy; 0x97uy; 0xa1uy; 0xaauy; 0x42uy;
0x80uy; 0x9duy; 0x6buy; 0xa5uy; 0xfcuy; 0x64uy; 0x43uy; 0xdbuy; 0xbeuy; 0x6fuy; 0x12uy; 0x2auy;
0x94uy; 0x58uy; 0x36uy; 0xf2uy; 0xb1uy; 0xf8uy; 0xe5uy; 0xf0uy; 0x57uy; 0x4buy; 0x35uy; 0x51uy;
0xdduy; 0x8cuy; 0x36uy; 0x28uy; 0x34uy; 0x46uy; 0xd6uy; 0xafuy; 0x5duy; 0x49uy; 0x0euy; 0x27uy;
0xd8uy; 0xd3uy; 0xaduy; 0xe1uy; 0xeduy; 0x8buy; 0x2duy; 0x13uy; 0xf5uy; 0x5auy; 0xb6uy; 0xdduy;
0xc0uy; 0x54uy; 0x76uy; 0x09uy; 0xa6uy; 0xa4uy; 0x01uy; 0xb9uy; 0xb7uy; 0xd1uy; 0x26uy; 0xd5uy;
0x1euy; 0xa8uy; 0x20uy; 0x4duy; 0xe8uy; 0xefuy; 0xaduy; 0xb9uy; 0xf0uy; 0x65uy; 0xe9uy; 0xc4uy;
0xf4uy; 0x11uy; 0x98uy; 0x99uy; 0xf0uy; 0x2cuy; 0x63uy; 0x7buy; 0x98uy; 0xd7uy; 0x60uy; 0x43uy;
0x5duy; 0x8cuy; 0x85uy; 0xe9uy; 0xc5uy; 0x83uy; 0x83uy; 0x62uy; 0xe2uy; 0x13uy; 0x33uy; 0x54uy;
0x4buy; 0x71uy; 0xaeuy; 0x63uy; 0xbauy; 0x5auy; 0x4euy; 0x32uy; 0x59uy; 0x78uy; 0x6buy; 0x4duy;
0x39uy; 0xcfuy; 0xe1uy; 0x82uy; 0x58uy; 0x0auy; 0xc3uy; 0x61uy; 0x6auy; 0x89uy; 0x2fuy; 0x1buy;
0x70uy; 0xdduy; 0x16uy; 0x3euy; 0x96uy; 0xb1uy; 0x4cuy; 0x71uy; 0xb1uy; 0x79uy; 0x0cuy; 0x3fuy;
0xe2uy; 0xeduy; 0x05uy; 0x07uy; 0x72uy; 0xf3uy; 0x89uy; 0x08uy; 0x8cuy; 0x22uy; 0xa7uy; 0x36uy;
0x40uy; 0xcauy; 0x52uy; 0x70uy; 0x1buy; 0x09uy; 0xcbuy; 0xabuy; 0x3buy; 0x64uy; 0x61uy; 0x6duy;
0x5duy; 0xf7uy; 0x15uy; 0x69uy; 0x71uy; 0x3buy; 0x3auy; 0x2euy; 0x53uy; 0x33uy; 0x26uy; 0xe6uy;
0x29uy; 0x5cuy; 0xfbuy; 0x0duy; 0xc6uy; 0xe4uy; 0xbduy; 0x9cuy; 0x43uy; 0xffuy; 0xa6uy; 0x5buy;
0x49uy; 0x47uy; 0x93uy; 0x1cuy; 0x81uy; 0x6fuy; 0xd4uy; 0xaauy; 0x3duy; 0xaduy; 0x86uy; 0xf5uy;
0x94uy; 0x16uy; 0x7fuy; 0x31uy; 0x91uy; 0x30uy; 0x97uy; 0xc4uy; 0xa3uy; 0xe4uy; 0x01uy; 0x2buy;
0x06uy; 0xcfuy; 0x69uy; 0xfbuy; 0x69uy; 0x35uy; 0xaauy; 0x81uy; 0xeduy; 0x90uy; 0x0cuy; 0x3auy;
0xc0uy; 0xa6uy; 0x06uy; 0xabuy; 0x51uy; 0x3fuy; 0x39uy; 0xb2uy; 0x1euy; 0xb0uy; 0x4buy; 0xbcuy;
0xd0uy; 0xd0uy; 0x3auy; 0xdauy; 0x89uy; 0x88uy; 0xa6uy; 0x56uy; 0xd8uy; 0x02uy; 0x98uy; 0xeeuy;
0xa2uy; 0xf5uy; 0x0euy; 0xbauy; 0x7cuy; 0x52uy; 0xafuy; 0xf4uy; 0xbbuy; 0xe7uy; 0x36uy; 0x4auy;
0xdduy; 0x90uy; 0x93uy; 0xe9uy; 0x5duy; 0xbeuy; 0x68uy; 0x99uy; 0xc2uy; 0xaduy; 0x4duy; 0x79uy;
0x25uy; 0x0buy; 0x69uy; 0x79uy; 0x7buy; 0xe2uy; 0x3duy; 0xa8uy; 0xe7uy; 0xf1uy; 0x42uy; 0x0cuy;
0x22uy; 0x85uy; 0x95uy; 0xf0uy; 0xd5uy; 0x5cuy; 0x96uy; 0x35uy; 0xb6uy; 0x19uy; 0xaeuy; 0xb3uy;
0xcfuy; 0x22uy; 0xcauy; 0xbauy; 0x28uy; 0xd6uy; 0xdduy; 0xd5uy; 0x8euy; 0xe8uy; 0xd6uy; 0x90uy;
0x23uy; 0x8euy; 0x97uy; 0x37uy; 0xe9uy; 0xcduy; 0xabuy; 0xdcuy; 0x08uy; 0x04uy; 0xe1uy; 0x32uy;
0x02uy; 0xffuy; 0x7fuy; 0x82uy; 0x41uy; 0xf3uy; 0x9buy; 0x1duy; 0x42uy; 0x8auy; 0x98uy; 0x80uy;
0x81uy; 0xaauy; 0xbeuy; 0x7duy; 0x3buy; 0x83uy; 0x30uy; 0x4duy; 0x4auy; 0x22uy; 0x2duy; 0xafuy;
0x61uy; 0xd1uy; 0xa0uy; 0x66uy; 0xd4uy; 0x48uy; 0x0fuy; 0xe1uy; 0xd9uy; 0x77uy; 0x82uy; 0xc5uy;
0xa1uy; 0x2auy; 0x03uy; 0x1fuy; 0xd0uy; 0x7auy; 0xccuy; 0x77uy; 0x09uy; 0x4auy; 0xbduy; 0xaduy;
0xf7uy; 0x76uy; 0xdcuy; 0x10uy; 0xeduy; 0x5buy; 0xdfuy; 0x89uy; 0xfbuy; 0x52uy; 0x60uy; 0x5cuy;
0x08uy; 0x42uy; 0x50uy; 0xd1uy; 0xdauy; 0x24uy; 0xbbuy; 0x59uy; 0x3euy; 0x14uy; 0xf4uy; 0xf0uy;
0xf4uy; 0xdauy; 0xb8uy; 0x00uy; 0xe2uy; 0x0buy; 0xfauy; 0xc3uy; 0xf6uy; 0x28uy; 0x8duy; 0x20uy;
0x26uy; 0xe9uy; 0x5buy; 0x25uy; 0xa8uy; 0x80uy; 0x4cuy; 0xeeuy; 0xc9uy; 0xb6uy; 0x7auy; 0x8buy;
0x87uy; 0x21uy; 0xfduy; 0xaeuy; 0xd5uy; 0xa8uy; 0x49uy; 0x33uy; 0x58uy; 0x90uy; 0x2cuy; 0x0auy;
0xcauy; 0xb0uy; 0x9duy; 0xbeuy; 0xcduy; 0xe0uy; 0xa4uy; 0x99uy; 0x76uy; 0x01uy; 0x80uy; 0xdduy;
0x66uy; 0x76uy; 0x70uy; 0x05uy; 0xf3uy; 0xd6uy; 0x31uy; 0xa1uy; 0x9euy; 0xd5uy; 0x5fuy; 0x1buy;
0xdduy; 0x7fuy; 0x81uy; 0x6duy; 0x5cuy; 0xe9uy; 0xa3uy; 0x1auy; 0x6auy; 0x87uy; 0x93uy; 0xaduy;
0x1duy; 0x73uy; 0x44uy; 0xbcuy; 0xe4uy; 0x42uy; 0x78uy; 0x6auy; 0x71uy; 0x58uy; 0x9buy; 0x73uy;
0x55uy; 0x63uy; 0xa5uy; 0x32uy; 0xf6uy; 0x55uy; 0x68uy; 0x05uy; 0xcfuy; 0xeduy; 0x5fuy; 0x86uy;
0xe2uy; 0x65uy; 0xefuy; 0xf1uy; 0xb9uy; 0x69uy; 0xbbuy; 0x79uy; 0xb1uy; 0xf4uy; 0x7fuy; 0xa5uy;
0xfauy; 0x62uy; 0xbcuy; 0x68uy; 0xe7uy; 0xf6uy; 0xf8uy; 0xf0uy; 0x55uy; 0xf4uy; 0x93uy; 0x47uy;
0x06uy; 0xf0uy; 0x3euy; 0x94uy; 0x4auy; 0x95uy; 0xc8uy; 0x0cuy; 0xb0uy; 0x04uy; 0x4euy; 0x3fuy;
0x67uy; 0x14uy; 0xeduy; 0xbbuy; 0xbeuy; 0xf0uy; 0xabuy; 0xdduy; 0x6cuy; 0x23uy; 0x4euy; 0x07uy;
0x66uy; 0x41uy; 0x55uy; 0xbeuy; 0x22uy; 0x59uy; 0xd5uy; 0xdauy; 0xd4uy; 0xd8uy; 0x3duy; 0xb0uy;
0x74uy; 0xc4uy; 0x4fuy; 0x9buy; 0x43uy; 0xe5uy; 0x75uy; 0xfbuy; 0x33uy; 0x0euy; 0xdfuy; 0xe1uy;
0xe3uy; 0x7duy; 0x2euy; 0x80uy; 0x10uy; 0x79uy; 0x17uy; 0xeauy; 0xd3uy; 0x18uy; 0x98uy; 0x08uy;
0xeduy; 0x79uy; 0x4cuy; 0xb9uy; 0x66uy; 0x03uy; 0x04uy; 0x50uy; 0xfeuy; 0x62uy; 0x0duy; 0x48uy;
0x1auy; 0x6cuy; 0xeeuy; 0xb7uy; 0x03uy; 0x15uy; 0x92uy; 0x41uy; 0x1euy; 0xa1uy; 0x88uy; 0x46uy;
0x1auy; 0x43uy; 0x49uy; 0xf5uy; 0x93uy; 0x33uy; 0x00uy; 0x65uy; 0x69uy; 0xa8uy; 0x82uy; 0xbduy;
0xbeuy; 0x5cuy; 0x56uy; 0xa3uy; 0x06uy; 0x00uy; 0x8buy; 0x2fuy; 0x7duy; 0xecuy; 0xa4uy; 0x9auy;
0x2auy; 0xaeuy; 0x66uy; 0x07uy; 0x46uy; 0xb3uy; 0xbeuy; 0xf8uy; 0x07uy; 0x08uy; 0x10uy; 0x87uy;
0xd5uy; 0x6cuy; 0x6auy; 0xa5uy; 0xa6uy; 0x07uy; 0x4buy; 0x00uy; 0xc1uy; 0x5auy; 0xeduy; 0x7fuy;
0x14uy; 0x4buy; 0x60uy; 0x02uy; 0xc2uy; 0x67uy; 0x0cuy; 0xa4uy; 0x64uy; 0x54uy; 0x3euy; 0x22uy;
0xfeuy; 0x21uy; 0xcduy; 0x0duy; 0xcbuy; 0x60uy; 0x3buy; 0x13uy; 0xb0uy; 0x8euy; 0x36uy; 0xcauy;
0xcduy; 0x78uy; 0x8duy; 0x08uy; 0x2auy; 0xf1uy; 0x9cuy; 0x17uy; 0x11uy; 0x14uy; 0x57uy; 0x57uy;
0xe8uy; 0x3buy; 0x84uy; 0xe8uy; 0x59uy; 0xdbuy; 0x5buy; 0x77uy; 0x2euy; 0x54uy; 0x3buy; 0x6euy;
0x9cuy; 0x5euy; 0x7fuy; 0x52uy; 0xe5uy; 0x06uy; 0x8auy; 0x2duy; 0xc3uy; 0xbfuy; 0x30uy; 0x34uy;
0x8cuy; 0xaauy; 0x3buy; 0x23uy; 0x59uy; 0x32uy; 0x5fuy; 0xf7uy; 0xc9uy; 0xb2uy; 0xeeuy; 0xb2uy;
0x72uy; 0x75uy; 0x33uy; 0x8euy; 0xa9uy; 0x68uy; 0x6euy; 0xf5uy; 0x61uy; 0x7auy; 0x20uy; 0x01uy;
0xecuy; 0xabuy; 0x19uy; 0x26uy; 0xbeuy; 0x38uy; 0x49uy; 0xe2uy; 0x16uy; 0xceuy; 0x17uy; 0xafuy;
0xcauy; 0xe3uy; 0x06uy; 0xeauy; 0x37uy; 0x98uy; 0xf2uy; 0x8fuy; 0x04uy; 0x9buy; 0xabuy; 0xd8uy;
0xbduy; 0x78uy; 0x68uy; 0xacuy; 0xefuy; 0xb9uy; 0x28uy; 0x6fuy; 0x0buy; 0x37uy; 0x90uy; 0xb3uy;
0x74uy; 0x0cuy; 0x38uy; 0x12uy; 0x70uy; 0xa2uy; 0xbeuy; 0xdcuy; 0xa7uy; 0x18uy; 0xdfuy; 0x5euy;
0xd2uy; 0x62uy; 0xccuy; 0x43uy; 0x24uy; 0x32uy; 0x58uy; 0x45uy; 0x18uy; 0x0auy; 0xe1uy; 0x0duy;
0x82uy; 0xbcuy; 0x08uy; 0xb1uy; 0xa9uy; 0x7euy; 0x63uy; 0x09uy; 0xc6uy; 0x83uy; 0xa1uy; 0xe6uy;
0x5cuy; 0x9cuy; 0xefuy; 0x57uy; 0xecuy; 0xc7uy; 0x73uy; 0x19uy; 0xfbuy; 0x5cuy; 0x20uy; 0xe1uy;
0xdfuy; 0x85uy; 0x76uy; 0xabuy; 0x89uy; 0xb7uy; 0x96uy; 0x8duy; 0xd9uy; 0x8euy; 0xb7uy; 0x00uy;
0xa8uy; 0xc6uy; 0x98uy; 0x47uy; 0x03uy; 0xafuy; 0x56uy; 0x1fuy; 0x35uy; 0x49uy; 0x75uy; 0x4cuy;
0xa2uy; 0xa2uy; 0xdcuy; 0x98uy; 0xbfuy; 0x87uy; 0xeduy; 0x73uy; 0x5fuy; 0x9buy; 0xabuy; 0x3euy;
0x02uy; 0xdcuy; 0xa1uy; 0x4buy; 0x6cuy; 0xacuy; 0x10uy; 0xb2uy; 0x0buy; 0x99uy; 0xeeuy; 0xc8uy;
0xc2uy; 0x82uy; 0xa9uy; 0xf9uy; 0xa9uy; 0xa5uy; 0x4duy; 0xc9uy; 0x39uy; 0x41uy; 0x89uy; 0x0cuy;
0xc6uy; 0xe3uy; 0xaauy; 0x76uy; 0xe7uy; 0x11uy; 0x16uy; 0x8auy; 0x28uy; 0x6buy; 0x22uy; 0x3auy;
0x1euy; 0x7duy; 0xe6uy; 0xf7uy; 0x55uy; 0x85uy; 0x8cuy; 0x36uy; 0x57uy; 0x0buy; 0xdbuy; 0xe6uy;
0xefuy; 0xd9uy; 0xf6uy; 0x94uy; 0x48uy; 0x31uy; 0x7euy; 0xaauy; 0x13uy; 0xd4uy; 0x58uy; 0x9buy;
0xebuy; 0x7cuy; 0x2auy; 0x39uy; 0xdduy; 0xa3uy; 0x3fuy; 0x70uy; 0xfduy; 0x7fuy; 0x30uy; 0xa3uy;
0x34uy; 0xe6uy; 0xacuy; 0x64uy; 0x9buy; 0xf8uy; 0xbbuy; 0x1euy; 0x51uy; 0xe1uy; 0xaduy; 0x61uy;
0xf6uy; 0xffuy; 0xd4uy; 0x4auy; 0x5euy; 0x12uy; 0x40uy; 0xdcuy; 0x07uy; 0x8buy; 0xb2uy; 0xe0uy;
0xb9uy; 0x29uy; 0xaauy; 0x4euy; 0x85uy; 0xf5uy; 0xbduy; 0x5buy; 0x43uy; 0x77uy; 0xc7uy; 0x0buy;
0xfeuy; 0x66uy; 0x49uy; 0xccuy; 0xb5uy; 0x92uy; 0x4auy; 0x14uy; 0x1euy; 0xe2uy; 0xe5uy; 0x20uy;
0xfauy; 0xecuy; 0x0fuy; 0xc9uy
] | {
"checked_file": "/",
"dependencies": [
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.KEM.Encaps.fst.checked",
"Spec.Frodo.KEM.Decaps.fst.checked",
"Spec.Frodo.KEM.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintSequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.Test.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.PrintSequence",
"short_module": "PS"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.Decaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.Encaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.list Lib.IntTypes.uint8 | Prims.Tot | [
"total"
] | [] | [
"FStar.List.Tot.Base.map",
"FStar.UInt8.t",
"Lib.IntTypes.uint8",
"Lib.RawIntTypes.u8_from_UInt8",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | false | false | false | true | false | let test1_ct_expected =
| List.Tot.map u8_from_UInt8
[
0xebuy; 0x01uy; 0x36uy; 0x7duy; 0xe9uy; 0xdauy; 0x51uy; 0x3fuy; 0x8duy; 0xc7uy; 0x53uy; 0xdeuy;
0xfcuy; 0xa2uy; 0x2cuy; 0xacuy; 0x2duy; 0xbcuy; 0x9buy; 0xacuy; 0x9cuy; 0xc0uy; 0xc5uy; 0x08uy;
0x9duy; 0x0duy; 0x07uy; 0xbcuy; 0xd8uy; 0x69uy; 0x20uy; 0xccuy; 0x18uy; 0x0cuy; 0xbcuy; 0x7buy;
0x49uy; 0x23uy; 0x06uy; 0x8cuy; 0x9cuy; 0xc4uy; 0x1fuy; 0xffuy; 0x53uy; 0x91uy; 0x9cuy; 0x7fuy;
0xb4uy; 0xa7uy; 0x28uy; 0xdfuy; 0x30uy; 0x5euy; 0x9euy; 0x19uy; 0xd1uy; 0xbbuy; 0xe7uy; 0xacuy;
0x0cuy; 0xb2uy; 0xbduy; 0x58uy; 0xd6uy; 0x96uy; 0x8buy; 0x04uy; 0x66uy; 0xf6uy; 0xbeuy; 0x58uy;
0x25uy; 0xf9uy; 0xfbuy; 0xe1uy; 0x13uy; 0x7auy; 0x88uy; 0x57uy; 0xb6uy; 0xb5uy; 0x71uy; 0xe6uy;
0xe2uy; 0x63uy; 0xd2uy; 0x85uy; 0x8duy; 0x07uy; 0x37uy; 0xe9uy; 0xaduy; 0xe9uy; 0x3duy; 0x95uy;
0xccuy; 0x7euy; 0x56uy; 0x2duy; 0xaauy; 0x0buy; 0x13uy; 0xdfuy; 0xe8uy; 0x19uy; 0x7euy; 0x52uy;
0x8duy; 0x7buy; 0xaauy; 0x09uy; 0x10uy; 0xb2uy; 0x32uy; 0x9cuy; 0x91uy; 0xf3uy; 0x14uy; 0x49uy;
0x4auy; 0x9fuy; 0x38uy; 0xc0uy; 0xf5uy; 0xf4uy; 0x44uy; 0xc6uy; 0xf6uy; 0xf8uy; 0xd0uy; 0xb0uy;
0x4fuy; 0xc1uy; 0xc3uy; 0xd7uy; 0x71uy; 0x18uy; 0xe3uy; 0xc0uy; 0xf5uy; 0x7auy; 0xd0uy; 0x04uy;
0x4fuy; 0xcfuy; 0x76uy; 0xdcuy; 0xeeuy; 0x35uy; 0x21uy; 0xe0uy; 0x9euy; 0x41uy; 0x10uy; 0x06uy;
0x2duy; 0xb8uy; 0x0cuy; 0xabuy; 0x1duy; 0x3duy; 0x60uy; 0xefuy; 0xaduy; 0xc5uy; 0x80uy; 0x09uy;
0x56uy; 0xeeuy; 0xcbuy; 0x53uy; 0x1buy; 0x50uy; 0x95uy; 0x34uy; 0x47uy; 0xaeuy; 0x70uy; 0x96uy;
0xbauy; 0x19uy; 0x55uy; 0x99uy; 0xd1uy; 0xb1uy; 0xe6uy; 0x32uy; 0xf0uy; 0x19uy; 0x3buy; 0x2buy;
