effect
stringclasses
48 values
original_source_type
stringlengths
0
23k
opens_and_abbrevs
listlengths
2
92
isa_cross_project_example
bool
1 class
source_definition
stringlengths
9
57.9k
partial_definition
stringlengths
7
23.3k
is_div
bool
2 classes
is_type
null
is_proof
bool
2 classes
completed_definiton
stringlengths
1
250k
dependencies
dict
effect_flags
sequencelengths
0
2
ideal_premises
sequencelengths
0
236
mutual_with
sequencelengths
0
11
file_context
stringlengths
0
407k
interleaved
bool
1 class
is_simply_typed
bool
2 classes
file_name
stringlengths
5
48
vconfig
dict
is_simple_lemma
null
source_type
stringlengths
10
23k
proof_features
sequencelengths
0
1
name
stringlengths
8
95
source
dict
verbose_type
stringlengths
1
7.42k
source_range
dict
Prims.Pure
val enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e)
val enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) =
false
null
false
map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e)
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_repr", "LowParse.Spec.Enum.enum_key", "Prims.unit", "FStar.List.Tot.Properties.assoc_mem", "LowParse.Spec.Enum.assoc_flip_elim", "FStar.Pervasives.Native.__proj__Some__item__v", "FStar.List.Tot.Base.assoc", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.List.Tot.Base.map", "LowParse.Spec.Enum.flip", "LowParse.Spec.Enum.list_map", "LowParse.Spec.Enum.map_fst_flip", "Prims.l_True", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.Some" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r))
[]
LowParse.Spec.Enum.enum_key_of_repr
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> r: LowParse.Spec.Enum.enum_repr e -> Prims.Pure (LowParse.Spec.Enum.enum_key e)
{ "end_col": 19, "end_line": 139, "start_col": 2, "start_line": 133 }
Prims.Tot
val parse_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l)
val parse_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) let parse_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) =
false
null
false
(parse_enum_key p l) `parse_synth` (synth_total_enum_key l)
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.Spec.Enum.total_enum", "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Enum.parse_enum_key", "LowParse.Spec.Enum.synth_total_enum_key" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key)
[]
LowParse.Spec.Enum.parse_total_enum_key
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p: LowParse.Spec.Base.parser k repr -> l: LowParse.Spec.Enum.total_enum key repr -> LowParse.Spec.Base.parser (LowParse.Spec.Combinators.parse_filter_kind k) key
{ "end_col": 59, "end_line": 354, "start_col": 2, "start_line": 354 }
Prims.Pure
val enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e)
val enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) =
false
null
false
L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e)
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Enum.enum_repr", "Prims.unit", "LowParse.Spec.Enum.map_fst_flip", "FStar.List.Tot.Properties.assoc_mem", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.flip", "LowParse.Spec.Enum.assoc_flip_intro", "FStar.Pervasives.Native.__proj__Some__item__v", "FStar.List.Tot.Base.assoc", "Prims.l_True", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.Some" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r))
[]
LowParse.Spec.Enum.enum_repr_of_key
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> k: LowParse.Spec.Enum.enum_key e -> Prims.Pure (LowParse.Spec.Enum.enum_repr e)
{ "end_col": 20, "end_line": 180, "start_col": 2, "start_line": 175 }
FStar.Pervasives.Lemma
val r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi
val r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) =
false
null
true
Classical.forall_intro phi
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "LowParse.Spec.Enum.r_reflexive_t", "FStar.Classical.forall_intro", "Prims.unit", "Prims.l_True", "Prims.squash", "LowParse.Spec.Enum.r_reflexive_prop", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r)
[]
LowParse.Spec.Enum.r_reflexive_t_elim
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
t: Type -> r: (_: t -> _: t -> Prims.GTot Type0) -> phi: LowParse.Spec.Enum.r_reflexive_t t r -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Enum.r_reflexive_prop t r)
{ "end_col": 28, "end_line": 479, "start_col": 2, "start_line": 479 }
FStar.Pervasives.Lemma
val serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x
val serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) =
false
null
true
serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Combinators.serialize_synth_eq", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.Enum.parse_enum_key_cond", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.Enum.parse_enum_key_synth", "LowParse.Spec.Combinators.serialize_filter", "LowParse.Spec.Enum.serialize_enum_key_synth_recip", "Prims.unit", "LowParse.Spec.Enum.serialize_enum_key_synth_inverse", "Prims.l_True", "Prims.squash", "Prims.eq2", "LowParse.Bytes.bytes", "LowParse.Spec.Base.serialize", "LowParse.Spec.Enum.parse_enum_key", "LowParse.Spec.Enum.serialize_enum_key", "LowParse.Spec.Enum.enum_repr_of_key", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x))
[]
LowParse.Spec.Enum.serialize_enum_key_eq
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
s: LowParse.Spec.Base.serializer p -> e: LowParse.Spec.Enum.enum key repr -> x: LowParse.Spec.Enum.enum_key e -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.serialize (LowParse.Spec.Enum.serialize_enum_key p s e) x == LowParse.Spec.Base.serialize s (LowParse.Spec.Enum.enum_repr_of_key e x))
{ "end_col": 5, "end_line": 243, "start_col": 2, "start_line": 236 }
Prims.Tot
val total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r
val total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) =
false
null
false
match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.total_enum", "LowParse.Spec.Enum.maybe_enum_key", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Enum.TotalKnown", "LowParse.Spec.Enum.unknown_enum_repr", "LowParse.Spec.Enum.TotalUnknown", "LowParse.Spec.Enum.maybe_total_enum_key" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e)
[]
LowParse.Spec.Enum.total_of_maybe_enum_key
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.total_enum key repr -> k: LowParse.Spec.Enum.maybe_enum_key e -> LowParse.Spec.Enum.maybe_total_enum_key e
{ "end_col": 31, "end_line": 433, "start_col": 2, "start_line": 431 }
Prims.Pure
val enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let _ :: y' = e in y == y')))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> []
val enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let _ :: y' = e in y == y'))) let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let _ :: y' = e in y == y'))) =
false
null
false
match e with | _ :: y -> y | _ -> []
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "FStar.Pervasives.Native.tuple2", "Prims.list", "Prims.Nil", "Prims.l_True", "Prims.l_imp", "Prims.b2t", "Prims.uu___is_Cons", "Prims.eq2", "Prims.logical" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let _ :: y' = e in y == y')))
[]
LowParse.Spec.Enum.enum_tail'
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> Prims.Pure (LowParse.Spec.Enum.enum key repr)
{ "end_col": 36, "end_line": 605, "start_col": 2, "start_line": 605 }
Prims.Tot
val synth_total_enum_key_recip (#key #repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k': enum_key l {synth_total_enum_key l k' == k})
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k
val synth_total_enum_key_recip (#key #repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k': enum_key l {synth_total_enum_key l k' == k}) let synth_total_enum_key_recip (#key #repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k': enum_key l {synth_total_enum_key l k' == k}) =
false
null
false
k
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.total_enum", "LowParse.Spec.Enum.enum_key", "Prims.eq2", "LowParse.Spec.Enum.synth_total_enum_key" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val synth_total_enum_key_recip (#key #repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k': enum_key l {synth_total_enum_key l k' == k})
[]
LowParse.Spec.Enum.synth_total_enum_key_recip
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l: LowParse.Spec.Enum.total_enum key repr -> k: key -> k': LowParse.Spec.Enum.enum_key l {LowParse.Spec.Enum.synth_total_enum_key l k' == k}
{ "end_col": 3, "end_line": 362, "start_col": 2, "start_line": 362 }
FStar.Pervasives.Lemma
val r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi
val r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) =
false
null
true
Classical.forall_intro_3 phi
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "LowParse.Spec.Enum.r_transitive_t", "FStar.Classical.forall_intro_3", "Prims.l_imp", "Prims.l_and", "Prims.unit", "Prims.l_True", "Prims.squash", "LowParse.Spec.Enum.r_transitive_prop", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r)
[]
LowParse.Spec.Enum.r_transitive_t_elim
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
t: Type -> r: (_: t -> _: t -> Prims.GTot Type0) -> phi: LowParse.Spec.Enum.r_transitive_t t r -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Enum.r_transitive_prop t r)
{ "end_col": 30, "end_line": 500, "start_col": 2, "start_line": 500 }
Prims.Tot
val serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) ()
val serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) =
false
null
false
serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) ()
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "LowParse.Spec.Enum.total_enum", "LowParse.Spec.Combinators.serialize_synth", "LowParse.Spec.Enum.maybe_total_enum_key", "LowParse.Spec.Enum.maybe_total_enum_key_of_repr", "LowParse.Spec.Enum.repr_of_maybe_total_enum_key", "LowParse.Spec.Enum.parse_maybe_total_enum_key" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e))
[]
LowParse.Spec.Enum.serialize_maybe_total_enum_key
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p: LowParse.Spec.Base.parser k repr -> s: LowParse.Spec.Base.serializer p -> e: LowParse.Spec.Enum.total_enum key repr -> LowParse.Spec.Base.serializer (LowParse.Spec.Enum.parse_maybe_total_enum_key p e)
{ "end_col": 90, "end_line": 413, "start_col": 2, "start_line": 413 }
FStar.Pervasives.Lemma
val list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2
val list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) =
false
null
true
list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.List.Tot.Properties.append_assoc", "FStar.List.Tot.Base.rev", "Prims.Cons", "Prims.Nil", "Prims.unit", "LowParse.Spec.Enum.list_rev_cons", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.List.Tot.Base.append", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2)
[]
LowParse.Spec.Enum.list_append_rev_cons
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l1: Prims.list t -> x: t -> l2: Prims.list t -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.rev l1 @ x :: l2 == FStar.List.Tot.Base.rev (x :: l1) @ l2)
{ "end_col": 34, "end_line": 806, "start_col": 2, "start_line": 805 }
FStar.Pervasives.Lemma
val parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> (match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None) | _ -> None))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input
val parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> (match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None) | _ -> None)) let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> (match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None) | _ -> None)) =
false
null
true
parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` (parse_enum_key_cond e)) (parse_enum_key_synth e) input
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.Spec.Enum.enum", "LowParse.Bytes.bytes", "LowParse.Spec.Combinators.parse_synth_eq", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.Enum.parse_enum_key_cond", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.Enum.parse_enum_key_synth", "Prims.unit", "LowParse.Spec.Combinators.parse_filter_eq", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Base.parse", "LowParse.Spec.Enum.parse_enum_key", "LowParse.Spec.Enum.maybe_enum_key_of_repr", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "LowParse.Spec.Enum.maybe_enum_key", "FStar.Pervasives.Native.None", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> (match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None) | _ -> None))
[]
LowParse.Spec.Enum.parse_enum_key_eq
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p: LowParse.Spec.Base.parser k repr -> e: LowParse.Spec.Enum.enum key repr -> input: LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.parse (LowParse.Spec.Enum.parse_enum_key p e) input == (match LowParse.Spec.Base.parse p input with | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ x consumed) -> (match LowParse.Spec.Enum.maybe_enum_key_of_repr e x with | LowParse.Spec.Enum.Known #_ #_ #_ k -> FStar.Pervasives.Native.Some (k, consumed) | _ -> FStar.Pervasives.Native.None) <: FStar.Pervasives.Native.option (LowParse.Spec.Enum.enum_key e * LowParse.Spec.Base.consumed_length input) | _ -> FStar.Pervasives.Native.None))
{ "end_col": 88, "end_line": 299, "start_col": 2, "start_line": 298 }
Prims.Tot
val destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (x: maybe_total_enum_key e -> Tot t)) (x: repr) : Tot (y: t{eq y (f (maybe_total_enum_key_of_repr e x))})
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x
val destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (x: maybe_total_enum_key e -> Tot t)) (x: repr) : Tot (y: t{eq y (f (maybe_total_enum_key_of_repr e x))}) let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (x: maybe_total_enum_key e -> Tot t)) (x: repr) : Tot (y: t{eq y (f (maybe_total_enum_key_of_repr e x))}) =
false
null
false
destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.total_enum", "LowParse.Spec.Enum.maybe_enum_destr_t", "LowParse.Spec.Enum.if_combinator", "LowParse.Spec.Enum.r_reflexive_t", "LowParse.Spec.Enum.r_transitive_t", "LowParse.Spec.Enum.maybe_total_enum_key", "LowParse.Spec.Enum.maybe_enum_key", "LowParse.Spec.Enum.total_of_maybe_enum_key", "LowParse.Spec.Enum.maybe_total_enum_key_of_repr" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (x: maybe_total_enum_key e -> Tot t)) (x: repr) : Tot (y: t{eq y (f (maybe_total_enum_key_of_repr e x))})
[]
LowParse.Spec.Enum.destr_maybe_total_enum_repr
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.total_enum key repr -> destr: LowParse.Spec.Enum.maybe_enum_destr_t t e -> eq: (_: t -> _: t -> Prims.GTot Type0) -> ift: LowParse.Spec.Enum.if_combinator t eq -> eq_refl: LowParse.Spec.Enum.r_reflexive_t t eq -> eq_trans: LowParse.Spec.Enum.r_transitive_t t eq -> f: (x: LowParse.Spec.Enum.maybe_total_enum_key e -> t) -> x: repr -> y: t{eq y (f (LowParse.Spec.Enum.maybe_total_enum_key_of_repr e x))}
{ "end_col": 76, "end_line": 868, "start_col": 2, "start_line": 868 }
Prims.Pure
val enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e
val enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) =
false
null
false
fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@@ inline_let ]let _ = r_reflexive_t_elim _ _ eq_refl in [@@ inline_let ]let _ = r_transitive_t_elim _ _ eq_trans in (fun (e': list (key * repr) {e' == e}) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (([@@ inline_let ]let f':(enum_key (enum_tail' e) -> Tot t) = (fun (x': enum_key (enum_tail' e)) -> [@@ inline_let ]let x_:enum_key e = (x' <: key) in f x_) in [@@ inline_let ]let y:t = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@@ inline_let ]let x':enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y) <: (y: t{eq y (f x)})))) e
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_destr_t", "LowParse.Spec.Enum.enum_tail'", "LowParse.Spec.Enum.if_combinator", "LowParse.Spec.Enum.r_reflexive_t", "LowParse.Spec.Enum.r_transitive_t", "Prims.list", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.enum_key", "Prims.op_Equality", "LowParse.Spec.Combinators.cond_true", "LowParse.Spec.Combinators.cond_false", "Prims.unit", "LowParse.Spec.Enum.r_transitive_t_elim", "LowParse.Spec.Enum.r_reflexive_t_elim", "Prims.b2t", "Prims.uu___is_Cons", "Prims.l_True" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True))
[]
LowParse.Spec.Enum.enum_destr_cons
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
t: Type -> e: LowParse.Spec.Enum.enum key repr -> g: LowParse.Spec.Enum.enum_destr_t t (LowParse.Spec.Enum.enum_tail' e) -> Prims.Pure (LowParse.Spec.Enum.enum_destr_t t e)
{ "end_col": 5, "end_line": 651, "start_col": 2, "start_line": 623 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a
let list_hd (#t: Type) (l: list t {Cons? l}) =
false
null
false
match l with | a :: _ -> a
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.list", "Prims.b2t", "Prims.uu___is_Cons" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_hd : l: Prims.list t {Cons? l} -> t
[]
LowParse.Spec.Enum.list_hd
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l: Prims.list t {Cons? l} -> t
{ "end_col": 15, "end_line": 897, "start_col": 2, "start_line": 896 }
Prims.Tot
val enum_repr_of_key_cons' (key repr: eqtype) (e: enum key repr) (u: unit{Cons? e}) (f: enum_repr_of_key'_t (enum_tail' e)) : Tot (enum_repr_of_key'_t e)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_repr_of_key_cons' (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (f : enum_repr_of_key'_t (enum_tail' e)) : Tot (enum_repr_of_key'_t e) = enum_repr_of_key_cons e f
val enum_repr_of_key_cons' (key repr: eqtype) (e: enum key repr) (u: unit{Cons? e}) (f: enum_repr_of_key'_t (enum_tail' e)) : Tot (enum_repr_of_key'_t e) let enum_repr_of_key_cons' (key repr: eqtype) (e: enum key repr) (u: unit{Cons? e}) (f: enum_repr_of_key'_t (enum_tail' e)) : Tot (enum_repr_of_key'_t e) =
false
null
false
enum_repr_of_key_cons e f
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.unit", "Prims.b2t", "Prims.uu___is_Cons", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.enum_repr_of_key'_t", "LowParse.Spec.Enum.enum_tail'", "LowParse.Spec.Enum.enum_repr_of_key_cons" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) = match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))) [@Norm] let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) = dep_maybe_enum_destr_t_intro e v (mk_dep_maybe_enum_destr' e v [] e ()) (* Eliminators and destructors for verification purposes *) let rec list_forallp (#t: Type) (p: t -> GTot Type0) (l: list t) : GTot Type0 = match l with | [] -> True | a :: q -> p a /\ list_forallp p q let rec list_forallp_mem (#t: eqtype) (p: t -> GTot Type0) (l: list t) : Lemma (list_forallp p l <==> (forall x . L.mem x l ==> p x)) = match l with | [] -> () | _ :: q -> list_forallp_mem p q inline_for_extraction let destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> Tot Type) (f_known: ( (x: key) -> (u: squash (list_mem x (list_map fst e))) -> Tot (f (Known x)) )) (f_unknown: ( (x: value) -> (u: squash (list_mem x (list_map snd e) == false)) -> Tot (f (Unknown x)) )) (x: maybe_enum_key e) : Tot (f x) = match x with | Known x' -> f_known x' () | Unknown x' -> f_unknown x' () let forall_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> GTot Type0) (f_known: squash (list_forallp (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e))) (f_unknown: ( (x: value) -> Tot (squash (list_mem x (list_map snd e) == false ==> f (Unknown x))) )) : Tot (squash (forall (x: maybe_enum_key e) . f x)) = let g (x: maybe_enum_key e) : Lemma (f x) = let u : squash (f x) = destruct_maybe_enum_key e (fun y -> squash (f y)) (fun x' u -> list_forallp_mem (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e)) (fun x' u -> f_unknown x') x in assert (f x) in Classical.forall_intro g (* Converting enum keys to their representation, using combinators *) let enum_repr_of_key'_t (#key #repr: eqtype) (e: enum key repr) : Tot Type = (x: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e x } ) inline_for_extraction let enum_repr_of_key_cons (#key #repr: eqtype) (e: enum key repr) (f : enum_repr_of_key'_t (enum_tail' e)) : Pure (enum_repr_of_key'_t e) (requires (Cons? e)) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, r) :: _ -> (fun (x: enum_key e) -> ( if k = x then (r <: repr) else (f (x <: key) <: repr) ) <: (r: enum_repr e { enum_repr_of_key e x == r } ))) e inline_for_extraction let enum_repr_of_key_cons' (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (f : enum_repr_of_key'_t (enum_tail' e))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_repr_of_key_cons' (key repr: eqtype) (e: enum key repr) (u: unit{Cons? e}) (f: enum_repr_of_key'_t (enum_tail' e)) : Tot (enum_repr_of_key'_t e)
[]
LowParse.Spec.Enum.enum_repr_of_key_cons'
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
key: Prims.eqtype -> repr: Prims.eqtype -> e: LowParse.Spec.Enum.enum key repr -> u494: u496: Prims.unit{Cons? e} -> f: LowParse.Spec.Enum.enum_repr_of_key'_t (LowParse.Spec.Enum.enum_tail' e) -> LowParse.Spec.Enum.enum_repr_of_key'_t e
{ "end_col": 27, "end_line": 1239, "start_col": 2, "start_line": 1239 }
Prims.Tot
val mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ())
val mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) =
false
null
false
maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ())
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.maybe_enum_destr_t_intro", "LowParse.Spec.Enum.mk_maybe_enum_destr'", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.maybe_enum_destr_t" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e)
[]
LowParse.Spec.Enum.mk_maybe_enum_destr
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
t: Type -> e: LowParse.Spec.Enum.enum key repr -> LowParse.Spec.Enum.maybe_enum_destr_t t e
{ "end_col": 65, "end_line": 1003, "start_col": 2, "start_line": 1003 }
FStar.Pervasives.Lemma
val list_rev_map (#t1 #t2: Type) (f: (t1 -> Tot t2)) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a]
val list_rev_map (#t1 #t2: Type) (f: (t1 -> Tot t2)) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) let rec list_rev_map (#t1 #t2: Type) (f: (t1 -> Tot t2)) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) =
false
null
true
match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a]
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.List.Tot.Properties.map_append", "FStar.List.Tot.Base.rev", "Prims.Cons", "Prims.Nil", "Prims.unit", "LowParse.Spec.Enum.list_rev_map", "LowParse.Spec.Enum.list_rev_cons", "FStar.List.Tot.Base.map", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_rev_map (#t1 #t2: Type) (f: (t1 -> Tot t2)) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l))
[ "recursion" ]
LowParse.Spec.Enum.list_rev_map
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
f: (_: t1 -> t2) -> l: Prims.list t1 -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.rev (FStar.List.Tot.Base.map f l) == FStar.List.Tot.Base.map f (FStar.List.Tot.Base.rev l))
{ "end_col": 32, "end_line": 957, "start_col": 2, "start_line": 951 }
Prims.Tot
val forall_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: (maybe_enum_key e -> GTot Type0)) (f_known: squash (list_forallp (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e))) (f_unknown: (x: value -> Tot (squash (list_mem x (list_map snd e) == false ==> f (Unknown x))))) : Tot (squash (forall (x: maybe_enum_key e). f x))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let forall_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> GTot Type0) (f_known: squash (list_forallp (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e))) (f_unknown: ( (x: value) -> Tot (squash (list_mem x (list_map snd e) == false ==> f (Unknown x))) )) : Tot (squash (forall (x: maybe_enum_key e) . f x)) = let g (x: maybe_enum_key e) : Lemma (f x) = let u : squash (f x) = destruct_maybe_enum_key e (fun y -> squash (f y)) (fun x' u -> list_forallp_mem (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e)) (fun x' u -> f_unknown x') x in assert (f x) in Classical.forall_intro g
val forall_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: (maybe_enum_key e -> GTot Type0)) (f_known: squash (list_forallp (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e))) (f_unknown: (x: value -> Tot (squash (list_mem x (list_map snd e) == false ==> f (Unknown x))))) : Tot (squash (forall (x: maybe_enum_key e). f x)) let forall_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: (maybe_enum_key e -> GTot Type0)) (f_known: squash (list_forallp (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e))) (f_unknown: (x: value -> Tot (squash (list_mem x (list_map snd e) == false ==> f (Unknown x))))) : Tot (squash (forall (x: maybe_enum_key e). f x)) =
false
null
true
let g (x: maybe_enum_key e) : Lemma (f x) = let u:squash (f x) = destruct_maybe_enum_key e (fun y -> squash (f y)) (fun x' u -> list_forallp_mem (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e)) (fun x' u -> f_unknown x') x in assert (f x) in Classical.forall_intro g
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.maybe_enum_key", "Prims.squash", "LowParse.Spec.Enum.list_forallp", "Prims.l_and", "Prims.b2t", "LowParse.Spec.Enum.list_mem", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.fst", "LowParse.Spec.Enum.Known", "Prims.l_imp", "Prims.eq2", "Prims.bool", "FStar.Pervasives.Native.snd", "LowParse.Spec.Enum.Unknown", "FStar.Classical.forall_intro", "Prims.unit", "Prims.l_True", "Prims.Nil", "FStar.Pervasives.pattern", "Prims._assert", "LowParse.Spec.Enum.destruct_maybe_enum_key", "LowParse.Spec.Enum.list_forallp_mem", "Prims.l_Forall" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) = match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))) [@Norm] let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) = dep_maybe_enum_destr_t_intro e v (mk_dep_maybe_enum_destr' e v [] e ()) (* Eliminators and destructors for verification purposes *) let rec list_forallp (#t: Type) (p: t -> GTot Type0) (l: list t) : GTot Type0 = match l with | [] -> True | a :: q -> p a /\ list_forallp p q let rec list_forallp_mem (#t: eqtype) (p: t -> GTot Type0) (l: list t) : Lemma (list_forallp p l <==> (forall x . L.mem x l ==> p x)) = match l with | [] -> () | _ :: q -> list_forallp_mem p q inline_for_extraction let destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> Tot Type) (f_known: ( (x: key) -> (u: squash (list_mem x (list_map fst e))) -> Tot (f (Known x)) )) (f_unknown: ( (x: value) -> (u: squash (list_mem x (list_map snd e) == false)) -> Tot (f (Unknown x)) )) (x: maybe_enum_key e) : Tot (f x) = match x with | Known x' -> f_known x' () | Unknown x' -> f_unknown x' () let forall_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> GTot Type0) (f_known: squash (list_forallp (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e))) (f_unknown: ( (x: value) -> Tot (squash (list_mem x (list_map snd e) == false ==> f (Unknown x))) ))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val forall_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: (maybe_enum_key e -> GTot Type0)) (f_known: squash (list_forallp (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e))) (f_unknown: (x: value -> Tot (squash (list_mem x (list_map snd e) == false ==> f (Unknown x))))) : Tot (squash (forall (x: maybe_enum_key e). f x))