0xc7uy; 0x9cuy; 0xf7uy; 0xcauy; 0xa7uy; 0x3auy; 0xd3uy; 0xdcuy; 0xecuy; 0xf2uy; 0x49uy; 0x43uy;
0x64uy; 0x7cuy; 0xfduy; 0x35uy; 0xe8uy; 0xfauy; 0xa5uy; 0x98uy; 0x01uy; 0x6buy; 0x4euy; 0xe5uy;
0x84uy; 0x03uy; 0x24uy; 0xb6uy; 0xc7uy; 0x30uy; 0x13uy; 0x44uy; 0xd3uy; 0xe6uy; 0x97uy; 0xefuy;
0xf7uy; 0x13uy; 0xefuy; 0x0euy; 0x9fuy; 0x12uy; 0x75uy; 0x76uy; 0x69uy; 0x7cuy; 0x91uy; 0x15uy;
0x6cuy; 0xc0uy; 0xc2uy; 0x60uy; 0x8cuy; 0x63uy; 0xa7uy; 0xfauy; 0xc2uy; 0xf4uy; 0x17uy; 0xbauy;
0x8buy; 0xd4uy; 0xcfuy; 0x4auy; 0x8duy; 0x63uy; 0xb8uy; 0xa4uy; 0x6buy; 0x9cuy; 0x87uy; 0x94uy;
0x37uy; 0x05uy; 0x9duy; 0xc4uy; 0x76uy; 0x24uy; 0x77uy; 0x79uy; 0x4duy; 0x93uy; 0x62uy; 0x0buy;
0xbcuy; 0x72uy; 0x7euy; 0xb2uy; 0xefuy; 0x3cuy; 0x00uy; 0x1cuy; 0x18uy; 0x18uy; 0xbbuy; 0xe8uy;
0x60uy; 0x6euy; 0xc5uy; 0x9buy; 0x47uy; 0x93uy; 0x77uy; 0xd8uy; 0xf0uy; 0x45uy; 0x16uy; 0x97uy;
0x15uy; 0xc0uy; 0xd3uy; 0x4euy; 0x6duy; 0xe9uy; 0xfeuy; 0x89uy; 0xc3uy; 0x87uy; 0x3auy; 0x49uy;
0xfbuy; 0x9duy; 0x86uy; 0xffuy; 0xcauy; 0xa1uy; 0x3fuy; 0x15uy; 0x37uy; 0xd8uy; 0x98uy; 0xeeuy;
0xd9uy; 0x36uy; 0x06uy; 0x33uy; 0xd8uy; 0xdauy; 0x82uy; 0xeeuy; 0x60uy; 0x8cuy; 0xc7uy; 0xf3uy;
0x19uy; 0x47uy; 0x15uy; 0x7fuy; 0xd3uy; 0xf1uy; 0x30uy; 0xa2uy; 0xc6uy; 0xc4uy; 0x04uy; 0x5cuy;
0x50uy; 0xa3uy; 0x48uy; 0xc8uy; 0x1buy; 0x35uy; 0xfeuy; 0xa5uy; 0xeauy; 0x8auy; 0x4auy; 0x8cuy;
0x9cuy; 0x85uy; 0x8cuy; 0x1fuy; 0xbbuy; 0x3duy; 0xafuy; 0x2euy; 0x3auy; 0xaduy; 0x34uy; 0x6cuy;
0x5duy; 0x87uy; 0xc9uy; 0xc9uy; 0x7fuy; 0x30uy; 0xc1uy; 0x8duy; 0x4cuy; 0xd6uy; 0xbfuy; 0xc0uy;
0xf8uy; 0xa7uy; 0xb2uy; 0x91uy; 0x9buy; 0xe7uy; 0x85uy; 0x96uy; 0xe8uy; 0xb3uy; 0xaeuy; 0x89uy;
0x53uy; 0x41uy; 0x48uy; 0x0euy; 0xd0uy; 0x6auy; 0x4euy; 0x0cuy; 0x7duy; 0x10uy; 0xa1uy; 0xe8uy;
0x9duy; 0x7cuy; 0xdcuy; 0x76uy; 0x91uy; 0x86uy; 0x70uy; 0x67uy; 0xe1uy; 0x76uy; 0x4duy; 0x23uy;
0xeauy; 0x55uy; 0x62uy; 0xb9uy; 0x61uy; 0x7fuy; 0x24uy; 0xd3uy; 0x06uy; 0xd8uy; 0x15uy; 0x88uy;
0x52uy; 0x92uy; 0x8auy; 0xc1uy; 0x8auy; 0x1cuy; 0x7buy; 0x40uy; 0xfauy; 0x03uy; 0xe0uy; 0x93uy;
0xf7uy; 0x2duy; 0xf1uy; 0xdcuy; 0x27uy; 0x10uy; 0xd4uy; 0x28uy; 0x0auy; 0x61uy; 0x87uy; 0xbfuy;
0x09uy; 0xfbuy; 0xb1uy; 0xc7uy; 0xd8uy; 0xe9uy; 0xfauy; 0xa5uy; 0xa8uy; 0x6buy; 0x6duy; 0xa0uy;
0x64uy; 0xb7uy; 0xe4uy; 0x86uy; 0x79uy; 0x6euy; 0x85uy; 0x93uy; 0x94uy; 0xc9uy; 0xdeuy; 0xa9uy;
0x40uy; 0xb3uy; 0x6euy; 0xa0uy; 0xa6uy; 0xc8uy; 0xc9uy; 0x84uy; 0x3euy; 0xdbuy; 0x1duy; 0xa8uy;
0xbcuy; 0x04uy; 0x1cuy; 0xa4uy; 0x4fuy; 0x70uy; 0x77uy; 0xafuy; 0x98uy; 0x71uy; 0xc6uy; 0xbeuy;
0x24uy; 0x58uy; 0xc9uy; 0x53uy; 0x20uy; 0xd2uy; 0xeauy; 0x3duy; 0xe7uy; 0x3fuy; 0x8cuy; 0x44uy;
0xc8uy; 0x3fuy; 0x14uy; 0x50uy; 0xcduy; 0xc8uy; 0x45uy; 0x99uy; 0xf8uy; 0xb6uy; 0xd5uy; 0x99uy;
0x5auy; 0x77uy; 0x61uy; 0x48uy; 0x9fuy; 0x1auy; 0xb0uy; 0x6fuy; 0x1cuy; 0x27uy; 0x35uy; 0x80uy;
0xe6uy; 0x1euy; 0xe2uy; 0x75uy; 0xafuy; 0xf8uy; 0x10uy; 0x6duy; 0x0euy; 0xe6uy; 0x8auy; 0xb5uy;
0xffuy; 0x6cuy; 0x1euy; 0x41uy; 0x60uy; 0x93uy; 0xebuy; 0xffuy; 0x9fuy; 0xffuy; 0xf7uy; 0xcauy;
0x77uy; 0x2fuy; 0xc2uy; 0x44uy; 0xe8uy; 0x86uy; 0x23uy; 0x8auy; 0x2euy; 0xa7uy; 0x1buy; 0xb2uy;
0x8auy; 0x6cuy; 0x79uy; 0x0euy; 0x4duy; 0xe2uy; 0x09uy; 0xa7uy; 0xdauy; 0x60uy; 0x54uy; 0x55uy;
0x36uy; 0xb9uy; 0x06uy; 0x51uy; 0xd9uy; 0x1duy; 0x6cuy; 0xaauy; 0x0buy; 0x03uy; 0xb1uy; 0x38uy;
0x63uy; 0xd7uy; 0x29uy; 0x76uy; 0xf6uy; 0xc5uy; 0x73uy; 0x0auy; 0x0euy; 0x1duy; 0xf7uy; 0xc9uy;
0x5auy; 0xdauy; 0xdcuy; 0x64uy; 0xd5uy; 0x9fuy; 0x51uy; 0xc8uy; 0x8euy; 0x6fuy; 0xf6uy; 0xb9uy;
0x0cuy; 0xd4uy; 0x57uy; 0x5duy; 0x82uy; 0x4euy; 0xeeuy; 0xc6uy; 0x8auy; 0xf5uy; 0x7fuy; 0x59uy;
0xe1uy; 0x0cuy; 0xb8uy; 0xe7uy; 0xf6uy; 0xc6uy; 0x2auy; 0xb1uy; 0x5auy; 0xbauy; 0x77uy; 0xa0uy;
0x30uy; 0x19uy; 0x10uy; 0xe6uy; 0x5auy; 0x90uy; 0x03uy; 0x21uy; 0x3euy; 0xd8uy; 0xc1uy; 0xc5uy;
0xc5uy; 0x81uy; 0xf7uy; 0xc1uy; 0x6auy; 0xfauy; 0xecuy; 0xf6uy; 0x31uy; 0x0duy; 0xf6uy; 0x85uy;
0x9fuy; 0xb5uy; 0x34uy; 0x38uy; 0xf8uy; 0xc1uy; 0xe6uy; 0x7euy; 0x67uy; 0x8buy; 0x14uy; 0x01uy;
0x3buy; 0x32uy; 0xb6uy; 0xb1uy; 0x90uy; 0x91uy; 0xbcuy; 0x40uy; 0x90uy; 0x72uy; 0x55uy; 0x76uy;
0x2buy; 0x34uy; 0x3buy; 0x05uy; 0x65uy; 0x87uy; 0x0euy; 0x4buy; 0xb5uy; 0xcduy; 0x94uy; 0x88uy;
0x60uy; 0xf0uy; 0x7duy; 0xc9uy; 0x21uy; 0x71uy; 0xe2uy; 0x55uy; 0x43uy; 0x06uy; 0x1cuy; 0x84uy;
0x02uy; 0xd0uy; 0x4euy; 0xcbuy; 0x1buy; 0x38uy; 0x6duy; 0x58uy; 0x62uy; 0xabuy; 0x50uy; 0xcfuy;
0xb5uy; 0x47uy; 0x24uy; 0xb8uy; 0x6cuy; 0x00uy; 0xa4uy; 0xf2uy; 0x97uy; 0x9fuy; 0xf3uy; 0x98uy;
0x2euy; 0xf9uy; 0x4fuy; 0x02uy; 0xdcuy; 0x1duy; 0xc6uy; 0x08uy; 0x35uy; 0x57uy; 0xe5uy; 0x9buy;
0xd7uy; 0xf4uy; 0xd7uy; 0x28uy; 0x50uy; 0x39uy; 0xfduy; 0xd8uy; 0xe6uy; 0xbfuy; 0xcauy; 0x61uy;
0x65uy; 0xe3uy; 0xd0uy; 0x95uy; 0x65uy; 0x68uy; 0xb1uy; 0x41uy; 0x65uy; 0x1auy; 0x62uy; 0xceuy;
0x65uy; 0x8fuy; 0xeeuy; 0xe7uy; 0x7auy; 0x3cuy; 0x04uy; 0x95uy; 0x01uy; 0xd1uy; 0x31uy; 0x75uy;
0x80uy; 0x69uy; 0x1euy; 0x4buy; 0xb3uy; 0x4fuy; 0xb9uy; 0x5buy; 0x5cuy; 0x8euy; 0x16uy; 0x01uy;
0x99uy; 0x02uy; 0x55uy; 0x94uy; 0x0buy; 0xa9uy; 0x49uy; 0x7cuy; 0x10uy; 0xd4uy; 0xc9uy; 0xdduy;
0x2buy; 0xabuy; 0x8buy; 0x4cuy; 0x21uy; 0x7auy; 0x7duy; 0x53uy; 0x7buy; 0xd0uy; 0x69uy; 0x45uy;
0xcauy; 0x9auy; 0x91uy; 0x40uy; 0x54uy; 0x03uy; 0xb3uy; 0x56uy; 0x0euy; 0xc6uy; 0x68uy; 0x30uy;
0xdcuy; 0xb1uy; 0xffuy; 0xe4uy; 0x3fuy; 0x0euy; 0x1euy; 0xc0uy; 0x56uy; 0xb2uy; 0xe1uy; 0xfcuy;
0x58uy; 0xf5uy; 0xabuy; 0x39uy; 0x4euy; 0xdduy; 0x33uy; 0xbcuy; 0x12uy; 0xc5uy; 0xdcuy; 0x77uy;
0x46uy; 0x84uy; 0x82uy; 0xb2uy; 0x7fuy; 0xa2uy; 0xf6uy; 0x06uy; 0x24uy; 0xd6uy; 0x3cuy; 0xe3uy;
0xc5uy; 0xc2uy; 0x18uy; 0xc4uy; 0xc9uy; 0xf5uy; 0xa3uy; 0x2auy; 0x56uy; 0x5buy; 0x59uy; 0xe7uy;
0x00uy; 0x92uy; 0xb4uy; 0xd6uy; 0xf9uy; 0x96uy; 0x7cuy; 0x01uy; 0x26uy; 0x1euy; 0x5fuy; 0x27uy;
0x9cuy; 0x1buy; 0xb7uy; 0xf7uy; 0x36uy; 0xebuy; 0x7auy; 0xf3uy; 0xa7uy; 0x5euy; 0x38uy; 0xb2uy;
0x7buy; 0x7fuy; 0xd1uy; 0x4euy; 0x68uy; 0xb9uy; 0xa9uy; 0xf8uy; 0x7auy; 0x06uy; 0xb4uy; 0xe8uy;
0x42uy; 0xd8uy; 0xc7uy; 0x5auy; 0x08uy; 0xd5uy; 0x67uy; 0xa7uy; 0x30uy; 0xb6uy; 0x2euy; 0x80uy;
0xacuy; 0xa9uy; 0x07uy; 0xbbuy; 0x18uy; 0x54uy; 0xc3uy; 0x81uy; 0x6euy; 0x8auy; 0x24uy; 0xc0uy;
0x7fuy; 0xd0uy; 0x54uy; 0xb2uy; 0xe7uy; 0x1auy; 0x11uy; 0xf4uy; 0x9duy; 0x2cuy; 0x75uy; 0x37uy;
0x2euy; 0xc6uy; 0xfcuy; 0x85uy; 0x5duy; 0x46uy; 0x44uy; 0x7auy; 0x36uy; 0xe5uy; 0x62uy; 0xa4uy;
0x26uy; 0xdduy; 0x4cuy; 0x20uy; 0x33uy; 0x7auy; 0x8auy; 0x41uy; 0x8auy; 0x0fuy; 0xa4uy; 0xf8uy;
0x74uy; 0x45uy; 0x98uy; 0xe3uy; 0x73uy; 0xa1uy; 0x4euy; 0x40uy; 0x10uy; 0x5buy; 0x0fuy; 0xa0uy;
0xe4uy; 0x5euy; 0x97uy; 0x40uy; 0xdcuy; 0x68uy; 0x79uy; 0xd7uy; 0xfeuy; 0xfduy; 0x34uy; 0xd0uy;
0xb7uy; 0xcbuy; 0x4auy; 0xf3uy; 0xb0uy; 0xc7uy; 0xf5uy; 0xbauy; 0x6cuy; 0xa9uy; 0xf0uy; 0x82uy;
0x01uy; 0xb2uy; 0x3fuy; 0x9euy; 0x56uy; 0x9cuy; 0x86uy; 0x05uy; 0x03uy; 0x99uy; 0x2euy; 0xe7uy;
0xeduy; 0xdfuy; 0xfeuy; 0x05uy; 0x3buy; 0xdbuy; 0x3cuy; 0x30uy; 0x98uy; 0xa2uy; 0x23uy; 0x86uy;
0xefuy; 0x80uy; 0xe4uy; 0x2fuy; 0xdeuy; 0x8cuy; 0x7duy; 0x2euy; 0x78uy; 0xdbuy; 0xd6uy; 0xcauy;
0x7fuy; 0x79uy; 0x7auy; 0x3buy; 0xafuy; 0x2auy; 0xeduy; 0xf3uy; 0x03uy; 0x15uy; 0xccuy; 0x3duy;
0x52uy; 0x50uy; 0x1duy; 0x08uy; 0x93uy; 0xa2uy; 0xd8uy; 0x63uy; 0x91uy; 0xa0uy; 0x6cuy; 0xccuy
] | false |
|
Spec.Frodo.Test.fst | Spec.Frodo.Test.test_frodo | val test_frodo
(a: frodo_alg)
(gen_a: frodo_gen_a)
(keypaircoins: list uint8 {List.Tot.length keypaircoins == 2 * crypto_bytes a + bytes_seed_a})
(enccoins: list uint8 {List.Tot.length enccoins == bytes_mu a})
(ss_expected: list uint8 {List.Tot.length ss_expected == crypto_bytes a})
(pk_expected: list uint8 {List.Tot.length pk_expected == crypto_publickeybytes a})
(ct_expected: list uint8 {List.Tot.length ct_expected == crypto_ciphertextbytes a})
(sk_expected: list uint8 {List.Tot.length sk_expected == crypto_secretkeybytes a})
: ML bool | val test_frodo
(a: frodo_alg)
(gen_a: frodo_gen_a)
(keypaircoins: list uint8 {List.Tot.length keypaircoins == 2 * crypto_bytes a + bytes_seed_a})
(enccoins: list uint8 {List.Tot.length enccoins == bytes_mu a})
(ss_expected: list uint8 {List.Tot.length ss_expected == crypto_bytes a})
(pk_expected: list uint8 {List.Tot.length pk_expected == crypto_publickeybytes a})
(ct_expected: list uint8 {List.Tot.length ct_expected == crypto_ciphertextbytes a})
(sk_expected: list uint8 {List.Tot.length sk_expected == crypto_secretkeybytes a})
: ML bool | let test_frodo
(a:frodo_alg)
(gen_a:frodo_gen_a)
(keypaircoins: list uint8 {List.Tot.length keypaircoins == 2 * crypto_bytes a + bytes_seed_a})
(enccoins: list uint8 {List.Tot.length enccoins == bytes_mu a})
(ss_expected: list uint8 {List.Tot.length ss_expected == crypto_bytes a})
(pk_expected: list uint8 {List.Tot.length pk_expected == crypto_publickeybytes a})
(ct_expected: list uint8 {List.Tot.length ct_expected == crypto_ciphertextbytes a})
(sk_expected: list uint8 {List.Tot.length sk_expected == crypto_secretkeybytes a})
: ML bool =
let keypaircoins = createL keypaircoins in
let enccoins = createL enccoins in
let ss_expected = createL ss_expected in
let pk_expected = createL pk_expected in
let ct_expected = createL ct_expected in
let sk_expected = createL sk_expected in
let pk, sk = crypto_kem_keypair_ a gen_a keypaircoins in
let ct, ss1 = crypto_kem_enc_ a gen_a enccoins pk in
let ss2 = crypto_kem_dec a gen_a ct sk in
let r_pk = compare pk_expected pk in
let r_sk = compare sk_expected sk in
let r_ct = compare ct_expected ct in
let r_ss = PS.print_compare true (crypto_bytes a) ss1 ss2 in
let r_ss1 = PS.print_compare true (crypto_bytes a) ss_expected ss2 in
r_pk && r_sk && r_ct && r_ss && r_ss1 | {
"file_name": "specs/tests/Spec.Frodo.Test.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 39,
"end_line": 50,
"start_col": 0,
"start_line": 26
} | module Spec.Frodo.Test
open FStar.Mul
open Lib.IntTypes
open Lib.RawIntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Frodo.KEM
open Spec.Frodo.KEM.KeyGen
open Spec.Frodo.KEM.Encaps
open Spec.Frodo.KEM.Decaps
open Spec.Frodo.Params
open FStar.All
module PS = Lib.PrintSequence
#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
let compare (#len: size_nat) (test_expected: lbytes len) (test_result: lbytes len) =