[]
LowParse.Spec.Enum.forall_maybe_enum_key
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key value -> f: (_: LowParse.Spec.Enum.maybe_enum_key e -> Prims.GTot Type0) -> f_known: Prims.squash (LowParse.Spec.Enum.list_forallp (fun x -> LowParse.Spec.Enum.list_mem x (LowParse.Spec.Enum.list_map FStar.Pervasives.Native.fst e) /\ f (LowParse.Spec.Enum.Known x)) (LowParse.Spec.Enum.list_map FStar.Pervasives.Native.fst e)) -> f_unknown: (x: value -> Prims.squash (LowParse.Spec.Enum.list_mem x (LowParse.Spec.Enum.list_map FStar.Pervasives.Native.snd e) == false ==> f (LowParse.Spec.Enum.Unknown x))) -> Prims.squash (forall (x: LowParse.Spec.Enum.maybe_enum_key e). f x)
{ "end_col": 26, "end_line": 1204, "start_col": 1, "start_line": 1191 }
Prims.Tot
val maybe_enum_key_of_repr'_t_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit{Cons? e}) (u2: unit{Nil? (enum_tail' e)}) : Tot (maybe_enum_key_of_repr'_t e)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let maybe_enum_key_of_repr'_t_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail' e) } ) : Tot (maybe_enum_key_of_repr'_t e) = maybe_enum_key_of_repr'_t_cons_nil e
val maybe_enum_key_of_repr'_t_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit{Cons? e}) (u2: unit{Nil? (enum_tail' e)}) : Tot (maybe_enum_key_of_repr'_t e) let maybe_enum_key_of_repr'_t_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit{Cons? e}) (u2: unit{Nil? (enum_tail' e)}) : Tot (maybe_enum_key_of_repr'_t e) =
false
null
false
maybe_enum_key_of_repr'_t_cons_nil e
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.unit", "Prims.b2t", "Prims.uu___is_Cons", "FStar.Pervasives.Native.tuple2", "Prims.uu___is_Nil", "LowParse.Spec.Enum.enum_tail'", "LowParse.Spec.Enum.maybe_enum_key_of_repr'_t_cons_nil", "LowParse.Spec.Enum.maybe_enum_key_of_repr'_t" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) = match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))) [@Norm] let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) = dep_maybe_enum_destr_t_intro e v (mk_dep_maybe_enum_destr' e v [] e ()) (* Eliminators and destructors for verification purposes *) let rec list_forallp (#t: Type) (p: t -> GTot Type0) (l: list t) : GTot Type0 = match l with | [] -> True | a :: q -> p a /\ list_forallp p q let rec list_forallp_mem (#t: eqtype) (p: t -> GTot Type0) (l: list t) : Lemma (list_forallp p l <==> (forall x . L.mem x l ==> p x)) = match l with | [] -> () | _ :: q -> list_forallp_mem p q inline_for_extraction let destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> Tot Type) (f_known: ( (x: key) -> (u: squash (list_mem x (list_map fst e))) -> Tot (f (Known x)) )) (f_unknown: ( (x: value) -> (u: squash (list_mem x (list_map snd e) == false)) -> Tot (f (Unknown x)) )) (x: maybe_enum_key e) : Tot (f x) = match x with | Known x' -> f_known x' () | Unknown x' -> f_unknown x' () let forall_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> GTot Type0) (f_known: squash (list_forallp (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e))) (f_unknown: ( (x: value) -> Tot (squash (list_mem x (list_map snd e) == false ==> f (Unknown x))) )) : Tot (squash (forall (x: maybe_enum_key e) . f x)) = let g (x: maybe_enum_key e) : Lemma (f x) = let u : squash (f x) = destruct_maybe_enum_key e (fun y -> squash (f y)) (fun x' u -> list_forallp_mem (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e)) (fun x' u -> f_unknown x') x in assert (f x) in Classical.forall_intro g (* Converting enum keys to their representation, using combinators *) let enum_repr_of_key'_t (#key #repr: eqtype) (e: enum key repr) : Tot Type = (x: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e x } ) inline_for_extraction let enum_repr_of_key_cons (#key #repr: eqtype) (e: enum key repr) (f : enum_repr_of_key'_t (enum_tail' e)) : Pure (enum_repr_of_key'_t e) (requires (Cons? e)) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, r) :: _ -> (fun (x: enum_key e) -> ( if k = x then (r <: repr) else (f (x <: key) <: repr) ) <: (r: enum_repr e { enum_repr_of_key e x == r } ))) e inline_for_extraction let enum_repr_of_key_cons' (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (f : enum_repr_of_key'_t (enum_tail' e)) : Tot (enum_repr_of_key'_t e) = enum_repr_of_key_cons e f inline_for_extraction let enum_repr_of_key_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (enum_repr_of_key'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | [(k, r)] -> (fun (x: enum_key e) -> (r <: (r: enum_repr e { enum_repr_of_key e x == r } )))) e inline_for_extraction let enum_repr_of_key_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail' e) } ) : Tot (enum_repr_of_key'_t e) = enum_repr_of_key_cons_nil e let enum_repr_of_key_append_cons (#key #repr: eqtype) (e: enum key repr) (l1: list (key & repr)) (kr: (key & repr)) (l2: list (key & repr)) : Lemma (requires (e == l1 `L.append` (kr :: l2))) (ensures (list_mem (fst kr) (list_map fst e) /\ enum_repr_of_key e (fst kr) == snd kr /\ list_mem (snd kr) (list_map snd e) /\ enum_key_of_repr e (snd kr) == fst kr)) = L.map_append fst l1 (kr :: l2); L.noRepeats_append_elim (L.map fst l1) (L.map fst (kr :: l2)); L.assoc_mem (fst kr) l1; L.assoc_mem (fst kr) e; L.assoc_append_elim_l (fst kr) l1 (kr :: l2); enum_key_of_repr_of_key e (fst kr) let maybe_enum_key_of_repr'_t (#key #repr: eqtype) (e: enum key repr) : Tot Type = (x: repr) -> Tot (k: maybe_enum_key e { k == maybe_enum_key_of_repr e x } ) #push-options "--z3rlimit 32" inline_for_extraction let maybe_enum_key_of_repr'_t_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | [(k, r)] -> (fun x -> (( if r = x then Known k else Unknown x ) <: (k: maybe_enum_key e { k == maybe_enum_key_of_repr e x } )))) e inline_for_extraction let maybe_enum_key_of_repr'_t_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail' e) } )
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val maybe_enum_key_of_repr'_t_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit{Cons? e}) (u2: unit{Nil? (enum_tail' e)}) : Tot (maybe_enum_key_of_repr'_t e)
[]
LowParse.Spec.Enum.maybe_enum_key_of_repr'_t_cons_nil'
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
key: Prims.eqtype -> repr: Prims.eqtype -> e: LowParse.Spec.Enum.enum key repr -> u1: Prims.unit{Cons? e} -> u2: Prims.unit{Nil? (LowParse.Spec.Enum.enum_tail' e)} -> LowParse.Spec.Enum.maybe_enum_key_of_repr'_t e
{ "end_col": 38, "end_line": 1312, "start_col": 2, "start_line": 1312 }
Prims.Pure
val enum_repr_of_key_cons (#key #repr: eqtype) (e: enum key repr) (f: enum_repr_of_key'_t (enum_tail' e)) : Pure (enum_repr_of_key'_t e) (requires (Cons? e)) (ensures (fun _ -> True))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_repr_of_key_cons (#key #repr: eqtype) (e: enum key repr) (f : enum_repr_of_key'_t (enum_tail' e)) : Pure (enum_repr_of_key'_t e) (requires (Cons? e)) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, r) :: _ -> (fun (x: enum_key e) -> ( if k = x then (r <: repr) else (f (x <: key) <: repr) ) <: (r: enum_repr e { enum_repr_of_key e x == r } ))) e
val enum_repr_of_key_cons (#key #repr: eqtype) (e: enum key repr) (f: enum_repr_of_key'_t (enum_tail' e)) : Pure (enum_repr_of_key'_t e) (requires (Cons? e)) (ensures (fun _ -> True)) let enum_repr_of_key_cons (#key #repr: eqtype) (e: enum key repr) (f: enum_repr_of_key'_t (enum_tail' e)) : Pure (enum_repr_of_key'_t e) (requires (Cons? e)) (ensures (fun _ -> True)) =
false
null
false
(fun (e': list (key * repr) {e' == e}) -> match e' with | (k, r) :: _ -> (fun (x: enum_key e) -> (if k = x then (r <: repr) else (f (x <: key) <: repr)) <: (r: enum_repr e {enum_repr_of_key e x == r}))) e
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_repr_of_key'_t", "LowParse.Spec.Enum.enum_tail'", "Prims.list", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.enum_key", "Prims.op_Equality", "Prims.bool", "LowParse.Spec.Enum.enum_repr", "Prims.eq2", "LowParse.Spec.Enum.enum_repr_of_key", "Prims.b2t", "Prims.uu___is_Cons", "Prims.l_True" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) = match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))) [@Norm] let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) = dep_maybe_enum_destr_t_intro e v (mk_dep_maybe_enum_destr' e v [] e ()) (* Eliminators and destructors for verification purposes *) let rec list_forallp (#t: Type) (p: t -> GTot Type0) (l: list t) : GTot Type0 = match l with | [] -> True | a :: q -> p a /\ list_forallp p q let rec list_forallp_mem (#t: eqtype) (p: t -> GTot Type0) (l: list t) : Lemma (list_forallp p l <==> (forall x . L.mem x l ==> p x)) = match l with | [] -> () | _ :: q -> list_forallp_mem p q inline_for_extraction let destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> Tot Type) (f_known: ( (x: key) -> (u: squash (list_mem x (list_map fst e))) -> Tot (f (Known x)) )) (f_unknown: ( (x: value) -> (u: squash (list_mem x (list_map snd e) == false)) -> Tot (f (Unknown x)) )) (x: maybe_enum_key e) : Tot (f x) = match x with | Known x' -> f_known x' () | Unknown x' -> f_unknown x' () let forall_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> GTot Type0) (f_known: squash (list_forallp (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e))) (f_unknown: ( (x: value) -> Tot (squash (list_mem x (list_map snd e) == false ==> f (Unknown x))) )) : Tot (squash (forall (x: maybe_enum_key e) . f x)) = let g (x: maybe_enum_key e) : Lemma (f x) = let u : squash (f x) = destruct_maybe_enum_key e (fun y -> squash (f y)) (fun x' u -> list_forallp_mem (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e)) (fun x' u -> f_unknown x') x in assert (f x) in Classical.forall_intro g (* Converting enum keys to their representation, using combinators *) let enum_repr_of_key'_t (#key #repr: eqtype) (e: enum key repr) : Tot Type = (x: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e x } ) inline_for_extraction let enum_repr_of_key_cons (#key #repr: eqtype) (e: enum key repr) (f : enum_repr_of_key'_t (enum_tail' e)) : Pure (enum_repr_of_key'_t e) (requires (Cons? e))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_repr_of_key_cons (#key #repr: eqtype) (e: enum key repr) (f: enum_repr_of_key'_t (enum_tail' e)) : Pure (enum_repr_of_key'_t e) (requires (Cons? e)) (ensures (fun _ -> True))
[]
LowParse.Spec.Enum.enum_repr_of_key_cons
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> f: LowParse.Spec.Enum.enum_repr_of_key'_t (LowParse.Spec.Enum.enum_tail' e) -> Prims.Pure (LowParse.Spec.Enum.enum_repr_of_key'_t e)
{ "end_col": 6, "end_line": 1230, "start_col": 2, "start_line": 1223 }
FStar.Pervasives.Lemma
val enum_repr_of_key_append_cons (#key #repr: eqtype) (e: enum key repr) (l1: list (key & repr)) (kr: (key & repr)) (l2: list (key & repr)) : Lemma (requires (e == l1 `L.append` (kr :: l2))) (ensures (list_mem (fst kr) (list_map fst e) /\ enum_repr_of_key e (fst kr) == snd kr /\ list_mem (snd kr) (list_map snd e) /\ enum_key_of_repr e (snd kr) == fst kr))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_repr_of_key_append_cons (#key #repr: eqtype) (e: enum key repr) (l1: list (key & repr)) (kr: (key & repr)) (l2: list (key & repr)) : Lemma (requires (e == l1 `L.append` (kr :: l2))) (ensures (list_mem (fst kr) (list_map fst e) /\ enum_repr_of_key e (fst kr) == snd kr /\ list_mem (snd kr) (list_map snd e) /\ enum_key_of_repr e (snd kr) == fst kr)) = L.map_append fst l1 (kr :: l2); L.noRepeats_append_elim (L.map fst l1) (L.map fst (kr :: l2)); L.assoc_mem (fst kr) l1; L.assoc_mem (fst kr) e; L.assoc_append_elim_l (fst kr) l1 (kr :: l2); enum_key_of_repr_of_key e (fst kr)
val enum_repr_of_key_append_cons (#key #repr: eqtype) (e: enum key repr) (l1: list (key & repr)) (kr: (key & repr)) (l2: list (key & repr)) : Lemma (requires (e == l1 `L.append` (kr :: l2))) (ensures (list_mem (fst kr) (list_map fst e) /\ enum_repr_of_key e (fst kr) == snd kr /\ list_mem (snd kr) (list_map snd e) /\ enum_key_of_repr e (snd kr) == fst kr)) let enum_repr_of_key_append_cons (#key #repr: eqtype) (e: enum key repr) (l1: list (key & repr)) (kr: (key & repr)) (l2: list (key & repr)) : Lemma (requires (e == l1 `L.append` (kr :: l2))) (ensures (list_mem (fst kr) (list_map fst e) /\ enum_repr_of_key e (fst kr) == snd kr /\ list_mem (snd kr) (list_map snd e) /\ enum_key_of_repr e (snd kr) == fst kr)) =
false
null
true
L.map_append fst l1 (kr :: l2); L.noRepeats_append_elim (L.map fst l1) (L.map fst (kr :: l2)); L.assoc_mem (fst kr) l1; L.assoc_mem (fst kr) e; L.assoc_append_elim_l (fst kr) l1 (kr :: l2); enum_key_of_repr_of_key e (fst kr)
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.list", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.enum_key_of_repr_of_key", "FStar.Pervasives.Native.fst", "Prims.unit", "FStar.List.Tot.Properties.assoc_append_elim_l", "Prims.Cons", "FStar.List.Tot.Properties.assoc_mem", "FStar.List.Tot.Properties.noRepeats_append_elim", "FStar.List.Tot.Base.map", "FStar.List.Tot.Properties.map_append", "Prims.eq2", "FStar.List.Tot.Base.append", "Prims.squash", "Prims.l_and", "Prims.b2t", "LowParse.Spec.Enum.list_mem", "LowParse.Spec.Enum.list_map", "LowParse.Spec.Enum.enum_repr_of_key", "FStar.Pervasives.Native.snd", "LowParse.Spec.Enum.enum_key_of_repr", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) = match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))) [@Norm] let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) = dep_maybe_enum_destr_t_intro e v (mk_dep_maybe_enum_destr' e v [] e ()) (* Eliminators and destructors for verification purposes *) let rec list_forallp (#t: Type) (p: t -> GTot Type0) (l: list t) : GTot Type0 = match l with | [] -> True | a :: q -> p a /\ list_forallp p q let rec list_forallp_mem (#t: eqtype) (p: t -> GTot Type0) (l: list t) : Lemma (list_forallp p l <==> (forall x . L.mem x l ==> p x)) = match l with | [] -> () | _ :: q -> list_forallp_mem p q inline_for_extraction let destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> Tot Type) (f_known: ( (x: key) -> (u: squash (list_mem x (list_map fst e))) -> Tot (f (Known x)) )) (f_unknown: ( (x: value) -> (u: squash (list_mem x (list_map snd e) == false)) -> Tot (f (Unknown x)) )) (x: maybe_enum_key e) : Tot (f x) = match x with | Known x' -> f_known x' () | Unknown x' -> f_unknown x' () let forall_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> GTot Type0) (f_known: squash (list_forallp (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e))) (f_unknown: ( (x: value) -> Tot (squash (list_mem x (list_map snd e) == false ==> f (Unknown x))) )) : Tot (squash (forall (x: maybe_enum_key e) . f x)) = let g (x: maybe_enum_key e) : Lemma (f x) = let u : squash (f x) = destruct_maybe_enum_key e (fun y -> squash (f y)) (fun x' u -> list_forallp_mem (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e)) (fun x' u -> f_unknown x') x in assert (f x) in Classical.forall_intro g (* Converting enum keys to their representation, using combinators *) let enum_repr_of_key'_t (#key #repr: eqtype) (e: enum key repr) : Tot Type = (x: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e x } ) inline_for_extraction let enum_repr_of_key_cons (#key #repr: eqtype) (e: enum key repr) (f : enum_repr_of_key'_t (enum_tail' e)) : Pure (enum_repr_of_key'_t e) (requires (Cons? e)) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, r) :: _ -> (fun (x: enum_key e) -> ( if k = x then (r <: repr) else (f (x <: key) <: repr) ) <: (r: enum_repr e { enum_repr_of_key e x == r } ))) e inline_for_extraction let enum_repr_of_key_cons' (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (f : enum_repr_of_key'_t (enum_tail' e)) : Tot (enum_repr_of_key'_t e) = enum_repr_of_key_cons e f inline_for_extraction let enum_repr_of_key_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (enum_repr_of_key'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | [(k, r)] -> (fun (x: enum_key e) -> (r <: (r: enum_repr e { enum_repr_of_key e x == r } )))) e inline_for_extraction let enum_repr_of_key_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail' e) } ) : Tot (enum_repr_of_key'_t e) = enum_repr_of_key_cons_nil e let enum_repr_of_key_append_cons (#key #repr: eqtype) (e: enum key repr) (l1: list (key & repr)) (kr: (key & repr)) (l2: list (key & repr)) : Lemma (requires (e == l1 `L.append` (kr :: l2)))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_repr_of_key_append_cons (#key #repr: eqtype) (e: enum key repr) (l1: list (key & repr)) (kr: (key & repr)) (l2: list (key & repr)) : Lemma (requires (e == l1 `L.append` (kr :: l2))) (ensures (list_mem (fst kr) (list_map fst e) /\ enum_repr_of_key e (fst kr) == snd kr /\ list_mem (snd kr) (list_map snd e) /\ enum_key_of_repr e (snd kr) == fst kr))
[]
LowParse.Spec.Enum.enum_repr_of_key_append_cons
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> l1: Prims.list (key * repr) -> kr: (key * repr) -> l2: Prims.list (key * repr) -> FStar.Pervasives.Lemma (requires e == l1 @ kr :: l2) (ensures LowParse.Spec.Enum.list_mem (FStar.Pervasives.Native.fst kr) (LowParse.Spec.Enum.list_map FStar.Pervasives.Native.fst e) /\ LowParse.Spec.Enum.enum_repr_of_key e (FStar.Pervasives.Native.fst kr) == FStar.Pervasives.Native.snd kr /\ LowParse.Spec.Enum.list_mem (FStar.Pervasives.Native.snd kr) (LowParse.Spec.Enum.list_map FStar.Pervasives.Native.snd e) /\ LowParse.Spec.Enum.enum_key_of_repr e (FStar.Pervasives.Native.snd kr) == FStar.Pervasives.Native.fst kr)
{ "end_col": 36, "end_line": 1277, "start_col": 2, "start_line": 1272 }
Prims.Tot
val maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ))
val maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) =
false
null
false
fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@@ inline_let ]let _ = r_reflexive_t_elim _ _ eq_refl in [@@ inline_let ]let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr{maybe_enum_key_of_repr_not_in e l1 x}) -> ((L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x)) <: (y: t{eq y (f (maybe_enum_key_of_repr e x))}))
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.squash", "Prims.l_and", "Prims.b2t", "Prims.uu___is_Nil", "Prims.eq2", "FStar.List.Tot.Base.append", "FStar.List.Tot.Base.rev", "Prims.Nil", "LowParse.Spec.Enum.if_combinator", "LowParse.Spec.Enum.r_reflexive_t", "LowParse.Spec.Enum.r_transitive_t", "LowParse.Spec.Enum.maybe_enum_key", "LowParse.Spec.Enum.maybe_enum_key_of_repr_not_in", "LowParse.Spec.Enum.Unknown", "Prims.unit", "FStar.List.Tot.Properties.rev_mem", "FStar.List.Tot.Base.map", "FStar.Pervasives.Native.snd", "LowParse.Spec.Enum.list_rev_map", "FStar.List.Tot.Properties.append_l_nil", "LowParse.Spec.Enum.maybe_enum_key_of_repr", "LowParse.Spec.Enum.r_transitive_t_elim", "LowParse.Spec.Enum.r_reflexive_t_elim", "LowParse.Spec.Enum.maybe_enum_destr_t'" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) []))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1)
[]
LowParse.Spec.Enum.maybe_enum_destr_nil
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
t: Type -> e: LowParse.Spec.Enum.enum key repr -> l1: Prims.list (key * repr) -> l2: Prims.list (key * repr) -> u1: Prims.squash (Nil? l2 /\ e == FStar.List.Tot.Base.rev l1 @ []) -> LowParse.Spec.Enum.maybe_enum_destr_t' t e l1 l2 u1
{ "end_col": 57, "end_line": 978, "start_col": 2, "start_line": 968 }
Prims.Pure
val maybe_enum_key_of_repr'_t_cons (#key #repr: eqtype) (e: enum key repr) (g: maybe_enum_key_of_repr'_t (enum_tail' e)) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e)) (ensures (fun _ -> True))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let maybe_enum_key_of_repr'_t_cons (#key #repr: eqtype) (e: enum key repr ) (g : maybe_enum_key_of_repr'_t (enum_tail' e)) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e)) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, r) :: _ -> (fun x -> (( if r = x then Known k else let y : maybe_enum_key (enum_tail' e) = g x in match y with | Known k' -> Known (k' <: key) | Unknown x' -> Unknown x ) <: (k: maybe_enum_key e { k == maybe_enum_key_of_repr e x } )))) e
val maybe_enum_key_of_repr'_t_cons (#key #repr: eqtype) (e: enum key repr) (g: maybe_enum_key_of_repr'_t (enum_tail' e)) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e)) (ensures (fun _ -> True)) let maybe_enum_key_of_repr'_t_cons (#key #repr: eqtype) (e: enum key repr) (g: maybe_enum_key_of_repr'_t (enum_tail' e)) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e)) (ensures (fun _ -> True)) =
false
null
false
(fun (e': list (key * repr) {e' == e}) -> match e' with | (k, r) :: _ -> (fun x -> ((if r = x then Known k else let y:maybe_enum_key (enum_tail' e) = g x in match y with | Known k' -> Known (k' <: key) | Unknown x' -> Unknown x) <: (k: maybe_enum_key e {k == maybe_enum_key_of_repr e x})))) e
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.maybe_enum_key_of_repr'_t", "LowParse.Spec.Enum.enum_tail'", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.op_Equality", "LowParse.Spec.Enum.Known", "Prims.bool", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Enum.unknown_enum_repr", "LowParse.Spec.Enum.Unknown", "LowParse.Spec.Enum.maybe_enum_key", "Prims.eq2", "LowParse.Spec.Enum.maybe_enum_key_of_repr", "Prims.b2t", "Prims.uu___is_Cons", "Prims.l_True" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) = match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))) [@Norm] let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) = dep_maybe_enum_destr_t_intro e v (mk_dep_maybe_enum_destr' e v [] e ()) (* Eliminators and destructors for verification purposes *) let rec list_forallp (#t: Type) (p: t -> GTot Type0) (l: list t) : GTot Type0 = match l with | [] -> True | a :: q -> p a /\ list_forallp p q let rec list_forallp_mem (#t: eqtype) (p: t -> GTot Type0) (l: list t) : Lemma (list_forallp p l <==> (forall x . L.mem x l ==> p x)) = match l with | [] -> () | _ :: q -> list_forallp_mem p q inline_for_extraction let destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> Tot Type) (f_known: ( (x: key) -> (u: squash (list_mem x (list_map fst e))) -> Tot (f (Known x)) )) (f_unknown: ( (x: value) -> (u: squash (list_mem x (list_map snd e) == false)) -> Tot (f (Unknown x)) )) (x: maybe_enum_key e) : Tot (f x) = match x with | Known x' -> f_known x' () | Unknown x' -> f_unknown x' () let forall_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> GTot Type0) (f_known: squash (list_forallp (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e))) (f_unknown: ( (x: value) -> Tot (squash (list_mem x (list_map snd e) == false ==> f (Unknown x))) )) : Tot (squash (forall (x: maybe_enum_key e) . f x)) = let g (x: maybe_enum_key e) : Lemma (f x) = let u : squash (f x) = destruct_maybe_enum_key e (fun y -> squash (f y)) (fun x' u -> list_forallp_mem (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e)) (fun x' u -> f_unknown x') x in assert (f x) in Classical.forall_intro g (* Converting enum keys to their representation, using combinators *) let enum_repr_of_key'_t (#key #repr: eqtype) (e: enum key repr) : Tot Type = (x: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e x } ) inline_for_extraction let enum_repr_of_key_cons (#key #repr: eqtype) (e: enum key repr) (f : enum_repr_of_key'_t (enum_tail' e)) : Pure (enum_repr_of_key'_t e) (requires (Cons? e)) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, r) :: _ -> (fun (x: enum_key e) -> ( if k = x then (r <: repr) else (f (x <: key) <: repr) ) <: (r: enum_repr e { enum_repr_of_key e x == r } ))) e inline_for_extraction let enum_repr_of_key_cons' (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (f : enum_repr_of_key'_t (enum_tail' e)) : Tot (enum_repr_of_key'_t e) = enum_repr_of_key_cons e f inline_for_extraction let enum_repr_of_key_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (enum_repr_of_key'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | [(k, r)] -> (fun (x: enum_key e) -> (r <: (r: enum_repr e { enum_repr_of_key e x == r } )))) e inline_for_extraction let enum_repr_of_key_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail' e) } ) : Tot (enum_repr_of_key'_t e) = enum_repr_of_key_cons_nil e let enum_repr_of_key_append_cons (#key #repr: eqtype) (e: enum key repr) (l1: list (key & repr)) (kr: (key & repr)) (l2: list (key & repr)) : Lemma (requires (e == l1 `L.append` (kr :: l2))) (ensures (list_mem (fst kr) (list_map fst e) /\ enum_repr_of_key e (fst kr) == snd kr /\ list_mem (snd kr) (list_map snd e) /\ enum_key_of_repr e (snd kr) == fst kr)) = L.map_append fst l1 (kr :: l2); L.noRepeats_append_elim (L.map fst l1) (L.map fst (kr :: l2)); L.assoc_mem (fst kr) l1; L.assoc_mem (fst kr) e; L.assoc_append_elim_l (fst kr) l1 (kr :: l2); enum_key_of_repr_of_key e (fst kr) let maybe_enum_key_of_repr'_t (#key #repr: eqtype) (e: enum key repr) : Tot Type = (x: repr) -> Tot (k: maybe_enum_key e { k == maybe_enum_key_of_repr e x } ) #push-options "--z3rlimit 32" inline_for_extraction let maybe_enum_key_of_repr'_t_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | [(k, r)] -> (fun x -> (( if r = x then Known k else Unknown x ) <: (k: maybe_enum_key e { k == maybe_enum_key_of_repr e x } )))) e inline_for_extraction let maybe_enum_key_of_repr'_t_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail' e) } ) : Tot (maybe_enum_key_of_repr'_t e) = maybe_enum_key_of_repr'_t_cons_nil e inline_for_extraction let maybe_enum_key_of_repr'_t_cons (#key #repr: eqtype) (e: enum key repr ) (g : maybe_enum_key_of_repr'_t (enum_tail' e)) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val maybe_enum_key_of_repr'_t_cons (#key #repr: eqtype) (e: enum key repr) (g: maybe_enum_key_of_repr'_t (enum_tail' e)) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e)) (ensures (fun _ -> True))
[]
LowParse.Spec.Enum.maybe_enum_key_of_repr'_t_cons
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> g: LowParse.Spec.Enum.maybe_enum_key_of_repr'_t (LowParse.Spec.Enum.enum_tail' e) -> Prims.Pure (LowParse.Spec.Enum.maybe_enum_key_of_repr'_t e)
{ "end_col": 7, "end_line": 1333, "start_col": 2, "start_line": 1322 }
Prims.Tot
val maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f
val maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) =
false
null
false
f
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.maybe_enum_destr_t'", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.maybe_enum_destr_t" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ())
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e)
[]
LowParse.Spec.Enum.maybe_enum_destr_t_intro
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
t: Type -> e: LowParse.Spec.Enum.enum key repr -> f: LowParse.Spec.Enum.maybe_enum_destr_t' t e [] e () -> LowParse.Spec.Enum.maybe_enum_destr_t t e
{ "end_col": 3, "end_line": 877, "start_col": 2, "start_line": 877 }
Prims.Tot
val enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } )
val enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype =
false
null
false
(r: repr{list_mem r (list_map snd e)})
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.b2t", "LowParse.Spec.Enum.list_mem", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.snd" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype
[]
LowParse.Spec.Enum.enum_repr
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> Prims.eqtype
{ "end_col": 111, "end_line": 41, "start_col": 69, "start_line": 41 }
Prims.Tot
val enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } )
val enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype =
false
null
false
(s: key{list_mem s (list_map fst e)})
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.b2t", "LowParse.Spec.Enum.list_mem", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.fst" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype
[]
LowParse.Spec.Enum.enum_key
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> Prims.eqtype
{ "end_col": 109, "end_line": 32, "start_col": 68, "start_line": 32 }
Prims.GTot
val parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr{parse_enum_key_cond e r == true}) : GTot (enum_key e)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r
val parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr{parse_enum_key_cond e r == true}) : GTot (enum_key e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr{parse_enum_key_cond e r == true}) : GTot (enum_key e) =
false
null
false
enum_key_of_repr e r
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "sometrivial" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.eq2", "Prims.bool", "LowParse.Spec.Enum.parse_enum_key_cond", "LowParse.Spec.Enum.enum_key_of_repr", "LowParse.Spec.Enum.enum_key" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } )
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr{parse_enum_key_cond e r == true}) : GTot (enum_key e)
[]
LowParse.Spec.Enum.parse_enum_key_synth
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> r: repr{LowParse.Spec.Enum.parse_enum_key_cond e r == true} -> Prims.GTot (LowParse.Spec.Enum.enum_key e)
{ "end_col": 22, "end_line": 153, "start_col": 2, "start_line": 153 }
FStar.Pervasives.Lemma
val map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q
val map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) =
false
null
true
match l with | [] -> () | _ :: q -> map_flip_flip q
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.map_flip_flip", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "LowParse.Spec.Enum.list_map", "LowParse.Spec.Enum.flip", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l)
[ "recursion" ]
LowParse.Spec.Enum.map_flip_flip
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l: Prims.list (a * b) -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Enum.list_map LowParse.Spec.Enum.flip (LowParse.Spec.Enum.list_map LowParse.Spec.Enum.flip l) == l)
{ "end_col": 29, "end_line": 49, "start_col": 2, "start_line": 47 }
Prims.Tot
val maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ))
val maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) =
false
null
false
fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@@ inline_let ]let _ = r_reflexive_t_elim _ _ eq_refl in [@@ inline_let ]let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | k, r -> [@@ inline_let ]let _:squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@@ inline_let ]let _:squash (maybe_enum_key_of_repr e r == Known k) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr{maybe_enum_key_of_repr_not_in e l1 x}) -> ((ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x)) <: (y: t{eq y (f (maybe_enum_key_of_repr e x))}))
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.squash", "Prims.l_and", "Prims.b2t", "Prims.uu___is_Cons", "Prims.eq2", "FStar.List.Tot.Base.append", "FStar.List.Tot.Base.rev", "LowParse.Spec.Enum.maybe_enum_destr_t'", "Prims.Cons", "LowParse.Spec.Enum.list_hd", "LowParse.Spec.Enum.list_tl", "LowParse.Spec.Enum.list_append_rev_cons", "LowParse.Spec.Enum.if_combinator", "LowParse.Spec.Enum.r_reflexive_t", "LowParse.Spec.Enum.r_transitive_t", "LowParse.Spec.Enum.maybe_enum_key", "LowParse.Spec.Enum.maybe_enum_key_of_repr_not_in", "Prims.op_Equality", "LowParse.Spec.Combinators.cond_true", "LowParse.Spec.Enum.Known", "LowParse.Spec.Combinators.cond_false", "LowParse.Spec.Enum.maybe_enum_key_of_repr", "Prims.unit", "LowParse.Spec.Enum.assoc_append_flip_l_intro", "FStar.List.Tot.Properties.map_append", "FStar.Pervasives.Native.snd", "FStar.List.Tot.Properties.append_mem", "FStar.List.Tot.Base.map", "FStar.List.Tot.Base.mem", "FStar.Pervasives.Native.fst", "LowParse.Spec.Enum.r_transitive_t_elim", "LowParse.Spec.Enum.r_reflexive_t_elim" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1)
[]
LowParse.Spec.Enum.maybe_enum_destr_cons
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
t: Type -> e: LowParse.Spec.Enum.enum key repr -> l1: Prims.list (key * repr) -> l2: Prims.list (key * repr) -> u1: Prims.squash (Cons? l2 /\ e == FStar.List.Tot.Base.rev l1 @ l2) -> g: LowParse.Spec.Enum.maybe_enum_destr_t' t e (LowParse.Spec.Enum.list_hd l2 :: l1) (LowParse.Spec.Enum.list_tl l2) (LowParse.Spec.Enum.list_append_rev_cons l1 (LowParse.Spec.Enum.list_hd l2) (LowParse.Spec.Enum.list_tl l2)) -> LowParse.Spec.Enum.maybe_enum_destr_t' t e l1 l2 u1
{ "end_col": 57, "end_line": 943, "start_col": 2, "start_line": 918 }
FStar.Pervasives.Lemma
val map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q
val map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) =
false
null
true
match l with | [] -> () | _ :: q -> map_fst_flip q
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.map_fst_flip", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.l_or", "FStar.List.Tot.Base.map", "FStar.Pervasives.Native.snd", "FStar.Pervasives.Native.fst", "LowParse.Spec.Enum.list_map", "LowParse.Spec.Enum.flip", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l)
[ "recursion" ]
LowParse.Spec.Enum.map_fst_flip
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l: Prims.list (a * b) -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Enum.list_map FStar.Pervasives.Native.fst (LowParse.Spec.Enum.list_map LowParse.Spec.Enum.flip l) == LowParse.Spec.Enum.list_map FStar.Pervasives.Native.snd l)
{ "end_col": 28, "end_line": 55, "start_col": 2, "start_line": 53 }
FStar.Pervasives.Lemma
val enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k
val enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) =
false
null
true
assoc_flip_intro e (enum_repr_of_key e k) k
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Enum.assoc_flip_intro", "LowParse.Spec.Enum.enum_repr_of_key", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "LowParse.Spec.Enum.enum_key_of_repr", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k)
[]
LowParse.Spec.Enum.enum_key_of_repr_of_key
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> k: LowParse.Spec.Enum.enum_key e -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Enum.enum_key_of_repr e (LowParse.Spec.Enum.enum_repr_of_key e k) == k)
{ "end_col": 45, "end_line": 196, "start_col": 2, "start_line": 196 }
Prims.GTot
val is_total_enum (#key #repr: eqtype) (l: list (key * repr)) : GTot Type0
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l)
val is_total_enum (#key #repr: eqtype) (l: list (key * repr)) : GTot Type0 let is_total_enum (#key #repr: eqtype) (l: list (key * repr)) : GTot Type0 =
false
null
false
forall (k: key). {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l)
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "sometrivial" ]
[ "Prims.eqtype", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.l_Forall", "Prims.b2t", "LowParse.Spec.Enum.list_mem", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.fst" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val is_total_enum (#key #repr: eqtype) (l: list (key * repr)) : GTot Type0
[]
LowParse.Spec.Enum.is_total_enum
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l: Prims.list (key * repr) -> Prims.GTot Type0
{ "end_col": 88, "end_line": 333, "start_col": 2, "start_line": 333 }
Prims.GTot
val r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x
val r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 =
false
null
false
forall (x: t). {:pattern (r x x)} r x x
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "sometrivial" ]
[ "Prims.l_Forall" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0
[]
LowParse.Spec.Enum.r_reflexive_prop
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
t: Type -> r: (_: t -> _: t -> Prims.GTot Type0) -> Prims.GTot Type0
{ "end_col": 42, "end_line": 464, "start_col": 2, "start_line": 464 }
Prims.Tot
val dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } ))
val dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) =
false
null
false
fun (v_eq: (k: maybe_enum_key e -> v k -> v k -> GTot Type0)) (v_if: (k: maybe_enum_key e -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: (k: maybe_enum_key e -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: (k: maybe_enum_key e -> Tot (r_transitive_t _ (v_eq k)))) (f: (k: maybe_enum_key e -> Tot (v k))) -> match list_hd l2 with | k, r -> [@@ inline_let ]let _:squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@@ inline_let ]let _:squash (maybe_enum_key_of_repr e r == Known k) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr{maybe_enum_key_of_repr_not_in e l1 x}) -> [@@ inline_let ]let y:v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@@ inline_let ]let _:squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) {v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))}))
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.maybe_enum_key", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.squash", "Prims.l_and", "Prims.b2t", "Prims.uu___is_Cons", "Prims.eq2", "FStar.List.Tot.Base.append", "FStar.List.Tot.Base.rev", "LowParse.Spec.Enum.dep_maybe_enum_destr_t'", "Prims.Cons", "LowParse.Spec.Enum.list_hd", "LowParse.Spec.Enum.list_tl", "LowParse.Spec.Enum.list_append_rev_cons", "LowParse.Spec.Enum.if_combinator", "LowParse.Spec.Enum.r_reflexive_t", "LowParse.Spec.Enum.r_transitive_t", "LowParse.Spec.Enum.maybe_enum_key_of_repr_not_in", "LowParse.Spec.Enum.maybe_enum_key_of_repr", "Prims.op_Equality", "Prims.bool", "LowParse.Spec.Combinators.cond_true", "LowParse.Spec.Enum.Known", "LowParse.Spec.Combinators.cond_false", "Prims.unit", "LowParse.Spec.Enum.assoc_append_flip_l_intro", "FStar.List.Tot.Properties.map_append", "FStar.Pervasives.Native.snd", "FStar.List.Tot.Properties.append_mem", "FStar.List.Tot.Base.map", "FStar.List.Tot.Base.mem", "FStar.Pervasives.Native.fst" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1)
[]
LowParse.Spec.Enum.dep_maybe_enum_destr_cons
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> v: (_: LowParse.Spec.Enum.maybe_enum_key e -> Type) -> l1: Prims.list (key * repr) -> l2: Prims.list (key * repr) -> u1: Prims.squash (Cons? l2 /\ e == FStar.List.Tot.Base.rev l1 @ l2) -> g: LowParse.Spec.Enum.dep_maybe_enum_destr_t' e v (LowParse.Spec.Enum.list_hd l2 :: l1) (LowParse.Spec.Enum.list_tl l2) (LowParse.Spec.Enum.list_append_rev_cons l1 (LowParse.Spec.Enum.list_hd l2) (LowParse.Spec.Enum.list_tl l2)) -> LowParse.Spec.Enum.dep_maybe_enum_destr_t' e v l1 l2 u1
{ "end_col": 120, "end_line": 1095, "start_col": 2, "start_line": 1056 }
Prims.GTot
val r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z
val r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 =
false
null
false
forall (x: t) (y: t) (z: t). {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "sometrivial" ]
[ "Prims.l_Forall", "Prims.l_imp", "Prims.l_and" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0
[]
LowParse.Spec.Enum.r_transitive_prop
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
t: Type -> r: (_: t -> _: t -> Prims.GTot Type0) -> Prims.GTot Type0
{ "end_col": 76, "end_line": 485, "start_col": 2, "start_line": 485 }
FStar.Pervasives.Lemma
val map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q
val map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) =
false
null
true
match l with | [] -> () | _ :: q -> map_snd_flip q
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.map_snd_flip", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.l_or", "FStar.List.Tot.Base.map", "FStar.Pervasives.Native.fst", "FStar.Pervasives.Native.snd", "LowParse.Spec.Enum.list_map", "LowParse.Spec.Enum.flip", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l)
[ "recursion" ]
LowParse.Spec.Enum.map_snd_flip
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l: Prims.list (a * b) -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Enum.list_map FStar.Pervasives.Native.snd (LowParse.Spec.Enum.list_map LowParse.Spec.Enum.flip l) == LowParse.Spec.Enum.list_map FStar.Pervasives.Native.fst l)
{ "end_col": 28, "end_line": 61, "start_col": 2, "start_line": 59 }
Prims.Tot
val enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e
val enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) =
false
null
false
enum_tail' e
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_tail'" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr)
[]
LowParse.Spec.Enum.enum_tail
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> LowParse.Spec.Enum.enum key repr
{ "end_col": 14, "end_line": 612, "start_col": 2, "start_line": 612 }
Prims.Tot
val dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k': enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } ))
val dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k': enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k': enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) =
false
null
false
match e with | (k, _) :: _ -> fun (v_eq: (k: enum_key e -> v k -> v k -> GTot Type0)) (v_if: (k: enum_key e -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: (k: enum_key e -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: (k: enum_key e -> Tot (r_transitive_t _ (v_eq k)))) (f: (k: enum_key e -> Tot (v k))) (k': enum_key e) -> [@@ inline_let ]let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@@ inline_let ]let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@@ inline_let ]let y:v k' = v_if k' (k = k') (fun _ -> [@@ inline_let ]let y:v k' = f k in y) (fun _ -> [@@ inline_let ]let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@@ inline_let ]let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@@ inline_let ]let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@@ inline_let ]let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@@ inline_let ]let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@@ inline_let ]let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@@ inline_let ]let k':key = k' in [@@ inline_let ]let _ = assert (k' <> k) in [@@ inline_let ]let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@@ inline_let ]let y:v' k' = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y) in (y <: (y: v k' {v_eq k' y (f k')}))
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.squash", "Prims.b2t", "Prims.uu___is_Cons", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Enum.dep_enum_destr", "LowParse.Spec.Enum.enum_tail", "Prims.list", "LowParse.Spec.Enum.if_combinator", "LowParse.Spec.Enum.r_reflexive_t", "LowParse.Spec.Enum.r_transitive_t", "Prims.op_Equality", "LowParse.Spec.Combinators.cond_true", "LowParse.Spec.Combinators.cond_false", "Prims.unit", "Prims._assert", "FStar.List.Tot.Base.mem", "FStar.List.Tot.Base.map", "FStar.Pervasives.Native.fst", "Prims.op_disEquality", "LowParse.Spec.Enum.r_transitive_t_elim", "LowParse.Spec.Enum.r_reflexive_t_elim" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key)))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k': enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v)
[]
LowParse.Spec.Enum.dep_enum_destr_cons
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> u330: Prims.squash (Cons? e) -> v: (_: LowParse.Spec.Enum.enum_key e -> Type) -> destr: LowParse.Spec.Enum.dep_enum_destr (LowParse.Spec.Enum.enum_tail e) (fun k' -> v k') -> LowParse.Spec.Enum.dep_enum_destr e v
{ "end_col": 42, "end_line": 762, "start_col": 2, "start_line": 717 }
Prims.GTot
val maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l)))
val maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 =
false
null
false
(~(L.mem x (L.map snd l)))
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "sometrivial" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.l_not", "Prims.b2t", "FStar.List.Tot.Base.mem", "FStar.List.Tot.Base.map", "FStar.Pervasives.Native.snd" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0
[]
LowParse.Spec.Enum.maybe_enum_key_of_repr_not_in
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> l: Prims.list (key * repr) -> x: repr -> Prims.GTot Type0
{ "end_col": 29, "end_line": 792, "start_col": 2, "start_line": 792 }
Prims.Tot
val serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) ()
val serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) =
false
null
false
serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) ()
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "LowParse.Spec.Enum.enum", "LowParse.Spec.Combinators.serialize_synth", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.Enum.parse_enum_key_cond", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.Enum.parse_enum_key_synth", "LowParse.Spec.Combinators.serialize_filter", "LowParse.Spec.Enum.serialize_enum_key_synth_recip", "Prims.unit", "LowParse.Spec.Enum.serialize_enum_key_synth_inverse", "LowParse.Spec.Enum.parse_enum_key" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e))
[]
LowParse.Spec.Enum.serialize_enum_key
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p: LowParse.Spec.Base.parser k repr -> s: LowParse.Spec.Base.serializer p -> e: LowParse.Spec.Enum.enum key repr -> LowParse.Spec.Base.serializer (LowParse.Spec.Enum.parse_enum_key p e)
{ "end_col": 6, "end_line": 225, "start_col": 2, "start_line": 219 }
Prims.Tot
val maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r
val maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) =
false
null
false
if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.list_mem", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.snd", "LowParse.Spec.Enum.Known", "LowParse.Spec.Enum.enum_key_of_repr", "Prims.bool", "LowParse.Spec.Enum.Unknown", "LowParse.Spec.Enum.maybe_enum_key" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e)
[]
LowParse.Spec.Enum.maybe_enum_key_of_repr
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> r: repr -> LowParse.Spec.Enum.maybe_enum_key e
{ "end_col": 16, "end_line": 260, "start_col": 2, "start_line": 258 }
Prims.Tot
val parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e)
val parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) =
false
null
false
p `parse_synth` (maybe_enum_key_of_repr e)
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.Spec.Enum.enum", "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.Enum.maybe_enum_key", "LowParse.Spec.Enum.maybe_enum_key_of_repr" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e))
[]
LowParse.Spec.Enum.parse_maybe_enum_key
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p: LowParse.Spec.Base.parser k repr -> e: LowParse.Spec.Enum.enum key repr -> LowParse.Spec.Base.parser k (LowParse.Spec.Enum.maybe_enum_key e)
{ "end_col": 44, "end_line": 268, "start_col": 2, "start_line": 268 }
Prims.Tot
val serialize_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) ()
val serialize_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) let serialize_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) =
false
null
false
serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) ()
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "LowParse.Spec.Enum.total_enum", "LowParse.Spec.Combinators.serialize_synth", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Enum.parse_enum_key", "LowParse.Spec.Enum.synth_total_enum_key", "LowParse.Spec.Enum.serialize_enum_key", "LowParse.Spec.Enum.synth_total_enum_key_recip", "LowParse.Spec.Enum.parse_total_enum_key" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l))
[]
LowParse.Spec.Enum.serialize_total_enum_key
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p: LowParse.Spec.Base.parser k repr -> s: LowParse.Spec.Base.serializer p -> l: LowParse.Spec.Enum.total_enum key repr -> LowParse.Spec.Base.serializer (LowParse.Spec.Enum.parse_total_enum_key p l)
{ "end_col": 124, "end_line": 372, "start_col": 2, "start_line": 372 }
Prims.Tot
val repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr{maybe_total_enum_key_of_repr e r == k})
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r
val repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr{maybe_total_enum_key_of_repr e r == k}) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr{maybe_total_enum_key_of_repr e r == k}) =
false
null
false
match k with | TotalKnown k' -> enum_key_of_repr_of_key e k'; enum_repr_of_key e k' | TotalUnknown r -> r
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.total_enum", "LowParse.Spec.Enum.maybe_total_enum_key", "LowParse.Spec.Enum.enum_repr_of_key", "Prims.unit", "LowParse.Spec.Enum.enum_key_of_repr_of_key", "LowParse.Spec.Enum.unknown_enum_repr", "Prims.eq2", "LowParse.Spec.Enum.maybe_total_enum_key_of_repr" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr{maybe_total_enum_key_of_repr e r == k})
[]
LowParse.Spec.Enum.repr_of_maybe_total_enum_key
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.total_enum key repr -> k: LowParse.Spec.Enum.maybe_total_enum_key e -> r: repr{LowParse.Spec.Enum.maybe_total_enum_key_of_repr e r == k}
{ "end_col": 23, "end_line": 404, "start_col": 2, "start_line": 400 }
Prims.Tot
val maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r
val maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) =
false
null
false
if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.total_enum", "LowParse.Spec.Enum.list_mem", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.snd", "LowParse.Spec.Enum.TotalKnown", "LowParse.Spec.Enum.enum_key_of_repr", "Prims.bool", "LowParse.Spec.Enum.TotalUnknown", "LowParse.Spec.Enum.maybe_total_enum_key" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e)
[]
LowParse.Spec.Enum.maybe_total_enum_key_of_repr
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.total_enum key repr -> r: repr -> LowParse.Spec.Enum.maybe_total_enum_key e
{ "end_col": 21, "end_line": 385, "start_col": 2, "start_line": 383 }
Prims.Tot
val maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r
val maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) =
false
null
false
match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.total_enum", "LowParse.Spec.Enum.maybe_total_enum_key", "LowParse.Spec.Enum.Known", "LowParse.Spec.Enum.unknown_enum_repr", "LowParse.Spec.Enum.Unknown", "LowParse.Spec.Enum.maybe_enum_key" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e)
[]
LowParse.Spec.Enum.maybe_enum_key_of_total
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.total_enum key repr -> k: LowParse.Spec.Enum.maybe_total_enum_key e -> LowParse.Spec.Enum.maybe_enum_key e
{ "end_col": 31, "end_line": 423, "start_col": 2, "start_line": 421 }
Prims.Tot
val parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e)
val parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) =
false
null
false
p `parse_synth` (maybe_total_enum_key_of_repr e)
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.Spec.Enum.total_enum", "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.Enum.maybe_total_enum_key", "LowParse.Spec.Enum.maybe_total_enum_key_of_repr" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e))
[]
LowParse.Spec.Enum.parse_maybe_total_enum_key
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p: LowParse.Spec.Base.parser k repr -> e: LowParse.Spec.Enum.total_enum key repr -> LowParse.Spec.Base.parser k (LowParse.Spec.Enum.maybe_total_enum_key e)
{ "end_col": 50, "end_line": 393, "start_col": 2, "start_line": 393 }
FStar.Pervasives.Lemma
val serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x
val serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) =
false
null
true
serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.maybe_enum_key", "LowParse.Spec.Combinators.serialize_synth_eq", "LowParse.Spec.Enum.maybe_enum_key_of_repr", "LowParse.Spec.Enum.repr_of_maybe_enum_key", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "LowParse.Bytes.bytes", "LowParse.Spec.Base.serialize", "LowParse.Spec.Enum.parse_maybe_enum_key", "LowParse.Spec.Enum.serialize_maybe_enum_key", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x))
[]
LowParse.Spec.Enum.serialize_maybe_enum_key_eq
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
s: LowParse.Spec.Base.serializer p -> e: LowParse.Spec.Enum.enum key repr -> x: LowParse.Spec.Enum.maybe_enum_key e -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.serialize (LowParse.Spec.Enum.serialize_maybe_enum_key p s e) x == LowParse.Spec.Base.serialize s (LowParse.Spec.Enum.repr_of_maybe_enum_key e x))
{ "end_col": 83, "end_line": 330, "start_col": 2, "start_line": 330 }
Prims.Tot
val default_if (t: Type) : Tot (if_combinator t (eq2 #t))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } )
val default_if (t: Type) : Tot (if_combinator t (eq2 #t)) let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) =
false
null
false
fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t{y == (if cond then s_true () else s_false ())})
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.bool", "LowParse.Spec.Combinators.cond_true", "LowParse.Spec.Combinators.cond_false", "Prims.eq2", "LowParse.Spec.Enum.if_combinator" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val default_if (t: Type) : Tot (if_combinator t (eq2 #t))