for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) test_expected test_result | {
"checked_file": "/",
"dependencies": [
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.KEM.Encaps.fst.checked",
"Spec.Frodo.KEM.Decaps.fst.checked",
"Spec.Frodo.KEM.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintSequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.Test.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.PrintSequence",
"short_module": "PS"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.Decaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.Encaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
gen_a: Spec.Frodo.Params.frodo_gen_a ->
keypaircoins:
Prims.list Lib.IntTypes.uint8
{ FStar.List.Tot.Base.length keypaircoins ==
2 * Spec.Frodo.Params.crypto_bytes a + Spec.Frodo.Params.bytes_seed_a } ->
enccoins:
Prims.list Lib.IntTypes.uint8
{FStar.List.Tot.Base.length enccoins == Spec.Frodo.Params.bytes_mu a} ->
ss_expected:
Prims.list Lib.IntTypes.uint8
{FStar.List.Tot.Base.length ss_expected == Spec.Frodo.Params.crypto_bytes a} ->
pk_expected:
Prims.list Lib.IntTypes.uint8
{FStar.List.Tot.Base.length pk_expected == Spec.Frodo.Params.crypto_publickeybytes a} ->
ct_expected:
Prims.list Lib.IntTypes.uint8
{FStar.List.Tot.Base.length ct_expected == Spec.Frodo.Params.crypto_ciphertextbytes a} ->
sk_expected:
Prims.list Lib.IntTypes.uint8
{FStar.List.Tot.Base.length sk_expected == Spec.Frodo.Params.crypto_secretkeybytes a}
-> FStar.All.ML Prims.bool | FStar.All.ML | [
"ml"
] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Spec.Frodo.Params.frodo_gen_a",
"Prims.list",
"Lib.IntTypes.uint8",
"Prims.eq2",
"Prims.int",
"FStar.List.Tot.Base.length",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Spec.Frodo.Params.crypto_bytes",
"Spec.Frodo.Params.bytes_seed_a",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Prims.l_and",
"Prims.op_GreaterThan",
"Prims.op_LessThanOrEqual",
"Lib.IntTypes.max_size_t",
"Spec.Frodo.Params.bytes_mu",
"Spec.Frodo.Params.crypto_publickeybytes",
"Spec.Frodo.Params.crypto_ciphertextbytes",
"Spec.Frodo.Params.crypto_secretkeybytes",
"Lib.ByteSequence.lbytes",
"Prims.op_AmpAmp",
"Prims.bool",
"Lib.PrintSequence.print_compare",
"Spec.Frodo.Test.compare",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.Frodo.KEM.Decaps.crypto_kem_dec",
"FStar.Pervasives.Native.tuple2",
"Spec.Frodo.KEM.Encaps.crypto_kem_enc_",
"Spec.Frodo.KEM.KeyGen.crypto_kem_keypair_",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.seq_of_list",
"Lib.Sequence.createL"
] | [] | false | true | false | false | false | let test_frodo
(a: frodo_alg)
(gen_a: frodo_gen_a)
(keypaircoins: list uint8 {List.Tot.length keypaircoins == 2 * crypto_bytes a + bytes_seed_a})
(enccoins: list uint8 {List.Tot.length enccoins == bytes_mu a})
(ss_expected: list uint8 {List.Tot.length ss_expected == crypto_bytes a})
(pk_expected: list uint8 {List.Tot.length pk_expected == crypto_publickeybytes a})
(ct_expected: list uint8 {List.Tot.length ct_expected == crypto_ciphertextbytes a})
(sk_expected: list uint8 {List.Tot.length sk_expected == crypto_secretkeybytes a})
: ML bool =
| let keypaircoins = createL keypaircoins in
let enccoins = createL enccoins in
let ss_expected = createL ss_expected in
let pk_expected = createL pk_expected in
let ct_expected = createL ct_expected in
let sk_expected = createL sk_expected in
let pk, sk = crypto_kem_keypair_ a gen_a keypaircoins in
let ct, ss1 = crypto_kem_enc_ a gen_a enccoins pk in
let ss2 = crypto_kem_dec a gen_a ct sk in
let r_pk = compare pk_expected pk in
let r_sk = compare sk_expected sk in
let r_ct = compare ct_expected ct in
let r_ss = PS.print_compare true (crypto_bytes a) ss1 ss2 in
let r_ss1 = PS.print_compare true (crypto_bytes a) ss_expected ss2 in
r_pk && r_sk && r_ct && r_ss && r_ss1 | false |
Vale.Stdcalls.X64.GCM_IV.fst | Vale.Stdcalls.X64.GCM_IV.b128 | val b128 : Type0 | let b128 = buf_t TUInt8 TUInt128 | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCM_IV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 36,
"start_col": 0,
"start_line": 36
} | module Vale.Stdcalls.X64.GCM_IV
open FStar.HyperStack.ST
module B = LowStar.Buffer
module HS = FStar.HyperStack
open FStar.Mul
module DV = LowStar.BufferView.Down
module UV = LowStar.BufferView.Up
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module GC = Vale.AES.X64.GCMencryptOpt
open Vale.AES.GCM_s
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"Vale.AES.X64.GCMencryptOpt.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"prims.fst.checked",
"LowStar.BufferView.Up.fsti.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.GCM_IV.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AES.X64.GCMencryptOpt",
"short_module": "GC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Vale.Interop.Base.buf_t",
"Vale.Arch.HeapTypes_s.TUInt8",
"Vale.Arch.HeapTypes_s.TUInt128"
] | [] | false | false | false | true | true | let b128 =
| buf_t TUInt8 TUInt128 | false |
|
Spec.Frodo.Test.fst | Spec.Frodo.Test.test1_pk_expected | val test1_pk_expected : Prims.list Lib.IntTypes.uint8 | let test1_pk_expected =
List.Tot.map u8_from_UInt8
[
0x0duy; 0xacuy; 0x6fuy; 0x83uy; 0x94uy; 0x00uy; 0x1auy; 0xcauy; 0x97uy; 0xa1uy; 0xaauy; 0x42uy;
0x80uy; 0x9duy; 0x6buy; 0xa5uy; 0xfcuy; 0x64uy; 0x43uy; 0xdbuy; 0xbeuy; 0x6fuy; 0x12uy; 0x2auy;
0x94uy; 0x58uy; 0x36uy; 0xf2uy; 0xb1uy; 0xf8uy; 0xe5uy; 0xf0uy; 0x57uy; 0x4buy; 0x35uy; 0x51uy;
0xdduy; 0x8cuy; 0x36uy; 0x28uy; 0x34uy; 0x46uy; 0xd6uy; 0xafuy; 0x5duy; 0x49uy; 0x0euy; 0x27uy;
0xd8uy; 0xd3uy; 0xaduy; 0xe1uy; 0xeduy; 0x8buy; 0x2duy; 0x13uy; 0xf5uy; 0x5auy; 0xb6uy; 0xdduy;
0xc0uy; 0x54uy; 0x76uy; 0x09uy; 0xa6uy; 0xa4uy; 0x01uy; 0xb9uy; 0xb7uy; 0xd1uy; 0x26uy; 0xd5uy;
0x1euy; 0xa8uy; 0x20uy; 0x4duy; 0xe8uy; 0xefuy; 0xaduy; 0xb9uy; 0xf0uy; 0x65uy; 0xe9uy; 0xc4uy;
0xf4uy; 0x11uy; 0x98uy; 0x99uy; 0xf0uy; 0x2cuy; 0x63uy; 0x7buy; 0x98uy; 0xd7uy; 0x60uy; 0x43uy;
0x5duy; 0x8cuy; 0x85uy; 0xe9uy; 0xc5uy; 0x83uy; 0x83uy; 0x62uy; 0xe2uy; 0x13uy; 0x33uy; 0x54uy;
0x4buy; 0x71uy; 0xaeuy; 0x63uy; 0xbauy; 0x5auy; 0x4euy; 0x32uy; 0x59uy; 0x78uy; 0x6buy; 0x4duy;
0x39uy; 0xcfuy; 0xe1uy; 0x82uy; 0x58uy; 0x0auy; 0xc3uy; 0x61uy; 0x6auy; 0x89uy; 0x2fuy; 0x1buy;
0x70uy; 0xdduy; 0x16uy; 0x3euy; 0x96uy; 0xb1uy; 0x4cuy; 0x71uy; 0xb1uy; 0x79uy; 0x0cuy; 0x3fuy;
0xe2uy; 0xeduy; 0x05uy; 0x07uy; 0x72uy; 0xf3uy; 0x89uy; 0x08uy; 0x8cuy; 0x22uy; 0xa7uy; 0x36uy;
0x40uy; 0xcauy; 0x52uy; 0x70uy; 0x1buy; 0x09uy; 0xcbuy; 0xabuy; 0x3buy; 0x64uy; 0x61uy; 0x6duy;
0x5duy; 0xf7uy; 0x15uy; 0x69uy; 0x71uy; 0x3buy; 0x3auy; 0x2euy; 0x53uy; 0x33uy; 0x26uy; 0xe6uy;
0x29uy; 0x5cuy; 0xfbuy; 0x0duy; 0xc6uy; 0xe4uy; 0xbduy; 0x9cuy; 0x43uy; 0xffuy; 0xa6uy; 0x5buy;
0x49uy; 0x47uy; 0x93uy; 0x1cuy; 0x81uy; 0x6fuy; 0xd4uy; 0xaauy; 0x3duy; 0xaduy; 0x86uy; 0xf5uy;
0x94uy; 0x16uy; 0x7fuy; 0x31uy; 0x91uy; 0x30uy; 0x97uy; 0xc4uy; 0xa3uy; 0xe4uy; 0x01uy; 0x2buy;
0x06uy; 0xcfuy; 0x69uy; 0xfbuy; 0x69uy; 0x35uy; 0xaauy; 0x81uy; 0xeduy; 0x90uy; 0x0cuy; 0x3auy;
0xc0uy; 0xa6uy; 0x06uy; 0xabuy; 0x51uy; 0x3fuy; 0x39uy; 0xb2uy; 0x1euy; 0xb0uy; 0x4buy; 0xbcuy;
0xd0uy; 0xd0uy; 0x3auy; 0xdauy; 0x89uy; 0x88uy; 0xa6uy; 0x56uy; 0xd8uy; 0x02uy; 0x98uy; 0xeeuy;
0xa2uy; 0xf5uy; 0x0euy; 0xbauy; 0x7cuy; 0x52uy; 0xafuy; 0xf4uy; 0xbbuy; 0xe7uy; 0x36uy; 0x4auy;
0xdduy; 0x90uy; 0x93uy; 0xe9uy; 0x5duy; 0xbeuy; 0x68uy; 0x99uy; 0xc2uy; 0xaduy; 0x4duy; 0x79uy;
0x25uy; 0x0buy; 0x69uy; 0x79uy; 0x7buy; 0xe2uy; 0x3duy; 0xa8uy; 0xe7uy; 0xf1uy; 0x42uy; 0x0cuy;
0x22uy; 0x85uy; 0x95uy; 0xf0uy; 0xd5uy; 0x5cuy; 0x96uy; 0x35uy; 0xb6uy; 0x19uy; 0xaeuy; 0xb3uy;
0xcfuy; 0x22uy; 0xcauy; 0xbauy; 0x28uy; 0xd6uy; 0xdduy; 0xd5uy; 0x8euy; 0xe8uy; 0xd6uy; 0x90uy;
0x23uy; 0x8euy; 0x97uy; 0x37uy; 0xe9uy; 0xcduy; 0xabuy; 0xdcuy; 0x08uy; 0x04uy; 0xe1uy; 0x32uy;
0x02uy; 0xffuy; 0x7fuy; 0x82uy; 0x41uy; 0xf3uy; 0x9buy; 0x1duy; 0x42uy; 0x8auy; 0x98uy; 0x80uy;
0x81uy; 0xaauy; 0xbeuy; 0x7duy; 0x3buy; 0x83uy; 0x30uy; 0x4duy; 0x4auy; 0x22uy; 0x2duy; 0xafuy;
0x61uy; 0xd1uy; 0xa0uy; 0x66uy; 0xd4uy; 0x48uy; 0x0fuy; 0xe1uy; 0xd9uy; 0x77uy; 0x82uy; 0xc5uy;
0xa1uy; 0x2auy; 0x03uy; 0x1fuy; 0xd0uy; 0x7auy; 0xccuy; 0x77uy; 0x09uy; 0x4auy; 0xbduy; 0xaduy;
0xf7uy; 0x76uy; 0xdcuy; 0x10uy; 0xeduy; 0x5buy; 0xdfuy; 0x89uy; 0xfbuy; 0x52uy; 0x60uy; 0x5cuy;
0x08uy; 0x42uy; 0x50uy; 0xd1uy; 0xdauy; 0x24uy; 0xbbuy; 0x59uy; 0x3euy; 0x14uy; 0xf4uy; 0xf0uy;
0xf4uy; 0xdauy; 0xb8uy; 0x00uy; 0xe2uy; 0x0buy; 0xfauy; 0xc3uy; 0xf6uy; 0x28uy; 0x8duy; 0x20uy;
0x26uy; 0xe9uy; 0x5buy; 0x25uy; 0xa8uy; 0x80uy; 0x4cuy; 0xeeuy; 0xc9uy; 0xb6uy; 0x7auy; 0x8buy;
0x87uy; 0x21uy; 0xfduy; 0xaeuy; 0xd5uy; 0xa8uy; 0x49uy; 0x33uy; 0x58uy; 0x90uy; 0x2cuy; 0x0auy;
0xcauy; 0xb0uy; 0x9duy; 0xbeuy; 0xcduy; 0xe0uy; 0xa4uy; 0x99uy; 0x76uy; 0x01uy; 0x80uy; 0xdduy;
0x66uy; 0x76uy; 0x70uy; 0x05uy; 0xf3uy; 0xd6uy; 0x31uy; 0xa1uy; 0x9euy; 0xd5uy; 0x5fuy; 0x1buy;
0xdduy; 0x7fuy; 0x81uy; 0x6duy; 0x5cuy; 0xe9uy; 0xa3uy; 0x1auy; 0x6auy; 0x87uy; 0x93uy; 0xaduy;
0x1duy; 0x73uy; 0x44uy; 0xbcuy; 0xe4uy; 0x42uy; 0x78uy; 0x6auy; 0x71uy; 0x58uy; 0x9buy; 0x73uy;
0x55uy; 0x63uy; 0xa5uy; 0x32uy; 0xf6uy; 0x55uy; 0x68uy; 0x05uy; 0xcfuy; 0xeduy; 0x5fuy; 0x86uy;
0xe2uy; 0x65uy; 0xefuy; 0xf1uy; 0xb9uy; 0x69uy; 0xbbuy; 0x79uy; 0xb1uy; 0xf4uy; 0x7fuy; 0xa5uy;
0xfauy; 0x62uy; 0xbcuy; 0x68uy; 0xe7uy; 0xf6uy; 0xf8uy; 0xf0uy; 0x55uy; 0xf4uy; 0x93uy; 0x47uy;
0x06uy; 0xf0uy; 0x3euy; 0x94uy; 0x4auy; 0x95uy; 0xc8uy; 0x0cuy; 0xb0uy; 0x04uy; 0x4euy; 0x3fuy;
0x67uy; 0x14uy; 0xeduy; 0xbbuy; 0xbeuy; 0xf0uy; 0xabuy; 0xdduy; 0x6cuy; 0x23uy; 0x4euy; 0x07uy;
0x66uy; 0x41uy; 0x55uy; 0xbeuy; 0x22uy; 0x59uy; 0xd5uy; 0xdauy; 0xd4uy; 0xd8uy; 0x3duy; 0xb0uy;
0x74uy; 0xc4uy; 0x4fuy; 0x9buy; 0x43uy; 0xe5uy; 0x75uy; 0xfbuy; 0x33uy; 0x0euy; 0xdfuy; 0xe1uy;
0xe3uy; 0x7duy; 0x2euy; 0x80uy; 0x10uy; 0x79uy; 0x17uy; 0xeauy; 0xd3uy; 0x18uy; 0x98uy; 0x08uy;
0xeduy; 0x79uy; 0x4cuy; 0xb9uy; 0x66uy; 0x03uy; 0x04uy; 0x50uy; 0xfeuy; 0x62uy; 0x0duy; 0x48uy;
0x1auy; 0x6cuy; 0xeeuy; 0xb7uy; 0x03uy; 0x15uy; 0x92uy; 0x41uy; 0x1euy; 0xa1uy; 0x88uy; 0x46uy;
0x1auy; 0x43uy; 0x49uy; 0xf5uy; 0x93uy; 0x33uy; 0x00uy; 0x65uy; 0x69uy; 0xa8uy; 0x82uy; 0xbduy;
0xbeuy; 0x5cuy; 0x56uy; 0xa3uy; 0x06uy; 0x00uy; 0x8buy; 0x2fuy; 0x7duy; 0xecuy; 0xa4uy; 0x9auy;
0x2auy; 0xaeuy; 0x66uy; 0x07uy; 0x46uy; 0xb3uy; 0xbeuy; 0xf8uy; 0x07uy; 0x08uy; 0x10uy; 0x87uy;
0xd5uy; 0x6cuy; 0x6auy; 0xa5uy; 0xa6uy; 0x07uy; 0x4buy; 0x00uy; 0xc1uy; 0x5auy; 0xeduy; 0x7fuy;
0x14uy; 0x4buy; 0x60uy; 0x02uy; 0xc2uy; 0x67uy; 0x0cuy; 0xa4uy; 0x64uy; 0x54uy; 0x3euy; 0x22uy;
0xfeuy; 0x21uy; 0xcduy; 0x0duy; 0xcbuy; 0x60uy; 0x3buy; 0x13uy; 0xb0uy; 0x8euy; 0x36uy; 0xcauy;
0xcduy; 0x78uy; 0x8duy; 0x08uy; 0x2auy; 0xf1uy; 0x9cuy; 0x17uy; 0x11uy; 0x14uy; 0x57uy; 0x57uy;
0xe8uy; 0x3buy; 0x84uy; 0xe8uy; 0x59uy; 0xdbuy; 0x5buy; 0x77uy; 0x2euy; 0x54uy; 0x3buy; 0x6euy;
0x9cuy; 0x5euy; 0x7fuy; 0x52uy; 0xe5uy; 0x06uy; 0x8auy; 0x2duy; 0xc3uy; 0xbfuy; 0x30uy; 0x34uy;
0x8cuy; 0xaauy; 0x3buy; 0x23uy; 0x59uy; 0x32uy; 0x5fuy; 0xf7uy; 0xc9uy; 0xb2uy; 0xeeuy; 0xb2uy;
0x72uy; 0x75uy; 0x33uy; 0x8euy; 0xa9uy; 0x68uy; 0x6euy; 0xf5uy; 0x61uy; 0x7auy; 0x20uy; 0x01uy;
0xecuy; 0xabuy; 0x19uy; 0x26uy; 0xbeuy; 0x38uy; 0x49uy; 0xe2uy; 0x16uy; 0xceuy; 0x17uy; 0xafuy;
0xcauy; 0xe3uy; 0x06uy; 0xeauy; 0x37uy; 0x98uy; 0xf2uy; 0x8fuy; 0x04uy; 0x9buy; 0xabuy; 0xd8uy;
0xbduy; 0x78uy; 0x68uy; 0xacuy; 0xefuy; 0xb9uy; 0x28uy; 0x6fuy; 0x0buy; 0x37uy; 0x90uy; 0xb3uy;
0x74uy; 0x0cuy; 0x38uy; 0x12uy; 0x70uy; 0xa2uy; 0xbeuy; 0xdcuy; 0xa7uy; 0x18uy; 0xdfuy; 0x5euy;
0xd2uy; 0x62uy; 0xccuy; 0x43uy; 0x24uy; 0x32uy; 0x58uy; 0x45uy; 0x18uy; 0x0auy; 0xe1uy; 0x0duy;
0x82uy; 0xbcuy; 0x08uy; 0xb1uy; 0xa9uy; 0x7euy; 0x63uy; 0x09uy; 0xc6uy; 0x83uy; 0xa1uy; 0xe6uy;
0x5cuy; 0x9cuy; 0xefuy; 0x57uy; 0xecuy; 0xc7uy; 0x73uy; 0x19uy; 0xfbuy; 0x5cuy; 0x20uy; 0xe1uy;
0xdfuy; 0x85uy; 0x76uy; 0xabuy; 0x89uy; 0xb7uy; 0x96uy; 0x8duy; 0xd9uy; 0x8euy; 0xb7uy; 0x00uy;
0xa8uy; 0xc6uy; 0x98uy; 0x47uy; 0x03uy; 0xafuy; 0x56uy; 0x1fuy; 0x35uy; 0x49uy; 0x75uy; 0x4cuy;
0xa2uy; 0xa2uy; 0xdcuy; 0x98uy; 0xbfuy; 0x87uy; 0xeduy; 0x73uy; 0x5fuy; 0x9buy; 0xabuy; 0x3euy;
0x02uy; 0xdcuy; 0xa1uy; 0x4buy; 0x6cuy; 0xacuy; 0x10uy; 0xb2uy; 0x0buy; 0x99uy; 0xeeuy; 0xc8uy;
0xc2uy; 0x82uy; 0xa9uy; 0xf9uy; 0xa9uy; 0xa5uy; 0x4duy; 0xc9uy; 0x39uy; 0x41uy; 0x89uy; 0x0cuy;
0xc6uy; 0xe3uy; 0xaauy; 0x76uy; 0xe7uy; 0x11uy; 0x16uy; 0x8auy; 0x28uy; 0x6buy; 0x22uy; 0x3auy;
0x1euy; 0x7duy; 0xe6uy; 0xf7uy; 0x55uy; 0x85uy; 0x8cuy; 0x36uy; 0x57uy; 0x0buy; 0xdbuy; 0xe6uy;
0xefuy; 0xd9uy; 0xf6uy; 0x94uy; 0x48uy; 0x31uy; 0x7euy; 0xaauy; 0x13uy; 0xd4uy; 0x58uy; 0x9buy;
0xebuy; 0x7cuy; 0x2auy; 0x39uy; 0xdduy; 0xa3uy; 0x3fuy; 0x70uy; 0xfduy; 0x7fuy; 0x30uy; 0xa3uy;
0x34uy; 0xe6uy; 0xacuy; 0x64uy; 0x9buy; 0xf8uy; 0xbbuy; 0x1euy; 0x51uy; 0xe1uy; 0xaduy; 0x61uy;
0xf6uy; 0xffuy; 0xd4uy; 0x4auy; 0x5euy; 0x12uy; 0x40uy; 0xdcuy; 0x07uy; 0x8buy; 0xb2uy; 0xe0uy;
0xb9uy; 0x29uy; 0xaauy; 0x4euy; 0x85uy; 0xf5uy; 0xbduy; 0x5buy; 0x43uy; 0x77uy; 0xc7uy; 0x0buy;
0xfeuy; 0x66uy; 0x49uy; 0xccuy; 0xb5uy; 0x92uy; 0x4auy; 0x14uy; 0x1euy; 0xe2uy; 0xe5uy; 0x20uy;
0xfauy; 0xecuy; 0x0fuy; 0xc9uy
] | {
"file_name": "specs/tests/Spec.Frodo.Test.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 163,
"start_col": 0,
"start_line": 78
} | module Spec.Frodo.Test
open FStar.Mul
open Lib.IntTypes
open Lib.RawIntTypes
open Lib.Sequence
open Lib.ByteSequence
open Spec.Frodo.KEM
open Spec.Frodo.KEM.KeyGen
open Spec.Frodo.KEM.Encaps
open Spec.Frodo.KEM.Decaps
open Spec.Frodo.Params
open FStar.All
module PS = Lib.PrintSequence
#set-options "--z3rlimit 50 --fuel 0 --ifuel 1"
let compare (#len: size_nat) (test_expected: lbytes len) (test_result: lbytes len) =
for_all2 (fun a b -> uint_to_nat #U8 a = uint_to_nat #U8 b) test_expected test_result
let test_frodo
(a:frodo_alg)
(gen_a:frodo_gen_a)
(keypaircoins: list uint8 {List.Tot.length keypaircoins == 2 * crypto_bytes a + bytes_seed_a})
(enccoins: list uint8 {List.Tot.length enccoins == bytes_mu a})
(ss_expected: list uint8 {List.Tot.length ss_expected == crypto_bytes a})
(pk_expected: list uint8 {List.Tot.length pk_expected == crypto_publickeybytes a})
(ct_expected: list uint8 {List.Tot.length ct_expected == crypto_ciphertextbytes a})
(sk_expected: list uint8 {List.Tot.length sk_expected == crypto_secretkeybytes a})
: ML bool =
let keypaircoins = createL keypaircoins in
let enccoins = createL enccoins in
let ss_expected = createL ss_expected in
let pk_expected = createL pk_expected in
let ct_expected = createL ct_expected in
let sk_expected = createL sk_expected in
let pk, sk = crypto_kem_keypair_ a gen_a keypaircoins in
let ct, ss1 = crypto_kem_enc_ a gen_a enccoins pk in
let ss2 = crypto_kem_dec a gen_a ct sk in
let r_pk = compare pk_expected pk in
let r_sk = compare sk_expected sk in
let r_ct = compare ct_expected ct in
let r_ss = PS.print_compare true (crypto_bytes a) ss1 ss2 in
let r_ss1 = PS.print_compare true (crypto_bytes a) ss_expected ss2 in
r_pk && r_sk && r_ct && r_ss && r_ss1
//
// Test1. FrodoKEM-64. SHAKE128
//
let test1_keypaircoins =
List.Tot.map u8_from_UInt8
[
0xa6uy; 0x65uy; 0x65uy; 0x9fuy; 0xfbuy; 0xe4uy; 0x06uy; 0x5cuy; 0xcauy; 0x81uy; 0x5auy; 0x45uy;
0xe4uy; 0x94uy; 0xd8uy; 0x01uy; 0x90uy; 0x30uy; 0x33uy; 0x55uy; 0x33uy; 0x84uy; 0x2euy; 0xe4uy;
0x4cuy; 0x55uy; 0x8fuy; 0xd8uy; 0xaeuy; 0x4buy; 0x4euy; 0x91uy; 0x62uy; 0xfeuy; 0xc7uy; 0x9auy;
0xc5uy; 0xcduy; 0x1fuy; 0xe2uy; 0xd2uy; 0x00uy; 0x63uy; 0x39uy; 0xaauy; 0xb1uy; 0xf3uy; 0x17uy
]
let test1_enccoins =
List.Tot.map u8_from_UInt8
[
0x8duy; 0xf3uy; 0xfauy; 0xe3uy; 0x83uy; 0x27uy; 0xc5uy; 0x3cuy; 0xc1uy; 0xc4uy; 0x8cuy; 0x60uy;
0xb2uy; 0x52uy; 0x2buy; 0xb5uy
]
let test1_ss_expected =
List.Tot.map u8_from_UInt8
[
0xf8uy; 0x96uy; 0x15uy; 0x94uy; 0x80uy; 0x9fuy; 0xebuy; 0x77uy; 0x56uy; 0xbeuy; 0x37uy; 0x69uy;
0xa0uy; 0xeauy; 0x60uy; 0x16uy
] | {
"checked_file": "/",
"dependencies": [
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.KeyGen.fst.checked",
"Spec.Frodo.KEM.Encaps.fst.checked",
"Spec.Frodo.KEM.Decaps.fst.checked",
"Spec.Frodo.KEM.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.PrintSequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.IO.fst.checked",
"FStar.All.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Frodo.Test.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.PrintSequence",
"short_module": "PS"
},
{
"abbrev": false,
"full_module": "FStar.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.Decaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.Encaps",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM.KeyGen",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.list Lib.IntTypes.uint8 | Prims.Tot | [
"total"
] | [] | [
"FStar.List.Tot.Base.map",
"FStar.UInt8.t",
"Lib.IntTypes.uint8",
"Lib.RawIntTypes.u8_from_UInt8",
"Prims.Cons",
"FStar.UInt8.__uint_to_t",
"Prims.Nil"
] | [] | false | false | false | true | false | let test1_pk_expected =
| List.Tot.map u8_from_UInt8
[
0x0duy; 0xacuy; 0x6fuy; 0x83uy; 0x94uy; 0x00uy; 0x1auy; 0xcauy; 0x97uy; 0xa1uy; 0xaauy; 0x42uy;
0x80uy; 0x9duy; 0x6buy; 0xa5uy; 0xfcuy; 0x64uy; 0x43uy; 0xdbuy; 0xbeuy; 0x6fuy; 0x12uy; 0x2auy;
0x94uy; 0x58uy; 0x36uy; 0xf2uy; 0xb1uy; 0xf8uy; 0xe5uy; 0xf0uy; 0x57uy; 0x4buy; 0x35uy; 0x51uy;
0xdduy; 0x8cuy; 0x36uy; 0x28uy; 0x34uy; 0x46uy; 0xd6uy; 0xafuy; 0x5duy; 0x49uy; 0x0euy; 0x27uy;
0xd8uy; 0xd3uy; 0xaduy; 0xe1uy; 0xeduy; 0x8buy; 0x2duy; 0x13uy; 0xf5uy; 0x5auy; 0xb6uy; 0xdduy;
0xc0uy; 0x54uy; 0x76uy; 0x09uy; 0xa6uy; 0xa4uy; 0x01uy; 0xb9uy; 0xb7uy; 0xd1uy; 0x26uy; 0xd5uy;
0x1euy; 0xa8uy; 0x20uy; 0x4duy; 0xe8uy; 0xefuy; 0xaduy; 0xb9uy; 0xf0uy; 0x65uy; 0xe9uy; 0xc4uy;
0xf4uy; 0x11uy; 0x98uy; 0x99uy; 0xf0uy; 0x2cuy; 0x63uy; 0x7buy; 0x98uy; 0xd7uy; 0x60uy; 0x43uy;
0x5duy; 0x8cuy; 0x85uy; 0xe9uy; 0xc5uy; 0x83uy; 0x83uy; 0x62uy; 0xe2uy; 0x13uy; 0x33uy; 0x54uy;
0x4buy; 0x71uy; 0xaeuy; 0x63uy; 0xbauy; 0x5auy; 0x4euy; 0x32uy; 0x59uy; 0x78uy; 0x6buy; 0x4duy;
0x39uy; 0xcfuy; 0xe1uy; 0x82uy; 0x58uy; 0x0auy; 0xc3uy; 0x61uy; 0x6auy; 0x89uy; 0x2fuy; 0x1buy;
0x70uy; 0xdduy; 0x16uy; 0x3euy; 0x96uy; 0xb1uy; 0x4cuy; 0x71uy; 0xb1uy; 0x79uy; 0x0cuy; 0x3fuy;
0xe2uy; 0xeduy; 0x05uy; 0x07uy; 0x72uy; 0xf3uy; 0x89uy; 0x08uy; 0x8cuy; 0x22uy; 0xa7uy; 0x36uy;
0x40uy; 0xcauy; 0x52uy; 0x70uy; 0x1buy; 0x09uy; 0xcbuy; 0xabuy; 0x3buy; 0x64uy; 0x61uy; 0x6duy;
0x5duy; 0xf7uy; 0x15uy; 0x69uy; 0x71uy; 0x3buy; 0x3auy; 0x2euy; 0x53uy; 0x33uy; 0x26uy; 0xe6uy;
0x29uy; 0x5cuy; 0xfbuy; 0x0duy; 0xc6uy; 0xe4uy; 0xbduy; 0x9cuy; 0x43uy; 0xffuy; 0xa6uy; 0x5buy;
0x49uy; 0x47uy; 0x93uy; 0x1cuy; 0x81uy; 0x6fuy; 0xd4uy; 0xaauy; 0x3duy; 0xaduy; 0x86uy; 0xf5uy;
0x94uy; 0x16uy; 0x7fuy; 0x31uy; 0x91uy; 0x30uy; 0x97uy; 0xc4uy; 0xa3uy; 0xe4uy; 0x01uy; 0x2buy;
0x06uy; 0xcfuy; 0x69uy; 0xfbuy; 0x69uy; 0x35uy; 0xaauy; 0x81uy; 0xeduy; 0x90uy; 0x0cuy; 0x3auy;
0xc0uy; 0xa6uy; 0x06uy; 0xabuy; 0x51uy; 0x3fuy; 0x39uy; 0xb2uy; 0x1euy; 0xb0uy; 0x4buy; 0xbcuy;
0xd0uy; 0xd0uy; 0x3auy; 0xdauy; 0x89uy; 0x88uy; 0xa6uy; 0x56uy; 0xd8uy; 0x02uy; 0x98uy; 0xeeuy;
0xa2uy; 0xf5uy; 0x0euy; 0xbauy; 0x7cuy; 0x52uy; 0xafuy; 0xf4uy; 0xbbuy; 0xe7uy; 0x36uy; 0x4auy;
0xdduy; 0x90uy; 0x93uy; 0xe9uy; 0x5duy; 0xbeuy; 0x68uy; 0x99uy; 0xc2uy; 0xaduy; 0x4duy; 0x79uy;
0x25uy; 0x0buy; 0x69uy; 0x79uy; 0x7buy; 0xe2uy; 0x3duy; 0xa8uy; 0xe7uy; 0xf1uy; 0x42uy; 0x0cuy;
0x22uy; 0x85uy; 0x95uy; 0xf0uy; 0xd5uy; 0x5cuy; 0x96uy; 0x35uy; 0xb6uy; 0x19uy; 0xaeuy; 0xb3uy;
0xcfuy; 0x22uy; 0xcauy; 0xbauy; 0x28uy; 0xd6uy; 0xdduy; 0xd5uy; 0x8euy; 0xe8uy; 0xd6uy; 0x90uy;
0x23uy; 0x8euy; 0x97uy; 0x37uy; 0xe9uy; 0xcduy; 0xabuy; 0xdcuy; 0x08uy; 0x04uy; 0xe1uy; 0x32uy;
0x02uy; 0xffuy; 0x7fuy; 0x82uy; 0x41uy; 0xf3uy; 0x9buy; 0x1duy; 0x42uy; 0x8auy; 0x98uy; 0x80uy;
0x81uy; 0xaauy; 0xbeuy; 0x7duy; 0x3buy; 0x83uy; 0x30uy; 0x4duy; 0x4auy; 0x22uy; 0x2duy; 0xafuy;
0x61uy; 0xd1uy; 0xa0uy; 0x66uy; 0xd4uy; 0x48uy; 0x0fuy; 0xe1uy; 0xd9uy; 0x77uy; 0x82uy; 0xc5uy;
0xa1uy; 0x2auy; 0x03uy; 0x1fuy; 0xd0uy; 0x7auy; 0xccuy; 0x77uy; 0x09uy; 0x4auy; 0xbduy; 0xaduy;
0xf7uy; 0x76uy; 0xdcuy; 0x10uy; 0xeduy; 0x5buy; 0xdfuy; 0x89uy; 0xfbuy; 0x52uy; 0x60uy; 0x5cuy;
0x08uy; 0x42uy; 0x50uy; 0xd1uy; 0xdauy; 0x24uy; 0xbbuy; 0x59uy; 0x3euy; 0x14uy; 0xf4uy; 0xf0uy;
0xf4uy; 0xdauy; 0xb8uy; 0x00uy; 0xe2uy; 0x0buy; 0xfauy; 0xc3uy; 0xf6uy; 0x28uy; 0x8duy; 0x20uy;
0x26uy; 0xe9uy; 0x5buy; 0x25uy; 0xa8uy; 0x80uy; 0x4cuy; 0xeeuy; 0xc9uy; 0xb6uy; 0x7auy; 0x8buy;
0x87uy; 0x21uy; 0xfduy; 0xaeuy; 0xd5uy; 0xa8uy; 0x49uy; 0x33uy; 0x58uy; 0x90uy; 0x2cuy; 0x0auy;