[]
LowParse.Spec.Enum.default_if
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
t: Type -> LowParse.Spec.Enum.if_combinator t Prims.eq2
{ "end_col": 79, "end_line": 522, "start_col": 2, "start_line": 516 }
Prims.Tot
val enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit{Cons? e}) (u2: unit{Nil? (enum_tail e)}) : Tot (enum_destr_t t e)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e
val enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit{Cons? e}) (u2: unit{Nil? (enum_tail e)}) : Tot (enum_destr_t t e) let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit{Cons? e}) (u2: unit{Nil? (enum_tail e)}) : Tot (enum_destr_t t e) =
false
null
false
enum_destr_cons_nil t e
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.unit", "Prims.b2t", "Prims.uu___is_Cons", "FStar.Pervasives.Native.tuple2", "Prims.uu___is_Nil", "LowParse.Spec.Enum.enum_tail", "LowParse.Spec.Enum.enum_destr_cons_nil", "LowParse.Spec.Enum.enum_destr_t" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } )
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit{Cons? e}) (u2: unit{Nil? (enum_tail e)}) : Tot (enum_destr_t t e)
[]
LowParse.Spec.Enum.enum_destr_cons_nil'
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
t: Type -> key: Prims.eqtype -> repr: Prims.eqtype -> e: LowParse.Spec.Enum.enum key repr -> u1: Prims.unit{Cons? e} -> u2: Prims.unit{Nil? (LowParse.Spec.Enum.enum_tail e)} -> LowParse.Spec.Enum.enum_destr_t t e
{ "end_col": 25, "end_line": 689, "start_col": 2, "start_line": 689 }
Prims.Tot
val enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit{Cons? e}) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g
val enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit{Cons? e}) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit{Cons? e}) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) =
false
null
false
enum_destr_cons t e g
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.unit", "Prims.b2t", "Prims.uu___is_Cons", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.enum_destr_t", "LowParse.Spec.Enum.enum_tail", "LowParse.Spec.Enum.enum_destr_cons" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit{Cons? e}) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e)
[]
LowParse.Spec.Enum.enum_destr_cons'
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
t: Type -> key: Prims.eqtype -> repr: Prims.eqtype -> e: LowParse.Spec.Enum.enum key repr -> u311: u313: Prims.unit{Cons? e} -> g: LowParse.Spec.Enum.enum_destr_t t (LowParse.Spec.Enum.enum_tail e) -> LowParse.Spec.Enum.enum_destr_t t e
{ "end_col": 23, "end_line": 661, "start_col": 2, "start_line": 661 }
Prims.Tot
val fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x)
val fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) =
false
null
false
fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x)
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "LowParse.Spec.Enum.if_combinator", "Prims.bool", "LowParse.Spec.Combinators.cond_true", "LowParse.Spec.Combinators.cond_false", "LowParse.Spec.Enum.feq" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq))
[]
LowParse.Spec.Enum.fif
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
u286: Type -> v: Type -> eq: (_: v -> _: v -> Prims.GTot Type0) -> ifc: LowParse.Spec.Enum.if_combinator v eq -> LowParse.Spec.Enum.if_combinator (_: u286 -> v) (LowParse.Spec.Enum.feq u286 v eq)
{ "end_col": 29, "end_line": 582, "start_col": 2, "start_line": 578 }
FStar.Pervasives.Lemma
val feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u -> Lemma ((f1 x) `eq` (f2 x)))) : Lemma (feq _ _ eq f1 f2)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi
val feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u -> Lemma ((f1 x) `eq` (f2 x)))) : Lemma (feq _ _ eq f1 f2) let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u -> Lemma ((f1 x) `eq` (f2 x)))) : Lemma (feq _ _ eq f1 f2) =
false
null
true
Classical.forall_intro phi
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Classical.forall_intro", "LowParse.Spec.Enum.feq" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u -> Lemma ((f1 x) `eq` (f2 x)))) : Lemma (feq _ _ eq f1 f2)
[]
LowParse.Spec.Enum.feq_intro
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
u279: Type -> v: Type -> eq: (_: v -> _: v -> Prims.GTot Type0) -> f1: (_: u279 -> v) -> f2: (_: u279 -> v) -> phi: (x: u279 -> FStar.Pervasives.Lemma (ensures eq (f1 x) (f2 x))) -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Enum.feq u279 v eq f1 f2)
{ "end_col": 28, "end_line": 549, "start_col": 2, "start_line": 549 }
Prims.Pure
val enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e
val enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) =
false
null
false
fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@@ inline_let ]let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e': list (key * repr) {e' == e}) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> ((f k) <: (y: t{eq y (f x)})))) e
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.if_combinator", "LowParse.Spec.Enum.r_reflexive_t", "LowParse.Spec.Enum.r_transitive_t", "Prims.list", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.enum_key", "Prims.unit", "LowParse.Spec.Enum.r_reflexive_t_elim", "LowParse.Spec.Enum.enum_destr_t", "Prims.l_and", "Prims.b2t", "Prims.uu___is_Cons", "Prims.uu___is_Nil", "LowParse.Spec.Enum.enum_tail'", "Prims.l_True" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e)))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True))
[]
LowParse.Spec.Enum.enum_destr_cons_nil
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
t: Type -> e: LowParse.Spec.Enum.enum key repr -> Prims.Pure (LowParse.Spec.Enum.enum_destr_t t e)
{ "end_col": 5, "end_line": 679, "start_col": 2, "start_line": 671 }
FStar.Pervasives.Lemma
val list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == (L.rev q) `L.append` [a])
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q
val list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == (L.rev q) `L.append` [a]) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == (L.rev q) `L.append` [a]) =
false
null
true
L.rev_rev' (a :: q); L.rev_rev' q
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "Prims.list", "FStar.List.Tot.Properties.rev_rev'", "Prims.unit", "Prims.Cons", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.List.Tot.Base.rev", "FStar.List.Tot.Base.append", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == (L.rev q) `L.append` [a])
[]
LowParse.Spec.Enum.list_rev_cons
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
a: t -> q: Prims.list t -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.rev (a :: q) == FStar.List.Tot.Base.rev q @ [a])
{ "end_col": 14, "end_line": 801, "start_col": 2, "start_line": 800 }
Prims.Tot
val dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } ))
val dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) =
false
null
false
match e with | (k, _) :: _ -> fun (v_eq: (k: enum_key e -> v k -> v k -> GTot Type0)) (v_if: (k: enum_key e -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: (k: enum_key e -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: (k: enum_key e -> Tot (r_transitive_t _ (v_eq k)))) (f: (k: enum_key e -> Tot (v k))) (k': enum_key e) -> [@@ inline_let ]let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@@ inline_let ]let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@@ inline_let ]let y:v k' = f k in (y <: (y: v k' {v_eq k' y (f k')}))
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.squash", "Prims.l_and", "Prims.b2t", "Prims.uu___is_Cons", "FStar.Pervasives.Native.tuple2", "Prims.uu___is_Nil", "LowParse.Spec.Enum.enum_tail", "LowParse.Spec.Enum.enum_key", "Prims.list", "LowParse.Spec.Enum.if_combinator", "LowParse.Spec.Enum.r_reflexive_t", "LowParse.Spec.Enum.r_transitive_t", "Prims.unit", "LowParse.Spec.Enum.r_transitive_t_elim", "LowParse.Spec.Enum.r_reflexive_t_elim", "LowParse.Spec.Enum.dep_enum_destr" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v)
[]
LowParse.Spec.Enum.dep_enum_destr_cons_nil
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> u335: Prims.squash (Cons? e /\ Nil? (LowParse.Spec.Enum.enum_tail e)) -> v: (_: LowParse.Spec.Enum.enum_key e -> Type) -> LowParse.Spec.Enum.dep_enum_destr e v
{ "end_col": 42, "end_line": 786, "start_col": 2, "start_line": 771 }
FStar.Pervasives.Lemma
val parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse ((parse_maybe_enum_key p e) `parse_synth` (total_of_maybe_enum_key e)) input))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input
val parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse ((parse_maybe_enum_key p e) `parse_synth` (total_of_maybe_enum_key e)) input)) let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse ((parse_maybe_enum_key p e) `parse_synth` (total_of_maybe_enum_key e)) input)) =
false
null
true
parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "LowParse.Spec.Base.parser_kind", "Prims.eqtype", "LowParse.Spec.Base.parser", "LowParse.Spec.Enum.total_enum", "LowParse.Bytes.bytes", "LowParse.Spec.Combinators.parse_synth_eq", "LowParse.Spec.Enum.maybe_enum_key", "LowParse.Spec.Enum.maybe_enum_key_of_repr", "Prims.unit", "LowParse.Spec.Enum.maybe_total_enum_key", "LowParse.Spec.Enum.parse_maybe_enum_key", "LowParse.Spec.Enum.total_of_maybe_enum_key", "LowParse.Spec.Enum.maybe_total_enum_key_of_repr", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Base.parse", "LowParse.Spec.Enum.parse_maybe_total_enum_key", "LowParse.Spec.Combinators.parse_synth", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse ((parse_maybe_enum_key p e) `parse_synth` (total_of_maybe_enum_key e)) input))
[]
LowParse.Spec.Enum.parse_maybe_total_enum_key_eq
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p: LowParse.Spec.Base.parser k repr -> e: LowParse.Spec.Enum.total_enum key repr -> input: LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.parse (LowParse.Spec.Enum.parse_maybe_total_enum_key p e) input == LowParse.Spec.Base.parse (LowParse.Spec.Combinators.parse_synth (LowParse.Spec.Enum.parse_maybe_enum_key p e) (LowParse.Spec.Enum.total_of_maybe_enum_key e)) input)
{ "end_col": 51, "end_line": 453, "start_col": 2, "start_line": 451 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q
let list_tl (#t: Type) (l: list t {Cons? l}) =
false
null
false
match l with | _ :: q -> q
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.list", "Prims.b2t", "Prims.uu___is_Cons" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_tl : l: Prims.list t {Cons? l} -> Prims.list t
[]
LowParse.Spec.Enum.list_tl
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l: Prims.list t {Cons? l} -> Prims.list t
{ "end_col": 15, "end_line": 905, "start_col": 2, "start_line": 904 }
FStar.Pervasives.Lemma
val assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x
val assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) =
false
null
true
match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "Prims.eqtype", "Prims.list", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.assoc_append_flip_l_intro", "Prims.unit", "FStar.List.Tot.Properties.noRepeats_append_elim", "FStar.List.Tot.Base.map", "FStar.Pervasives.Native.snd", "FStar.List.Tot.Properties.map_append", "LowParse.Spec.Enum.map_fst_flip", "FStar.List.Tot.Properties.assoc_mem", "LowParse.Spec.Enum.flip", "Prims.l_and", "Prims.b2t", "FStar.List.Tot.Base.noRepeats", "FStar.List.Tot.Base.append", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.List.Tot.Base.assoc", "FStar.Pervasives.Native.Some", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x))
[ "recursion" ]
LowParse.Spec.Enum.assoc_append_flip_l_intro
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
l1: Prims.list (key * repr) -> l2: Prims.list (key * repr) -> y: repr -> x: key -> FStar.Pervasives.Lemma (requires FStar.List.Tot.Base.noRepeats (FStar.List.Tot.Base.map FStar.Pervasives.Native.snd (l1 @ l2) ) /\ FStar.List.Tot.Base.assoc y (FStar.List.Tot.Base.map LowParse.Spec.Enum.flip l2) == FStar.Pervasives.Native.Some x) (ensures FStar.List.Tot.Base.assoc y (FStar.List.Tot.Base.map LowParse.Spec.Enum.flip (l1 @ l2)) == FStar.Pervasives.Native.Some x)
{ "end_col": 38, "end_line": 823, "start_col": 2, "start_line": 816 }
Prims.Tot
val mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u: squash (e == (L.rev l1) `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u)
val mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u: squash (e == (L.rev l1) `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u: squash (e == (L.rev l1) `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) =
false
null
false
match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@@ inline_let ]let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u)
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total", "" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.squash", "Prims.eq2", "FStar.List.Tot.Base.append", "FStar.List.Tot.Base.rev", "LowParse.Spec.Enum.maybe_enum_destr_nil", "LowParse.Spec.Enum.maybe_enum_destr_cons", "LowParse.Spec.Enum.mk_maybe_enum_destr'", "Prims.Cons", "LowParse.Spec.Enum.list_hd", "LowParse.Spec.Enum.list_tl", "Prims.unit", "LowParse.Spec.Enum.list_append_rev_cons", "LowParse.Spec.Enum.maybe_enum_destr_t'" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u: squash (e == (L.rev l1) `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2)
[ "recursion" ]
LowParse.Spec.Enum.mk_maybe_enum_destr'
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
t: Type -> e: LowParse.Spec.Enum.enum key repr -> l1: Prims.list (key * repr) -> l2: Prims.list (key * repr) -> u420: Prims.squash (e == FStar.List.Tot.Base.rev l1 @ l2) -> Prims.Tot (LowParse.Spec.Enum.maybe_enum_destr_t' t e l1 l2 u420)
{ "end_col": 98, "end_line": 995, "start_col": 2, "start_line": 990 }
Prims.Tot
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) = dep_maybe_enum_destr_t_intro e v (mk_dep_maybe_enum_destr' e v [] e ())
let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) =
false
null
false
dep_maybe_enum_destr_t_intro e v (mk_dep_maybe_enum_destr' e v [] e ())
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.maybe_enum_key", "LowParse.Spec.Enum.dep_maybe_enum_destr_t_intro", "LowParse.Spec.Enum.mk_dep_maybe_enum_destr'", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.dep_maybe_enum_destr_t" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) = match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))) [@Norm] let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_dep_maybe_enum_destr : e: LowParse.Spec.Enum.enum key repr -> v: (_: LowParse.Spec.Enum.maybe_enum_key e -> Type) -> LowParse.Spec.Enum.dep_maybe_enum_destr_t e v
[]
LowParse.Spec.Enum.mk_dep_maybe_enum_destr
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> v: (_: LowParse.Spec.Enum.maybe_enum_key e -> Type) -> LowParse.Spec.Enum.dep_maybe_enum_destr_t e v
{ "end_col": 73, "end_line": 1145, "start_col": 2, "start_line": 1145 }
Prims.Tot
val mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) = match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))
val mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) =
false
null
false
match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total", "" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.maybe_enum_key", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.squash", "Prims.eq2", "FStar.List.Tot.Base.append", "FStar.List.Tot.Base.rev", "LowParse.Spec.Enum.dep_maybe_enum_destr_nil", "LowParse.Spec.Enum.dep_maybe_enum_destr_cons", "LowParse.Spec.Enum.mk_dep_maybe_enum_destr'", "Prims.Cons", "LowParse.Spec.Enum.list_hd", "LowParse.Spec.Enum.list_tl", "LowParse.Spec.Enum.list_append_rev_cons", "LowParse.Spec.Enum.dep_maybe_enum_destr_t'" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2)
[ "recursion" ]
LowParse.Spec.Enum.mk_dep_maybe_enum_destr'
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> v: (_: LowParse.Spec.Enum.maybe_enum_key e -> Type) -> l1: Prims.list (key * repr) -> l2: Prims.list (key * repr) -> u1: Prims.squash (e == FStar.List.Tot.Base.rev l1 @ l2) -> Prims.Tot (LowParse.Spec.Enum.dep_maybe_enum_destr_t' e v l1 l2 u1)
{ "end_col": 162, "end_line": 1138, "start_col": 2, "start_line": 1136 }
Prims.GTot
val list_forallp (#t: Type) (p: (t -> GTot Type0)) (l: list t) : GTot Type0
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec list_forallp (#t: Type) (p: t -> GTot Type0) (l: list t) : GTot Type0 = match l with | [] -> True | a :: q -> p a /\ list_forallp p q
val list_forallp (#t: Type) (p: (t -> GTot Type0)) (l: list t) : GTot Type0 let rec list_forallp (#t: Type) (p: (t -> GTot Type0)) (l: list t) : GTot Type0 =
false
null
false
match l with | [] -> True | a :: q -> p a /\ list_forallp p q
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "sometrivial" ]
[ "Prims.list", "Prims.l_True", "Prims.l_and", "LowParse.Spec.Enum.list_forallp" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) = match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))) [@Norm] let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) = dep_maybe_enum_destr_t_intro e v (mk_dep_maybe_enum_destr' e v [] e ()) (* Eliminators and destructors for verification purposes *)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_forallp (#t: Type) (p: (t -> GTot Type0)) (l: list t) : GTot Type0
[ "recursion" ]
LowParse.Spec.Enum.list_forallp
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p: (_: t -> Prims.GTot Type0) -> l: Prims.list t -> Prims.GTot Type0
{ "end_col": 37, "end_line": 1152, "start_col": 2, "start_line": 1150 }
Prims.Tot
val dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } ))
val dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) =
false
null
false
fun (v_eq: (k: maybe_enum_key e -> v k -> v k -> GTot Type0)) (v_if: (k: maybe_enum_key e -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: (k: maybe_enum_key e -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: (k: maybe_enum_key e -> Tot (r_transitive_t _ (v_eq k)))) (f: (k: maybe_enum_key e -> Tot (v k))) (x: repr{maybe_enum_key_of_repr_not_in e l1 x}) -> ((L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); [@@ inline_let ]let y:v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@@ inline_let ]let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y) <: (y: v (maybe_enum_key_of_repr e x) {v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))}))
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.maybe_enum_key", "Prims.list", "FStar.Pervasives.Native.tuple2", "Prims.squash", "Prims.l_and", "Prims.b2t", "Prims.uu___is_Nil", "Prims.eq2", "FStar.List.Tot.Base.append", "FStar.List.Tot.Base.rev", "Prims.Nil", "LowParse.Spec.Enum.if_combinator", "LowParse.Spec.Enum.r_reflexive_t", "LowParse.Spec.Enum.r_transitive_t", "LowParse.Spec.Enum.maybe_enum_key_of_repr_not_in", "Prims.unit", "LowParse.Spec.Enum.maybe_enum_key_of_repr", "LowParse.Spec.Enum.Unknown", "Prims._assert", "FStar.List.Tot.Properties.rev_mem", "FStar.List.Tot.Base.map", "FStar.Pervasives.Native.snd", "LowParse.Spec.Enum.list_rev_map", "FStar.List.Tot.Properties.append_l_nil", "LowParse.Spec.Enum.dep_maybe_enum_destr_t'" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) []))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1)
[]
LowParse.Spec.Enum.dep_maybe_enum_destr_nil
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> v: (_: LowParse.Spec.Enum.maybe_enum_key e -> Type) -> l1: Prims.list (key * repr) -> l2: Prims.list (key * repr) -> u1: Prims.squash (Nil? l2 /\ e == FStar.List.Tot.Base.rev l1 @ []) -> LowParse.Spec.Enum.dep_maybe_enum_destr_t' e v l1 l2 u1
{ "end_col": 117, "end_line": 1124, "start_col": 2, "start_line": 1106 }
FStar.Pervasives.Lemma
val list_forallp_mem (#t: eqtype) (p: (t -> GTot Type0)) (l: list t) : Lemma (list_forallp p l <==> (forall x. L.mem x l ==> p x))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rec list_forallp_mem (#t: eqtype) (p: t -> GTot Type0) (l: list t) : Lemma (list_forallp p l <==> (forall x . L.mem x l ==> p x)) = match l with | [] -> () | _ :: q -> list_forallp_mem p q
val list_forallp_mem (#t: eqtype) (p: (t -> GTot Type0)) (l: list t) : Lemma (list_forallp p l <==> (forall x. L.mem x l ==> p x)) let rec list_forallp_mem (#t: eqtype) (p: (t -> GTot Type0)) (l: list t) : Lemma (list_forallp p l <==> (forall x. L.mem x l ==> p x)) =
false
null
true
match l with | [] -> () | _ :: q -> list_forallp_mem p q
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "lemma" ]
[ "Prims.eqtype", "Prims.list", "LowParse.Spec.Enum.list_forallp_mem", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_iff", "LowParse.Spec.Enum.list_forallp", "Prims.l_Forall", "Prims.l_imp", "Prims.b2t", "FStar.List.Tot.Base.mem", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) = match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))) [@Norm] let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) = dep_maybe_enum_destr_t_intro e v (mk_dep_maybe_enum_destr' e v [] e ()) (* Eliminators and destructors for verification purposes *) let rec list_forallp (#t: Type) (p: t -> GTot Type0) (l: list t) : GTot Type0 = match l with | [] -> True | a :: q -> p a /\ list_forallp p q let rec list_forallp_mem (#t: eqtype) (p: t -> GTot Type0) (l: list t) : Lemma
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val list_forallp_mem (#t: eqtype) (p: (t -> GTot Type0)) (l: list t) : Lemma (list_forallp p l <==> (forall x. L.mem x l ==> p x))
[ "recursion" ]
LowParse.Spec.Enum.list_forallp_mem
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
p: (_: t -> Prims.GTot Type0) -> l: Prims.list t -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Enum.list_forallp p l <==> (forall (x: t). FStar.List.Tot.Base.mem x l ==> p x))
{ "end_col": 34, "end_line": 1158, "start_col": 2, "start_line": 1156 }
Prims.Tot
val enum_repr_of_key_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit{Cons? e}) (u2: unit{Nil? (enum_tail' e)}) : Tot (enum_repr_of_key'_t e)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_repr_of_key_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail' e) } ) : Tot (enum_repr_of_key'_t e) = enum_repr_of_key_cons_nil e
val enum_repr_of_key_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit{Cons? e}) (u2: unit{Nil? (enum_tail' e)}) : Tot (enum_repr_of_key'_t e) let enum_repr_of_key_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit{Cons? e}) (u2: unit{Nil? (enum_tail' e)}) : Tot (enum_repr_of_key'_t e) =
false
null
false
enum_repr_of_key_cons_nil e
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.unit", "Prims.b2t", "Prims.uu___is_Cons", "FStar.Pervasives.Native.tuple2", "Prims.uu___is_Nil", "LowParse.Spec.Enum.enum_tail'", "LowParse.Spec.Enum.enum_repr_of_key_cons_nil", "LowParse.Spec.Enum.enum_repr_of_key'_t" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) = match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))) [@Norm] let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) = dep_maybe_enum_destr_t_intro e v (mk_dep_maybe_enum_destr' e v [] e ()) (* Eliminators and destructors for verification purposes *) let rec list_forallp (#t: Type) (p: t -> GTot Type0) (l: list t) : GTot Type0 = match l with | [] -> True | a :: q -> p a /\ list_forallp p q let rec list_forallp_mem (#t: eqtype) (p: t -> GTot Type0) (l: list t) : Lemma (list_forallp p l <==> (forall x . L.mem x l ==> p x)) = match l with | [] -> () | _ :: q -> list_forallp_mem p q inline_for_extraction let destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> Tot Type) (f_known: ( (x: key) -> (u: squash (list_mem x (list_map fst e))) -> Tot (f (Known x)) )) (f_unknown: ( (x: value) -> (u: squash (list_mem x (list_map snd e) == false)) -> Tot (f (Unknown x)) )) (x: maybe_enum_key e) : Tot (f x) = match x with | Known x' -> f_known x' () | Unknown x' -> f_unknown x' () let forall_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> GTot Type0) (f_known: squash (list_forallp (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e))) (f_unknown: ( (x: value) -> Tot (squash (list_mem x (list_map snd e) == false ==> f (Unknown x))) )) : Tot (squash (forall (x: maybe_enum_key e) . f x)) = let g (x: maybe_enum_key e) : Lemma (f x) = let u : squash (f x) = destruct_maybe_enum_key e (fun y -> squash (f y)) (fun x' u -> list_forallp_mem (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e)) (fun x' u -> f_unknown x') x in assert (f x) in Classical.forall_intro g (* Converting enum keys to their representation, using combinators *) let enum_repr_of_key'_t (#key #repr: eqtype) (e: enum key repr) : Tot Type = (x: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e x } ) inline_for_extraction let enum_repr_of_key_cons (#key #repr: eqtype) (e: enum key repr) (f : enum_repr_of_key'_t (enum_tail' e)) : Pure (enum_repr_of_key'_t e) (requires (Cons? e)) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, r) :: _ -> (fun (x: enum_key e) -> ( if k = x then (r <: repr) else (f (x <: key) <: repr) ) <: (r: enum_repr e { enum_repr_of_key e x == r } ))) e inline_for_extraction let enum_repr_of_key_cons' (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (f : enum_repr_of_key'_t (enum_tail' e)) : Tot (enum_repr_of_key'_t e) = enum_repr_of_key_cons e f inline_for_extraction let enum_repr_of_key_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (enum_repr_of_key'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | [(k, r)] -> (fun (x: enum_key e) -> (r <: (r: enum_repr e { enum_repr_of_key e x == r } )))) e inline_for_extraction let enum_repr_of_key_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail' e) } )
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_repr_of_key_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit{Cons? e}) (u2: unit{Nil? (enum_tail' e)}) : Tot (enum_repr_of_key'_t e)
[]
LowParse.Spec.Enum.enum_repr_of_key_cons_nil'
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
key: Prims.eqtype -> repr: Prims.eqtype -> e: LowParse.Spec.Enum.enum key repr -> u1: Prims.unit{Cons? e} -> u2: Prims.unit{Nil? (LowParse.Spec.Enum.enum_tail' e)} -> LowParse.Spec.Enum.enum_repr_of_key'_t e
{ "end_col": 29, "end_line": 1261, "start_col": 2, "start_line": 1261 }
Prims.Tot
val maybe_enum_key_of_repr'_t_cons' (key repr: eqtype) (e: enum key repr) (u: unit{Cons? e}) (g: maybe_enum_key_of_repr'_t (enum_tail' e)) : Tot (maybe_enum_key_of_repr'_t e)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let maybe_enum_key_of_repr'_t_cons' (key repr: eqtype) (e: enum key repr ) (u: unit { Cons? e } ) (g : maybe_enum_key_of_repr'_t (enum_tail' e)) : Tot (maybe_enum_key_of_repr'_t e) = maybe_enum_key_of_repr'_t_cons e g
val maybe_enum_key_of_repr'_t_cons' (key repr: eqtype) (e: enum key repr) (u: unit{Cons? e}) (g: maybe_enum_key_of_repr'_t (enum_tail' e)) : Tot (maybe_enum_key_of_repr'_t e) let maybe_enum_key_of_repr'_t_cons' (key repr: eqtype) (e: enum key repr) (u: unit{Cons? e}) (g: maybe_enum_key_of_repr'_t (enum_tail' e)) : Tot (maybe_enum_key_of_repr'_t e) =
false
null
false
maybe_enum_key_of_repr'_t_cons e g
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.unit", "Prims.b2t", "Prims.uu___is_Cons", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.maybe_enum_key_of_repr'_t", "LowParse.Spec.Enum.enum_tail'", "LowParse.Spec.Enum.maybe_enum_key_of_repr'_t_cons" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) = match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))) [@Norm] let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) = dep_maybe_enum_destr_t_intro e v (mk_dep_maybe_enum_destr' e v [] e ()) (* Eliminators and destructors for verification purposes *) let rec list_forallp (#t: Type) (p: t -> GTot Type0) (l: list t) : GTot Type0 = match l with | [] -> True | a :: q -> p a /\ list_forallp p q let rec list_forallp_mem (#t: eqtype) (p: t -> GTot Type0) (l: list t) : Lemma (list_forallp p l <==> (forall x . L.mem x l ==> p x)) = match l with | [] -> () | _ :: q -> list_forallp_mem p q inline_for_extraction let destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> Tot Type) (f_known: ( (x: key) -> (u: squash (list_mem x (list_map fst e))) -> Tot (f (Known x)) )) (f_unknown: ( (x: value) -> (u: squash (list_mem x (list_map snd e) == false)) -> Tot (f (Unknown x)) )) (x: maybe_enum_key e) : Tot (f x) = match x with | Known x' -> f_known x' () | Unknown x' -> f_unknown x' () let forall_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> GTot Type0) (f_known: squash (list_forallp (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e))) (f_unknown: ( (x: value) -> Tot (squash (list_mem x (list_map snd e) == false ==> f (Unknown x))) )) : Tot (squash (forall (x: maybe_enum_key e) . f x)) = let g (x: maybe_enum_key e) : Lemma (f x) = let u : squash (f x) = destruct_maybe_enum_key e (fun y -> squash (f y)) (fun x' u -> list_forallp_mem (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e)) (fun x' u -> f_unknown x') x in assert (f x) in Classical.forall_intro g (* Converting enum keys to their representation, using combinators *) let enum_repr_of_key'_t (#key #repr: eqtype) (e: enum key repr) : Tot Type = (x: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e x } ) inline_for_extraction let enum_repr_of_key_cons (#key #repr: eqtype) (e: enum key repr) (f : enum_repr_of_key'_t (enum_tail' e)) : Pure (enum_repr_of_key'_t e) (requires (Cons? e)) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, r) :: _ -> (fun (x: enum_key e) -> ( if k = x then (r <: repr) else (f (x <: key) <: repr) ) <: (r: enum_repr e { enum_repr_of_key e x == r } ))) e inline_for_extraction let enum_repr_of_key_cons' (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (f : enum_repr_of_key'_t (enum_tail' e)) : Tot (enum_repr_of_key'_t e) = enum_repr_of_key_cons e f inline_for_extraction let enum_repr_of_key_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (enum_repr_of_key'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | [(k, r)] -> (fun (x: enum_key e) -> (r <: (r: enum_repr e { enum_repr_of_key e x == r } )))) e inline_for_extraction let enum_repr_of_key_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail' e) } ) : Tot (enum_repr_of_key'_t e) = enum_repr_of_key_cons_nil e let enum_repr_of_key_append_cons (#key #repr: eqtype) (e: enum key repr) (l1: list (key & repr)) (kr: (key & repr)) (l2: list (key & repr)) : Lemma (requires (e == l1 `L.append` (kr :: l2))) (ensures (list_mem (fst kr) (list_map fst e) /\ enum_repr_of_key e (fst kr) == snd kr /\ list_mem (snd kr) (list_map snd e) /\ enum_key_of_repr e (snd kr) == fst kr)) = L.map_append fst l1 (kr :: l2); L.noRepeats_append_elim (L.map fst l1) (L.map fst (kr :: l2)); L.assoc_mem (fst kr) l1; L.assoc_mem (fst kr) e; L.assoc_append_elim_l (fst kr) l1 (kr :: l2); enum_key_of_repr_of_key e (fst kr) let maybe_enum_key_of_repr'_t (#key #repr: eqtype) (e: enum key repr) : Tot Type = (x: repr) -> Tot (k: maybe_enum_key e { k == maybe_enum_key_of_repr e x } ) #push-options "--z3rlimit 32" inline_for_extraction let maybe_enum_key_of_repr'_t_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | [(k, r)] -> (fun x -> (( if r = x then Known k else Unknown x ) <: (k: maybe_enum_key e { k == maybe_enum_key_of_repr e x } )))) e inline_for_extraction let maybe_enum_key_of_repr'_t_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail' e) } ) : Tot (maybe_enum_key_of_repr'_t e) = maybe_enum_key_of_repr'_t_cons_nil e inline_for_extraction let maybe_enum_key_of_repr'_t_cons (#key #repr: eqtype) (e: enum key repr ) (g : maybe_enum_key_of_repr'_t (enum_tail' e)) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e)) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, r) :: _ -> (fun x -> (( if r = x then Known k else let y : maybe_enum_key (enum_tail' e) = g x in match y with | Known k' -> Known (k' <: key) | Unknown x' -> Unknown x ) <: (k: maybe_enum_key e { k == maybe_enum_key_of_repr e x } )))) e inline_for_extraction let maybe_enum_key_of_repr'_t_cons' (key repr: eqtype) (e: enum key repr ) (u: unit { Cons? e } ) (g : maybe_enum_key_of_repr'_t (enum_tail' e))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val maybe_enum_key_of_repr'_t_cons' (key repr: eqtype) (e: enum key repr) (u: unit{Cons? e}) (g: maybe_enum_key_of_repr'_t (enum_tail' e)) : Tot (maybe_enum_key_of_repr'_t e)
[]
LowParse.Spec.Enum.maybe_enum_key_of_repr'_t_cons'
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
key: Prims.eqtype -> repr: Prims.eqtype -> e: LowParse.Spec.Enum.enum key repr -> u528: u530: Prims.unit{Cons? e} -> g: LowParse.Spec.Enum.maybe_enum_key_of_repr'_t (LowParse.Spec.Enum.enum_tail' e) -> LowParse.Spec.Enum.maybe_enum_key_of_repr'_t e
{ "end_col": 36, "end_line": 1342, "start_col": 2, "start_line": 1342 }
Prims.Tot
val dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d
val dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) =
false
null
false
d
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.maybe_enum_key", "LowParse.Spec.Enum.dep_maybe_enum_destr_t'", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Enum.dep_maybe_enum_destr_t" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ())
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v)
[]
LowParse.Spec.Enum.dep_maybe_enum_destr_t_intro
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> v: (_: LowParse.Spec.Enum.maybe_enum_key e -> Type) -> d: LowParse.Spec.Enum.dep_maybe_enum_destr_t' e v [] e () -> LowParse.Spec.Enum.dep_maybe_enum_destr_t e v
{ "end_col": 3, "end_line": 1044, "start_col": 2, "start_line": 1044 }
Prims.Pure
val enum_repr_of_key_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (enum_repr_of_key'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let enum_repr_of_key_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (enum_repr_of_key'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | [(k, r)] -> (fun (x: enum_key e) -> (r <: (r: enum_repr e { enum_repr_of_key e x == r } )))) e
val enum_repr_of_key_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (enum_repr_of_key'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) let enum_repr_of_key_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (enum_repr_of_key'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) =
false
null
false
(fun (e': list (key * repr) {e' == e}) -> match e' with | [k, r] -> (fun (x: enum_key e) -> (r <: (r: enum_repr e {enum_repr_of_key e x == r})))) e
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Enum.enum_repr", "Prims.eq2", "LowParse.Spec.Enum.enum_repr_of_key", "LowParse.Spec.Enum.enum_repr_of_key'_t", "Prims.l_and", "Prims.b2t", "Prims.uu___is_Cons", "FStar.Pervasives.Native.tuple2", "Prims.uu___is_Nil", "LowParse.Spec.Enum.enum_tail'", "Prims.l_True" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) = match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))) [@Norm] let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) = dep_maybe_enum_destr_t_intro e v (mk_dep_maybe_enum_destr' e v [] e ()) (* Eliminators and destructors for verification purposes *) let rec list_forallp (#t: Type) (p: t -> GTot Type0) (l: list t) : GTot Type0 = match l with | [] -> True | a :: q -> p a /\ list_forallp p q let rec list_forallp_mem (#t: eqtype) (p: t -> GTot Type0) (l: list t) : Lemma (list_forallp p l <==> (forall x . L.mem x l ==> p x)) = match l with | [] -> () | _ :: q -> list_forallp_mem p q inline_for_extraction let destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> Tot Type) (f_known: ( (x: key) -> (u: squash (list_mem x (list_map fst e))) -> Tot (f (Known x)) )) (f_unknown: ( (x: value) -> (u: squash (list_mem x (list_map snd e) == false)) -> Tot (f (Unknown x)) )) (x: maybe_enum_key e) : Tot (f x) = match x with | Known x' -> f_known x' () | Unknown x' -> f_unknown x' () let forall_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> GTot Type0) (f_known: squash (list_forallp (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e))) (f_unknown: ( (x: value) -> Tot (squash (list_mem x (list_map snd e) == false ==> f (Unknown x))) )) : Tot (squash (forall (x: maybe_enum_key e) . f x)) = let g (x: maybe_enum_key e) : Lemma (f x) = let u : squash (f x) = destruct_maybe_enum_key e (fun y -> squash (f y)) (fun x' u -> list_forallp_mem (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e)) (fun x' u -> f_unknown x') x in assert (f x) in Classical.forall_intro g (* Converting enum keys to their representation, using combinators *) let enum_repr_of_key'_t (#key #repr: eqtype) (e: enum key repr) : Tot Type = (x: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e x } ) inline_for_extraction let enum_repr_of_key_cons (#key #repr: eqtype) (e: enum key repr) (f : enum_repr_of_key'_t (enum_tail' e)) : Pure (enum_repr_of_key'_t e) (requires (Cons? e)) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, r) :: _ -> (fun (x: enum_key e) -> ( if k = x then (r <: repr) else (f (x <: key) <: repr) ) <: (r: enum_repr e { enum_repr_of_key e x == r } ))) e inline_for_extraction let enum_repr_of_key_cons' (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (f : enum_repr_of_key'_t (enum_tail' e)) : Tot (enum_repr_of_key'_t e) = enum_repr_of_key_cons e f inline_for_extraction let enum_repr_of_key_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (enum_repr_of_key'_t e) (requires (Cons? e /\ Nil? (enum_tail' e)))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val enum_repr_of_key_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (enum_repr_of_key'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True))
[]
LowParse.Spec.Enum.enum_repr_of_key_cons_nil
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> Prims.Pure (LowParse.Spec.Enum.enum_repr_of_key'_t e)
{ "end_col": 6, "end_line": 1252, "start_col": 2, "start_line": 1248 }
Prims.Pure
val maybe_enum_key_of_repr'_t_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True))
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let maybe_enum_key_of_repr'_t_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | [(k, r)] -> (fun x -> (( if r = x then Known k else Unknown x ) <: (k: maybe_enum_key e { k == maybe_enum_key_of_repr e x } )))) e
val maybe_enum_key_of_repr'_t_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) let maybe_enum_key_of_repr'_t_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) =
false
null
false
(fun (e': list (key * repr) {e' == e}) -> match e' with | [k, r] -> (fun x -> ((if r = x then Known k else Unknown x) <: (k: maybe_enum_key e {k == maybe_enum_key_of_repr e x})))) e
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "Prims.op_Equality", "LowParse.Spec.Enum.Known", "Prims.bool", "LowParse.Spec.Enum.Unknown", "LowParse.Spec.Enum.maybe_enum_key", "Prims.eq2", "LowParse.Spec.Enum.maybe_enum_key_of_repr", "LowParse.Spec.Enum.maybe_enum_key_of_repr'_t", "Prims.l_and", "Prims.b2t", "Prims.uu___is_Cons", "FStar.Pervasives.Native.tuple2", "Prims.uu___is_Nil", "LowParse.Spec.Enum.enum_tail'", "Prims.l_True" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) = match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))) [@Norm] let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) = dep_maybe_enum_destr_t_intro e v (mk_dep_maybe_enum_destr' e v [] e ()) (* Eliminators and destructors for verification purposes *) let rec list_forallp (#t: Type) (p: t -> GTot Type0) (l: list t) : GTot Type0 = match l with | [] -> True | a :: q -> p a /\ list_forallp p q let rec list_forallp_mem (#t: eqtype) (p: t -> GTot Type0) (l: list t) : Lemma (list_forallp p l <==> (forall x . L.mem x l ==> p x)) = match l with | [] -> () | _ :: q -> list_forallp_mem p q inline_for_extraction let destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> Tot Type) (f_known: ( (x: key) -> (u: squash (list_mem x (list_map fst e))) -> Tot (f (Known x)) )) (f_unknown: ( (x: value) -> (u: squash (list_mem x (list_map snd e) == false)) -> Tot (f (Unknown x)) )) (x: maybe_enum_key e) : Tot (f x) = match x with | Known x' -> f_known x' () | Unknown x' -> f_unknown x' () let forall_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> GTot Type0) (f_known: squash (list_forallp (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e))) (f_unknown: ( (x: value) -> Tot (squash (list_mem x (list_map snd e) == false ==> f (Unknown x))) )) : Tot (squash (forall (x: maybe_enum_key e) . f x)) = let g (x: maybe_enum_key e) : Lemma (f x) = let u : squash (f x) = destruct_maybe_enum_key e (fun y -> squash (f y)) (fun x' u -> list_forallp_mem (fun (x: key) -> list_mem x (list_map fst e) /\ f (Known x)) (list_map fst e)) (fun x' u -> f_unknown x') x in assert (f x) in Classical.forall_intro g (* Converting enum keys to their representation, using combinators *) let enum_repr_of_key'_t (#key #repr: eqtype) (e: enum key repr) : Tot Type = (x: enum_key e) -> Tot (r: enum_repr e { r == enum_repr_of_key e x } ) inline_for_extraction let enum_repr_of_key_cons (#key #repr: eqtype) (e: enum key repr) (f : enum_repr_of_key'_t (enum_tail' e)) : Pure (enum_repr_of_key'_t e) (requires (Cons? e)) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, r) :: _ -> (fun (x: enum_key e) -> ( if k = x then (r <: repr) else (f (x <: key) <: repr) ) <: (r: enum_repr e { enum_repr_of_key e x == r } ))) e inline_for_extraction let enum_repr_of_key_cons' (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (f : enum_repr_of_key'_t (enum_tail' e)) : Tot (enum_repr_of_key'_t e) = enum_repr_of_key_cons e f inline_for_extraction let enum_repr_of_key_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (enum_repr_of_key'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = (fun (e' : list (key * repr) { e' == e } ) -> match e' with | [(k, r)] -> (fun (x: enum_key e) -> (r <: (r: enum_repr e { enum_repr_of_key e x == r } )))) e inline_for_extraction let enum_repr_of_key_cons_nil' (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail' e) } ) : Tot (enum_repr_of_key'_t e) = enum_repr_of_key_cons_nil e let enum_repr_of_key_append_cons (#key #repr: eqtype) (e: enum key repr) (l1: list (key & repr)) (kr: (key & repr)) (l2: list (key & repr)) : Lemma (requires (e == l1 `L.append` (kr :: l2))) (ensures (list_mem (fst kr) (list_map fst e) /\ enum_repr_of_key e (fst kr) == snd kr /\ list_mem (snd kr) (list_map snd e) /\ enum_key_of_repr e (snd kr) == fst kr)) = L.map_append fst l1 (kr :: l2); L.noRepeats_append_elim (L.map fst l1) (L.map fst (kr :: l2)); L.assoc_mem (fst kr) l1; L.assoc_mem (fst kr) e; L.assoc_append_elim_l (fst kr) l1 (kr :: l2); enum_key_of_repr_of_key e (fst kr) let maybe_enum_key_of_repr'_t (#key #repr: eqtype) (e: enum key repr) : Tot Type = (x: repr) -> Tot (k: maybe_enum_key e { k == maybe_enum_key_of_repr e x } ) #push-options "--z3rlimit 32" inline_for_extraction let maybe_enum_key_of_repr'_t_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e /\ Nil? (enum_tail' e)))
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val maybe_enum_key_of_repr'_t_cons_nil (#key #repr: eqtype) (e: enum key repr) : Pure (maybe_enum_key_of_repr'_t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True))
[]
LowParse.Spec.Enum.maybe_enum_key_of_repr'_t_cons_nil
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key repr -> Prims.Pure (LowParse.Spec.Enum.maybe_enum_key_of_repr'_t e)
{ "end_col": 5, "end_line": 1303, "start_col": 2, "start_line": 1296 }
Prims.Tot
val destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: (maybe_enum_key e -> Tot Type)) (f_known: (x: key -> u: squash (list_mem x (list_map fst e)) -> Tot (f (Known x)))) (f_unknown: (x: value -> u: squash (list_mem x (list_map snd e) == false) -> Tot (f (Unknown x)))) (x: maybe_enum_key e) : Tot (f x)
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> Tot Type) (f_known: ( (x: key) -> (u: squash (list_mem x (list_map fst e))) -> Tot (f (Known x)) )) (f_unknown: ( (x: value) -> (u: squash (list_mem x (list_map snd e) == false)) -> Tot (f (Unknown x)) )) (x: maybe_enum_key e) : Tot (f x) = match x with | Known x' -> f_known x' () | Unknown x' -> f_unknown x' ()
val destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: (maybe_enum_key e -> Tot Type)) (f_known: (x: key -> u: squash (list_mem x (list_map fst e)) -> Tot (f (Known x)))) (f_unknown: (x: value -> u: squash (list_mem x (list_map snd e) == false) -> Tot (f (Unknown x)))) (x: maybe_enum_key e) : Tot (f x) let destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: (maybe_enum_key e -> Tot Type)) (f_known: (x: key -> u: squash (list_mem x (list_map fst e)) -> Tot (f (Known x)))) (f_unknown: (x: value -> u: squash (list_mem x (list_map snd e) == false) -> Tot (f (Unknown x)))) (x: maybe_enum_key e) : Tot (f x) =
false
null
false
match x with | Known x' -> f_known x' () | Unknown x' -> f_unknown x' ()
{ "checked_file": "LowParse.Spec.Enum.fst.checked", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "LowParse.Spec.Enum.fst" }
[ "total" ]
[ "Prims.eqtype", "LowParse.Spec.Enum.enum", "LowParse.Spec.Enum.maybe_enum_key", "Prims.squash", "Prims.b2t", "LowParse.Spec.Enum.list_mem", "LowParse.Spec.Enum.list_map", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.fst", "LowParse.Spec.Enum.Known", "Prims.eq2", "Prims.bool", "FStar.Pervasives.Native.snd", "LowParse.Spec.Enum.Unknown", "LowParse.Spec.Enum.enum_key", "LowParse.Spec.Enum.unknown_enum_repr" ]
[]
module LowParse.Spec.Enum include LowParse.Spec.Combinators module L = FStar.List.Tot [@Norm] let rec list_map (#a #b: Type) (f: (a -> Tot b)) (l: list a) : Tot (l' : list b { l' == L.map f l } ) = match l with | [] -> [] | a :: q -> f a :: list_map f q type enum (key: eqtype) (repr: eqtype) = (l: list (key * repr) { L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) }) [@Norm] let rec list_mem (#t: eqtype) (x: t) (l: list t) : Tot (y: bool { y == true <==> L.mem x l == true } ) = match l with | [] -> false | a :: q -> (x = a || list_mem x q) inline_for_extraction let enum_key (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (s: key { list_mem s (list_map fst e) } ) inline_for_extraction let make_enum_key (#key #repr: eqtype) (e: enum key repr) (k: key) : Pure (enum_key e) (requires (list_mem k (list_map fst e))) (ensures (fun k' -> k == (k' <: key))) = k inline_for_extraction let enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot eqtype = (r: repr { list_mem r (list_map snd e) } ) let flip (#a #b: Type) (c: (a * b)) : Tot (b * a) = let (ca, cb) = c in (cb, ca) let rec map_flip_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map flip (list_map flip l) == l) = match l with | [] -> () | _ :: q -> map_flip_flip q let rec map_fst_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map fst (list_map flip l) == list_map snd l) = match l with | [] -> () | _ :: q -> map_fst_flip q let rec map_snd_flip (#a #b: Type) (l: list (a * b)) : Lemma (list_map snd (list_map flip l) == list_map fst l) = match l with | [] -> () | _ :: q -> map_snd_flip q let rec assoc_mem_snd (#a #b: eqtype) (l: list (a * b)) (x: a) (y: b) : Lemma (requires (L.assoc x l == Some y)) (ensures (list_mem y (list_map snd l) == true)) (decreases l) = let ((x', y') :: l') = l in if x' = x then () else assoc_mem_snd l' x y let rec assoc_flip_elim (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc y (list_map flip l) == Some x )) (ensures ( L.assoc x l == Some y )) (decreases l) = let ((x', y') :: l') = l in if y' = y then () else begin if x' = x then begin assert (list_mem x' (list_map fst l') == false); assoc_mem_snd (list_map flip l') y x; map_snd_flip l'; assert False end else assoc_flip_elim l' y x end let rec assoc_flip_intro (#a #b: eqtype) (l: list (a * b)) (y: b) (x: a) : Lemma (requires ( L.noRepeats (list_map fst l) /\ L.noRepeats (list_map snd l) /\ L.assoc x l == Some y )) (ensures ( L.assoc y (list_map flip l) == Some x )) = map_fst_flip l; map_snd_flip l; map_flip_flip l; assoc_flip_elim (list_map flip l) x y let enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Pure (enum_key e) (requires True) (ensures (fun y -> L.assoc y e == Some r)) = map_fst_flip e; let e' = list_map #(key * repr) #(repr * key) flip e in L.assoc_mem r e'; let k = Some?.v (L.assoc r e') in assoc_flip_elim e r k; L.assoc_mem k e; (k <: enum_key e) let parse_enum_key_cond (#key #repr: eqtype) (e: enum key repr) (r: repr) : GTot bool = list_mem r (list_map snd e) let parse_enum_key_synth (#key #repr: eqtype) (e: enum key repr) (r: repr { parse_enum_key_cond e r == true } ) : GTot (enum_key e) = enum_key_of_repr e r let parse_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser (parse_filter_kind k) (enum_key e)) = (p `parse_filter` parse_enum_key_cond e ) `parse_synth` parse_enum_key_synth e let enum_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Pure (enum_repr e) (requires True) (ensures (fun r -> L.assoc k e == Some r)) = L.assoc_mem k e; let r = Some?.v (L.assoc k e) in assoc_flip_intro e r k; L.assoc_mem r (list_map flip e); map_fst_flip e; (r <: enum_repr e) let enum_repr_of_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: enum_repr e) : Lemma (enum_repr_of_key e (enum_key_of_repr e r) == r) = () let enum_key_of_repr_of_key (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : Lemma (enum_key_of_repr e (enum_repr_of_key e k) == k) = assoc_flip_intro e (enum_repr_of_key e k) k let serialize_enum_key_synth_recip (#key #repr: eqtype) (e: enum key repr) (k: enum_key e) : GTot (r: repr { parse_enum_key_cond e r == true } ) = enum_repr_of_key e k let serialize_enum_key_synth_inverse (#key #repr: eqtype) (e: enum key repr) : Lemma (synth_inverse (parse_enum_key_synth e) (serialize_enum_key_synth_recip e)) = Classical.forall_intro (enum_key_of_repr_of_key e) let serialize_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_enum_key p e)) = serialize_enum_key_synth_inverse e; serialize_synth (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () let serialize_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: enum_key e) : Lemma (serialize (serialize_enum_key p s e) x == serialize s (enum_repr_of_key e x)) = serialize_enum_key_synth_inverse e; serialize_synth_eq (parse_filter p (parse_enum_key_cond e)) (parse_enum_key_synth e) (serialize_filter s (parse_enum_key_cond e)) (serialize_enum_key_synth_recip e) () x inline_for_extraction let unknown_enum_repr (#key #repr: eqtype) (e: enum key repr) : Tot Type = (r: repr { list_mem r (list_map snd e) == false } ) type maybe_enum_key (#key #repr: eqtype) (e: enum key repr) = | Known of (enum_key e) | Unknown of (unknown_enum_repr e) let maybe_enum_key_of_repr (#key #repr: eqtype) (e: enum key repr) (r: repr) : Tot (maybe_enum_key e) = if list_mem r (list_map snd e) then Known (enum_key_of_repr e r) else Unknown r let parse_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) : Tot (parser k (maybe_enum_key e)) = p `parse_synth` (maybe_enum_key_of_repr e) let parse_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_maybe_enum_key p e) input == (match parse p input with | Some (x, consumed) -> Some (maybe_enum_key_of_repr e x, consumed) | _ -> None )) = parse_synth_eq p (maybe_enum_key_of_repr e) input let parse_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: enum key repr) (input: bytes) : Lemma (parse (parse_enum_key p e) input == (match parse p input with | Some (x, consumed) -> begin match maybe_enum_key_of_repr e x with | Known k -> Some (k, consumed) | _ -> None end | _ -> None )) = parse_filter_eq p (parse_enum_key_cond e) input; parse_synth_eq (p `parse_filter` parse_enum_key_cond e) (parse_enum_key_synth e) input let repr_of_maybe_enum_key (#key #repr: eqtype) (e: enum key repr) (x: maybe_enum_key e) : Tot (r: repr { maybe_enum_key_of_repr e r == x } ) = match x with | Known k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | Unknown r -> r let serialize_maybe_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: enum key repr) : Tot (serializer (parse_maybe_enum_key p e)) = serialize_synth p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () let serialize_maybe_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (#p: parser k repr) (s: serializer p) (e: enum key repr) (x: maybe_enum_key e) : Lemma (serialize (serialize_maybe_enum_key p s e) x == serialize s (repr_of_maybe_enum_key e x)) = serialize_synth_eq p (maybe_enum_key_of_repr e) s (repr_of_maybe_enum_key e) () x let is_total_enum (#key: eqtype) (#repr: eqtype) (l: list (key * repr)) : GTot Type0 = forall (k: key) . {:pattern (list_mem k (list_map fst l))} list_mem k (list_map fst l) let total_enum (key: eqtype) (repr: eqtype) : Tot eqtype = (l: enum key repr { is_total_enum l } ) let synth_total_enum_key (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: enum_key l) : Tot key = let k' : key = k in k' let parse_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (l: total_enum key repr) : Tot (parser (parse_filter_kind k) key) = parse_enum_key p l `parse_synth` (synth_total_enum_key l) let synth_total_enum_key_recip (#key: eqtype) (#repr: eqtype) (l: total_enum key repr) (k: key) : Tot (k' : enum_key l { synth_total_enum_key l k' == k } ) = k let serialize_total_enum_key (#k: parser_kind) (#key: eqtype) (#repr: eqtype) (p: parser k repr) (s: serializer p) (l: total_enum key repr) : Tot (serializer (parse_total_enum_key p l)) = serialize_synth (parse_enum_key p l) (synth_total_enum_key l) (serialize_enum_key p s l) (synth_total_enum_key_recip l) () type maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) = | TotalKnown of key | TotalUnknown of (unknown_enum_repr e) let maybe_total_enum_key_of_repr (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Tot (maybe_total_enum_key e) = if list_mem r (list_map snd e) then TotalKnown (enum_key_of_repr e r) else TotalUnknown r let parse_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) : Tot (parser k (maybe_total_enum_key e)) = p `parse_synth` (maybe_total_enum_key_of_repr e) let repr_of_maybe_total_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (r: repr { maybe_total_enum_key_of_repr e r == k } ) = match k with | TotalKnown k' -> enum_key_of_repr_of_key e k' ; enum_repr_of_key e k' | TotalUnknown r -> r let serialize_maybe_total_enum_key (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (s: serializer p) (e: total_enum key repr) : Tot (serializer (parse_maybe_total_enum_key p e)) = serialize_synth p (maybe_total_enum_key_of_repr e) s (repr_of_maybe_total_enum_key e) () inline_for_extraction let maybe_enum_key_of_total (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_total_enum_key e) : Tot (maybe_enum_key e) = match k with | TotalKnown ek -> Known (ek <: key) | TotalUnknown r -> Unknown r inline_for_extraction let total_of_maybe_enum_key (#key #repr: eqtype) (e: total_enum key repr) (k: maybe_enum_key e) : Tot (maybe_total_enum_key e) = match k with | Known ek -> TotalKnown (ek <: key) | Unknown r -> TotalUnknown r let maybe_total_enum_key_of_repr_eq (#key #repr: eqtype) (e: total_enum key repr) (r: repr) : Lemma (maybe_total_enum_key_of_repr e r == total_of_maybe_enum_key e (maybe_enum_key_of_repr e r)) = () let parse_maybe_total_enum_key_eq (#k: parser_kind) (#key #repr: eqtype) (p: parser k repr) (e: total_enum key repr) (input: bytes) : Lemma (parse (parse_maybe_total_enum_key p e) input == (parse (parse_maybe_enum_key p e `parse_synth` total_of_maybe_enum_key e) input)) = parse_synth_eq p (maybe_total_enum_key_of_repr e) input; parse_synth_eq (parse_maybe_enum_key p e) (total_of_maybe_enum_key e) input; parse_synth_eq p (maybe_enum_key_of_repr e) input (* Destructors *) (* Universal destructor *) let r_reflexive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x: t) . {:pattern (r x x)} r x x inline_for_extraction let r_reflexive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> Lemma (r x x) let r_reflexive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_reflexive_t t r) : Lemma (r_reflexive_prop t r) = Classical.forall_intro phi let r_transitive_prop (t: Type) (r: (t -> t -> GTot Type0)) : GTot Type0 = forall (x y z: t) . {:pattern (r x y); (r y z)} (r x y /\ r y z) ==> r x z inline_for_extraction let r_transitive_t (t: Type) (r: (t -> t -> GTot Type0)) : Tot Type = (x: t) -> (y: t) -> (z: t) -> Lemma ((r x y /\ r y z) ==> r x z) let r_transitive_t_elim (t: Type) (r: (t -> t -> GTot Type0)) (phi: r_transitive_t t r) : Lemma (r_transitive_prop t r) = Classical.forall_intro_3 phi inline_for_extraction let if_combinator (t: Type) (eq: (t -> t -> GTot Type0)) : Tot Type = (cond: bool) -> (sv_true: (cond_true cond -> Tot t)) -> (sv_false: (cond_false cond -> Tot t)) -> Tot (y: t { eq y (if cond then sv_true () else sv_false ()) } ) inline_for_extraction let default_if (t: Type) : Tot (if_combinator t (eq2 #t)) = fun (cond: bool) (s_true: (cond_true cond -> Tot t)) (s_false: (cond_false cond -> Tot t)) -> (if cond then s_true () else s_false ()) <: (y: t { y == (if cond then s_true () else s_false ()) } ) let feq (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) : GTot Type0 = (forall (x: u) . {:pattern (f1 x); (f2 x)} eq (f1 x) (f2 x)) (* #!