0xcauy; 0xb0uy; 0x9duy; 0xbeuy; 0xcduy; 0xe0uy; 0xa4uy; 0x99uy; 0x76uy; 0x01uy; 0x80uy; 0xdduy;
0x66uy; 0x76uy; 0x70uy; 0x05uy; 0xf3uy; 0xd6uy; 0x31uy; 0xa1uy; 0x9euy; 0xd5uy; 0x5fuy; 0x1buy;
0xdduy; 0x7fuy; 0x81uy; 0x6duy; 0x5cuy; 0xe9uy; 0xa3uy; 0x1auy; 0x6auy; 0x87uy; 0x93uy; 0xaduy;
0x1duy; 0x73uy; 0x44uy; 0xbcuy; 0xe4uy; 0x42uy; 0x78uy; 0x6auy; 0x71uy; 0x58uy; 0x9buy; 0x73uy;
0x55uy; 0x63uy; 0xa5uy; 0x32uy; 0xf6uy; 0x55uy; 0x68uy; 0x05uy; 0xcfuy; 0xeduy; 0x5fuy; 0x86uy;
0xe2uy; 0x65uy; 0xefuy; 0xf1uy; 0xb9uy; 0x69uy; 0xbbuy; 0x79uy; 0xb1uy; 0xf4uy; 0x7fuy; 0xa5uy;
0xfauy; 0x62uy; 0xbcuy; 0x68uy; 0xe7uy; 0xf6uy; 0xf8uy; 0xf0uy; 0x55uy; 0xf4uy; 0x93uy; 0x47uy;
0x06uy; 0xf0uy; 0x3euy; 0x94uy; 0x4auy; 0x95uy; 0xc8uy; 0x0cuy; 0xb0uy; 0x04uy; 0x4euy; 0x3fuy;
0x67uy; 0x14uy; 0xeduy; 0xbbuy; 0xbeuy; 0xf0uy; 0xabuy; 0xdduy; 0x6cuy; 0x23uy; 0x4euy; 0x07uy;
0x66uy; 0x41uy; 0x55uy; 0xbeuy; 0x22uy; 0x59uy; 0xd5uy; 0xdauy; 0xd4uy; 0xd8uy; 0x3duy; 0xb0uy;
0x74uy; 0xc4uy; 0x4fuy; 0x9buy; 0x43uy; 0xe5uy; 0x75uy; 0xfbuy; 0x33uy; 0x0euy; 0xdfuy; 0xe1uy;
0xe3uy; 0x7duy; 0x2euy; 0x80uy; 0x10uy; 0x79uy; 0x17uy; 0xeauy; 0xd3uy; 0x18uy; 0x98uy; 0x08uy;
0xeduy; 0x79uy; 0x4cuy; 0xb9uy; 0x66uy; 0x03uy; 0x04uy; 0x50uy; 0xfeuy; 0x62uy; 0x0duy; 0x48uy;
0x1auy; 0x6cuy; 0xeeuy; 0xb7uy; 0x03uy; 0x15uy; 0x92uy; 0x41uy; 0x1euy; 0xa1uy; 0x88uy; 0x46uy;
0x1auy; 0x43uy; 0x49uy; 0xf5uy; 0x93uy; 0x33uy; 0x00uy; 0x65uy; 0x69uy; 0xa8uy; 0x82uy; 0xbduy;
0xbeuy; 0x5cuy; 0x56uy; 0xa3uy; 0x06uy; 0x00uy; 0x8buy; 0x2fuy; 0x7duy; 0xecuy; 0xa4uy; 0x9auy;
0x2auy; 0xaeuy; 0x66uy; 0x07uy; 0x46uy; 0xb3uy; 0xbeuy; 0xf8uy; 0x07uy; 0x08uy; 0x10uy; 0x87uy;
0xd5uy; 0x6cuy; 0x6auy; 0xa5uy; 0xa6uy; 0x07uy; 0x4buy; 0x00uy; 0xc1uy; 0x5auy; 0xeduy; 0x7fuy;
0x14uy; 0x4buy; 0x60uy; 0x02uy; 0xc2uy; 0x67uy; 0x0cuy; 0xa4uy; 0x64uy; 0x54uy; 0x3euy; 0x22uy;
0xfeuy; 0x21uy; 0xcduy; 0x0duy; 0xcbuy; 0x60uy; 0x3buy; 0x13uy; 0xb0uy; 0x8euy; 0x36uy; 0xcauy;
0xcduy; 0x78uy; 0x8duy; 0x08uy; 0x2auy; 0xf1uy; 0x9cuy; 0x17uy; 0x11uy; 0x14uy; 0x57uy; 0x57uy;
0xe8uy; 0x3buy; 0x84uy; 0xe8uy; 0x59uy; 0xdbuy; 0x5buy; 0x77uy; 0x2euy; 0x54uy; 0x3buy; 0x6euy;
0x9cuy; 0x5euy; 0x7fuy; 0x52uy; 0xe5uy; 0x06uy; 0x8auy; 0x2duy; 0xc3uy; 0xbfuy; 0x30uy; 0x34uy;
0x8cuy; 0xaauy; 0x3buy; 0x23uy; 0x59uy; 0x32uy; 0x5fuy; 0xf7uy; 0xc9uy; 0xb2uy; 0xeeuy; 0xb2uy;
0x72uy; 0x75uy; 0x33uy; 0x8euy; 0xa9uy; 0x68uy; 0x6euy; 0xf5uy; 0x61uy; 0x7auy; 0x20uy; 0x01uy;
0xecuy; 0xabuy; 0x19uy; 0x26uy; 0xbeuy; 0x38uy; 0x49uy; 0xe2uy; 0x16uy; 0xceuy; 0x17uy; 0xafuy;
0xcauy; 0xe3uy; 0x06uy; 0xeauy; 0x37uy; 0x98uy; 0xf2uy; 0x8fuy; 0x04uy; 0x9buy; 0xabuy; 0xd8uy;
0xbduy; 0x78uy; 0x68uy; 0xacuy; 0xefuy; 0xb9uy; 0x28uy; 0x6fuy; 0x0buy; 0x37uy; 0x90uy; 0xb3uy;
0x74uy; 0x0cuy; 0x38uy; 0x12uy; 0x70uy; 0xa2uy; 0xbeuy; 0xdcuy; 0xa7uy; 0x18uy; 0xdfuy; 0x5euy;
0xd2uy; 0x62uy; 0xccuy; 0x43uy; 0x24uy; 0x32uy; 0x58uy; 0x45uy; 0x18uy; 0x0auy; 0xe1uy; 0x0duy;
0x82uy; 0xbcuy; 0x08uy; 0xb1uy; 0xa9uy; 0x7euy; 0x63uy; 0x09uy; 0xc6uy; 0x83uy; 0xa1uy; 0xe6uy;
0x5cuy; 0x9cuy; 0xefuy; 0x57uy; 0xecuy; 0xc7uy; 0x73uy; 0x19uy; 0xfbuy; 0x5cuy; 0x20uy; 0xe1uy;
0xdfuy; 0x85uy; 0x76uy; 0xabuy; 0x89uy; 0xb7uy; 0x96uy; 0x8duy; 0xd9uy; 0x8euy; 0xb7uy; 0x00uy;
0xa8uy; 0xc6uy; 0x98uy; 0x47uy; 0x03uy; 0xafuy; 0x56uy; 0x1fuy; 0x35uy; 0x49uy; 0x75uy; 0x4cuy;
0xa2uy; 0xa2uy; 0xdcuy; 0x98uy; 0xbfuy; 0x87uy; 0xeduy; 0x73uy; 0x5fuy; 0x9buy; 0xabuy; 0x3euy;
0x02uy; 0xdcuy; 0xa1uy; 0x4buy; 0x6cuy; 0xacuy; 0x10uy; 0xb2uy; 0x0buy; 0x99uy; 0xeeuy; 0xc8uy;
0xc2uy; 0x82uy; 0xa9uy; 0xf9uy; 0xa9uy; 0xa5uy; 0x4duy; 0xc9uy; 0x39uy; 0x41uy; 0x89uy; 0x0cuy;
0xc6uy; 0xe3uy; 0xaauy; 0x76uy; 0xe7uy; 0x11uy; 0x16uy; 0x8auy; 0x28uy; 0x6buy; 0x22uy; 0x3auy;
0x1euy; 0x7duy; 0xe6uy; 0xf7uy; 0x55uy; 0x85uy; 0x8cuy; 0x36uy; 0x57uy; 0x0buy; 0xdbuy; 0xe6uy;
0xefuy; 0xd9uy; 0xf6uy; 0x94uy; 0x48uy; 0x31uy; 0x7euy; 0xaauy; 0x13uy; 0xd4uy; 0x58uy; 0x9buy;
0xebuy; 0x7cuy; 0x2auy; 0x39uy; 0xdduy; 0xa3uy; 0x3fuy; 0x70uy; 0xfduy; 0x7fuy; 0x30uy; 0xa3uy;
0x34uy; 0xe6uy; 0xacuy; 0x64uy; 0x9buy; 0xf8uy; 0xbbuy; 0x1euy; 0x51uy; 0xe1uy; 0xaduy; 0x61uy;
0xf6uy; 0xffuy; 0xd4uy; 0x4auy; 0x5euy; 0x12uy; 0x40uy; 0xdcuy; 0x07uy; 0x8buy; 0xb2uy; 0xe0uy;
0xb9uy; 0x29uy; 0xaauy; 0x4euy; 0x85uy; 0xf5uy; 0xbduy; 0x5buy; 0x43uy; 0x77uy; 0xc7uy; 0x0buy;
0xfeuy; 0x66uy; 0x49uy; 0xccuy; 0xb5uy; 0x92uy; 0x4auy; 0x14uy; 0x1euy; 0xe2uy; 0xe5uy; 0x20uy;
0xfauy; 0xecuy; 0x0fuy; 0xc9uy
] | false |
|
Vale.Stdcalls.X64.GCM_IV.fst | Vale.Stdcalls.X64.GCM_IV.code_compute_iv | val code_compute_iv : Vale.X64.Decls.va_code | let code_compute_iv = GC.va_code_Compute_iv_stdcall IA.win | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCM_IV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 58,
"end_line": 127,
"start_col": 0,
"start_line": 127
} | module Vale.Stdcalls.X64.GCM_IV
open FStar.HyperStack.ST
module B = LowStar.Buffer
module HS = FStar.HyperStack
open FStar.Mul
module DV = LowStar.BufferView.Down
module UV = LowStar.BufferView.Up
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module GC = Vale.AES.X64.GCMencryptOpt
open Vale.AES.GCM_s
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt8 TUInt128
[@__reduce__] noextract
let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq
[@__reduce__] noextract
let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret})
[@__reduce__] noextract
let tuint64 = TD_Base TUInt64
[@__reduce__] noextract
let (dom: list td{List.length dom <= 20}) =
let y = [t128_no_mod; tuint64; tuint64; t128_mod; t128_no_mod; t128_no_mod] in
assert_norm (List.length y = 6);
y
[@__reduce__] noextract
let compute_iv_pre : (Ghost.erased supported_iv_LE) -> VSig.vale_pre dom =
fun (iv:Ghost.erased supported_iv_LE)
(c:V.va_code)
(iv_b:b128)
(num_bytes:uint64)
(len:uint64)
(j0_b:b128)
(iv_extra_b:b128)
(hkeys_b:b128)
(va_s0:V.va_state) ->
GC.va_req_Compute_iv_stdcall c va_s0 IA.win (Ghost.reveal iv)
(as_vale_buffer iv_b) (UInt64.v num_bytes)
(UInt64.v len) (as_vale_buffer j0_b)
(as_vale_buffer iv_extra_b) (as_vale_buffer hkeys_b)
[@__reduce__] noextract
let compute_iv_post : (Ghost.erased supported_iv_LE) -> VSig.vale_post dom =
fun (iv:Ghost.erased supported_iv_LE)
(c:V.va_code)
(iv_b:b128)
(num_bytes:uint64)
(len:uint64)
(j0_b:b128)
(iv_extra_b:b128)
(hkeys_b:b128)
(va_s0:V.va_state)
(va_s1:V.va_state)
(f:V.va_fuel) ->
GC.va_ens_Compute_iv_stdcall c va_s0 IA.win (Ghost.reveal iv)
(as_vale_buffer iv_b) (UInt64.v num_bytes)
(UInt64.v len) (as_vale_buffer j0_b)
(as_vale_buffer iv_extra_b) (as_vale_buffer hkeys_b)
va_s1 f
#set-options "--z3rlimit 50"
[@__reduce__] noextract
let compute_iv_lemma'
(iv:Ghost.erased supported_iv_LE)
(code:V.va_code)
(_win:bool)
(iv_b:b128)
(num_bytes:uint64)
(len:uint64)
(j0_b:b128)
(iv_extra_b:b128)
(hkeys_b:b128)
(va_s0:V.va_state)
: Ghost (V.va_state & V.va_fuel)
(requires compute_iv_pre iv code iv_b num_bytes len j0_b iv_extra_b hkeys_b va_s0)
(ensures (fun (va_s1, f) ->
V.eval_code code va_s0 f va_s1 /\
VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\
compute_iv_post iv code iv_b num_bytes len j0_b iv_extra_b hkeys_b va_s0 va_s1 f /\
ME.buffer_writeable (as_vale_buffer iv_b) /\
ME.buffer_writeable (as_vale_buffer hkeys_b) /\
ME.buffer_writeable (as_vale_buffer iv_extra_b) /\
ME.buffer_writeable (as_vale_buffer j0_b))
) = let va_s1, f = GC.va_lemma_Compute_iv_stdcall code va_s0 IA.win (Ghost.reveal iv)
(as_vale_buffer iv_b) (UInt64.v num_bytes)
(UInt64.v len) (as_vale_buffer j0_b)
(as_vale_buffer iv_extra_b) (as_vale_buffer hkeys_b) in
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 iv_b;
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 iv_extra_b;
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 j0_b;
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 hkeys_b;
va_s1, f
(* Prove that compute1_iv_lemma' has the required type *)
noextract
let compute_iv_lemma (iv:Ghost.erased supported_iv_LE) = as_t
#(VSig.vale_sig_stdcall (compute_iv_pre iv) (compute_iv_post iv))
(compute_iv_lemma' iv) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"Vale.AES.X64.GCMencryptOpt.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"prims.fst.checked",
"LowStar.BufferView.Up.fsti.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.GCM_IV.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AES.X64.GCMencryptOpt",
"short_module": "GC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Vale.X64.Decls.va_code | Prims.Tot | [
"total"
] | [] | [
"Vale.AES.X64.GCMencryptOpt.va_code_Compute_iv_stdcall",
"Vale.Interop.Assumptions.win"
] | [] | false | false | false | true | false | let code_compute_iv =
| GC.va_code_Compute_iv_stdcall IA.win | false |
|
RecordOfArrays.fst | RecordOfArrays.rec_array_repr_with_v2 | val rec_array_repr_with_v2 : r: RecordOfArrays.rec_array_repr -> v2: FStar.Seq.Base.seq FStar.UInt8.t
-> RecordOfArrays.rec_array_repr | let rec_array_repr_with_v2 (r:rec_array_repr) v2 = {r with v2} | {
"file_name": "share/steel/examples/pulse/bug-reports/RecordOfArrays.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 62,
"end_line": 86,
"start_col": 0,
"start_line": 86
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module RecordOfArrays
open Pulse.Lib.Pervasives
module R = Pulse.Lib.Reference
module A = Pulse.Lib.Array
module U8 = FStar.UInt8
module US = FStar.SizeT
// Similar to Records, but with arrays
noeq
type rec_array = {
r1: A.array U8.t;
r2: A.array U8.t;
}
type rec_array_repr = {
v1: Seq.seq U8.t;
v2: Seq.seq U8.t;
}
let rec_array_perm (r:rec_array) (v:rec_array_repr)
: vprop =
A.pts_to r.r1 v.v1 **
A.pts_to r.r2 v.v2
//Using record syntax directly in Pulse vprops
//leads to strange type inference errors
let mk_rec_array_repr (v1 v2:Seq.seq U8.t) = { v1=v1; v2=v2 }
```pulse
ghost
fn fold_rec_array_perm (r:rec_array) (#v1 #v2:erased (Seq.seq U8.t))
requires
A.pts_to r.r1 v1 **
A.pts_to r.r2 v2
ensures
rec_array_perm r (mk_rec_array_repr v1 v2)
{
fold (rec_array_perm r (mk_rec_array_repr v1 v2))
}
```
// Then, mutating a one of the arrays of the record involves:
```pulse
fn mutate_r2 (r:rec_array) (#v:(v:Ghost.erased rec_array_repr { Seq.length v.v2 > 0 }))
requires rec_array_perm r v
ensures exists* (v_:rec_array_repr) .