$% patterns on forall, the following proofs should be trivial and now they aren't *) let feq_elim (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (x: u) : Lemma (requires (feq u v eq f1 f2)) (ensures (f1 x `eq` f2 x)) = () let feq_intro (u v: Type) (eq: (v -> v -> GTot Type0)) (f1 f2: (u -> Tot v)) (phi: (x: u) -> Lemma (f1 x `eq` f2 x)) : Lemma (feq _ _ eq f1 f2) = Classical.forall_intro phi let feq_trans (u v: Type) (eq: (v -> v -> GTot Type0)) : Pure (r_transitive_t _ (feq _ _ eq)) (requires (r_transitive_prop _ eq)) (ensures (fun _ -> True)) = let phi (f1 f2 f3: (u -> Tot v)) : Lemma (requires (feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3)) (ensures (feq _ _ eq f1 f3)) = feq_intro _ _ eq f1 f3 (fun x -> assert (f1 x `eq` f2 x /\ f2 x `eq` f3 x)) in let phi2 (f1 f2 f3: (u -> Tot v)) : Lemma ((feq _ _ eq f1 f2 /\ feq _ _ eq f2 f3) ==> feq _ _ eq f1 f3) = Classical.move_requires (phi f1 f2) f3 in phi2 inline_for_extraction let fif (u v: Type) (eq: (v -> v -> GTot Type0)) (ifc: if_combinator v eq) : Tot (if_combinator (u -> Tot v) (feq u v eq)) = fun (cond: bool) (s_true: (cond_true cond -> u -> Tot v)) (s_false: (cond_false cond -> u -> Tot v)) (x: u) -> ifc cond (fun h -> s_true () x) (fun h -> s_false () x) inline_for_extraction let enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: enum_key e) -> Tot t)) -> (x: enum_key e) -> Tot (y: t { eq y (f x) } ) inline_for_extraction let enum_tail' (#key #repr: eqtype) (e: enum key repr) : Pure (enum key repr) (requires True) (ensures (fun y -> Cons? e ==> (let (_ :: y') = e in y == y'))) = match e with _ :: y -> y | _ -> [] inline_for_extraction let enum_tail (#key #repr: eqtype) (e: enum key repr) : Tot (enum key repr) = enum_tail' e inline_for_extraction let enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (g: enum_destr_t t (enum_tail' e)) : Pure (enum_destr_t t e) (requires (Cons? e)) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( [@inline_let] let f' : (enum_key (enum_tail' e) -> Tot t) = (fun (x' : enum_key (enum_tail' e)) -> [@inline_let] let (x_ : enum_key e) = (x' <: key) in f x_ ) in [@inline_let] let (y: t) = ift ((k <: key) = x) (fun h -> f k) (fun h -> [@inline_let] let x' : enum_key (enum_tail' e) = (x <: key) in (g eq ift eq_refl eq_trans f' x' <: t)) in y ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons' (t: Type) (key repr: eqtype) (e: enum key repr) (u: unit { Cons? e } ) (g: enum_destr_t t (enum_tail e)) : Tot (enum_destr_t t e) = enum_destr_cons t e g inline_for_extraction let enum_destr_cons_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) : Pure (enum_destr_t t e) (requires (Cons? e /\ Nil? (enum_tail' e))) (ensures (fun _ -> True)) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in (fun (e' : list (key * repr) { e' == e } ) -> match e' with | (k, _) :: _ -> (fun (f: (enum_key e -> Tot t)) (x: enum_key e) -> (( f k ) <: (y: t { eq y (f x) } ))) ) e inline_for_extraction let enum_destr_cons_nil' (t: Type) (key repr: eqtype) (e: enum key repr) (u1: unit { Cons? e } ) (u2: unit { Nil? (enum_tail e) } ) : Tot (enum_destr_t t e) = enum_destr_cons_nil t e (* Dependent destructor *) inline_for_extraction let dep_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (enum_key e -> Tot (Type u#a))) : Tot (Type) = (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: enum_key e) -> Tot (v k))) -> (k: enum_key e) -> Tot (y: v k { v_eq k y (f k) } ) module L = FStar.List.Tot inline_for_extraction let dep_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e)) (v: (enum_key e -> Tot Type)) (destr: dep_enum_destr (enum_tail e) (fun (k' : enum_key (enum_tail e)) -> v (k' <: key))) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = v_if k' (k = k') (fun _ -> [@inline_let] let y : v k' = f k in y ) (fun _ -> [@inline_let] let v' (k: enum_key (enum_tail e)) : Tot Type = v (k <: key) in [@inline_let] let v'_eq (k: enum_key (enum_tail e)) : Tot (v' k -> v' k -> GTot Type0) = v_eq (k <: key) in [@inline_let] let v'_if (k: enum_key (enum_tail e)) : Tot (if_combinator (v' k) (v'_eq k)) = v_if (k <: key) in [@inline_let] let v'_eq_refl (k: enum_key (enum_tail e)) : Tot (r_reflexive_t _ (v'_eq k)) = v_eq_refl (k <: key) in [@inline_let] let v'_eq_trans (k: enum_key (enum_tail e)) : Tot (r_transitive_t _ (v'_eq k)) = v_eq_trans (k <: key) in [@inline_let] let f' (k: enum_key (enum_tail e)) : Tot (v' k) = f (k <: key) in [@inline_let] let k' : key = k' in [@inline_let] let _ = assert (k' <> k) in [@inline_let] let _ = assert (L.mem k' (L.map fst (enum_tail e))) in [@inline_let] let (y: v' k') = destr v'_eq v'_if v'_eq_refl v'_eq_trans f' k' in y ) in (y <: (y: v k' { v_eq k' y (f k') } )) inline_for_extraction let dep_enum_destr_cons_nil (#key #repr: eqtype) (e: enum key repr) (u: squash (Cons? e /\ Nil? (enum_tail e))) (v: (enum_key e -> Tot Type)) : Tot (dep_enum_destr e v) = match e with | ((k, _) :: _) -> fun (v_eq: ((k: enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: enum_key e) -> Tot (v k))) (k' : enum_key e) -> [@inline_let] let _ = r_reflexive_t_elim (v k') (v_eq k') (v_eq_refl k') in [@inline_let] let _ = r_transitive_t_elim (v k') (v_eq k') (v_eq_trans k') in [@inline_let] let y : v k' = f k in (y <: (y: v k' { v_eq k' y (f k') } )) (* Destructor from the representation *) let maybe_enum_key_of_repr_not_in (#key #repr: eqtype) (e: enum key repr) (l: list (key * repr)) (x: repr) : GTot Type0 = (~ (L.mem x (L.map snd l))) let list_rev_cons (#t: Type) (a: t) (q: list t) : Lemma (L.rev (a :: q) == L.rev q `L.append` [a]) = L.rev_rev' (a :: q); L.rev_rev' q let list_append_rev_cons (#t: Type) (l1: list t) (x: t) (l2: list t) : Lemma (L.append (L.rev l1) (x :: l2) == L.append (L.rev (x :: l1)) l2) = list_rev_cons x l1; L.append_assoc (L.rev l1) [x] l2 let rec assoc_append_flip_l_intro (#key #repr: eqtype) (l1 l2: list (key * repr)) (y: repr) (x: key) : Lemma (requires (L.noRepeats (L.map snd (L.append l1 l2)) /\ L.assoc y (L.map flip l2) == Some x)) (ensures (L.assoc y (L.map flip (l1 `L.append` l2)) == Some x)) = match l1 with | [] -> () | (_, r') :: q -> L.assoc_mem y (L.map flip l2); map_fst_flip l2; L.map_append snd l1 l2; L.noRepeats_append_elim (L.map snd l1) (L.map snd l2); assoc_append_flip_l_intro q l2 y x inline_for_extraction let maybe_enum_destr_t' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let maybe_enum_destr_t (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot Type = (eq: (t -> t -> GTot Type0)) -> (ift: if_combinator t eq) -> (eq_refl: r_reflexive_t _ eq) -> (eq_trans: r_transitive_t _ eq) -> (f: ((x: maybe_enum_key e) -> Tot t)) -> (x: repr) -> Tot (y: t { eq y (f (maybe_enum_key_of_repr e x)) } ) inline_for_extraction let destr_maybe_total_enum_repr (#t: Type) (#key #repr: eqtype) (e: total_enum key repr) (destr: maybe_enum_destr_t t e) (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: ((x: maybe_total_enum_key e) -> Tot t)) (x: repr) : Tot (y: t { eq y (f (maybe_total_enum_key_of_repr e x)) } ) = destr eq ift eq_refl eq_trans (fun y -> f (total_of_maybe_enum_key e y)) x inline_for_extraction let maybe_enum_destr_t_intro (t: Type) (#key #repr: eqtype) (e: enum key repr) (f: maybe_enum_destr_t' t e [] e ()) : Tot (maybe_enum_destr_t t e) = f let maybe_enum_key_of_repr_not_in_cons (#key #repr: eqtype) (e: enum key repr) (k: key) (r: repr) (l: list (key * repr)) (x: repr) : Lemma (requires (maybe_enum_key_of_repr_not_in e l x /\ x <> r)) (ensures (maybe_enum_key_of_repr_not_in e ((k, r) :: l) x)) = () [@Norm] inline_for_extraction let list_hd (#t: Type) (l: list t { Cons? l } ) = match l with | a :: _ -> a [@Norm] inline_for_extraction let list_tl (#t: Type) (l: list t { Cons? l } ) = match l with | _ :: q -> q inline_for_extraction let maybe_enum_destr_cons (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (maybe_enum_destr_t' t e (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( ift (x = r) (fun h -> f (Known k)) (fun h -> g eq ift eq_refl eq_trans f x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) let rec list_rev_map (#t1 #t2: Type) (f: t1 -> Tot t2) (l: list t1) : Lemma (L.rev (L.map f l) == L.map f (L.rev l)) = match l with | [] -> () | a :: q -> list_rev_cons a q; list_rev_cons (f a) (L.map f q); list_rev_map f q; L.map_append f (L.rev q) [a] inline_for_extraction let maybe_enum_destr_nil (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (maybe_enum_destr_t' t e l1 l2 u1) = fun (eq: (t -> t -> GTot Type0)) (ift: if_combinator t eq) (eq_refl: r_reflexive_t _ eq) (eq_trans: r_transitive_t _ eq) (f: (maybe_enum_key e -> Tot t)) -> [@inline_let] let _ = r_reflexive_t_elim _ _ eq_refl in [@inline_let] let _ = r_transitive_t_elim _ _ eq_trans in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; f (Unknown x) ) <: (y: t { eq y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_maybe_enum_destr' (t: Type) (#key #repr: eqtype) (e: enum key repr) (l1: list (key * repr)) (l2: list (key * repr)) (u: squash (e == L.rev l1 `L.append` l2)) : Tot (maybe_enum_destr_t' t e l1 l2 u) (decreases l2) = match l2 with | [] -> maybe_enum_destr_nil t e l1 l2 u | _ -> [@inline_let] let _ = list_append_rev_cons l1 (list_hd l2) (list_tl l2) in maybe_enum_destr_cons t e l1 l2 u (mk_maybe_enum_destr' t e (list_hd l2 :: l1) (list_tl l2) u) [@Norm] let mk_maybe_enum_destr (t: Type) (#key #repr: eqtype) (e: enum key repr) : Tot (maybe_enum_destr_t t e) = maybe_enum_destr_t_intro t e (mk_maybe_enum_destr' t e [] e ()) (* dependent representation-based destructor *) inline_for_extraction let dep_maybe_enum_destr_t (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1 l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot Type = (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) -> (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) -> (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) -> (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) -> (f: ((k: maybe_enum_key e) -> Tot (v k))) -> (r: repr { maybe_enum_key_of_repr_not_in e l1 r } ) -> Tot (y: v (maybe_enum_key_of_repr e r) { v_eq (maybe_enum_key_of_repr e r) y (f (maybe_enum_key_of_repr e r)) } ) inline_for_extraction let dep_maybe_enum_destr_t_intro (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (d: dep_maybe_enum_destr_t' e v [] e ()) : Tot (dep_maybe_enum_destr_t e v) = d inline_for_extraction let dep_maybe_enum_destr_cons (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Cons? l2 /\ e == L.append (L.rev l1) l2)) (g: (dep_maybe_enum_destr_t' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2)))) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) -> match list_hd l2 with | (k, r) -> [@inline_let] let _ : squash (L.mem k (L.map fst e)) = L.append_mem (L.map fst (L.rev l1)) (L.map fst l2) k; L.map_append fst (L.rev l1) (l2); () in [@inline_let] let (_ : squash (maybe_enum_key_of_repr e r == Known k)) = L.append_mem (L.map snd (L.rev l1)) (L.map snd (l2)) r; L.map_append snd (L.rev l1) (l2); assoc_append_flip_l_intro (L.rev l1) (l2) r k; () in fun (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> //NS: y is linear in the continuation after erasure; inline it [@inline_let] let y : v (maybe_enum_key_of_repr e x) = v_if (maybe_enum_key_of_repr e x) // TODO: Since we cannot make this argument ghost, we need to make the user aware of the fact that this argument must not be extracted. (x = r) (fun h -> f (Known k)) (fun h -> g v_eq v_if v_eq_refl v_eq_trans f x) in [@inline_let] let _ : squash (v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x))) = if x = r then () else v_eq_trans (maybe_enum_key_of_repr e x) y (g v_eq v_if v_eq_refl v_eq_trans f x) (f (maybe_enum_key_of_repr e x)) in (y <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) inline_for_extraction let dep_maybe_enum_destr_nil (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (Nil? l2 /\ e == L.append (L.rev l1) [])) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) = fun (v_eq: ((k: maybe_enum_key e) -> v k -> v k -> GTot Type0)) (v_if: ((k: maybe_enum_key e) -> Tot (if_combinator (v k) (v_eq k)))) (v_eq_refl: ((k: maybe_enum_key e) -> Tot (r_reflexive_t _ (v_eq k)))) (v_eq_trans: ((k: maybe_enum_key e) -> Tot (r_transitive_t _ (v_eq k)))) (f: ((k: maybe_enum_key e) -> Tot (v k))) (x: repr { maybe_enum_key_of_repr_not_in e l1 x } ) -> (( L.append_l_nil (L.rev l1); list_rev_map snd l1; L.rev_mem (L.map snd l1) x; assert (Unknown x == maybe_enum_key_of_repr e x); //NS: y is linear in the continuation after erasure [@inline_let] let y : v (maybe_enum_key_of_repr e x) = f (Unknown x) in [@inline_let] let _ = v_eq_refl (maybe_enum_key_of_repr e x) (f (maybe_enum_key_of_repr e x)) in y ) <: (y: v (maybe_enum_key_of_repr e x) { v_eq (maybe_enum_key_of_repr e x) y (f (maybe_enum_key_of_repr e x)) } )) [@Norm] let rec mk_dep_maybe_enum_destr' (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) (l1: list (key * repr)) (l2: list (key * repr)) (u1: squash (e == L.append (L.rev l1) l2)) : Tot (dep_maybe_enum_destr_t' e v l1 l2 u1) (decreases l2) = match l2 with | [] -> dep_maybe_enum_destr_nil e v l1 l2 u1 | _ -> dep_maybe_enum_destr_cons e v l1 l2 u1 (mk_dep_maybe_enum_destr' e v (list_hd l2 :: l1) (list_tl l2) (list_append_rev_cons l1 (list_hd l2) (list_tl l2))) [@Norm] let mk_dep_maybe_enum_destr (#key #repr: eqtype) (e: enum key repr) (v: (maybe_enum_key e -> Tot Type)) = dep_maybe_enum_destr_t_intro e v (mk_dep_maybe_enum_destr' e v [] e ()) (* Eliminators and destructors for verification purposes *) let rec list_forallp (#t: Type) (p: t -> GTot Type0) (l: list t) : GTot Type0 = match l with | [] -> True | a :: q -> p a /\ list_forallp p q let rec list_forallp_mem (#t: eqtype) (p: t -> GTot Type0) (l: list t) : Lemma (list_forallp p l <==> (forall x . L.mem x l ==> p x)) = match l with | [] -> () | _ :: q -> list_forallp_mem p q inline_for_extraction let destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: maybe_enum_key e -> Tot Type) (f_known: ( (x: key) -> (u: squash (list_mem x (list_map fst e))) -> Tot (f (Known x)) )) (f_unknown: ( (x: value) -> (u: squash (list_mem x (list_map snd e) == false)) -> Tot (f (Unknown x)) )) (x: maybe_enum_key e)
false
false
LowParse.Spec.Enum.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val destruct_maybe_enum_key (#key #value: eqtype) (e: enum key value) (f: (maybe_enum_key e -> Tot Type)) (f_known: (x: key -> u: squash (list_mem x (list_map fst e)) -> Tot (f (Known x)))) (f_unknown: (x: value -> u: squash (list_mem x (list_map snd e) == false) -> Tot (f (Unknown x)))) (x: maybe_enum_key e) : Tot (f x)
[]
LowParse.Spec.Enum.destruct_maybe_enum_key
{ "file_name": "src/lowparse/LowParse.Spec.Enum.fst", "git_rev": "446a08ce38df905547cf20f28c43776b22b8087a", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
e: LowParse.Spec.Enum.enum key value -> f: (_: LowParse.Spec.Enum.maybe_enum_key e -> Type) -> f_known: ( x: key -> u482: Prims.squash (LowParse.Spec.Enum.list_mem x (LowParse.Spec.Enum.list_map FStar.Pervasives.Native.fst e)) -> f (LowParse.Spec.Enum.Known x)) -> f_unknown: ( x: value -> u484: Prims.squash (LowParse.Spec.Enum.list_mem x (LowParse.Spec.Enum.list_map FStar.Pervasives.Native.snd e) == false) -> f (LowParse.Spec.Enum.Unknown x)) -> x: LowParse.Spec.Enum.maybe_enum_key e -> f x
{ "end_col": 33, "end_line": 1179, "start_col": 2, "start_line": 1177 }
FStar.Pervasives.Lemma
val fmul5_lemma: a:felem5 -> b:felem5 -> Lemma (requires felem_fits5 a (64,64,64,64,64) /\ felem_fits5 b (64,64,64,64,64)) (ensures (let res = fmul5 a b in as_nat5 res % S.prime == as_nat5 a * as_nat5 b % S.prime /\ felem_fits5 res (1,1,1,1,2)))
[ { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Lemmas5", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Lemmas4", "short_module": "L4" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fmul5_lemma a b = let (a0,a1,a2,a3,a4) = a in let (b0,b1,b2,b3,b4) = b in let r = u64 0x1000003D10 in let d0 = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3; assert (v d0 = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0); assert (v d0 <= 16384 * (max52 * max52)); let c0 = mul64_wide a4 b4 in lemma_bound_mul64_wide 64 64 max48 max48 a4 b4; assert (v c0 = v a4 * v b4); assert (v c0 <= 4096 * (max48 * max48)); let d1 = d0 +. mul64_wide r (to_u64 c0) in let c1 = to_u64 (c0 >>. 64ul) in lemma_bound_add_mul64_wide_r 16384 d0 c0; assert (v d1 = v d0 + v r * (v c0 % pow2 64)); assert (v d1 <= 16385 * (max52 * max52)); lemma_bound_rsh64_to c0; assert (v c1 = v c0 / pow2 64); lemma_bound_c0 c0; assert (v c1 <= pow2 44); let t3 = to_u64 d1 &. mask52 in let d2 = d1 >>. 52ul in lemma_bound_mask52_rsh52 16385 d1; assert (v t3 = v d1 % pow2 52); assert (felem_fits1 t3 1); assert (v d2 = v d1 / pow2 52); assert (v d2 <= 16385 * max52); let d3 = d2 +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in lemma_add_five_mul64_wide 16385 d2 a0 a1 a2 a3 a4 b0 b1 b2 b3 b4; assert (v d3 == v d2 + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0); assert (v d3 <= 12801 * (max52 * max52)); let d4 = d3 +. mul64_wide (r <<. 12ul) c1 in lemma_bound_add_mul64_wide_r_lsh12 12801 d3 c1; assert (v d4 == v d3 + v r * pow2 12 * v c1); assert (v d4 <= 12802 * (max52 * max52)); let t4 = to_u64 d4 &. mask52 in let d5 = d4 >>. 52ul in lemma_bound_mask52_rsh52 12802 d4; assert (v t4 = v d4 % pow2 52); assert (felem_fits1 t4 1); assert (v d5 = v d4 / pow2 52); assert (v d5 <= 12802 * max52); let tx = t4 >>. 48ul in let t4' = t4 &. mask48 in lemma_bound_mask48_rsh48 t4; assert (v tx = v t4 / pow2 48); assert (v tx < pow2 4); assert (v t4' = v t4 % pow2 48); assert (felem_fits_last1 t4' 1); let c2 = mul64_wide a0 b0 in lemma_bound_mul64_wide 64 64 max52 max52 a0 b0; assert (v c2 = v a0 * v b0); assert (v c2 <= 4096 * (max52 * max52)); let d6 = d5 +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in lemma_add_four_mul64_wide 12802 d5 a1 a2 a3 a4 b1 b2 b3 b4; assert (v d6 == v d5 + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1); assert (v d6 <= 8705 * (max52 * max52)); let u0 = to_u64 d6 &. mask52 in let d7 = d6 >>. 52ul in lemma_bound_mask52_rsh52 8705 d6; assert (v u0 = v d6 % pow2 52); assert (felem_fits1 u0 1); assert (v d7 = v d6 / pow2 52); assert (v d7 <= 8705 * max52); let u0' = tx |. (u0 <<. 4ul) in lemma_tx_logor_u0_lsh4 tx u0; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56); let c3 = c2 +. mul64_wide u0' (r >>. 4ul) in lemma_bound_add_mul64_wide_r_rsh4 4096 c2 u0'; assert (v c3 = v c2 + v u0' * (v r / pow2 4)); assert (v c3 <= 4097 * (max52 * max52)); let r0 = to_u64 c3 &. mask52 in let c4 = c3 >>. 52ul in lemma_bound_mask52_rsh52 4097 c3; assert (v r0 = v c3 % pow2 52); assert (felem_fits1 r0 1); assert (v c4 = v c3 / pow2 52); assert (v c4 <= 4097 * max52); let c5 = c4 +. mul64_wide a0 b1 +. mul64_wide a1 b0 in lemma_add_two_mul64_wide52 4097 c4 a0 a1 b0 b1; assert (v c5 = v c4 + v a0 * v b1 + v a1 * v b0); assert (v c5 <= 8193 * (max52 * max52)); let d8 = d7 +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in lemma_add_three_mul64_wide 8705 d7 a2 a3 a4 b2 b3 b4; assert (v d8 = v d7 + v a2 * v b4 + v a3 * v b3 + v a4 * v b2); assert (v d8 <= 4609 * (max52 * max52)); let c6 = c5 +. mul64_wide (to_u64 d8 &. mask52) r in let d9 = d8 >>. 52ul in lemma_bound_add_mul64_wide_r_mask52 8193 d8 c5; assert (v d9 = v d8 / pow2 52); assert (v d9 <= 8193 * max52); assert (v c6 = v c5 + v d8 % pow2 52 * v r); assert (v c6 <= 8194 * (max52 * max52)); let r1 = to_u64 c6 &. mask52 in let c7 = c6 >>. 52ul in lemma_bound_mask52_rsh52 8194 c6; assert (v r1 = v c6 % pow2 52); assert (felem_fits1 r1 1); assert (v c7 = v c6 / pow2 52); assert (v c7 <= 8194 * max52); let c8 = c7 +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in lemma_add_three_mul64_wide52 8194 c7 a0 a1 a2 b0 b1 b2; assert (v c8 == v c7 + v a0 * v b2 + v a1 * v b1 + v a2 * v b0); assert (v c8 <= 12289 * (max52 * max52)); let d10 = d9 +. mul64_wide a3 b4 +. mul64_wide a4 b3 in lemma_add_two_mul64_wide 8193 d9 a3 a4 b3 b4; assert (v d10 == v d9 + v a3 * v b4 + v a4 * v b3); assert (v d10 <= 513 * (max52 * max52)); let c9 = c8 +. mul64_wide r (to_u64 d10) in let d11 = to_u64 (d10 >>. 64ul) in lemma_bound_add_mul64_wide_r 12289 c8 d10; assert (v c9 = v c8 + v r * (v d10 % pow2 64)); assert (v c9 <= 12290 * (max52 * max52)); lemma_bound_rsh64_to d10; assert (v d11 = v d10 / pow2 64); lemma_bound_d10 d10; assert (v d11 < pow2 50); let r2 = to_u64 c9 &. mask52 in let c10 = c9 >>. 52ul in lemma_bound_mask52_rsh52 12290 c9; assert (v r2 = v c9 % pow2 52); assert (felem_fits1 r2 1); assert (v c10 = v c9 / pow2 52); assert (v c10 <= 12290 * max52); let c11 = c10 +. mul64_wide (r <<. 12ul) d11 +. to_u128 t3 in lemma_bound_add_mul64_wide_r_lsh12_add 12290 c10 d11 t3; assert (v c11 = v c10 + v r * pow2 12 * v d11 + v t3); assert (v c11 < pow2 100); let r3 = to_u64 c11 &. mask52 in let c12 = to_u64 (c11 >>. 52ul) in lemma_bound_mask52_rsh52_sp c11; assert (v r3 = v c11 % pow2 52); assert (felem_fits1 r3 1); assert (v c12 = v c11 / pow2 52); assert (v c12 < pow2 48); let r4 = c12 +. t4' in lemma_mod_add_last c12 t4'; assert (v r4 = v c12 + v t4'); assert (felem_fits_last1 r4 2); let res = (r0,r1,r2,r3,r4) in assert (res == fmul5 a b); assert (felem_fits5 res (1,1,1,1,2)); L4.lemma_fmul_simplify (v r0) (v r1) (v r2) (v r3) (v r4) (v c3) (v c6) (v c9) (v c11) (v d4) (v d8) (v d10) (v d11) (v t3) (v a0) (v a1) (v a2) (v a3) (v a4) (v b0) (v b1) (v b2) (v b3) (v b4)
val fmul5_lemma: a:felem5 -> b:felem5 -> Lemma (requires felem_fits5 a (64,64,64,64,64) /\ felem_fits5 b (64,64,64,64,64)) (ensures (let res = fmul5 a b in as_nat5 res % S.prime == as_nat5 a * as_nat5 b % S.prime /\ felem_fits5 res (1,1,1,1,2))) let fmul5_lemma a b =
false
null
true