rec_array_perm r v_ ** pure (v_.v2 `Seq.equal` Seq.upd v.v2 0 0uy /\ v_.v1 == v.v1)
{
unfold (rec_array_perm r v); //1. unfolding the predicate
((r.r2).(0sz) <- 0uy); //2. working with the fields
fold_rec_array_perm r; //3. folding it back up
()
}
```
// Some alternate more explicit ways
```pulse
fn get_witness_array (x:A.array U8.t) (#y:Ghost.erased (Seq.seq U8.t))
requires A.pts_to x y
returns z:Ghost.erased (Seq.seq U8.t)
ensures A.pts_to x y ** pure (y==z)
{
y
}
``` | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Reference.fsti.checked",
"Pulse.Lib.Pervasives.fst.checked",
"Pulse.Lib.Array.fsti.checked",
"prims.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "RecordOfArrays.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "US"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Array",
"short_module": "A"
},
{
"abbrev": true,
"full_module": "Pulse.Lib.Reference",
"short_module": "R"
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: RecordOfArrays.rec_array_repr -> v2: FStar.Seq.Base.seq FStar.UInt8.t
-> RecordOfArrays.rec_array_repr | Prims.Tot | [
"total"
] | [] | [
"RecordOfArrays.rec_array_repr",
"FStar.Seq.Base.seq",
"FStar.UInt8.t",
"RecordOfArrays.Mkrec_array_repr",
"RecordOfArrays.__proj__Mkrec_array_repr__item__v1"
] | [] | false | false | false | true | false | let rec_array_repr_with_v2 (r: rec_array_repr) v2 =
| { r with v2 = v2 } | false |
|
Steel.ST.GenArraySwap.fst | Steel.ST.GenArraySwap.gcd_inv0 | val gcd_inv0 (n0 l0: SZ.t) (pn pl: R.ref SZ.t) (b: bool) : Tot vprop | val gcd_inv0 (n0 l0: SZ.t) (pn pl: R.ref SZ.t) (b: bool) : Tot vprop | let gcd_inv0
(n0: SZ.t)
(l0: SZ.t)
(pn: R.ref SZ.t)
(pl: R.ref SZ.t)
(b: bool)
: Tot vprop
= exists_ (fun n -> exists_ (fun l ->
R.pts_to pn full_perm n `star`
R.pts_to pl full_perm l `star`
pure (gcd_inv_prop (SZ.v n0) (SZ.v l0) (SZ.v n) (SZ.v l) b)
)) | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 4,
"end_line": 31,
"start_col": 0,
"start_line": 20
} | module Steel.ST.GenArraySwap
open Steel.ST.GenElim
module Prf = Steel.ST.GenArraySwap.Proof
module R = Steel.ST.Reference
let gcd_inv_prop
(n0: nat)
(l0: nat)
(n: nat)
(l: nat)
(b: bool)
: Tot prop
= l0 < n0 /\
l < n /\
(Prf.mk_bezout n0 l0).d == (Prf.mk_bezout n l).d /\
b == (l > 0) | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Reference.fsti.checked",
"Steel.ST.Loops.fsti.checked",
"Steel.ST.GenElim.fsti.checked",
"Steel.ST.GenArraySwap.Proof.fst.checked",
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.ST.GenArraySwap.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.ST.Reference",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "Steel.ST.GenArraySwap.Proof",
"short_module": "Prf"
},
{
"abbrev": false,
"full_module": "Steel.ST.GenElim",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "SZ"
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n0: FStar.SizeT.t ->
l0: FStar.SizeT.t ->
pn: Steel.ST.Reference.ref FStar.SizeT.t ->
pl: Steel.ST.Reference.ref FStar.SizeT.t ->
b: Prims.bool
-> Steel.Effect.Common.vprop | Prims.Tot | [
"total"
] | [] | [
"FStar.SizeT.t",
"Steel.ST.Reference.ref",
"Prims.bool",
"Steel.ST.Util.exists_",
"Steel.Effect.Common.star",
"Steel.ST.Reference.pts_to",
"Steel.FractionalPermission.full_perm",
"Steel.ST.Util.pure",
"Steel.ST.GenArraySwap.gcd_inv_prop",
"FStar.SizeT.v",
"Steel.Effect.Common.vprop"
] | [] | false | false | false | true | false | let gcd_inv0 (n0 l0: SZ.t) (pn pl: R.ref SZ.t) (b: bool) : Tot vprop =
| exists_ (fun n ->
exists_ (fun l ->
((R.pts_to pn full_perm n) `star` (R.pts_to pl full_perm l))
`star`
(pure (gcd_inv_prop (SZ.v n0) (SZ.v l0) (SZ.v n) (SZ.v l) b)))) | false |
Steel.ST.GenArraySwap.fst | Steel.ST.GenArraySwap.gcd_inv | val gcd_inv (n0 l0: SZ.t) (pn pl: R.ref SZ.t) (b: bool) : Tot vprop | val gcd_inv (n0 l0: SZ.t) (pn pl: R.ref SZ.t) (b: bool) : Tot vprop | let gcd_inv
(n0: SZ.t)
(l0: SZ.t)
(pn: R.ref SZ.t)
(pl: R.ref SZ.t)
(b: bool)
: Tot vprop
= gcd_inv0 n0 l0 pn pl b | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 24,
"end_line": 40,
"start_col": 0,
"start_line": 33
} | module Steel.ST.GenArraySwap
open Steel.ST.GenElim
module Prf = Steel.ST.GenArraySwap.Proof
module R = Steel.ST.Reference
let gcd_inv_prop
(n0: nat)
(l0: nat)
(n: nat)
(l: nat)
(b: bool)
: Tot prop
= l0 < n0 /\
l < n /\
(Prf.mk_bezout n0 l0).d == (Prf.mk_bezout n l).d /\
b == (l > 0)
[@@__reduce__]
let gcd_inv0
(n0: SZ.t)
(l0: SZ.t)
(pn: R.ref SZ.t)
(pl: R.ref SZ.t)
(b: bool)
: Tot vprop
= exists_ (fun n -> exists_ (fun l ->
R.pts_to pn full_perm n `star`
R.pts_to pl full_perm l `star`
pure (gcd_inv_prop (SZ.v n0) (SZ.v l0) (SZ.v n) (SZ.v l) b)
)) | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Reference.fsti.checked",
"Steel.ST.Loops.fsti.checked",
"Steel.ST.GenElim.fsti.checked",
"Steel.ST.GenArraySwap.Proof.fst.checked",
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.ST.GenArraySwap.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.ST.Reference",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "Steel.ST.GenArraySwap.Proof",
"short_module": "Prf"
},
{
"abbrev": false,
"full_module": "Steel.ST.GenElim",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "SZ"
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n0: FStar.SizeT.t ->
l0: FStar.SizeT.t ->
pn: Steel.ST.Reference.ref FStar.SizeT.t ->
pl: Steel.ST.Reference.ref FStar.SizeT.t ->
b: Prims.bool
-> Steel.Effect.Common.vprop | Prims.Tot | [
"total"
] | [] | [
"FStar.SizeT.t",
"Steel.ST.Reference.ref",
"Prims.bool",
"Steel.ST.GenArraySwap.gcd_inv0",
"Steel.Effect.Common.vprop"
] | [] | false | false | false | true | false | let gcd_inv (n0 l0: SZ.t) (pn pl: R.ref SZ.t) (b: bool) : Tot vprop =
| gcd_inv0 n0 l0 pn pl b | false |
Hacl.Impl.Curve25519.Generic.fst | Hacl.Impl.Curve25519.Generic.scalar | val scalar : Type0 | let scalar = lbuffer uint8 32ul | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Generic.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 32,
"start_col": 0,
"start_line": 32
} | module Hacl.Impl.Curve25519.Generic
open FStar.HyperStack
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Lib.ByteBuffer
open Hacl.Impl.Curve25519.Fields
include Hacl.Impl.Curve25519.Finv
include Hacl.Impl.Curve25519.AddAndDouble
module ST = FStar.HyperStack.ST
module BSeq = Lib.ByteSequence
module LSeq = Lib.Sequence
module C = Hacl.Impl.Curve25519.Fields.Core
module S = Spec.Curve25519
module M = Hacl.Spec.Curve25519.AddAndDouble
module Lemmas = Hacl.Spec.Curve25519.Field64.Lemmas
friend Lib.LoopCombinators
#set-options "--z3rlimit 30 --fuel 0 --ifuel 1 --using_facts_from '* -FStar.Seq -Hacl.Spec.*' --record_options"
//#set-options "--debug Hacl.Impl.Curve25519.Generic --debug_level ExtractNorm" | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Meta.Attribute.fst.checked",
"LowStar.Monotonic.Buffer.fsti.checked",
"Lib.Sequence.fsti.checked",
"Lib.Loops.fsti.checked",
"Lib.LoopCombinators.fst.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.ByteBuffer.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.AddAndDouble.fst.checked",
"Hacl.Impl.Curve25519.Finv.fst.checked",
"Hacl.Impl.Curve25519.Fields.Core.fsti.checked",
"Hacl.Impl.Curve25519.Fields.fst.checked",
"Hacl.Impl.Curve25519.AddAndDouble.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Impl.Curve25519.Generic.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field64.Lemmas",
"short_module": "Lemmas"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.AddAndDouble",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Fields.Core",
"short_module": "C"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.AddAndDouble",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Finv",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteBuffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t"
] | [] | false | false | false | true | true | let scalar =
| lbuffer uint8 32ul | false |
|
Vale.Stdcalls.X64.GCM_IV.fst | Vale.Stdcalls.X64.GCM_IV.compute_iv_stdcall | val compute_iv_stdcall : Vale.Interop.Base.normal (iv: FStar.Ghost.erased Vale.AES.GCM_s.supported_iv_LE
-> Vale.Stdcalls.X64.GCM_IV.lowstar_compute_iv_t iv) | let compute_iv_stdcall
= as_normal_t #((iv:Ghost.erased supported_iv_LE) -> lowstar_compute_iv_t iv)
(fun (iv:Ghost.erased supported_iv_LE) -> lowstar_compute_iv iv) | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCM_IV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 70,
"end_line": 154,
"start_col": 0,
"start_line": 152
} | module Vale.Stdcalls.X64.GCM_IV
open FStar.HyperStack.ST
module B = LowStar.Buffer
module HS = FStar.HyperStack
open FStar.Mul
module DV = LowStar.BufferView.Down
module UV = LowStar.BufferView.Up
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module GC = Vale.AES.X64.GCMencryptOpt
open Vale.AES.GCM_s
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x
noextract
let as_normal_t (#a:Type) (x:a) : normal a = x
[@__reduce__] noextract
let b128 = buf_t TUInt8 TUInt128
[@__reduce__] noextract
let t128_mod = TD_Buffer TUInt8 TUInt128 default_bq
[@__reduce__] noextract
let t128_no_mod = TD_Buffer TUInt8 TUInt128 ({modified=false; strict_disjointness=false; taint=MS.Secret})
[@__reduce__] noextract
let tuint64 = TD_Base TUInt64
[@__reduce__] noextract
let (dom: list td{List.length dom <= 20}) =
let y = [t128_no_mod; tuint64; tuint64; t128_mod; t128_no_mod; t128_no_mod] in
assert_norm (List.length y = 6);
y
[@__reduce__] noextract
let compute_iv_pre : (Ghost.erased supported_iv_LE) -> VSig.vale_pre dom =
fun (iv:Ghost.erased supported_iv_LE)
(c:V.va_code)
(iv_b:b128)
(num_bytes:uint64)
(len:uint64)
(j0_b:b128)
(iv_extra_b:b128)
(hkeys_b:b128)
(va_s0:V.va_state) ->
GC.va_req_Compute_iv_stdcall c va_s0 IA.win (Ghost.reveal iv)
(as_vale_buffer iv_b) (UInt64.v num_bytes)
(UInt64.v len) (as_vale_buffer j0_b)
(as_vale_buffer iv_extra_b) (as_vale_buffer hkeys_b)
[@__reduce__] noextract
let compute_iv_post : (Ghost.erased supported_iv_LE) -> VSig.vale_post dom =
fun (iv:Ghost.erased supported_iv_LE)
(c:V.va_code)
(iv_b:b128)
(num_bytes:uint64)
(len:uint64)
(j0_b:b128)
(iv_extra_b:b128)
(hkeys_b:b128)
(va_s0:V.va_state)
(va_s1:V.va_state)
(f:V.va_fuel) ->
GC.va_ens_Compute_iv_stdcall c va_s0 IA.win (Ghost.reveal iv)
(as_vale_buffer iv_b) (UInt64.v num_bytes)
(UInt64.v len) (as_vale_buffer j0_b)
(as_vale_buffer iv_extra_b) (as_vale_buffer hkeys_b)
va_s1 f
#set-options "--z3rlimit 50"
[@__reduce__] noextract
let compute_iv_lemma'
(iv:Ghost.erased supported_iv_LE)
(code:V.va_code)
(_win:bool)
(iv_b:b128)
(num_bytes:uint64)
(len:uint64)
(j0_b:b128)
(iv_extra_b:b128)
(hkeys_b:b128)
(va_s0:V.va_state)
: Ghost (V.va_state & V.va_fuel)
(requires compute_iv_pre iv code iv_b num_bytes len j0_b iv_extra_b hkeys_b va_s0)
(ensures (fun (va_s1, f) ->
V.eval_code code va_s0 f va_s1 /\
VSig.vale_calling_conventions_stdcall va_s0 va_s1 /\
compute_iv_post iv code iv_b num_bytes len j0_b iv_extra_b hkeys_b va_s0 va_s1 f /\
ME.buffer_writeable (as_vale_buffer iv_b) /\
ME.buffer_writeable (as_vale_buffer hkeys_b) /\
ME.buffer_writeable (as_vale_buffer iv_extra_b) /\
ME.buffer_writeable (as_vale_buffer j0_b))
) = let va_s1, f = GC.va_lemma_Compute_iv_stdcall code va_s0 IA.win (Ghost.reveal iv)
(as_vale_buffer iv_b) (UInt64.v num_bytes)
(UInt64.v len) (as_vale_buffer j0_b)
(as_vale_buffer iv_extra_b) (as_vale_buffer hkeys_b) in
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 iv_b;
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 iv_extra_b;
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 j0_b;
Vale.AsLowStar.MemoryHelpers.buffer_writeable_reveal ME.TUInt8 ME.TUInt128 hkeys_b;
va_s1, f
(* Prove that compute1_iv_lemma' has the required type *)
noextract
let compute_iv_lemma (iv:Ghost.erased supported_iv_LE) = as_t
#(VSig.vale_sig_stdcall (compute_iv_pre iv) (compute_iv_post iv))
(compute_iv_lemma' iv)
noextract
let code_compute_iv = GC.va_code_Compute_iv_stdcall IA.win
(* Here's the type expected for the compute_iv wrapper *)
[@__reduce__] noextract
let lowstar_compute_iv_t (iv:Ghost.erased supported_iv_LE) =
assert_norm (List.length dom + List.length ([]<:list arg) <= 20);
IX64.as_lowstar_sig_t_weak_stdcall
code_compute_iv
dom
[]
_
_
(W.mk_prediction code_compute_iv dom [] ((compute_iv_lemma iv) code_compute_iv IA.win))
(* And here's the gcm wrapper itself *)
noextract
let lowstar_compute_iv (iv:Ghost.erased supported_iv_LE) : lowstar_compute_iv_t iv =
assert_norm (List.length dom + List.length ([]<:list arg) <= 20);
IX64.wrap_weak_stdcall
code_compute_iv
dom
(W.mk_prediction code_compute_iv dom [] ((compute_iv_lemma iv) code_compute_iv IA.win)) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"Vale.AES.X64.GCMencryptOpt.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"prims.fst.checked",
"LowStar.BufferView.Up.fsti.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.GCM_IV.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AES.X64.GCMencryptOpt",
"short_module": "GC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Vale.Interop.Base.normal (iv: FStar.Ghost.erased Vale.AES.GCM_s.supported_iv_LE
-> Vale.Stdcalls.X64.GCM_IV.lowstar_compute_iv_t iv) | Prims.Tot | [
"total"
] | [] | [
"Vale.Stdcalls.X64.GCM_IV.as_normal_t",
"FStar.Ghost.erased",
"Vale.AES.GCM_s.supported_iv_LE",
"Vale.Stdcalls.X64.GCM_IV.lowstar_compute_iv_t",
"Vale.Stdcalls.X64.GCM_IV.lowstar_compute_iv"
] | [] | false | false | false | false | false | let compute_iv_stdcall =
| as_normal_t #(iv: Ghost.erased supported_iv_LE -> lowstar_compute_iv_t iv)
(fun (iv: Ghost.erased supported_iv_LE) -> lowstar_compute_iv iv) | false |
|
Steel.ST.GenArraySwap.fst | Steel.ST.GenArraySwap.array_swap_outer_invariant_body0 | val array_swap_outer_invariant_body0
(#t: Type)
(pts_to: array_pts_to_t t)
(pi: R.ref SZ.t)
(i: SZ.t)
(s: Ghost.erased (Seq.seq t))
: Tot vprop | val array_swap_outer_invariant_body0
(#t: Type)
(pts_to: array_pts_to_t t)
(pi: R.ref SZ.t)
(i: SZ.t)
(s: Ghost.erased (Seq.seq t))
: Tot vprop | let array_swap_outer_invariant_body0
(#t: Type)
(pts_to: array_pts_to_t t)
(pi: R.ref SZ.t)
(i: SZ.t)
(s: Ghost.erased (Seq.seq t))
: Tot vprop
=
R.pts_to pi full_perm i `star`
pts_to s | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 12,
"end_line": 168,
"start_col": 0,
"start_line": 159
} | module Steel.ST.GenArraySwap
open Steel.ST.GenElim
module Prf = Steel.ST.GenArraySwap.Proof
module R = Steel.ST.Reference
let gcd_inv_prop
(n0: nat)
(l0: nat)
(n: nat)
(l: nat)
(b: bool)
: Tot prop
= l0 < n0 /\
l < n /\
(Prf.mk_bezout n0 l0).d == (Prf.mk_bezout n l).d /\
b == (l > 0)
[@@__reduce__]
let gcd_inv0
(n0: SZ.t)
(l0: SZ.t)
(pn: R.ref SZ.t)
(pl: R.ref SZ.t)
(b: bool)
: Tot vprop
= exists_ (fun n -> exists_ (fun l ->
R.pts_to pn full_perm n `star`
R.pts_to pl full_perm l `star`
pure (gcd_inv_prop (SZ.v n0) (SZ.v l0) (SZ.v n) (SZ.v l) b)
))
let gcd_inv
(n0: SZ.t)
(l0: SZ.t)
(pn: R.ref SZ.t)
(pl: R.ref SZ.t)
(b: bool)
: Tot vprop
= gcd_inv0 n0 l0 pn pl b
let gcd_post
(n0: SZ.t)
(l0: SZ.t)
(res: SZ.t)
: Tot prop
= SZ.v l0 < SZ.v n0 /\
SZ.v res == (Prf.mk_bezout (SZ.v n0) (SZ.v l0)).d
#push-options "--z3rlimit 16"
#restart-solver
let gcd
(n0: SZ.t)
(l0: SZ.t)
: ST SZ.t
emp
(fun _ -> emp)
(SZ.v l0 < SZ.v n0)
(fun res -> gcd_post n0 l0 res)
= let res =
R.with_local n0 (fun pn ->
R.with_local l0 (fun pl ->
noop ();
rewrite (gcd_inv0 n0 l0 pn pl (l0 `SZ.gt` 0sz)) (gcd_inv n0 l0 pn pl (l0 `SZ.gt` 0sz));
Steel.ST.Loops.while_loop
(gcd_inv n0 l0 pn pl)
(fun _ ->
let gb = elim_exists () in
rewrite (gcd_inv n0 l0 pn pl gb) (gcd_inv0 n0 l0 pn pl gb);
let _ = gen_elim () in
let l = R.read pl in
[@@inline_let]
let b = l `SZ.gt` 0sz in
noop ();
rewrite (gcd_inv0 n0 l0 pn pl b) (gcd_inv n0 l0 pn pl b);
return b
)
(fun _ ->
rewrite (gcd_inv n0 l0 pn pl true) (gcd_inv0 n0 l0 pn pl true);
let _ = gen_elim () in
let n = R.read pn in
let l = R.read pl in
[@@inline_let]
let l' = SZ.rem n l in
R.write pn l;
R.write pl l';
rewrite (gcd_inv0 n0 l0 pn pl (l' `SZ.gt` 0sz)) (gcd_inv n0 l0 pn pl (l' `SZ.gt` 0sz));
noop ()
);
rewrite (gcd_inv n0 l0 pn pl false) (gcd_inv0 n0 l0 pn pl false);
let _ = gen_elim () in
let res = R.read pn in
return res
)
)
in
elim_pure (gcd_post n0 l0 res);
return res
#pop-options
let array_swap_partial_invariant
(#t: Type)
(n: nat)
(l: nat)
(bz: Prf.bezout n l)
(s0: Ghost.erased (Seq.seq t))
(s: Ghost.erased (Seq.seq t))
(i: nat)
: GTot prop
= n == Seq.length s0 /\
n == Seq.length s /\
0 < l /\
l < n /\
i <= bz.d /\
(forall (i': Prf.nat_up_to bz.d) .
(forall (j: Prf.nat_up_to bz.q_n) .
(i' < i) ==> (
let idx = Prf.iter_fun #(Prf.nat_up_to n) (Prf.jump n l) j i' in
Seq.index s idx == Seq.index s0 (Prf.jump n l idx)
))) /\
(forall (i': Prf.nat_up_to bz.d) .
(forall (j: Prf.nat_up_to bz.q_n) .
(i' > i) ==> (
let idx = Prf.iter_fun #(Prf.nat_up_to n) (Prf.jump n l) j i' in
Seq.index s idx == Seq.index s0 idx
)))
let array_swap_inner_invariant_prop
(#t: Type)
(n: nat)
(l: nat)
(bz: Prf.bezout n l)
(s0: Ghost.erased (Seq.seq t))
(s: Ghost.erased (Seq.seq t))
(i: nat)
(j: nat)
(idx: nat)
(b: bool)
: GTot prop
= Prf.array_swap_inner_invariant s0 n l bz s i j idx /\
(b == (j < bz.q_n - 1))
let array_swap_outer_invariant_prop
(#t: Type)
(n: nat)
(l: nat)
(bz: Prf.bezout n l)
(s0: Ghost.erased (Seq.seq t))
(s: Ghost.erased (Seq.seq t))
(i: nat)
(b: bool)
: GTot prop
= Prf.array_swap_outer_invariant s0 n l bz s i /\
(b == (i < bz.d)) | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Reference.fsti.checked",
"Steel.ST.Loops.fsti.checked",
"Steel.ST.GenElim.fsti.checked",
"Steel.ST.GenArraySwap.Proof.fst.checked",
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.ST.GenArraySwap.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.ST.Reference",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "Steel.ST.GenArraySwap.Proof",
"short_module": "Prf"
},
{
"abbrev": false,
"full_module": "Steel.ST.GenElim",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "SZ"
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
pts_to: Steel.ST.GenArraySwap.array_pts_to_t t ->
pi: Steel.ST.Reference.ref FStar.SizeT.t ->
i: FStar.SizeT.t ->
s: FStar.Ghost.erased (FStar.Seq.Base.seq t)
-> Steel.Effect.Common.vprop | Prims.Tot | [
"total"
] | [] | [
"Steel.ST.GenArraySwap.array_pts_to_t",
"Steel.ST.Reference.ref",
"FStar.SizeT.t",
"FStar.Ghost.erased",
"FStar.Seq.Base.seq",
"Steel.Effect.Common.star",
"Steel.ST.Reference.pts_to",
"Steel.FractionalPermission.full_perm",
"Steel.Effect.Common.vprop"
] | [] | false | false | false | true | false | let array_swap_outer_invariant_body0
(#t: Type)
(pts_to: array_pts_to_t t)
(pi: R.ref SZ.t)
(i: SZ.t)
(s: Ghost.erased (Seq.seq t))
: Tot vprop =
| (R.pts_to pi full_perm i) `star` (pts_to s) | false |
Demo.MultiplyByRepeatedAddition.fst | Demo.MultiplyByRepeatedAddition.multiply | val multiply (x y: nat) : z: nat{z == x * y} | val multiply (x y: nat) : z: nat{z == x * y} | let rec multiply (x y:nat) : z:nat { z == x * y} =
if x = 0 then 0
else multiply (x - 1) y + y | {
"file_name": "share/steel/examples/pulse/Demo.MultiplyByRepeatedAddition.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 31,
"end_line": 28,
"start_col": 0,
"start_line": 26
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Demo.MultiplyByRepeatedAddition
open Pulse.Lib.Pervasives
open FStar.UInt32
#push-options "--using_facts_from '* -FStar.Tactics -FStar.Reflection'"
#set-options "--ext 'pulse:rvalues' --split_queries always"
#set-options "--z3rlimit 40"
module U32 = FStar.UInt32 | {
"checked_file": "/",
"dependencies": [
"Pulse.Lib.Pervasives.fst.checked",
"Pulse.Lib.BoundedIntegers.fst.checked",
"prims.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Demo.MultiplyByRepeatedAddition.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": false,
"full_module": "FStar.UInt32",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Lib.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Demo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Demo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 40,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.nat -> y: Prims.nat -> z: Prims.nat{z == x * y} | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.op_Addition",
"Demo.MultiplyByRepeatedAddition.multiply",
"Prims.op_Subtraction",
"Prims.eq2",
"FStar.Mul.op_Star"
] | [
"recursion"
] | false | false | false | false | false | let rec multiply (x y: nat) : z: nat{z == x * y} =
| if x = 0 then 0 else multiply (x - 1) y + y | false |
Steel.ST.GenArraySwap.fst | Steel.ST.GenArraySwap.array_swap_inner_invariant_body0 | val array_swap_inner_invariant_body0
(#t: Type)
(pts_to: array_pts_to_t t)
(n l: SZ.t)
(bz: Prf.bezout (SZ.v n) (SZ.v l))
(s0: Ghost.erased (Seq.seq t))
(pi: R.ref SZ.t)
(i: SZ.t)
(pj pidx: R.ref SZ.t)
(b: bool)
(j idx: SZ.t)
(s: Ghost.erased (Seq.seq t))
: Tot vprop | val array_swap_inner_invariant_body0
(#t: Type)
(pts_to: array_pts_to_t t)
(n l: SZ.t)
(bz: Prf.bezout (SZ.v n) (SZ.v l))
(s0: Ghost.erased (Seq.seq t))
(pi: R.ref SZ.t)
(i: SZ.t)
(pj pidx: R.ref SZ.t)
(b: bool)
(j idx: SZ.t)
(s: Ghost.erased (Seq.seq t))
: Tot vprop | let array_swap_inner_invariant_body0
(#t: Type)
(pts_to: array_pts_to_t t)
(n: SZ.t)
(l: SZ.t)
(bz: Prf.bezout (SZ.v n) (SZ.v l))
(s0: Ghost.erased (Seq.seq t))
(pi: R.ref SZ.t)
(i: SZ.t)
(pj: R.ref SZ.t)
(pidx: R.ref SZ.t)
(b: bool)
(j: SZ.t)
(idx: SZ.t)
(s: Ghost.erased (Seq.seq t))
: Tot vprop
= R.pts_to pi full_perm i `star`
R.pts_to pj full_perm j `star`
R.pts_to pidx full_perm idx `star`
pts_to s | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 12,
"end_line": 284,
"start_col": 0,
"start_line": 265
} | module Steel.ST.GenArraySwap
open Steel.ST.GenElim
module Prf = Steel.ST.GenArraySwap.Proof
module R = Steel.ST.Reference
let gcd_inv_prop
(n0: nat)
(l0: nat)
(n: nat)
(l: nat)
(b: bool)
: Tot prop
= l0 < n0 /\
l < n /\
(Prf.mk_bezout n0 l0).d == (Prf.mk_bezout n l).d /\
b == (l > 0)
[@@__reduce__]
let gcd_inv0
(n0: SZ.t)
(l0: SZ.t)
(pn: R.ref SZ.t)
(pl: R.ref SZ.t)
(b: bool)
: Tot vprop
= exists_ (fun n -> exists_ (fun l ->
R.pts_to pn full_perm n `star`
R.pts_to pl full_perm l `star`
pure (gcd_inv_prop (SZ.v n0) (SZ.v l0) (SZ.v n) (SZ.v l) b)
))
let gcd_inv
(n0: SZ.t)
(l0: SZ.t)
(pn: R.ref SZ.t)
(pl: R.ref SZ.t)
(b: bool)
: Tot vprop
= gcd_inv0 n0 l0 pn pl b
let gcd_post
(n0: SZ.t)
(l0: SZ.t)
(res: SZ.t)
: Tot prop
= SZ.v l0 < SZ.v n0 /\
SZ.v res == (Prf.mk_bezout (SZ.v n0) (SZ.v l0)).d
#push-options "--z3rlimit 16"
#restart-solver
let gcd
(n0: SZ.t)
(l0: SZ.t)
: ST SZ.t
emp
(fun _ -> emp)
(SZ.v l0 < SZ.v n0)
(fun res -> gcd_post n0 l0 res)
= let res =
R.with_local n0 (fun pn ->
R.with_local l0 (fun pl ->
noop ();
rewrite (gcd_inv0 n0 l0 pn pl (l0 `SZ.gt` 0sz)) (gcd_inv n0 l0 pn pl (l0 `SZ.gt` 0sz));
Steel.ST.Loops.while_loop
(gcd_inv n0 l0 pn pl)
(fun _ ->
let gb = elim_exists () in
rewrite (gcd_inv n0 l0 pn pl gb) (gcd_inv0 n0 l0 pn pl gb);
let _ = gen_elim () in
let l = R.read pl in
[@@inline_let]
let b = l `SZ.gt` 0sz in
noop ();
rewrite (gcd_inv0 n0 l0 pn pl b) (gcd_inv n0 l0 pn pl b);
return b
)
(fun _ ->
rewrite (gcd_inv n0 l0 pn pl true) (gcd_inv0 n0 l0 pn pl true);
let _ = gen_elim () in
let n = R.read pn in
let l = R.read pl in
[@@inline_let]
let l' = SZ.rem n l in
R.write pn l;
R.write pl l';
rewrite (gcd_inv0 n0 l0 pn pl (l' `SZ.gt` 0sz)) (gcd_inv n0 l0 pn pl (l' `SZ.gt` 0sz));
noop ()
);
rewrite (gcd_inv n0 l0 pn pl false) (gcd_inv0 n0 l0 pn pl false);
let _ = gen_elim () in
let res = R.read pn in
return res
)
)
in
elim_pure (gcd_post n0 l0 res);
return res
#pop-options
let array_swap_partial_invariant
(#t: Type)
(n: nat)
(l: nat)
(bz: Prf.bezout n l)
(s0: Ghost.erased (Seq.seq t))
(s: Ghost.erased (Seq.seq t))
(i: nat)
: GTot prop
= n == Seq.length s0 /\
n == Seq.length s /\
0 < l /\
l < n /\
i <= bz.d /\
(forall (i': Prf.nat_up_to bz.d) .
(forall (j: Prf.nat_up_to bz.q_n) .
(i' < i) ==> (
let idx = Prf.iter_fun #(Prf.nat_up_to n) (Prf.jump n l) j i' in
Seq.index s idx == Seq.index s0 (Prf.jump n l idx)
))) /\
(forall (i': Prf.nat_up_to bz.d) .
(forall (j: Prf.nat_up_to bz.q_n) .
(i' > i) ==> (
let idx = Prf.iter_fun #(Prf.nat_up_to n) (Prf.jump n l) j i' in
Seq.index s idx == Seq.index s0 idx
)))
let array_swap_inner_invariant_prop
(#t: Type)
(n: nat)
(l: nat)
(bz: Prf.bezout n l)
(s0: Ghost.erased (Seq.seq t))
(s: Ghost.erased (Seq.seq t))
(i: nat)
(j: nat)
(idx: nat)
(b: bool)
: GTot prop
= Prf.array_swap_inner_invariant s0 n l bz s i j idx /\
(b == (j < bz.q_n - 1))
let array_swap_outer_invariant_prop
(#t: Type)
(n: nat)
(l: nat)
(bz: Prf.bezout n l)
(s0: Ghost.erased (Seq.seq t))
(s: Ghost.erased (Seq.seq t))
(i: nat)
(b: bool)
: GTot prop
= Prf.array_swap_outer_invariant s0 n l bz s i /\
(b == (i < bz.d))
[@@__reduce__]
let array_swap_outer_invariant_body0
(#t: Type)
(pts_to: array_pts_to_t t)
(pi: R.ref SZ.t)
(i: SZ.t)
(s: Ghost.erased (Seq.seq t))
: Tot vprop
=
R.pts_to pi full_perm i `star`
pts_to s
[@@erasable]
noeq
type array_swap_outer_invariant_t (t: Type)
= {
i: SZ.t;
s: Ghost.erased (Seq.seq t);
}
[@@__reduce__]
let array_swap_outer_invariant0
(#t: Type)
(pts_to: array_pts_to_t t)
(n: SZ.t)
(l: SZ.t)
(bz: Prf.bezout (SZ.v n) (SZ.v l))
(s0: Ghost.erased (Seq.seq t))
(pi: R.ref SZ.t)
(b: bool)
: Tot vprop
= exists_ (fun w ->
array_swap_outer_invariant_body0 pts_to pi w.i w.s `star`
pure (array_swap_outer_invariant_prop (SZ.v n) (SZ.v l) bz s0 w.s (SZ.v w.i) b)
)
let array_swap_outer_invariant
(#t: Type)
(pts_to: array_pts_to_t t)
(n: SZ.t)
(l: SZ.t)
(bz: Prf.bezout (SZ.v n) (SZ.v l))
(s0: Ghost.erased (Seq.seq t))
(pi: R.ref SZ.t)
(b: bool)
: Tot vprop
= array_swap_outer_invariant0 pts_to n l bz s0 pi b
let intro_array_swap_outer_invariant
(#opened: _)
(#t: Type)
(pts_to: array_pts_to_t t)
(n: SZ.t)
(l: SZ.t)
(bz: Prf.bezout (SZ.v n) (SZ.v l))
(s0: Ghost.erased (Seq.seq t))
(pi: R.ref SZ.t)
(b: bool)
(i: SZ.t)
(s: Ghost.erased (Seq.seq t))
: STGhost unit opened
(array_swap_outer_invariant_body0 pts_to pi i s)
(fun _ -> array_swap_outer_invariant pts_to n l bz s0 pi b)
(array_swap_outer_invariant_prop (SZ.v n) (SZ.v l) bz s0 s (SZ.v i) b)
(fun _ -> True)
= let w = {
i = i;
s = s;
}
in
rewrite (array_swap_outer_invariant_body0 pts_to pi i s) (array_swap_outer_invariant_body0 pts_to pi w.i w.s);
rewrite (array_swap_outer_invariant0 pts_to n l bz s0 pi b) (array_swap_outer_invariant pts_to n l bz s0 pi b)
let elim_array_swap_outer_invariant
(#opened: _)
(#t: Type)
(pts_to: array_pts_to_t t)
(n: SZ.t)
(l: SZ.t)
(bz: Prf.bezout (SZ.v n) (SZ.v l))
(s0: Ghost.erased (Seq.seq t))
(pi: R.ref SZ.t)
(b: bool)
: STGhost (array_swap_outer_invariant_t t) opened
(array_swap_outer_invariant pts_to n l bz s0 pi b)
(fun w -> array_swap_outer_invariant_body0 pts_to pi w.i w.s)
True
(fun w ->
array_swap_outer_invariant_prop (SZ.v n) (SZ.v l) bz s0 w.s (SZ.v w.i) b /\
True // (b == false ==> Ghost.reveal w.s `Seq.equal` (Seq.slice s0 (SZ.v l) (SZ.v n) `Seq.append` Seq.slice s0 0 (SZ.v l)))
)
= let w = elim_exists () in
let _ = gen_elim () in
// Classical.move_requires (array_swap_outer_invariant_prop_end (SZ.v n) (SZ.v l) bz s0 w.s (SZ.v w.i)) b;
noop ();
w
[@@erasable]
noeq
type array_swap_inner_invariant_t (t: Type)
= {
j: SZ.t;
idx: SZ.t;
s: Ghost.erased (Seq.seq t)
} | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Reference.fsti.checked",
"Steel.ST.Loops.fsti.checked",
"Steel.ST.GenElim.fsti.checked",
"Steel.ST.GenArraySwap.Proof.fst.checked",
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.ST.GenArraySwap.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.ST.Reference",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "Steel.ST.GenArraySwap.Proof",
"short_module": "Prf"
},
{
"abbrev": false,
"full_module": "Steel.ST.GenElim",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "SZ"
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
pts_to: Steel.ST.GenArraySwap.array_pts_to_t t ->
n: FStar.SizeT.t ->
l: FStar.SizeT.t ->
bz: Steel.ST.GenArraySwap.Proof.bezout (FStar.SizeT.v n) (FStar.SizeT.v l) ->
s0: FStar.Ghost.erased (FStar.Seq.Base.seq t) ->
pi: Steel.ST.Reference.ref FStar.SizeT.t ->
i: FStar.SizeT.t ->
pj: Steel.ST.Reference.ref FStar.SizeT.t ->
pidx: Steel.ST.Reference.ref FStar.SizeT.t ->
b: Prims.bool ->
j: FStar.SizeT.t ->
idx: FStar.SizeT.t ->
s: FStar.Ghost.erased (FStar.Seq.Base.seq t)
-> Steel.Effect.Common.vprop | Prims.Tot | [
"total"
] | [] | [
"Steel.ST.GenArraySwap.array_pts_to_t",
"FStar.SizeT.t",
"Steel.ST.GenArraySwap.Proof.bezout",
"FStar.SizeT.v",
"FStar.Ghost.erased",
"FStar.Seq.Base.seq",
"Steel.ST.Reference.ref",
"Prims.bool",
"Steel.Effect.Common.star",
"Steel.ST.Reference.pts_to",
"Steel.FractionalPermission.full_perm",
"Steel.Effect.Common.vprop"
] | [] | false | false | false | false | false | let array_swap_inner_invariant_body0
(#t: Type)
(pts_to: array_pts_to_t t)
(n l: SZ.t)
(bz: Prf.bezout (SZ.v n) (SZ.v l))
(s0: Ghost.erased (Seq.seq t))
(pi: R.ref SZ.t)
(i: SZ.t)
(pj pidx: R.ref SZ.t)
(b: bool)
(j idx: SZ.t)
(s: Ghost.erased (Seq.seq t))
: Tot vprop =
| (((R.pts_to pi full_perm i) `star` (R.pts_to pj full_perm j)) `star` (R.pts_to pidx full_perm idx))
`star`
(pts_to s) | false |
Steel.ST.GenArraySwap.fst | Steel.ST.GenArraySwap.gcd_inv_prop | val gcd_inv_prop (n0 l0 n l: nat) (b: bool) : Tot prop | val gcd_inv_prop (n0 l0 n l: nat) (b: bool) : Tot prop | let gcd_inv_prop
(n0: nat)
(l0: nat)
(n: nat)
(l: nat)
(b: bool)
: Tot prop
= l0 < n0 /\
l < n /\
(Prf.mk_bezout n0 l0).d == (Prf.mk_bezout n l).d /\
b == (l > 0) | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 14,
"end_line": 17,
"start_col": 0,
"start_line": 7
} | module Steel.ST.GenArraySwap
open Steel.ST.GenElim
module Prf = Steel.ST.GenArraySwap.Proof
module R = Steel.ST.Reference | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Reference.fsti.checked",
"Steel.ST.Loops.fsti.checked",
"Steel.ST.GenElim.fsti.checked",