let a0, a1, a2, a3, a4 = a in let b0, b1, b2, b3, b4 = b in let r = u64 0x1000003D10 in let d0 = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3; assert (v d0 = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0); assert (v d0 <= 16384 * (max52 * max52)); let c0 = mul64_wide a4 b4 in lemma_bound_mul64_wide 64 64 max48 max48 a4 b4; assert (v c0 = v a4 * v b4); assert (v c0 <= 4096 * (max48 * max48)); let d1 = d0 +. mul64_wide r (to_u64 c0) in let c1 = to_u64 (c0 >>. 64ul) in lemma_bound_add_mul64_wide_r 16384 d0 c0; assert (v d1 = v d0 + v r * (v c0 % pow2 64)); assert (v d1 <= 16385 * (max52 * max52)); lemma_bound_rsh64_to c0; assert (v c1 = v c0 / pow2 64); lemma_bound_c0 c0; assert (v c1 <= pow2 44); let t3 = to_u64 d1 &. mask52 in let d2 = d1 >>. 52ul in lemma_bound_mask52_rsh52 16385 d1; assert (v t3 = v d1 % pow2 52); assert (felem_fits1 t3 1); assert (v d2 = v d1 / pow2 52); assert (v d2 <= 16385 * max52); let d3 = d2 +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in lemma_add_five_mul64_wide 16385 d2 a0 a1 a2 a3 a4 b0 b1 b2 b3 b4; assert (v d3 == v d2 + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0); assert (v d3 <= 12801 * (max52 * max52)); let d4 = d3 +. mul64_wide (r <<. 12ul) c1 in lemma_bound_add_mul64_wide_r_lsh12 12801 d3 c1; assert (v d4 == v d3 + (v r * pow2 12) * v c1); assert (v d4 <= 12802 * (max52 * max52)); let t4 = to_u64 d4 &. mask52 in let d5 = d4 >>. 52ul in lemma_bound_mask52_rsh52 12802 d4; assert (v t4 = v d4 % pow2 52); assert (felem_fits1 t4 1); assert (v d5 = v d4 / pow2 52); assert (v d5 <= 12802 * max52); let tx = t4 >>. 48ul in let t4' = t4 &. mask48 in lemma_bound_mask48_rsh48 t4; assert (v tx = v t4 / pow2 48); assert (v tx < pow2 4); assert (v t4' = v t4 % pow2 48); assert (felem_fits_last1 t4' 1); let c2 = mul64_wide a0 b0 in lemma_bound_mul64_wide 64 64 max52 max52 a0 b0; assert (v c2 = v a0 * v b0); assert (v c2 <= 4096 * (max52 * max52)); let d6 = d5 +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in lemma_add_four_mul64_wide 12802 d5 a1 a2 a3 a4 b1 b2 b3 b4; assert (v d6 == v d5 + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1); assert (v d6 <= 8705 * (max52 * max52)); let u0 = to_u64 d6 &. mask52 in let d7 = d6 >>. 52ul in lemma_bound_mask52_rsh52 8705 d6; assert (v u0 = v d6 % pow2 52); assert (felem_fits1 u0 1); assert (v d7 = v d6 / pow2 52); assert (v d7 <= 8705 * max52); let u0' = tx |. (u0 <<. 4ul) in lemma_tx_logor_u0_lsh4 tx u0; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56); let c3 = c2 +. mul64_wide u0' (r >>. 4ul) in lemma_bound_add_mul64_wide_r_rsh4 4096 c2 u0'; assert (v c3 = v c2 + v u0' * (v r / pow2 4)); assert (v c3 <= 4097 * (max52 * max52)); let r0 = to_u64 c3 &. mask52 in let c4 = c3 >>. 52ul in lemma_bound_mask52_rsh52 4097 c3; assert (v r0 = v c3 % pow2 52); assert (felem_fits1 r0 1); assert (v c4 = v c3 / pow2 52); assert (v c4 <= 4097 * max52); let c5 = c4 +. mul64_wide a0 b1 +. mul64_wide a1 b0 in lemma_add_two_mul64_wide52 4097 c4 a0 a1 b0 b1; assert (v c5 = v c4 + v a0 * v b1 + v a1 * v b0); assert (v c5 <= 8193 * (max52 * max52)); let d8 = d7 +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in lemma_add_three_mul64_wide 8705 d7 a2 a3 a4 b2 b3 b4; assert (v d8 = v d7 + v a2 * v b4 + v a3 * v b3 + v a4 * v b2); assert (v d8 <= 4609 * (max52 * max52)); let c6 = c5 +. mul64_wide (to_u64 d8 &. mask52) r in let d9 = d8 >>. 52ul in lemma_bound_add_mul64_wide_r_mask52 8193 d8 c5; assert (v d9 = v d8 / pow2 52); assert (v d9 <= 8193 * max52); assert (v c6 = v c5 + (v d8 % pow2 52) * v r); assert (v c6 <= 8194 * (max52 * max52)); let r1 = to_u64 c6 &. mask52 in let c7 = c6 >>. 52ul in lemma_bound_mask52_rsh52 8194 c6; assert (v r1 = v c6 % pow2 52); assert (felem_fits1 r1 1); assert (v c7 = v c6 / pow2 52); assert (v c7 <= 8194 * max52); let c8 = c7 +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in lemma_add_three_mul64_wide52 8194 c7 a0 a1 a2 b0 b1 b2; assert (v c8 == v c7 + v a0 * v b2 + v a1 * v b1 + v a2 * v b0); assert (v c8 <= 12289 * (max52 * max52)); let d10 = d9 +. mul64_wide a3 b4 +. mul64_wide a4 b3 in lemma_add_two_mul64_wide 8193 d9 a3 a4 b3 b4; assert (v d10 == v d9 + v a3 * v b4 + v a4 * v b3); assert (v d10 <= 513 * (max52 * max52)); let c9 = c8 +. mul64_wide r (to_u64 d10) in let d11 = to_u64 (d10 >>. 64ul) in lemma_bound_add_mul64_wide_r 12289 c8 d10; assert (v c9 = v c8 + v r * (v d10 % pow2 64)); assert (v c9 <= 12290 * (max52 * max52)); lemma_bound_rsh64_to d10; assert (v d11 = v d10 / pow2 64); lemma_bound_d10 d10; assert (v d11 < pow2 50); let r2 = to_u64 c9 &. mask52 in let c10 = c9 >>. 52ul in lemma_bound_mask52_rsh52 12290 c9; assert (v r2 = v c9 % pow2 52); assert (felem_fits1 r2 1); assert (v c10 = v c9 / pow2 52); assert (v c10 <= 12290 * max52); let c11 = c10 +. mul64_wide (r <<. 12ul) d11 +. to_u128 t3 in lemma_bound_add_mul64_wide_r_lsh12_add 12290 c10 d11 t3; assert (v c11 = v c10 + (v r * pow2 12) * v d11 + v t3); assert (v c11 < pow2 100); let r3 = to_u64 c11 &. mask52 in let c12 = to_u64 (c11 >>. 52ul) in lemma_bound_mask52_rsh52_sp c11; assert (v r3 = v c11 % pow2 52); assert (felem_fits1 r3 1); assert (v c12 = v c11 / pow2 52); assert (v c12 < pow2 48); let r4 = c12 +. t4' in lemma_mod_add_last c12 t4'; assert (v r4 = v c12 + v t4'); assert (felem_fits_last1 r4 2); let res = (r0, r1, r2, r3, r4) in assert (res == fmul5 a b); assert (felem_fits5 res (1, 1, 1, 1, 2)); L4.lemma_fmul_simplify (v r0) (v r1) (v r2) (v r3) (v r4) (v c3) (v c6) (v c9) (v c11) (v d4) (v d8) (v d10) (v d11) (v t3) (v a0) (v a1) (v a2) (v a3) (v a4) (v b0) (v b1) (v b2) (v b3) (v b4)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas3.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "Hacl.Spec.K256.Field52.Lemmas4.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas3.fst" }
[ "lemma" ]
[ "Hacl.Spec.K256.Field52.Definitions.felem5", "Lib.IntTypes.uint64", "Hacl.Spec.K256.Field52.Lemmas4.lemma_fmul_simplify", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.U128", "Prims.unit", "Prims._assert", "Hacl.Spec.K256.Field52.Definitions.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Prims.eq2", "FStar.Pervasives.Native.tuple5", "Hacl.Spec.K256.Field52.fmul5", "Lib.IntTypes.int_t", "Prims.b2t", "Hacl.Spec.K256.Field52.Definitions.felem_fits_last1", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mod_add_last", "Lib.IntTypes.op_Plus_Dot", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Division", "Hacl.Spec.K256.Field52.Definitions.felem_fits1", "Prims.op_Modulus", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mask52_rsh52_sp", "Lib.IntTypes.to_u64", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.op_Amp_Dot", "Hacl.Spec.K256.Field52.Definitions.mask52", "FStar.Mul.op_Star", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_lsh12_add", "Lib.IntTypes.mul64_wide", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.to_u128", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Definitions.max52", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mask52_rsh52", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_d10", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_rsh64_to", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_two_mul64_wide", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_three_mul64_wide52", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_mask52", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_three_mul64_wide", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_two_mul64_wide52", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_rsh4", "Hacl.Spec.K256.Field52.Lemmas5.lemma_tx_logor_u0_lsh4", "Lib.IntTypes.op_Bar_Dot", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_four_mul64_wide", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mask48_rsh48", "Hacl.Spec.K256.Field52.Definitions.mask48", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_lsh12", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_five_mul64_wide", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_c0", "Hacl.Spec.K256.Field52.Definitions.max48", "Hacl.Spec.K256.Field52.Lemmas5.lemma_four_mul64_wide", "Lib.IntTypes.range", "Lib.IntTypes.u64" ]
[]
module Hacl.Spec.K256.Field52.Lemmas3 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module L4 = Hacl.Spec.K256.Field52.Lemmas4 open Hacl.Spec.K256.Field52.Lemmas5 #set-options "--z3rlimit 150 --fuel 0 --ifuel 0" val fmul5_lemma: a:felem5 -> b:felem5 -> Lemma (requires felem_fits5 a (64,64,64,64,64) /\ felem_fits5 b (64,64,64,64,64)) (ensures (let res = fmul5 a b in as_nat5 res % S.prime == as_nat5 a * as_nat5 b % S.prime /\ felem_fits5 res (1,1,1,1,2)))
false
false
Hacl.Spec.K256.Field52.Lemmas3.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fmul5_lemma: a:felem5 -> b:felem5 -> Lemma (requires felem_fits5 a (64,64,64,64,64) /\ felem_fits5 b (64,64,64,64,64)) (ensures (let res = fmul5 a b in as_nat5 res % S.prime == as_nat5 a * as_nat5 b % S.prime /\ felem_fits5 res (1,1,1,1,2)))
[]
Hacl.Spec.K256.Field52.Lemmas3.fmul5_lemma
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas3.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.K256.Field52.Definitions.felem5 -> b: Hacl.Spec.K256.Field52.Definitions.felem5 -> FStar.Pervasives.Lemma (requires Hacl.Spec.K256.Field52.Definitions.felem_fits5 a (64, 64, 64, 64, 64) /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 b (64, 64, 64, 64, 64)) (ensures (let res = Hacl.Spec.K256.Field52.fmul5 a b in Hacl.Spec.K256.Field52.Definitions.as_nat5 res % Spec.K256.PointOps.prime == Hacl.Spec.K256.Field52.Definitions.as_nat5 a * Hacl.Spec.K256.Field52.Definitions.as_nat5 b % Spec.K256.PointOps.prime /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 res (1, 1, 1, 1, 2)))
{ "end_col": 80, "end_line": 209, "start_col": 21, "start_line": 24 }
FStar.Pervasives.Lemma
val fsqr5_lemma: a:felem5 -> Lemma (requires felem_fits5 a (64,64,64,64,64)) (ensures (let res = fsqr5 a in as_nat5 res % S.prime == as_nat5 a * as_nat5 a % S.prime /\ felem_fits5 res (1,1,1,1,2)))
[ { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Lemmas5", "short_module": null }, { "abbrev": true, "full_module": "Hacl.Spec.K256.Field52.Lemmas4", "short_module": "L4" }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52.Definitions", "short_module": null }, { "abbrev": true, "full_module": "Spec.K256", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.K256.Field52", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let fsqr5_lemma a = let (a0,a1,a2,a3,a4) = a in let r = u64 0x1000003D10 in let d0 = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in lemma_four_sqr64_wide a0 a1 a2 a3; assert (v d0 = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0); assert (v d0 <= 16384 * (max52 * max52)); let c0 = mul64_wide a4 a4 in lemma_bound_mul64_wide 64 64 max48 max48 a4 a4; assert (v c0 = v a4 * v a4); assert (v c0 <= 4096 * (max48 * max48)); let d1 = d0 +. mul64_wide r (to_u64 c0) in let c1 = to_u64 (c0 >>. 64ul) in lemma_bound_add_mul64_wide_r 16384 d0 c0; assert (v d1 = v d0 + v r * (v c0 % pow2 64)); assert (v d1 <= 16385 * (max52 * max52)); lemma_bound_rsh64_to c0; assert (v c1 = v c0 / pow2 64); lemma_bound_c0 c0; assert (v c1 <= pow2 44); let t3 = to_u64 d1 &. mask52 in let d2 = d1 >>. 52ul in lemma_bound_mask52_rsh52 16385 d1; assert (v t3 = v d1 % pow2 52); assert (felem_fits1 t3 1); assert (v d2 = v d1 / pow2 52); assert (v d2 <= 16385 * max52); let d3 = d2 +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in lemma_add_five_sqr64_wide 16385 d2 a0 a1 a2 a3 a4; assert (v d3 == v d2 + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0); assert (v d3 <= 12801 * (max52 * max52)); let d4 = d3 +. mul64_wide (r <<. 12ul) c1 in lemma_bound_add_mul64_wide_r_lsh12 12801 d3 c1; assert (v d4 == v d3 + v r * pow2 12 * v c1); assert (v d4 <= 12802 * (max52 * max52)); let t4 = to_u64 d4 &. mask52 in let d5 = d4 >>. 52ul in lemma_bound_mask52_rsh52 12802 d4; assert (v t4 = v d4 % pow2 52); assert (felem_fits1 t4 1); assert (v d5 = v d4 / pow2 52); assert (v d5 <= 12802 * max52); let tx = t4 >>. 48ul in let t4' = t4 &. mask48 in lemma_bound_mask48_rsh48 t4; assert (v tx = v t4 / pow2 48); assert (v tx < pow2 4); assert (v t4' = v t4 % pow2 48); assert (felem_fits_last1 t4' 1); let c2 = mul64_wide a0 a0 in lemma_bound_mul64_wide 64 64 max52 max52 a0 a0; assert (v c2 = v a0 * v a0); assert (v c2 <= 4096 * (max52 * max52)); let d6 = d5 +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in lemma_add_four_sqr64_wide 12802 d5 a1 a2 a3 a4; assert (v d6 == v d5 + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1); assert (v d6 <= 8705 * (max52 * max52)); let u0 = to_u64 d6 &. mask52 in let d7 = d6 >>. 52ul in lemma_bound_mask52_rsh52 8705 d6; assert (v u0 = v d6 % pow2 52); assert (felem_fits1 u0 1); assert (v d7 = v d6 / pow2 52); assert (v d7 <= 8705 * max52); let u0' = tx |. (u0 <<. 4ul) in lemma_tx_logor_u0_lsh4 tx u0; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56); let c3 = c2 +. mul64_wide u0' (r >>. 4ul) in lemma_bound_add_mul64_wide_r_rsh4 4096 c2 u0'; assert (v c3 = v c2 + v u0' * (v r / pow2 4)); assert (v c3 <= 4097 * (max52 * max52)); let r0 = to_u64 c3 &. mask52 in let c4 = c3 >>. 52ul in lemma_bound_mask52_rsh52 4097 c3; assert (v r0 = v c3 % pow2 52); assert (felem_fits1 r0 1); assert (v c4 = v c3 / pow2 52); assert (v c4 <= 4097 * max52); let c5 = c4 +. mul64_wide (a0 *. u64 2) a1 in lemma_add_two_sqr64_wide52 4097 c4 a0 a1; assert (v c5 = v c4 + v a0 * v a1 + v a1 * v a0); assert (v c5 <= 8193 * (max52 * max52)); let d8 = d7 +. mul64_wide a2 (a4 *. u64 2) +. mul64_wide a3 a3 in lemma_add_three_sqr64_wide 8705 d7 a2 a3 a4; assert (v d8 = v d7 + v a2 * v a4 + v a3 * v a3 + v a4 * v a2); assert (v d8 <= 4609 * (max52 * max52)); let c6 = c5 +. mul64_wide (to_u64 d8 &. mask52) r in let d9 = d8 >>. 52ul in lemma_bound_add_mul64_wide_r_mask52 8193 d8 c5; assert (v d9 = v d8 / pow2 52); assert (v d9 <= 8193 * max52); assert (v c6 = v c5 + v d8 % pow2 52 * v r); assert (v c6 <= 8194 * (max52 * max52)); let r1 = to_u64 c6 &. mask52 in let c7 = c6 >>. 52ul in lemma_bound_mask52_rsh52 8194 c6; assert (v r1 = v c6 % pow2 52); assert (felem_fits1 r1 1); assert (v c7 = v c6 / pow2 52); assert (v c7 <= 8194 * max52); let c8 = c7 +. mul64_wide (a0 *. u64 2) a2 +. mul64_wide a1 a1 in lemma_add_three_sqr64_wide52 8194 c7 a0 a1 a2; assert (v c8 == v c7 + v a0 * v a2 + v a1 * v a1 + v a2 * v a0); assert (v c8 <= 12289 * (max52 * max52)); let d10 = d9 +. mul64_wide a3 (a4 *. u64 2) in lemma_add_two_sqr64_wide 8193 d9 a3 a4; assert (v d10 == v d9 + v a3 * v a4 + v a4 * v a3); assert (v d10 <= 513 * (max52 * max52)); let c9 = c8 +. mul64_wide r (to_u64 d10) in let d11 = to_u64 (d10 >>. 64ul) in lemma_bound_add_mul64_wide_r 12289 c8 d10; assert (v c9 = v c8 + v r * (v d10 % pow2 64)); assert (v c9 <= 12290 * (max52 * max52)); lemma_bound_rsh64_to d10; assert (v d11 = v d10 / pow2 64); lemma_bound_d10 d10; assert (v d11 < pow2 50); let r2 = to_u64 c9 &. mask52 in let c10 = c9 >>. 52ul in lemma_bound_mask52_rsh52 12290 c9; assert (v r2 = v c9 % pow2 52); assert (felem_fits1 r2 1); assert (v c10 = v c9 / pow2 52); assert (v c10 <= 12290 * max52); let c11 = c10 +. mul64_wide (r <<. 12ul) d11 +. to_u128 t3 in lemma_bound_add_mul64_wide_r_lsh12_add 12290 c10 d11 t3; assert (v c11 = v c10 + v r * pow2 12 * v d11 + v t3); assert (v c11 < pow2 100); let r3 = to_u64 c11 &. mask52 in let c12 = to_u64 (c11 >>. 52ul) in lemma_bound_mask52_rsh52_sp c11; assert (v r3 = v c11 % pow2 52); assert (felem_fits1 r3 1); assert (v c12 = v c11 / pow2 52); assert (v c12 < pow2 48); let r4 = c12 +. t4' in lemma_mod_add_last c12 t4'; assert (v r4 = v c12 + v t4'); assert (felem_fits_last1 r4 2); let res = (r0,r1,r2,r3,r4) in assert (res == fsqr5 a); assert (felem_fits5 res (1,1,1,1,2)); L4.lemma_fmul_simplify (v r0) (v r1) (v r2) (v r3) (v r4) (v c3) (v c6) (v c9) (v c11) (v d4) (v d8) (v d10) (v d11) (v t3) (v a0) (v a1) (v a2) (v a3) (v a4) (v a0) (v a1) (v a2) (v a3) (v a4)
val fsqr5_lemma: a:felem5 -> Lemma (requires felem_fits5 a (64,64,64,64,64)) (ensures (let res = fsqr5 a in as_nat5 res % S.prime == as_nat5 a * as_nat5 a % S.prime /\ felem_fits5 res (1,1,1,1,2))) let fsqr5_lemma a =
false
null
true
let a0, a1, a2, a3, a4 = a in let r = u64 0x1000003D10 in let d0 = mul64_wide (a0 *. u64 2) a3 +. mul64_wide (a1 *. u64 2) a2 in lemma_four_sqr64_wide a0 a1 a2 a3; assert (v d0 = v a0 * v a3 + v a1 * v a2 + v a2 * v a1 + v a3 * v a0); assert (v d0 <= 16384 * (max52 * max52)); let c0 = mul64_wide a4 a4 in lemma_bound_mul64_wide 64 64 max48 max48 a4 a4; assert (v c0 = v a4 * v a4); assert (v c0 <= 4096 * (max48 * max48)); let d1 = d0 +. mul64_wide r (to_u64 c0) in let c1 = to_u64 (c0 >>. 64ul) in lemma_bound_add_mul64_wide_r 16384 d0 c0; assert (v d1 = v d0 + v r * (v c0 % pow2 64)); assert (v d1 <= 16385 * (max52 * max52)); lemma_bound_rsh64_to c0; assert (v c1 = v c0 / pow2 64); lemma_bound_c0 c0; assert (v c1 <= pow2 44); let t3 = to_u64 d1 &. mask52 in let d2 = d1 >>. 52ul in lemma_bound_mask52_rsh52 16385 d1; assert (v t3 = v d1 % pow2 52); assert (felem_fits1 t3 1); assert (v d2 = v d1 / pow2 52); assert (v d2 <= 16385 * max52); let d3 = d2 +. mul64_wide a0 (a4 *. u64 2) +. mul64_wide (a1 *. u64 2) a3 +. mul64_wide a2 a2 in lemma_add_five_sqr64_wide 16385 d2 a0 a1 a2 a3 a4; assert (v d3 == v d2 + v a0 * v a4 + v a1 * v a3 + v a2 * v a2 + v a3 * v a1 + v a4 * v a0); assert (v d3 <= 12801 * (max52 * max52)); let d4 = d3 +. mul64_wide (r <<. 12ul) c1 in lemma_bound_add_mul64_wide_r_lsh12 12801 d3 c1; assert (v d4 == v d3 + (v r * pow2 12) * v c1); assert (v d4 <= 12802 * (max52 * max52)); let t4 = to_u64 d4 &. mask52 in let d5 = d4 >>. 52ul in lemma_bound_mask52_rsh52 12802 d4; assert (v t4 = v d4 % pow2 52); assert (felem_fits1 t4 1); assert (v d5 = v d4 / pow2 52); assert (v d5 <= 12802 * max52); let tx = t4 >>. 48ul in let t4' = t4 &. mask48 in lemma_bound_mask48_rsh48 t4; assert (v tx = v t4 / pow2 48); assert (v tx < pow2 4); assert (v t4' = v t4 % pow2 48); assert (felem_fits_last1 t4' 1); let c2 = mul64_wide a0 a0 in lemma_bound_mul64_wide 64 64 max52 max52 a0 a0; assert (v c2 = v a0 * v a0); assert (v c2 <= 4096 * (max52 * max52)); let d6 = d5 +. mul64_wide a1 (a4 *. u64 2) +. mul64_wide (a2 *. u64 2) a3 in lemma_add_four_sqr64_wide 12802 d5 a1 a2 a3 a4; assert (v d6 == v d5 + v a1 * v a4 + v a2 * v a3 + v a3 * v a2 + v a4 * v a1); assert (v d6 <= 8705 * (max52 * max52)); let u0 = to_u64 d6 &. mask52 in let d7 = d6 >>. 52ul in lemma_bound_mask52_rsh52 8705 d6; assert (v u0 = v d6 % pow2 52); assert (felem_fits1 u0 1); assert (v d7 = v d6 / pow2 52); assert (v d7 <= 8705 * max52); let u0' = tx |. (u0 <<. 4ul) in lemma_tx_logor_u0_lsh4 tx u0; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56); let c3 = c2 +. mul64_wide u0' (r >>. 4ul) in lemma_bound_add_mul64_wide_r_rsh4 4096 c2 u0'; assert (v c3 = v c2 + v u0' * (v r / pow2 4)); assert (v c3 <= 4097 * (max52 * max52)); let r0 = to_u64 c3 &. mask52 in let c4 = c3 >>. 52ul in lemma_bound_mask52_rsh52 4097 c3; assert (v r0 = v c3 % pow2 52); assert (felem_fits1 r0 1); assert (v c4 = v c3 / pow2 52); assert (v c4 <= 4097 * max52); let c5 = c4 +. mul64_wide (a0 *. u64 2) a1 in lemma_add_two_sqr64_wide52 4097 c4 a0 a1; assert (v c5 = v c4 + v a0 * v a1 + v a1 * v a0); assert (v c5 <= 8193 * (max52 * max52)); let d8 = d7 +. mul64_wide a2 (a4 *. u64 2) +. mul64_wide a3 a3 in lemma_add_three_sqr64_wide 8705 d7 a2 a3 a4; assert (v d8 = v d7 + v a2 * v a4 + v a3 * v a3 + v a4 * v a2); assert (v d8 <= 4609 * (max52 * max52)); let c6 = c5 +. mul64_wide (to_u64 d8 &. mask52) r in let d9 = d8 >>. 52ul in lemma_bound_add_mul64_wide_r_mask52 8193 d8 c5; assert (v d9 = v d8 / pow2 52); assert (v d9 <= 8193 * max52); assert (v c6 = v c5 + (v d8 % pow2 52) * v r); assert (v c6 <= 8194 * (max52 * max52)); let r1 = to_u64 c6 &. mask52 in let c7 = c6 >>. 52ul in lemma_bound_mask52_rsh52 8194 c6; assert (v r1 = v c6 % pow2 52); assert (felem_fits1 r1 1); assert (v c7 = v c6 / pow2 52); assert (v c7 <= 8194 * max52); let c8 = c7 +. mul64_wide (a0 *. u64 2) a2 +. mul64_wide a1 a1 in lemma_add_three_sqr64_wide52 8194 c7 a0 a1 a2; assert (v c8 == v c7 + v a0 * v a2 + v a1 * v a1 + v a2 * v a0); assert (v c8 <= 12289 * (max52 * max52)); let d10 = d9 +. mul64_wide a3 (a4 *. u64 2) in lemma_add_two_sqr64_wide 8193 d9 a3 a4; assert (v d10 == v d9 + v a3 * v a4 + v a4 * v a3); assert (v d10 <= 513 * (max52 * max52)); let c9 = c8 +. mul64_wide r (to_u64 d10) in let d11 = to_u64 (d10 >>. 64ul) in lemma_bound_add_mul64_wide_r 12289 c8 d10; assert (v c9 = v c8 + v r * (v d10 % pow2 64)); assert (v c9 <= 12290 * (max52 * max52)); lemma_bound_rsh64_to d10; assert (v d11 = v d10 / pow2 64); lemma_bound_d10 d10; assert (v d11 < pow2 50); let r2 = to_u64 c9 &. mask52 in let c10 = c9 >>. 52ul in lemma_bound_mask52_rsh52 12290 c9; assert (v r2 = v c9 % pow2 52); assert (felem_fits1 r2 1); assert (v c10 = v c9 / pow2 52); assert (v c10 <= 12290 * max52); let c11 = c10 +. mul64_wide (r <<. 12ul) d11 +. to_u128 t3 in lemma_bound_add_mul64_wide_r_lsh12_add 12290 c10 d11 t3; assert (v c11 = v c10 + (v r * pow2 12) * v d11 + v t3); assert (v c11 < pow2 100); let r3 = to_u64 c11 &. mask52 in let c12 = to_u64 (c11 >>. 52ul) in lemma_bound_mask52_rsh52_sp c11; assert (v r3 = v c11 % pow2 52); assert (felem_fits1 r3 1); assert (v c12 = v c11 / pow2 52); assert (v c12 < pow2 48); let r4 = c12 +. t4' in lemma_mod_add_last c12 t4'; assert (v r4 = v c12 + v t4'); assert (felem_fits_last1 r4 2); let res = (r0, r1, r2, r3, r4) in assert (res == fsqr5 a); assert (felem_fits5 res (1, 1, 1, 1, 2)); L4.lemma_fmul_simplify (v r0) (v r1) (v r2) (v r3) (v r4) (v c3) (v c6) (v c9) (v c11) (v d4) (v d8) (v d10) (v d11) (v t3) (v a0) (v a1) (v a2) (v a3) (v a4) (v a0) (v a1) (v a2) (v a3) (v a4)
{ "checked_file": "Hacl.Spec.K256.Field52.Lemmas3.fst.checked", "dependencies": [ "Spec.K256.fst.checked", "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.K256.Field52.Lemmas5.fst.checked", "Hacl.Spec.K256.Field52.Lemmas4.fst.checked", "Hacl.Spec.K256.Field52.Definitions.fst.checked", "Hacl.Spec.K256.Field52.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Hacl.Spec.K256.Field52.Lemmas3.fst" }
[ "lemma" ]
[ "Hacl.Spec.K256.Field52.Definitions.felem5", "Lib.IntTypes.uint64", "Hacl.Spec.K256.Field52.Lemmas4.lemma_fmul_simplify", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Lib.IntTypes.U128", "Prims.unit", "Prims._assert", "Hacl.Spec.K256.Field52.Definitions.felem_fits5", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Prims.eq2", "FStar.Pervasives.Native.tuple5", "Hacl.Spec.K256.Field52.fsqr5", "Lib.IntTypes.int_t", "Prims.b2t", "Hacl.Spec.K256.Field52.Definitions.felem_fits_last1", "Prims.op_Equality", "Prims.int", "Prims.op_Addition", "Hacl.Spec.K256.Field52.Lemmas5.lemma_mod_add_last", "Lib.IntTypes.op_Plus_Dot", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Division", "Hacl.Spec.K256.Field52.Definitions.felem_fits1", "Prims.op_Modulus", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mask52_rsh52_sp", "Lib.IntTypes.to_u64", "Lib.IntTypes.op_Greater_Greater_Dot", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.op_Amp_Dot", "Hacl.Spec.K256.Field52.Definitions.mask52", "FStar.Mul.op_Star", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_lsh12_add", "Lib.IntTypes.mul64_wide", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.to_u128", "Prims.op_LessThanOrEqual", "Hacl.Spec.K256.Field52.Definitions.max52", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mask52_rsh52", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_d10", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_rsh64_to", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_two_sqr64_wide", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_three_sqr64_wide52", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_mask52", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_three_sqr64_wide", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_two_sqr64_wide52", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_rsh4", "Hacl.Spec.K256.Field52.Lemmas5.lemma_tx_logor_u0_lsh4", "Lib.IntTypes.op_Bar_Dot", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_four_sqr64_wide", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mul64_wide", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_mask48_rsh48", "Hacl.Spec.K256.Field52.Definitions.mask48", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_add_mul64_wide_r_lsh12", "Hacl.Spec.K256.Field52.Lemmas5.lemma_add_five_sqr64_wide", "Hacl.Spec.K256.Field52.Lemmas5.lemma_bound_c0", "Hacl.Spec.K256.Field52.Definitions.max48", "Hacl.Spec.K256.Field52.Lemmas5.lemma_four_sqr64_wide", "Lib.IntTypes.range" ]
[]