"Steel.ST.GenArraySwap.Proof.fst.checked",
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.ST.GenArraySwap.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.ST.Reference",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "Steel.ST.GenArraySwap.Proof",
"short_module": "Prf"
},
{
"abbrev": false,
"full_module": "Steel.ST.GenElim",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "SZ"
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n0: Prims.nat -> l0: Prims.nat -> n: Prims.nat -> l: Prims.nat -> b: Prims.bool -> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.bool",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.eq2",
"Prims.pos",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Steel.ST.GenArraySwap.Proof.mk_bezout",
"Prims.op_GreaterThan",
"Prims.prop"
] | [] | false | false | false | true | true | let gcd_inv_prop (n0 l0 n l: nat) (b: bool) : Tot prop =
| l0 < n0 /\ l < n /\ (Prf.mk_bezout n0 l0).d == (Prf.mk_bezout n l).d /\ b == (l > 0) | false |
Vale.Stdcalls.X64.GCM_IV.fst | Vale.Stdcalls.X64.GCM_IV.as_normal_t | val as_normal_t (#a: Type) (x: a) : normal a | val as_normal_t (#a: Type) (x: a) : normal a | let as_normal_t (#a:Type) (x:a) : normal a = x | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCM_IV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 46,
"end_line": 33,
"start_col": 0,
"start_line": 33
} | module Vale.Stdcalls.X64.GCM_IV
open FStar.HyperStack.ST
module B = LowStar.Buffer
module HS = FStar.HyperStack
open FStar.Mul
module DV = LowStar.BufferView.Down
module UV = LowStar.BufferView.Up
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module GC = Vale.AES.X64.GCMencryptOpt
open Vale.AES.GCM_s
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *)
noextract
let as_t (#a:Type) (x:normal a) : a = x | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"Vale.AES.X64.GCMencryptOpt.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"prims.fst.checked",
"LowStar.BufferView.Up.fsti.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.GCM_IV.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AES.X64.GCMencryptOpt",
"short_module": "GC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: a -> Vale.Interop.Base.normal a | Prims.Tot | [
"total"
] | [] | [
"Vale.Interop.Base.normal"
] | [] | false | false | false | true | false | let as_normal_t (#a: Type) (x: a) : normal a =
| x | false |
Vale.Stdcalls.X64.GCM_IV.fst | Vale.Stdcalls.X64.GCM_IV.as_t | val as_t (#a: Type) (x: normal a) : a | val as_t (#a: Type) (x: normal a) : a | let as_t (#a:Type) (x:normal a) : a = x | {
"file_name": "vale/code/arch/x64/interop/Vale.Stdcalls.X64.GCM_IV.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 39,
"end_line": 31,
"start_col": 0,
"start_line": 31
} | module Vale.Stdcalls.X64.GCM_IV
open FStar.HyperStack.ST
module B = LowStar.Buffer
module HS = FStar.HyperStack
open FStar.Mul
module DV = LowStar.BufferView.Down
module UV = LowStar.BufferView.Up
open Vale.Def.Types_s
open Vale.Interop.Base
module IX64 = Vale.Interop.X64
module VSig = Vale.AsLowStar.ValeSig
module LSig = Vale.AsLowStar.LowStarSig
module ME = Vale.X64.Memory
module V = Vale.X64.Decls
module IA = Vale.Interop.Assumptions
module W = Vale.AsLowStar.Wrapper
open Vale.X64.MemoryAdapters
module VS = Vale.X64.State
module MS = Vale.X64.Machine_s
module GC = Vale.AES.X64.GCMencryptOpt
open Vale.AES.GCM_s
let uint64 = UInt64.t
(* A little utility to trigger normalization in types *) | {
"checked_file": "/",
"dependencies": [
"Vale.X64.State.fsti.checked",
"Vale.X64.MemoryAdapters.fsti.checked",
"Vale.X64.Memory.fsti.checked",
"Vale.X64.Machine_s.fst.checked",
"Vale.X64.Decls.fsti.checked",
"Vale.Interop.X64.fsti.checked",
"Vale.Interop.Base.fst.checked",
"Vale.Interop.Assumptions.fst.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.AsLowStar.Wrapper.fsti.checked",
"Vale.AsLowStar.ValeSig.fst.checked",
"Vale.AsLowStar.MemoryHelpers.fsti.checked",
"Vale.AsLowStar.LowStarSig.fst.checked",
"Vale.AES.X64.GCMencryptOpt.fsti.checked",
"Vale.AES.GCM_s.fst.checked",
"prims.fst.checked",
"LowStar.BufferView.Up.fsti.checked",
"LowStar.BufferView.Down.fsti.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt64.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "Vale.Stdcalls.X64.GCM_IV.fst"
} | [
{
"abbrev": false,
"full_module": "Vale.AES.GCM_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AES.X64.GCMencryptOpt",
"short_module": "GC"
},
{
"abbrev": true,
"full_module": "Vale.X64.Machine_s",
"short_module": "MS"
},
{
"abbrev": true,
"full_module": "Vale.X64.State",
"short_module": "VS"
},
{
"abbrev": false,
"full_module": "Vale.X64.MemoryAdapters",
"short_module": null
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.Wrapper",
"short_module": "W"
},
{
"abbrev": true,
"full_module": "Vale.Interop.Assumptions",
"short_module": "IA"
},
{
"abbrev": true,
"full_module": "Vale.X64.Decls",
"short_module": "V"
},
{
"abbrev": true,
"full_module": "Vale.X64.Memory",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.LowStarSig",
"short_module": "LSig"
},
{
"abbrev": true,
"full_module": "Vale.AsLowStar.ValeSig",
"short_module": "VSig"
},
{
"abbrev": true,
"full_module": "Vale.Interop.X64",
"short_module": "IX64"
},
{
"abbrev": false,
"full_module": "Vale.Interop.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Up",
"short_module": "UV"
},
{
"abbrev": true,
"full_module": "LowStar.BufferView.Down",
"short_module": "DV"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Stdcalls.X64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Vale.Interop.Base.normal a -> a | Prims.Tot | [
"total"
] | [] | [
"Vale.Interop.Base.normal"
] | [] | false | false | false | true | false | let as_t (#a: Type) (x: normal a) : a =
| x | false |
Steel.ST.GenArraySwap.fst | Steel.ST.GenArraySwap.gcd_post | val gcd_post (n0 l0 res: SZ.t) : Tot prop | val gcd_post (n0 l0 res: SZ.t) : Tot prop | let gcd_post
(n0: SZ.t)
(l0: SZ.t)
(res: SZ.t)
: Tot prop
= SZ.v l0 < SZ.v n0 /\
SZ.v res == (Prf.mk_bezout (SZ.v n0) (SZ.v l0)).d | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 51,
"end_line": 48,
"start_col": 0,
"start_line": 42
} | module Steel.ST.GenArraySwap
open Steel.ST.GenElim
module Prf = Steel.ST.GenArraySwap.Proof
module R = Steel.ST.Reference
let gcd_inv_prop
(n0: nat)
(l0: nat)
(n: nat)
(l: nat)
(b: bool)
: Tot prop
= l0 < n0 /\
l < n /\
(Prf.mk_bezout n0 l0).d == (Prf.mk_bezout n l).d /\
b == (l > 0)
[@@__reduce__]
let gcd_inv0
(n0: SZ.t)
(l0: SZ.t)
(pn: R.ref SZ.t)
(pl: R.ref SZ.t)
(b: bool)
: Tot vprop
= exists_ (fun n -> exists_ (fun l ->
R.pts_to pn full_perm n `star`
R.pts_to pl full_perm l `star`
pure (gcd_inv_prop (SZ.v n0) (SZ.v l0) (SZ.v n) (SZ.v l) b)
))
let gcd_inv
(n0: SZ.t)
(l0: SZ.t)
(pn: R.ref SZ.t)
(pl: R.ref SZ.t)
(b: bool)
: Tot vprop
= gcd_inv0 n0 l0 pn pl b | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Reference.fsti.checked",
"Steel.ST.Loops.fsti.checked",
"Steel.ST.GenElim.fsti.checked",
"Steel.ST.GenArraySwap.Proof.fst.checked",
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.ST.GenArraySwap.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.ST.Reference",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "Steel.ST.GenArraySwap.Proof",
"short_module": "Prf"
},
{
"abbrev": false,
"full_module": "Steel.ST.GenElim",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "SZ"
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n0: FStar.SizeT.t -> l0: FStar.SizeT.t -> res: FStar.SizeT.t -> Prims.prop | Prims.Tot | [
"total"
] | [] | [
"FStar.SizeT.t",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.SizeT.v",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Prims.op_GreaterThanOrEqual",
"Prims.op_GreaterThan",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Steel.ST.GenArraySwap.Proof.mk_bezout",
"Prims.prop"
] | [] | false | false | false | true | true | let gcd_post (n0 l0 res: SZ.t) : Tot prop =
| SZ.v l0 < SZ.v n0 /\ SZ.v res == (Prf.mk_bezout (SZ.v n0) (SZ.v l0)).d | false |
Steel.ST.GenArraySwap.fst | Steel.ST.GenArraySwap.array_swap_partial_invariant | val array_swap_partial_invariant
(#t: Type)
(n l: nat)
(bz: Prf.bezout n l)
(s0 s: Ghost.erased (Seq.seq t))
(i: nat)
: GTot prop | val array_swap_partial_invariant
(#t: Type)
(n l: nat)
(bz: Prf.bezout n l)
(s0 s: Ghost.erased (Seq.seq t))
(i: nat)
: GTot prop | let array_swap_partial_invariant
(#t: Type)
(n: nat)
(l: nat)
(bz: Prf.bezout n l)
(s0: Ghost.erased (Seq.seq t))
(s: Ghost.erased (Seq.seq t))
(i: nat)
: GTot prop
= n == Seq.length s0 /\
n == Seq.length s /\
0 < l /\
l < n /\
i <= bz.d /\
(forall (i': Prf.nat_up_to bz.d) .
(forall (j: Prf.nat_up_to bz.q_n) .
(i' < i) ==> (
let idx = Prf.iter_fun #(Prf.nat_up_to n) (Prf.jump n l) j i' in
Seq.index s idx == Seq.index s0 (Prf.jump n l idx)
))) /\
(forall (i': Prf.nat_up_to bz.d) .
(forall (j: Prf.nat_up_to bz.q_n) .
(i' > i) ==> (
let idx = Prf.iter_fun #(Prf.nat_up_to n) (Prf.jump n l) j i' in
Seq.index s idx == Seq.index s0 idx
))) | {
"file_name": "lib/steel/Steel.ST.GenArraySwap.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 128,
"start_col": 0,
"start_line": 103
} | module Steel.ST.GenArraySwap
open Steel.ST.GenElim
module Prf = Steel.ST.GenArraySwap.Proof
module R = Steel.ST.Reference
let gcd_inv_prop
(n0: nat)
(l0: nat)
(n: nat)
(l: nat)
(b: bool)
: Tot prop
= l0 < n0 /\
l < n /\
(Prf.mk_bezout n0 l0).d == (Prf.mk_bezout n l).d /\
b == (l > 0)
[@@__reduce__]
let gcd_inv0
(n0: SZ.t)
(l0: SZ.t)
(pn: R.ref SZ.t)
(pl: R.ref SZ.t)
(b: bool)
: Tot vprop
= exists_ (fun n -> exists_ (fun l ->
R.pts_to pn full_perm n `star`
R.pts_to pl full_perm l `star`
pure (gcd_inv_prop (SZ.v n0) (SZ.v l0) (SZ.v n) (SZ.v l) b)
))
let gcd_inv
(n0: SZ.t)
(l0: SZ.t)
(pn: R.ref SZ.t)
(pl: R.ref SZ.t)
(b: bool)
: Tot vprop
= gcd_inv0 n0 l0 pn pl b
let gcd_post
(n0: SZ.t)
(l0: SZ.t)
(res: SZ.t)
: Tot prop
= SZ.v l0 < SZ.v n0 /\
SZ.v res == (Prf.mk_bezout (SZ.v n0) (SZ.v l0)).d
#push-options "--z3rlimit 16"
#restart-solver
let gcd
(n0: SZ.t)
(l0: SZ.t)
: ST SZ.t
emp
(fun _ -> emp)
(SZ.v l0 < SZ.v n0)
(fun res -> gcd_post n0 l0 res)
= let res =
R.with_local n0 (fun pn ->
R.with_local l0 (fun pl ->
noop ();
rewrite (gcd_inv0 n0 l0 pn pl (l0 `SZ.gt` 0sz)) (gcd_inv n0 l0 pn pl (l0 `SZ.gt` 0sz));
Steel.ST.Loops.while_loop
(gcd_inv n0 l0 pn pl)
(fun _ ->
let gb = elim_exists () in
rewrite (gcd_inv n0 l0 pn pl gb) (gcd_inv0 n0 l0 pn pl gb);
let _ = gen_elim () in
let l = R.read pl in
[@@inline_let]
let b = l `SZ.gt` 0sz in
noop ();
rewrite (gcd_inv0 n0 l0 pn pl b) (gcd_inv n0 l0 pn pl b);
return b
)
(fun _ ->
rewrite (gcd_inv n0 l0 pn pl true) (gcd_inv0 n0 l0 pn pl true);
let _ = gen_elim () in
let n = R.read pn in
let l = R.read pl in
[@@inline_let]
let l' = SZ.rem n l in
R.write pn l;
R.write pl l';
rewrite (gcd_inv0 n0 l0 pn pl (l' `SZ.gt` 0sz)) (gcd_inv n0 l0 pn pl (l' `SZ.gt` 0sz));
noop ()
);
rewrite (gcd_inv n0 l0 pn pl false) (gcd_inv0 n0 l0 pn pl false);
let _ = gen_elim () in
let res = R.read pn in
return res
)
)
in
elim_pure (gcd_post n0 l0 res);
return res
#pop-options | {
"checked_file": "/",
"dependencies": [
"Steel.ST.Reference.fsti.checked",
"Steel.ST.Loops.fsti.checked",
"Steel.ST.GenElim.fsti.checked",
"Steel.ST.GenArraySwap.Proof.fst.checked",
"prims.fst.checked",
"FStar.SizeT.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": true,
"source_file": "Steel.ST.GenArraySwap.fst"
} | [
{
"abbrev": true,
"full_module": "Steel.ST.Reference",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "Steel.ST.GenArraySwap.Proof",
"short_module": "Prf"
},
{
"abbrev": false,
"full_module": "Steel.ST.GenElim",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.SizeT",
"short_module": "SZ"
},
{
"abbrev": false,
"full_module": "Steel.ST.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
n: Prims.nat ->
l: Prims.nat ->
bz: Steel.ST.GenArraySwap.Proof.bezout n l ->
s0: FStar.Ghost.erased (FStar.Seq.Base.seq t) ->
s: FStar.Ghost.erased (FStar.Seq.Base.seq t) ->
i: Prims.nat
-> Prims.GTot Prims.prop | Prims.GTot | [
"sometrivial"
] | [] | [
"Prims.nat",
"Steel.ST.GenArraySwap.Proof.bezout",
"FStar.Ghost.erased",
"FStar.Seq.Base.seq",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.length",
"FStar.Ghost.reveal",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_LessThanOrEqual",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__d",
"Prims.l_Forall",
"Steel.ST.GenArraySwap.Proof.nat_up_to",
"Steel.ST.GenArraySwap.Proof.__proj__Mkbezout_t__item__q_n",
"Prims.l_imp",
"FStar.Seq.Base.index",
"Steel.ST.GenArraySwap.Proof.jump",
"Steel.ST.GenArraySwap.Proof.iter_fun",
"Prims.op_GreaterThan",
"Prims.prop"
] | [] | false | false | false | false | true | let array_swap_partial_invariant
(#t: Type)
(n l: nat)
(bz: Prf.bezout n l)
(s0 s: Ghost.erased (Seq.seq t))
(i: nat)
: GTot prop =
| n == Seq.length s0 /\ n == Seq.length s /\ 0 < l /\ l < n /\ i <= bz.d /\
(forall (i': Prf.nat_up_to bz.d).
(forall (j: Prf.nat_up_to bz.q_n).
(i' < i) ==>
(let idx = Prf.iter_fun #(Prf.nat_up_to n) (Prf.jump n l) j i' in
Seq.index s idx == Seq.index s0 (Prf.jump n l idx)))) /\
(forall (i': Prf.nat_up_to bz.d).
(forall (j: Prf.nat_up_to bz.q_n).
(i' > i) ==>
(let idx = Prf.iter_fun #(Prf.nat_up_to n) (Prf.jump n l) j i' in
Seq.index s idx == Seq.index s0 idx))) | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.