module Hacl.Spec.K256.Field52.Lemmas3 open FStar.Mul open Lib.IntTypes module S = Spec.K256 include Hacl.Spec.K256.Field52.Definitions include Hacl.Spec.K256.Field52 module L4 = Hacl.Spec.K256.Field52.Lemmas4 open Hacl.Spec.K256.Field52.Lemmas5 #set-options "--z3rlimit 150 --fuel 0 --ifuel 0" val fmul5_lemma: a:felem5 -> b:felem5 -> Lemma (requires felem_fits5 a (64,64,64,64,64) /\ felem_fits5 b (64,64,64,64,64)) (ensures (let res = fmul5 a b in as_nat5 res % S.prime == as_nat5 a * as_nat5 b % S.prime /\ felem_fits5 res (1,1,1,1,2))) let fmul5_lemma a b = let (a0,a1,a2,a3,a4) = a in let (b0,b1,b2,b3,b4) = b in let r = u64 0x1000003D10 in let d0 = mul64_wide a0 b3 +. mul64_wide a1 b2 +. mul64_wide a2 b1 +. mul64_wide a3 b0 in lemma_four_mul64_wide a0 a1 a2 a3 b0 b1 b2 b3; assert (v d0 = v a0 * v b3 + v a1 * v b2 + v a2 * v b1 + v a3 * v b0); assert (v d0 <= 16384 * (max52 * max52)); let c0 = mul64_wide a4 b4 in lemma_bound_mul64_wide 64 64 max48 max48 a4 b4; assert (v c0 = v a4 * v b4); assert (v c0 <= 4096 * (max48 * max48)); let d1 = d0 +. mul64_wide r (to_u64 c0) in let c1 = to_u64 (c0 >>. 64ul) in lemma_bound_add_mul64_wide_r 16384 d0 c0; assert (v d1 = v d0 + v r * (v c0 % pow2 64)); assert (v d1 <= 16385 * (max52 * max52)); lemma_bound_rsh64_to c0; assert (v c1 = v c0 / pow2 64); lemma_bound_c0 c0; assert (v c1 <= pow2 44); let t3 = to_u64 d1 &. mask52 in let d2 = d1 >>. 52ul in lemma_bound_mask52_rsh52 16385 d1; assert (v t3 = v d1 % pow2 52); assert (felem_fits1 t3 1); assert (v d2 = v d1 / pow2 52); assert (v d2 <= 16385 * max52); let d3 = d2 +. mul64_wide a0 b4 +. mul64_wide a1 b3 +. mul64_wide a2 b2 +. mul64_wide a3 b1 +. mul64_wide a4 b0 in lemma_add_five_mul64_wide 16385 d2 a0 a1 a2 a3 a4 b0 b1 b2 b3 b4; assert (v d3 == v d2 + v a0 * v b4 + v a1 * v b3 + v a2 * v b2 + v a3 * v b1 + v a4 * v b0); assert (v d3 <= 12801 * (max52 * max52)); let d4 = d3 +. mul64_wide (r <<. 12ul) c1 in lemma_bound_add_mul64_wide_r_lsh12 12801 d3 c1; assert (v d4 == v d3 + v r * pow2 12 * v c1); assert (v d4 <= 12802 * (max52 * max52)); let t4 = to_u64 d4 &. mask52 in let d5 = d4 >>. 52ul in lemma_bound_mask52_rsh52 12802 d4; assert (v t4 = v d4 % pow2 52); assert (felem_fits1 t4 1); assert (v d5 = v d4 / pow2 52); assert (v d5 <= 12802 * max52); let tx = t4 >>. 48ul in let t4' = t4 &. mask48 in lemma_bound_mask48_rsh48 t4; assert (v tx = v t4 / pow2 48); assert (v tx < pow2 4); assert (v t4' = v t4 % pow2 48); assert (felem_fits_last1 t4' 1); let c2 = mul64_wide a0 b0 in lemma_bound_mul64_wide 64 64 max52 max52 a0 b0; assert (v c2 = v a0 * v b0); assert (v c2 <= 4096 * (max52 * max52)); let d6 = d5 +. mul64_wide a1 b4 +. mul64_wide a2 b3 +. mul64_wide a3 b2 +. mul64_wide a4 b1 in lemma_add_four_mul64_wide 12802 d5 a1 a2 a3 a4 b1 b2 b3 b4; assert (v d6 == v d5 + v a1 * v b4 + v a2 * v b3 + v a3 * v b2 + v a4 * v b1); assert (v d6 <= 8705 * (max52 * max52)); let u0 = to_u64 d6 &. mask52 in let d7 = d6 >>. 52ul in lemma_bound_mask52_rsh52 8705 d6; assert (v u0 = v d6 % pow2 52); assert (felem_fits1 u0 1); assert (v d7 = v d6 / pow2 52); assert (v d7 <= 8705 * max52); let u0' = tx |. (u0 <<. 4ul) in lemma_tx_logor_u0_lsh4 tx u0; assert (v u0' == v tx + v u0 * pow2 4); assert (v u0' < pow2 56); let c3 = c2 +. mul64_wide u0' (r >>. 4ul) in lemma_bound_add_mul64_wide_r_rsh4 4096 c2 u0'; assert (v c3 = v c2 + v u0' * (v r / pow2 4)); assert (v c3 <= 4097 * (max52 * max52)); let r0 = to_u64 c3 &. mask52 in let c4 = c3 >>. 52ul in lemma_bound_mask52_rsh52 4097 c3; assert (v r0 = v c3 % pow2 52); assert (felem_fits1 r0 1); assert (v c4 = v c3 / pow2 52); assert (v c4 <= 4097 * max52); let c5 = c4 +. mul64_wide a0 b1 +. mul64_wide a1 b0 in lemma_add_two_mul64_wide52 4097 c4 a0 a1 b0 b1; assert (v c5 = v c4 + v a0 * v b1 + v a1 * v b0); assert (v c5 <= 8193 * (max52 * max52)); let d8 = d7 +. mul64_wide a2 b4 +. mul64_wide a3 b3 +. mul64_wide a4 b2 in lemma_add_three_mul64_wide 8705 d7 a2 a3 a4 b2 b3 b4; assert (v d8 = v d7 + v a2 * v b4 + v a3 * v b3 + v a4 * v b2); assert (v d8 <= 4609 * (max52 * max52)); let c6 = c5 +. mul64_wide (to_u64 d8 &. mask52) r in let d9 = d8 >>. 52ul in lemma_bound_add_mul64_wide_r_mask52 8193 d8 c5; assert (v d9 = v d8 / pow2 52); assert (v d9 <= 8193 * max52); assert (v c6 = v c5 + v d8 % pow2 52 * v r); assert (v c6 <= 8194 * (max52 * max52)); let r1 = to_u64 c6 &. mask52 in let c7 = c6 >>. 52ul in lemma_bound_mask52_rsh52 8194 c6; assert (v r1 = v c6 % pow2 52); assert (felem_fits1 r1 1); assert (v c7 = v c6 / pow2 52); assert (v c7 <= 8194 * max52); let c8 = c7 +. mul64_wide a0 b2 +. mul64_wide a1 b1 +. mul64_wide a2 b0 in lemma_add_three_mul64_wide52 8194 c7 a0 a1 a2 b0 b1 b2; assert (v c8 == v c7 + v a0 * v b2 + v a1 * v b1 + v a2 * v b0); assert (v c8 <= 12289 * (max52 * max52)); let d10 = d9 +. mul64_wide a3 b4 +. mul64_wide a4 b3 in lemma_add_two_mul64_wide 8193 d9 a3 a4 b3 b4; assert (v d10 == v d9 + v a3 * v b4 + v a4 * v b3); assert (v d10 <= 513 * (max52 * max52)); let c9 = c8 +. mul64_wide r (to_u64 d10) in let d11 = to_u64 (d10 >>. 64ul) in lemma_bound_add_mul64_wide_r 12289 c8 d10; assert (v c9 = v c8 + v r * (v d10 % pow2 64)); assert (v c9 <= 12290 * (max52 * max52)); lemma_bound_rsh64_to d10; assert (v d11 = v d10 / pow2 64); lemma_bound_d10 d10; assert (v d11 < pow2 50); let r2 = to_u64 c9 &. mask52 in let c10 = c9 >>. 52ul in lemma_bound_mask52_rsh52 12290 c9; assert (v r2 = v c9 % pow2 52); assert (felem_fits1 r2 1); assert (v c10 = v c9 / pow2 52); assert (v c10 <= 12290 * max52); let c11 = c10 +. mul64_wide (r <<. 12ul) d11 +. to_u128 t3 in lemma_bound_add_mul64_wide_r_lsh12_add 12290 c10 d11 t3; assert (v c11 = v c10 + v r * pow2 12 * v d11 + v t3); assert (v c11 < pow2 100); let r3 = to_u64 c11 &. mask52 in let c12 = to_u64 (c11 >>. 52ul) in lemma_bound_mask52_rsh52_sp c11; assert (v r3 = v c11 % pow2 52); assert (felem_fits1 r3 1); assert (v c12 = v c11 / pow2 52); assert (v c12 < pow2 48); let r4 = c12 +. t4' in lemma_mod_add_last c12 t4'; assert (v r4 = v c12 + v t4'); assert (felem_fits_last1 r4 2); let res = (r0,r1,r2,r3,r4) in assert (res == fmul5 a b); assert (felem_fits5 res (1,1,1,1,2)); L4.lemma_fmul_simplify (v r0) (v r1) (v r2) (v r3) (v r4) (v c3) (v c6) (v c9) (v c11) (v d4) (v d8) (v d10) (v d11) (v t3) (v a0) (v a1) (v a2) (v a3) (v a4) (v b0) (v b1) (v b2) (v b3) (v b4) /// squaring val fsqr5_lemma: a:felem5 -> Lemma (requires felem_fits5 a (64,64,64,64,64)) (ensures (let res = fsqr5 a in as_nat5 res % S.prime == as_nat5 a * as_nat5 a % S.prime /\ felem_fits5 res (1,1,1,1,2)))
false
false
Hacl.Spec.K256.Field52.Lemmas3.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 150, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val fsqr5_lemma: a:felem5 -> Lemma (requires felem_fits5 a (64,64,64,64,64)) (ensures (let res = fsqr5 a in as_nat5 res % S.prime == as_nat5 a * as_nat5 a % S.prime /\ felem_fits5 res (1,1,1,1,2)))
[]
Hacl.Spec.K256.Field52.Lemmas3.fsqr5_lemma
{ "file_name": "code/k256/Hacl.Spec.K256.Field52.Lemmas3.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
a: Hacl.Spec.K256.Field52.Definitions.felem5 -> FStar.Pervasives.Lemma (requires Hacl.Spec.K256.Field52.Definitions.felem_fits5 a (64, 64, 64, 64, 64)) (ensures (let res = Hacl.Spec.K256.Field52.fsqr5 a in Hacl.Spec.K256.Field52.Definitions.as_nat5 res % Spec.K256.PointOps.prime == Hacl.Spec.K256.Field52.Definitions.as_nat5 a * Hacl.Spec.K256.Field52.Definitions.as_nat5 a % Spec.K256.PointOps.prime /\ Hacl.Spec.K256.Field52.Definitions.felem_fits5 res (1, 1, 1, 1, 2)))
{ "end_col": 80, "end_line": 392, "start_col": 19, "start_line": 220 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lbignum (t:limb_t) len = lbuffer (limb t) len
let lbignum (t: limb_t) len =
false
null
false
lbuffer (limb t) len
{ "checked_file": "Hacl.Bignum.Definitions.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Definitions.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Lib.Buffer.lbuffer", "Hacl.Bignum.Definitions.limb" ]
[]
module Hacl.Bignum.Definitions open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module S = Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val blocks: x:size_t{v x > 0} -> m:size_t{v m > 0} -> r:size_t{v r == S.blocks (v x) (v m)} let blocks x m = (x -. 1ul) /. m +. 1ul inline_for_extraction noextract val blocks0: x:size_t -> m:size_t{v m > 0} -> r:size_t{v r == S.blocks0 (v x) (v m)} let blocks0 x m = if x =. 0ul then 1ul else (x -. 1ul) /. m +. 1ul inline_for_extraction noextract let limb_t = S.limb_t inline_for_extraction noextract let limb (t:limb_t) = S.limb t
false
true
Hacl.Bignum.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lbignum : t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t -> Type0
[]
Hacl.Bignum.Definitions.lbignum
{ "file_name": "code/bignum/Hacl.Bignum.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> len: Lib.IntTypes.size_t -> Type0
{ "end_col": 49, "end_line": 29, "start_col": 29, "start_line": 29 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let limb_t = S.limb_t
let limb_t =
false
null
false
S.limb_t
{ "checked_file": "Hacl.Bignum.Definitions.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Definitions.fst" }
[ "total" ]
[ "Hacl.Spec.Bignum.Definitions.limb_t" ]
[]
module Hacl.Bignum.Definitions open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module S = Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val blocks: x:size_t{v x > 0} -> m:size_t{v m > 0} -> r:size_t{v r == S.blocks (v x) (v m)} let blocks x m = (x -. 1ul) /. m +. 1ul inline_for_extraction noextract val blocks0: x:size_t -> m:size_t{v m > 0} -> r:size_t{v r == S.blocks0 (v x) (v m)} let blocks0 x m = if x =. 0ul then 1ul else (x -. 1ul) /. m +. 1ul
false
true
Hacl.Bignum.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val limb_t : Type0
[]
Hacl.Bignum.Definitions.limb_t
{ "file_name": "code/bignum/Hacl.Bignum.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
Type0
{ "end_col": 21, "end_line": 23, "start_col": 13, "start_line": 23 }
Prims.Tot
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let limb (t:limb_t) = S.limb t
let limb (t: limb_t) =
false
null
false
S.limb t
{ "checked_file": "Hacl.Bignum.Definitions.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Definitions.fst" }
[ "total" ]
[ "Hacl.Bignum.Definitions.limb_t", "Hacl.Spec.Bignum.Definitions.limb" ]
[]
module Hacl.Bignum.Definitions open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module S = Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val blocks: x:size_t{v x > 0} -> m:size_t{v m > 0} -> r:size_t{v r == S.blocks (v x) (v m)} let blocks x m = (x -. 1ul) /. m +. 1ul inline_for_extraction noextract val blocks0: x:size_t -> m:size_t{v m > 0} -> r:size_t{v r == S.blocks0 (v x) (v m)} let blocks0 x m = if x =. 0ul then 1ul else (x -. 1ul) /. m +. 1ul inline_for_extraction noextract let limb_t = S.limb_t
false
true
Hacl.Bignum.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val limb : t: Hacl.Bignum.Definitions.limb_t -> Type0
[]
Hacl.Bignum.Definitions.limb
{ "file_name": "code/bignum/Hacl.Bignum.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
t: Hacl.Bignum.Definitions.limb_t -> Type0
{ "end_col": 30, "end_line": 26, "start_col": 22, "start_line": 26 }
Prims.GTot
val bn_v: #t:limb_t -> #len:size_t -> h:mem -> b:lbignum t len -> GTot nat
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let bn_v #t #len h b = S.bn_v #t #(v len) (as_seq h b)
val bn_v: #t:limb_t -> #len:size_t -> h:mem -> b:lbignum t len -> GTot nat let bn_v #t #len h b =
false
null
false
S.bn_v #t #(v len) (as_seq h b)
{ "checked_file": "Hacl.Bignum.Definitions.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Definitions.fst" }
[ "sometrivial" ]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Bignum.Definitions.lbignum", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Prims.nat" ]
[]
module Hacl.Bignum.Definitions open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module S = Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val blocks: x:size_t{v x > 0} -> m:size_t{v m > 0} -> r:size_t{v r == S.blocks (v x) (v m)} let blocks x m = (x -. 1ul) /. m +. 1ul inline_for_extraction noextract val blocks0: x:size_t -> m:size_t{v m > 0} -> r:size_t{v r == S.blocks0 (v x) (v m)} let blocks0 x m = if x =. 0ul then 1ul else (x -. 1ul) /. m +. 1ul inline_for_extraction noextract let limb_t = S.limb_t inline_for_extraction noextract let limb (t:limb_t) = S.limb t inline_for_extraction noextract let lbignum (t:limb_t) len = lbuffer (limb t) len noextract
false
false
Hacl.Bignum.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val bn_v: #t:limb_t -> #len:size_t -> h:mem -> b:lbignum t len -> GTot nat
[]
Hacl.Bignum.Definitions.bn_v
{ "file_name": "code/bignum/Hacl.Bignum.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
h: FStar.Monotonic.HyperStack.mem -> b: Hacl.Bignum.Definitions.lbignum t len -> Prims.GTot Prims.nat
{ "end_col": 54, "end_line": 33, "start_col": 23, "start_line": 33 }
Prims.Tot
val blocks: x:size_t{v x > 0} -> m:size_t{v m > 0} -> r:size_t{v r == S.blocks (v x) (v m)}
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let blocks x m = (x -. 1ul) /. m +. 1ul
val blocks: x:size_t{v x > 0} -> m:size_t{v m > 0} -> r:size_t{v r == S.blocks (v x) (v m)} let blocks x m =
false
null
false
(x -. 1ul) /. m +. 1ul
{ "checked_file": "Hacl.Bignum.Definitions.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Definitions.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_GreaterThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.op_Slash_Dot", "Lib.IntTypes.op_Subtraction_Dot", "FStar.UInt32.__uint_to_t", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.l_and", "Prims.op_LessThanOrEqual", "Lib.IntTypes.max_size_t", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks" ]
[]
module Hacl.Bignum.Definitions open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module S = Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract
false
false
Hacl.Bignum.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val blocks: x:size_t{v x > 0} -> m:size_t{v m > 0} -> r:size_t{v r == S.blocks (v x) (v m)}
[]
Hacl.Bignum.Definitions.blocks
{ "file_name": "code/bignum/Hacl.Bignum.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.size_t{Lib.IntTypes.v x > 0} -> m: Lib.IntTypes.size_t{Lib.IntTypes.v m > 0} -> r: Lib.IntTypes.size_t { Lib.IntTypes.v r == Hacl.Spec.Bignum.Definitions.blocks (Lib.IntTypes.v x) (Lib.IntTypes.v m) }
{ "end_col": 39, "end_line": 16, "start_col": 17, "start_line": 16 }
Prims.Tot
val blocks0: x:size_t -> m:size_t{v m > 0} -> r:size_t{v r == S.blocks0 (v x) (v m)}
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "S" }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let blocks0 x m = if x =. 0ul then 1ul else (x -. 1ul) /. m +. 1ul
val blocks0: x:size_t -> m:size_t{v m > 0} -> r:size_t{v r == S.blocks0 (v x) (v m)} let blocks0 x m =
false
null
false
if x =. 0ul then 1ul else (x -. 1ul) /. m +. 1ul
{ "checked_file": "Hacl.Bignum.Definitions.fst.checked", "dependencies": [ "prims.fst.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Definitions.fst" }
[ "total" ]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_GreaterThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.op_Equals_Dot", "FStar.UInt32.__uint_to_t", "Prims.bool", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.op_Slash_Dot", "Lib.IntTypes.op_Subtraction_Dot", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.l_and", "Prims.op_LessThanOrEqual", "Lib.IntTypes.max_size_t", "FStar.Mul.op_Star", "Hacl.Spec.Bignum.Definitions.blocks0" ]
[]
module Hacl.Bignum.Definitions open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer module S = Hacl.Spec.Bignum.Definitions #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val blocks: x:size_t{v x > 0} -> m:size_t{v m > 0} -> r:size_t{v r == S.blocks (v x) (v m)} let blocks x m = (x -. 1ul) /. m +. 1ul inline_for_extraction noextract
false
false
Hacl.Bignum.Definitions.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val blocks0: x:size_t -> m:size_t{v m > 0} -> r:size_t{v r == S.blocks0 (v x) (v m)}
[]
Hacl.Bignum.Definitions.blocks0
{ "file_name": "code/bignum/Hacl.Bignum.Definitions.fst", "git_rev": "12c5e9539c7e3c366c26409d3b86493548c4483e", "git_url": "https://github.com/hacl-star/hacl-star.git", "project_name": "hacl-star" }
x: Lib.IntTypes.size_t -> m: Lib.IntTypes.size_t{Lib.IntTypes.v m > 0} -> r: Lib.IntTypes.size_t { Lib.IntTypes.v r == Hacl.Spec.Bignum.Definitions.blocks0 (Lib.IntTypes.v x) (Lib.IntTypes.v m) }
{ "end_col": 66, "end_line": 20, "start_col": 18, "start_line": 20 }
Prims.Tot
val v (x:t) : Tot (uint_t n)
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let v x = x.v
val v (x:t) : Tot (uint_t n) let v x =
false
null
false
x.v
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[ "total" ]
[ "FStar.UInt32.t", "FStar.UInt32.__proj__Mk__item__v", "FStar.UInt.uint_t", "FStar.UInt32.n" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t
false
true
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val v (x:t) : Tot (uint_t n)
[]
FStar.UInt32.v
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt32.t -> FStar.UInt.uint_t FStar.UInt32.n
{ "end_col": 13, "end_line": 28, "start_col": 10, "start_line": 28 }
Prims.Tot
val zero : x:t{v x = 0}
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let zero = uint_to_t 0
val zero : x:t{v x = 0} let zero =
false
null
false
uint_to_t 0
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[ "total" ]
[ "FStar.UInt32.uint_to_t" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = ()
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val zero : x:t{v x = 0}
[]
FStar.UInt32.zero
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt32.t{FStar.UInt32.v x = 0}
{ "end_col": 22, "end_line": 38, "start_col": 11, "start_line": 38 }
Prims.Pure
val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_underspec a b = Mk (mul_underspec (v a) (v b))
val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c)) let mul_underspec a b =
false
null
false
Mk (mul_underspec (v a) (v b))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.Mk", "FStar.UInt.mul_underspec", "FStar.UInt32.n", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b))
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c))
[]
FStar.UInt32.mul_underspec
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 54, "end_line": 56, "start_col": 24, "start_line": 56 }
Prims.Tot
val one : x:t{v x = 1}
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let one = uint_to_t 1
val one : x:t{v x = 1} let one =
false
null
false
uint_to_t 1
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[ "total" ]
[ "FStar.UInt32.uint_to_t" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val one : x:t{v x = 1}
[]
FStar.UInt32.one
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt32.t{FStar.UInt32.v x = 1}
{ "end_col": 21, "end_line": 40, "start_col": 10, "start_line": 40 }
Prims.Pure
val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub_underspec a b = Mk (sub_underspec (v a) (v b))
val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c)) let sub_underspec a b =
false
null
false
Mk (sub_underspec (v a) (v b))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.Mk", "FStar.UInt.sub_underspec", "FStar.UInt32.n", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b))
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c))
[]
FStar.UInt32.sub_underspec
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 54, "end_line": 50, "start_col": 24, "start_line": 50 }
Prims.Pure
val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_underspec a b = Mk (add_underspec (v a) (v b))
val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c)) let add_underspec a b =
false
null
false
Mk (add_underspec (v a) (v b))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.Mk", "FStar.UInt.add_underspec", "FStar.UInt32.n", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b))
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c))
[]
FStar.UInt32.add_underspec
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 54, "end_line": 44, "start_col": 24, "start_line": 44 }
Prims.Pure
val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logor x y = Mk (logor (v x) (v y))
val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z)) let logor x y =
false
null
false
Mk (logor (v x) (v y))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.Mk", "FStar.UInt.logor", "FStar.UInt32.n", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b)) let logand x y = Mk (logand (v x) (v y)) let logxor x y = Mk (logxor (v x) (v y))
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z))
[]
FStar.UInt32.logor
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt32.t -> y: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 38, "end_line": 68, "start_col": 16, "start_line": 68 }
Prims.Pure
val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub a b = Mk (sub (v a) (v b))
val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c)) let sub a b =
false
null
false
Mk (sub (v a) (v b))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.Mk", "FStar.UInt.sub", "FStar.UInt32.n", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b))
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c))
[]
FStar.UInt32.sub
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 34, "end_line": 48, "start_col": 14, "start_line": 48 }
Prims.Pure
val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add a b = Mk (add (v a) (v b))
val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c)) let add a b =
false
null
false
Mk (add (v a) (v b))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.Mk", "FStar.UInt.add", "FStar.UInt32.n", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c))
[]
FStar.UInt32.add
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 34, "end_line": 42, "start_col": 14, "start_line": 42 }
Prims.Pure
val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logxor x y = Mk (logxor (v x) (v y))
val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z)) let logxor x y =
false
null
false
Mk (logxor (v x) (v y))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.Mk", "FStar.UInt.logxor", "FStar.UInt32.n", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b)) let logand x y = Mk (logand (v x) (v y))
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z))
[]
FStar.UInt32.logxor
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt32.t -> y: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 40, "end_line": 66, "start_col": 17, "start_line": 66 }
Prims.Pure
val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul a b = Mk (mul (v a) (v b))
val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c)) let mul a b =
false
null
false
Mk (mul (v a) (v b))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.Mk", "FStar.UInt.mul", "FStar.UInt32.n", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b))
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c))
[]
FStar.UInt32.mul
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 34, "end_line": 54, "start_col": 14, "start_line": 54 }
Prims.Pure
val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let lognot x = Mk (lognot (v x))
val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z)) let lognot x =
false
null
false
Mk (lognot (v x))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.Mk", "FStar.UInt.lognot", "FStar.UInt32.n", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b)) let logand x y = Mk (logand (v x) (v y)) let logxor x y = Mk (logxor (v x) (v y)) let logor x y = Mk (logor (v x) (v y))
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z))
[]
FStar.UInt32.lognot
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 32, "end_line": 70, "start_col": 15, "start_line": 70 }
Prims.Pure
val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let add_mod a b = Mk (add_mod (v a) (v b))
val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c)) let add_mod a b =
false
null
false
Mk (add_mod (v a) (v b))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.Mk", "FStar.UInt.add_mod", "FStar.UInt32.n", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b))
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
[]
FStar.UInt32.add_mod
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 42, "end_line": 46, "start_col": 18, "start_line": 46 }
Prims.Pure
val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let uint_to_t x = Mk x
val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x)) let uint_to_t x =
false
null
false
Mk x
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt.uint_t", "FStar.UInt32.n", "FStar.UInt32.Mk", "FStar.UInt32.t" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x))
[]
FStar.UInt32.uint_to_t
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt.uint_t FStar.UInt32.n -> Prims.Pure FStar.UInt32.t
{ "end_col": 22, "end_line": 30, "start_col": 18, "start_line": 30 }
Prims.Pure
val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let rem a b = Mk (mod (v a) (v b))
val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c)) let rem a b =
false
null
false
Mk (mod (v a) (v b))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "FStar.UInt32.v", "FStar.UInt32.Mk", "FStar.UInt.mod", "FStar.UInt32.n" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b)) let div a b = Mk (div (v a) (v b))
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
[]
FStar.UInt32.rem
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t{FStar.UInt32.v b <> 0} -> Prims.Pure FStar.UInt32.t
{ "end_col": 34, "end_line": 62, "start_col": 14, "start_line": 62 }
Prims.Pure
val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let logand x y = Mk (logand (v x) (v y))
val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z)) let logand x y =
false
null
false
Mk (logand (v x) (v y))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.Mk", "FStar.UInt.logand", "FStar.UInt32.n", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b))
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z))
[]
FStar.UInt32.logand
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
x: FStar.UInt32.t -> y: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 40, "end_line": 64, "start_col": 17, "start_line": 64 }
Prims.Pure
val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let sub_mod a b = Mk (sub_mod (v a) (v b))
val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c)) let sub_mod a b =
false
null
false
Mk (sub_mod (v a) (v b))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.Mk", "FStar.UInt.sub_mod", "FStar.UInt32.n", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b))
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
[]
FStar.UInt32.sub_mod
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 42, "end_line": 52, "start_col": 18, "start_line": 52 }
Prims.Pure
val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let mul_mod a b = Mk (mul_mod (v a) (v b))
val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c)) let mul_mod a b =
false
null
false
Mk (mul_mod (v a) (v b))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.Mk", "FStar.UInt.mul_mod", "FStar.UInt32.n", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b))
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
[]
FStar.UInt32.mul_mod
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> b: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 42, "end_line": 58, "start_col": 18, "start_line": 58 }
Prims.Pure
val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_left a s = Mk (shift_left (v a) (v s))
val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c)) let shift_left a s =
false
null
false
Mk (shift_left (v a) (v s))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.Mk", "FStar.UInt.shift_left", "FStar.UInt32.n", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b)) let logand x y = Mk (logand (v x) (v y)) let logxor x y = Mk (logxor (v x) (v y)) let logor x y = Mk (logor (v x) (v y)) let lognot x = Mk (lognot (v x)) let shift_right a s = Mk (shift_right (v a) (v s)) #push-options "--z3rlimit 80 --fuel 1" //AR: working around the interleaving semantics of pragmas
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 80, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_left (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (v s) = v c))
[]
FStar.UInt32.shift_left
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 48, "end_line": 76, "start_col": 21, "start_line": 76 }
Prims.Pure
val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c))
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
false
let shift_right a s = Mk (shift_right (v a) (v s))
val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c)) let shift_right a s =
false
null
false
Mk (shift_right (v a) (v s))
{ "checked_file": "FStar.UInt32.fst.checked", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt32.fst" }
[]
[ "FStar.UInt32.t", "FStar.UInt32.Mk", "FStar.UInt.shift_right", "FStar.UInt32.n", "FStar.UInt32.v" ]
[]
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt32 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b)) let logand x y = Mk (logand (v x) (v y)) let logxor x y = Mk (logxor (v x) (v y)) let logor x y = Mk (logor (v x) (v y)) let lognot x = Mk (lognot (v x))
false
false
FStar.UInt32.fst
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
null
val shift_right (a:t) (s:t) : Pure t (requires (v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (v s) = v c))
[]
FStar.UInt32.shift_right
{ "file_name": "ulib/FStar.UInt32.fst", "git_rev": "f4cbb7a38d67eeb13fbdb2f4fb8a44a65cbcdc1f", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
a: FStar.UInt32.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt32.t
{ "end_col": 50, "end_line": 72, "start_col": 22, "start_line": 72 }